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ABSTRACT

A machine learning system is typically composed of model and data. In many
applications, feature is the input of models so as to generate a meaningful predic-
tion. While a large amount of model-centric solutions are proposed to improve the
capabilities of models, there is very limited exploration on how to discover useful
feature interactions1 from a data-centric perspective. In this work, we propose a
general framework named Feature Shapley with the purpose of discovering use-
ful high-order feature interactions based on Feature Shapely values and thereby
generating new features. Since computing exact Feature Shapley values is com-
putationally infeasible, Monte-Carlo approximation and early truncation trick are
applied for efficient estimation of Feature Shapley values in this work. Experi-
mental results indicate that the decisive feature interactions exploited by Feature
Shapley are of vital importance for the Click-through rate (CTR) prediction and
asset pricing task. With decisive feature interactions exploited by Feature Shap-
ley, even simple models (e.g., linear regression (LR) or shallow neural network)
could achieve similar or even better performance comparing with more complex
approaches and keep their superior interpretability at the same time.

1 INTRODUCTION

Progress in machine learning has been driven by efforts to improve performance on benchmark
datasets. To improve the performance of machine learning systems, model-centric solutions focus
on improving the capabilities of models iteratively while less effort is observed from the data-centric
perspective. As data is the fuel of modern machine learning systems, there is another natural and
promising way to boost the performance of machine learning systems, commonly known as data-
centric solutions. In other words, one can deliver a performance-enhanced machine learning system
by improving the input data Northcutt et al. (2021).

In this work, we propose a general framework named Feature Shapley to discovering useful feature
interactions from the data-centric perspective. The learned feature interactions are then selected as
the input. Specifically, Feature Shapley values are estimated for input features when creating a new
feature interaction term. In this way, only features that have considerable marginal contribution to
the model performance will be included to the feature interaction. Note that the proposed Feature
Shapley is very flexible as it can be applied on any task that takes feature as the input of machine
learning systems. We demonstrate the effectiveness of Feature Shapley on both CTR task and asset
pricing task in this work.

However, computing exact Feature Shapley values is computationally infeasible. We therefore find
two keys for efficient estimation of Feature Shapley values: (1) Extending Monte-Carlo approxima-
tion methods Maleki et al. (2013) to our feature valuation setting. (2) Applying early truncation trick
to avoid futile model training. This enables Feature Shapley to discover useful interactions with af-
fordable computational cost. Without bells and whistles, by simply considering feature interactions
learned by our Feature Shapley, a linear regression model is able to achieve a solid improvement. As
shown in Fig. 1, by taking only three feature interactions exploited by Feature Shapley into account,
LR (Shapley) (i.e., a linear regression model that linearly sums all features and learned feature inter-
actions) is able to achieve competitive performance compared with some well-designed baselines.

1Feature interactions are a major type of feature transformations, where multiplication is performed over
input features.
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Figure 1: The additional gain between the linear regression (LR) and comparing methods for CTR
prediction on the Frappe Dataset. By considering only three feature interactions, our methods (i.e.,
LR (Shapley) and NN (Shapley)) significantly boost the AUC performance. Best viewed in color.

Meanwhile, by employing a single layer perceptron over the concatenated representations of feature
interactions, NN (Shapley) is able to outperform all comparing methods on the Frappe dataset.

In a nutshell, this work makes the following main contributions: Conceptual: We emphasize the
importance of feature interactions from the data-centric perspective. By modeling such feature inter-
actions, one could achieve better performance and keep the superior interpretability of linear models.
Algorithmic: We propose a novel framework Feature Shapley, which estimates Feature Shapley val-
ues of features and further generates useful feature interactions without manual effort. To decrease
computational complexity, Monte-Carlo approximation methods and early truncation trick are used
to approximate Feature Shapley values. Empirical: We conduct extensive experiments on three
CTR datasets and US Stock Markets, to demonstrate the advantages of our Feature Shapley on the
effectiveness of discovering useful feature interactions.

2 RELATED WORKS

This section first briefly reviews existing data-centric approaches. As our proposed Feature Shapley
aims to measure the marginal contribution of input features when creating feature combinations, we
then present existing feature-importance methods.

2.1 DATA-CENTRIC METHODS

Data-centric approaches emphasize the role of good data as the cause of good model performance,
rather than the design of the model. For example, the problem of how to identify and learn with
noisy labels have received increasing attention from researchers Northcutt et al. (2021); Feng et al.
(2020); Cordeiro & Carneiro (2020). Meanwhile, feature selection techniques and feature extraction
techniques have demonstrate their effectiveness to decrease the high dimensionality of the input
feature vector Zebari et al. (2020). Another typical successful case is data augmentation which aims
to increase the amount of training data for deep neural networks Zoph et al. (2020); Zhong et al.
(2020). In this work, we focus on exploiting useful feature interactions based on Shapley value.

2.2 SHAPLEY VALUE FOR INTERPRETABILITY

Recent studies demonstrate the effectiveness and interpretability of Shapley value for various appli-
cations Lundberg & Lee (2017); Shapley (2016). For example, Ghorbani et al. propose to quantify
the Shapley value of each data sample to the model Ghorbani & Zou (2019), and then Neuron
Shapley Ghorbani & Zou (2020) is proposed to identify responsible filters of convolutional neural
networks for the facial recognition tasks and adversarial attacks. Our work lays on the foundation
of feature-importance methods, which aim to estimate the marginal contribution of each feature to
model performance. Research has focused on efficient approximation of feature importance esti-
mation and developing model-specific methods Lundberg & Lee (2017); Strumbelj & Kononenko
(2010); Mase et al. (2019); Chen et al. (2018); Lundberg et al. (2020). For example, SHAP Lund-
berg & Lee (2017) provides model-specific methods to explain how an individual feature affects
the model prediction, leading to interpretable machine learning systems. Different from prior works
which focus on explaining how much a feature, a neuron, or a data sample affects the model per-
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Algorithm 1: The Feature Shapley Algorithm
Input: Initial model f0; evaluation metric P ; feature set X; and number of random permutations k.
Output: The optimal feature set X∗.

1 Initialize iteration t = 0; X∗ = X;
2 while Convergence criteria not met do
3 pt← P (f t(X∗)) ;
4 t← t+ 1 ;
5 for each target feature xi ∈ X do
6 Initialize Feature Shapley value of candidate features φz = 0, z ∈ {i+ 1, · · · , n} ;
7 Obtain k random permutations over candidate feature set {xi+1, · · · , xn};
8 for each permutation Sk do
9 for jth feature in Sk do

10 Obtain a temporal feature interaction term xc = xi × xSk
1 × · · · × x

Sk
j ;

11 Train f t
j (X

∗ ∪ {xc}) ;
12 Evaluate ptj ← P (f t

j (X
∗ ∪ {xc}));

13 φ
Sk
j = ptj − pt;

14 pt← ptj ;
15 end
16 end
17 Calculate Feature Shapley values φz , z ∈ {i+ 1, · · · , n} by averaging Feature Shapley values of

candidata features obtained from different permutations Sk;
18 Select features whose Feature Shapley value is over the tolerance and obtain a feature set Sm ;
19 Form a new feature interaction term xm = xi × xSm

1 × · · · × xSm
|Sm| ;

20 Update model f t(X∗)← f t(X∗ ∪ {xm});
21 Update feature set X∗ ← X∗ ∪ {xm}
22 end
23 end

formance, we focus on exploiting the interaction effect among input features based on the Feature
Shapley value. By taking the learned feature interactions as new ”features”, even simple models
(e.g., linear regression or shallow neural network) could achieve superior experimental results.

3 FEATURE SHAPLEY

3.1 SHAPLEY VALUES

As a concept from cooperative game theory, Shapley values can be feature importances for machine
learning models, to explain how much an individual feature contributes to the prediction Lundberg
& Lee (2017); Štrumbelj & Kononenko (2014); Lipovetsky & Conklin (2001); Shapley (2016). A
typical paradigm to estimate Shapley values is to retrain the model on all feature subsets S ⊆ X ,
where X is the set of all features. Specifically, the Shapley value of j-th feature can be estimated:

φj =
∑

S⊆X\{j}

|S|!(|X| − |S| − 1)!

|X|!
[P (S ∪ {j})− P (S)] (1)

where P (S) denotes the performance of the model which takes feature subset S as input, and P (S∪
{j}) represents the performance of the model which takes j-th feature into account. Note that the
differences are computed for all possible subsets S ⊆ X\{j}, because the influence of the j-th
feature depends on other features. In our context, we will refer to φj as Feature Shapley value.

3.2 ESTIMATING FEATURE SHAPLEY VALUE

Given a basic linear model f0, an evaluation metric P , and a feature set X = {x1, · · · , xn}, our
goal is to discover useful feature interactions by estimating the Feature Shapley value of feature
candidates. As shown in Algorithm 1, for each feature in the feature set X , one target feature xi
is set at a time, and features xz, z ∈ {i + 1, · · · , n} are treated as candidate features. Candidate

3



Under review as a conference paper at ICLR 2022

features with high Feature Shapley value will ”join” the target feature xi, a new feature combination
can be constructed by multiplying these features (see line 19 in the Algorithm 1).

As Eq. (1) depicts, computing Shapley value is computationally expensive with respect to the num-
ber of features. Inspired by recent works which efficiently estimate Shapley values for data or neu-
rons Ghorbani & Zou (2019; 2020), we alleviate the above problem by applying Monte-Carlo ap-
proximation methods and early truncation trick to approximate Feature Shapley values. Specifically,
for a model with feature set X , the Feature Shapley value of the j-th feature could be estimated:

φj = Eπ∼N [P (X∗ ∪ {xi × xSk × xj})− P (X∗ ∪ {xi × xSk})] (2)

where N is a uniform distribution over n! permutations of the features; X∗ is the previous feature
set; xi is the target feature; and xSk is the product of features that appear before the j-th feature in a
permutation Sk (i.e., xSk

j , j ∈ {1, · · · , j − 1}). In this way, the Feature Shapley value of candidate
features can be unbiasedly approximated, whose error analysis has been well studied Maleki et al.
(2013). The main computational expense in the Eq. (2) is computing the marginal contribution of
each candidate feature for a feature combination: P (X∗∪{xi×xSk ×xj})−P (X∗∪{xi×xSk}).
In order to alleviate the problem, we apply early truncation in this work. Specifically, the number
of learned feature interactions in the early stage is small, and the performance of model usually
increases steadily as the number of learned feature interactions increases. However, the contribution
P (X∗∪{xi×xSk×xj})−P (X∗∪{xi×xSk}) degrades to zero or negligible when a near optimal
set of feature interactions is learned by the Feature Shapley, which means that it is hard to find useful
feature interactions to improve the performance continuously. Based on the above observation, we
define a performance threshold to guide the learning process of Feature Shapley, i.e., the learning
process will be terminated if no useful feature interaction is observed in an iteration.

3.3 TIME COMPLEXITY

Here we analysis the time complexity of our proposed algorithm. There are three loops in the
algorithm from line 5 to line 21. The outer loop would iterate all features, thus contributing O(|X|).
The middle loop would iterate all k permutations, thus contributing O(k). The inner loop would
iterate all features in Sk with a fixed xi, thus contributing O(|Sk|) = O(n − i) = O(n). In line
11, we train f tj based on the linear model as shown in Eq. (1), thus contributing O(NTW ), where
N is the number of the training examples, T is the epoch, and W is the the number of weights.
The operations in line 17-21 are O(1) operations. Overall, the time complexity of the proposed
algorithm is O(|X|knNTW ).

4 APPLICATION TO CTR PREDICTION

In this section, we apply Feature Shapley to CTR prediction task, which is a representative task in
learning feature interactions.

4.1 TASK DESCRIPTION

CTR prediction plays an important role in recommender systems, which aims to estimate the prob-
ability of a user to click on a given item. The main challenge is to effectively capture useful feature
interactions Lian et al. (2018). However, finding meaningful feature interactions comes at a high
cost, since it requires tedious engineering efforts and heavily relies on domain experts Song et al.
(2019); He & Chua (2017). In response, Factorization Machines (FM) Rendle (2010) is proposed to
model second-order feature interactions without manual engineering by parameterizing the weight
of a feature interaction as the inner product of the representations of the raw features. Given a real
valued feature vector x ∈ Rn, where n is the number of features, FM is formulated as follows:

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
j=i+1

vTi vj · xixj (3)

where w0 is the global bias; wi is learned to weight the i-th feature; and vTi vj term denotes the
interaction effect between the i-th and j-th feature, which is estimated by the inner product between
their representations.
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4.2 BACKGROUND

Despite its effectiveness to model feature interactions and generalization to predict unseen feature
interactions, FM suffers two major drawbacks. First, FM only models second-order feature interac-
tions and regrettably ignores high-order feature interactions. Second, FM enumerates all pairwise
interactions explicitly, ignoring the fact that not all feature interactions are useful to the finial pre-
diction Xiao et al. (2017). To alleviate the former concern, approaches with the purpose of modeling
high-order interactions are proposed in recent years. For example, HOFM Blondel et al. (2016) pro-
poses to approximate all possible feature interactions through the ANOVA kernel. NFM He & Chua
(2017), PNN Qu et al. (2016), and Deep Crossing Shan et al. (2016) leverage deep neural networks
(DNNs) to capture patterns of high-order feature interactions. Furthermore, ensemble methods such
as Wide&Deep Cheng et al. (2016), DCN Wang et al. (2017), DeepFM Guo et al. (2017), and
xDeepFM Lian et al. (2018) propose to combine a shallow component (e.g. LR and FM) and a
deep component (i.e., DNNs) to model low-order interactions and high-order interactions simul-
taneously.Another group of works focus on looking for useful features interactions. For instance,
AFM Xiao et al. (2017) proposes to weight all second-order feature interactions via an attention
network. Autoint Song et al. (2019) and AFN Cheng et al. (2020) learn the weight or orders of each
feature in feature interactions via self-attention or logarithmic neurons, which take into account of
all features when generating a feature combination. Empowered by advanced designs in Neural Ar-
chitecture Search (NAS), Autocross Luo et al. (2019), AutoFIS Liu et al. (2020b), AutoGroup Liu
et al. (2020a) are proposed to generate high-order feature interactions. However, the order of such
feature interactions need to be defined in advance due to the large search space, restricting models’
potential in looking for discriminative feature interactions.

This motivate us to apply our proposed Feature Shapley approach to discover useful feature inter-
actions for the CTR task. It is advantageous in threefold. First, it only considers ”useful” features
when creating a feature combination, which reduces noisy information for both accuracy and inter-
pretability. Second, feature interactions of arbitrary order can be learned efficiently. Compared with
methods which numerate all possible feature interactions (their search space is n!), the search space
of Feature Shapley is reduced to kn2. Third, different from deep learning models which implicitly
model feature interactions via multilayer perceptron. In this way, high-order feature interactions
can be generated in an explicit manner. This leads to superior interpretability while achieving the
improvement of accuracy. Consequently, we apply Feature Shapley on CTR datasets to show its
effectiveness, which is denoted as LR (Shapley). To further improve the performance for CTR pre-
diction, we feed the concatenated representations of learned feature interactions into a single layer
perceptron, which is then added to the output of LR model. This approach is presented as NN
(Shapley) in this paper.

4.3 COMPARING METHODS

(1) LR: It is the linear combination of raw features. No interaction effect is modeled in this method.
(2) FM Rendle (2010): FM enumerates second-order feature interactions. (3) AFM Xiao et al.
(2017): It distinguishes second-order feature interactions via attention networks. (4) HOFM Blon-
del et al. (2016): It approximates high-order feature interactions through the ANOVA kernel. (5)
PNN Qu et al. (2016): PNN proposes a product layer upon the embedding layer, to model pair-
wise interactive patterns. (6) AFN Cheng et al. (2020): AFN learns adaptive-order (power) feature
interactions via a logarithmic transformation layer. (7) DCN Wang et al. (2017): It jointly learns
explicit and implicit high-order feature interactions. (8) DeepFM Guo et al. (2017): It simultane-
ously models low-order feature interactions via FM and high-order feature interactions via DNN.
(9) xDeepFM Lian et al. (2018): It proposes compressed interaction network to replace the cross
network in the DCN. (10) AutoFIS Lian et al. (2018): AutoFIS automatically identifies useful
second-order and third-order feature interactions. The learned feature interactions are then fed into
the DeepFM model for prediction.

4.4 EXPERIMENTAL SETTINGS

We conduct experiments based on three public datasets: Movielens, Frappe and Avazu2, whose
details are summarized in Table 1. Their instances are randomly split by 7:2:1 for training, validation

2https://github.com/WeiyuCheng/AFN/-AAAI/-20
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Table 1: Data statistics.
Dataset Number of Fields Number of Features Number of Instances

MovieLens 3 90,445 2,006,859
Frappe 10 5,382 288,609
Avazu 22 1,544,250 40,428,967

Table 2: The performance Comparison on all datasets. ”#FI” is short for number of explicit feature
interactions. We use ′∗′ to denote statistically significant improvements (paired t-test with p-value
< 0.05). Intuitively, better performance with fewer feature interactions represent a better model,
we hence highlight the best performance and the least feature interactions in this table. For each
empirical result, we run the experiments for 5 times and report their average value.

Model Class Model Movielens Frappe Avazu
AUC Logloss #FI AUC Logloss #FI AUC Logloss #FI

First-Order LR 0.9328 0.2972 N.A. 0.9341 0.2916 N.A. 0.7350 0.3806 N.A.

Second-Order FM 0.9392 0.2780 3 0.9726 0.1925 45 0.7445 0.3758 231
AFM 0.9359 0.2893 3 0.9707 0.2068 45 0.7420 0.3775 231

High-Order
HOFM 0.9442 0.2637 4 0.9790 0.1584 165 0.7497 0.3745 1771
PNN 0.9409 0.2833 N.A. 0.9749 0.1825 N.A. 0.7498 0.3741 N.A.
AFN 0.9455 0.2668 N.A. 0.9735 0.1874 N.A. 0.7491 0.3739 N.A.

Ensembled
Methods

DCN 0.9421 0.2771 N.A. 0.9677 0.1825 N.A. 0.7514∗ 0.3743 N.A.
DeepFM 0.9445 0.2736 N.A. 0.9733 0.1868 N.A. 0.7492 0.3735 N.A.

xDeepFM 0.9504 0.2588 N.A. 0.9766 0.1759 N.A. 0.7506 0.3729 N.A.
NAS Method AutoFIS 0.9560 0.2365 4 0.9769 0.1718 62 0.7501 0.3730 1669

Our Methods LR (Shapley) 0.9418 0.2747 2 0.9746 0.1780 3 0.7469 0.3746 32
NN (Shapley) 0.9693∗ 0.1714∗ 2 0.9833∗ 0.1122∗ 3 0.7471 0.3746 32

and test, respectively. (1) Movielens: It includes user’s preference base on the following feature
fields: user ID, movie ID and tag. (2) Frappe: This dataset contains a context-aware app usage log,
which includes 10 feature fields: user ID, item ID, daytime, weekday, isweekend, homework, cost,
weather, country and city. (3) Avazu: It contains users’ tagging records on mobile advertisements.
It includes 22 feature fields such as users id, user information and advertisement date.

We implement all methods via Pytorch3. Besides, Adaptive Moment Estimation (Adam) Kingma
& Ba (2014) and early stopping is used to train all models. Following Cheng et al. (2020), we set
the maximum order of HOFM as 3. For methods employed multilayer perceptron, the hidden layers
size has been tuned from one to three layers, and the size of hidden number is chosen from [16, 32,
64, 128, 256, 512, 1024]. For our proposed methods LR (Shapley) and NN (Shapley), the range
of learning rate, weight decay, and embedding dimension, are selected from [1e−4, 1e−3], [1e−5,
1e−4,1e−3] and [3, 10, 32, 64, 128, 256], respectively. The batch size used for MovieLens, Frappe,
and Avazu are 4096, 128, 4096, respectively. In addition, the dropout rate varies in the range [0.1,
0.5] stepped by 0.1, and the performance threshold tried lies in the interval [1e-3, 5e-3] stepped by
0.001. We set the dimension of feature embedding layer to 256 and use a single layer perceptron
whose hidden layer size is 512 for NN (Shapley). The initial model f0 and evaluation metric P we
used to exploit useful feature interactions for LR (Shapley) are LR model and AUC.

Lastly, We use two popular metrics for performance evaluation: AUC (Area Under the ROC Curve)
and Logloss. Note that a slightly higher AUC or lower Logloss at 0.001-level is known to be a
significant improvement for the CTR prediction task and lead to substantial revenue Cheng et al.
(2016); Guo et al. (2017); Cheng et al. (2020).

4.5 PERFORMANCE COMPARISON

Table 2 presents the overall performance of proposed LR (Shapley), NN (Shapley) and comparing
methods on three datasets. As a whole, all methods that aim to model feature interactions are able to
improve the performance for CTR prediction, comparing with the LR which ignores the interaction
effect among features. This verifies the effectiveness of modeling feature interactions for the CTR

3https://pytorch.org/
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(a) (b) (c)

Figure 2: (a)(b) Mean of feature/feature interactions to the model predictions on MovieLens and
Frappe dataset, respectively. (c) The toy test on MovieLens dataset. The red points are the result of
feature interaction set {[1, 3], [2, 3]}, achieving the best performance evaluated by AUC and Logloss.

task. Moreover, the performance of LR (Shapley) surprisingly achieves competitive results with
learned feature interactions compared with more complicated models on three datasets. In partic-
ular, LR (Shapley) has learned 32 feature interactions on avazu dataset, while comparing methods
modeling hundreds or thousands of feature interactions to achieve similar performance. The under-
lying reason could be that, different from comparing methods which enumerating all possible feature
interactions (i.e., FM, AFM, HOFM) or deleting some ”useless” feature interactions (i.e., AutoFIS),
LR (Shapley) iteratively discovers useful feature interactions based on the Feature Shapley values.
This leads to the improvement of LR model with less noisy feature interactions but more decisive
feature interactions. As shown in Fig. 2(a-b), the ”new set of features” (original features and learned
feature interactions) and their mean marginal contribution to the model prediction are visualized, in-
dicating the final prediction is driven by original features and learned feature interactions together.
Another interesting result is that NN (Shapley) achieves the best performance on the Movielens and
Frappe datasets. This points to a promising direction: one can firstly use our Feature Shapley frame-
work to exploiting useful feature interactions, and then apply a more powerful prediction model to
further boost the performance. In this way, both accuracy (i.e., performance boosted by more pow-
erful models) and interpretability (i.e., the importance of features and feature interactions learned
with the LR model) can be achieved simultaneously. To summarize, the satisfying results of LR
(Shapley) and NN (Shapley) verifies the effectiveness of Feature Shapley to exploit useful feature
interactions and indicates applicable input data (i.e., features and learned feature interactions) is of
great importance to achieve more accurate predictions.

4.6 A TOY TEST ON MOVIELENS DATASET

To verify whether our proposed Feature Shapley is able to discover useful feature interactions, we
hence design a toy test on the Movielens dataset. Specifically, we enumerate all possible feature
interaction sets for the Movielens dataset, and to see whether the best set of feature interactions
matches the set of feature interactions learned by the Feature Shapley. To this end, we use linear
regression as the basic model, and equip it with all possible feature interactions. For example,
{[1, 2]} represents the interaction between the first feature field and the second feature field is added
to the LR model, and we can see {[1, 2], [2, 3], [1, 3]} is exactly the FM model. The results are shown
in Fig. 2(c), which indicate the feature interaction set {[1, 3], [2, 3]} improves the performance of the
LR model the most. Note that the above optimal set {[1, 3], [2, 3]} (e.g., {[MovieID, Tag], [UserID,
Tag]}) is exactly what Feature Shapley learned on the Movielens dataset (See Fig. 2a). This verifies
the effectiveness of Feature Shapley framework being able to discover useful feature interactions.

5 APPLICATION TO ASSET PRICING

In this section, we use Feature Shapley to discover valuable feature interactions for asset pricing.

5.1 TASK DESCRIPTION

From the machine learning perspective, asset pricing is exactly a regression task. Well-designed
factors4 are used as features of the input and the corresponding return is the target. Specifically,

4In the context of asset pricing, we will refer to the features as factors.
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Table 3: The Performance Comparison on US stock dataset. One additional factor of FFM(3) and
FFM(5) is learned by our Feature Shapley.

Model MSE Loss R2 Loss Mean of α Number of Factors
CAPM 1.247E-03 3.921E-02 -6.270E-03 1
FFM3 1.207E-03 7.069E-02 -6.024E-03 3
FFM5 1.205E-03 7.158E-02 -6.006E-03 5

FFM3 (Shapley) 1.204E-03 7.286E-02 -5.922E-03 4
FFM5 (Shapley) 1.203E-03 7.363E-02 -5.913E-03 6

given a set of factors X , the return of an asset can be predicted by the weighted sum of input factors.
It is important to note that the goal of asset pricing is not to learn a model with the least regression
loss. Economists focus on discovering insightful factors, which are helpful to explain the underlying
patterns of the financial market. To this end, a simple linear regression model is usually used to test
the quality of the factors. Taking the well-known Fama & Frenchfive-factor model (FF5) Fama &
French (2015) as an example, the prediction is made by considering five fators:

Ri −Rf = β(Rm −Rf ) + sSMB + hHML+ rRMW + cCMA+ α (4)

where Ri, Rf , Rm denote the asset’s return; risk free rate of return, and the market return, repec-
tively; SMB is the return on a diversified portfolio of small stocks minus the return on a diversified
portfolio of big stocks; HML is the difference between the returns on diversified portfolios of high
and low B/M (Book-to-market) stocks; RMW is the difference between the returns on diversified
portfolios of stocks with robust and weak profitability; CMA is the difference between the returns
on diversified portfolios of the stocks of low (conservative) and high (aggressive) investment com-
panies; and α is the bias term which should be zero if the factors and the weights (β, s, h, r, and c)
are able to capture all variation in expected returns.

5.2 BACKGROUND

Asset pricing, which aims to understand the behavior of risk premia through return prediction, is a
fundamental problem in finance for many decades. The birth of asset pricing theory starts from a
single-factor model called capital asset pricing model (CAPM) Sharpe (1964). In CAPM, the ex-
pected return of a financial asset is defined as a function of the covariance between the asset’s return
Ri and the market returnRm, which is commonly referred as the asset’s ”beta”. Even though CAPM
provides powerful and intuitively pleasing predictions between expected return and risk, economists
find that ”beta” alone is not enough to explain financial return in many cases Breeden et al. (1989).
Fama & French (1993) observed two interesting facts in the stock market: 1) value stocks usually
outperform growth stocks. 2) stocks with small capital have the tendency to outperform large capital
stocks. Motivated by these two insightful observations, the Fama & French three-factor model (FF3)
Fama & French (1993) is proposed with two additional factors related to company size and value.
FF3 significantly outperforms CAPM and leads to a Nobel Prize to the authors in 2013. Later on,
Fama & French (2015) found that FF3 fails to capture the variation in asset return related to prof-
itability and investment, and proposed the Fama & French five-factor model (FF5) Fama & French
(2015) with two additional factors. Even though multi-factor models have achieved great success
in asset pricing, the universal assumption that there are no interactions between the factors is tested
not reasonable in some markets Godfrey (2018). Developing asset pricing models with high-order
interaction between factors is a promising research direction.

5.3 COMPARING METHODS

(1) CAPM Sharpe (1964). is a classic asset pricing model that only considers the market risk factor.
(2) FF3 Fama & French (1993). FF3 is an influential three-factor asset pricing model consisted of a
market risk factor, a company size factor (SMB) and a company value factor (HML). (3) FF5 Fama
& French (2015). FF5 is an extension of FF3 with additional profitability (RMW) and investment
factors (CMA).
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(a) stocks of high size (b) stocks of medium size (c) stocks of low size

Figure 3: The correlation between the market-risk feature and the HML feature.

5.4 EXPERIMENTAL SETTINGS

To construct the stock dataset, we rank stocks from the US markets that have transaction records
between 01/06/2018 and 31/05/2021, and randomly sample 100 stocks based on their market capi-
talization. In this way, the transaction data from 33 stocks of high market capitalization, 34 stocks of
medium market capitalization, and 33 stocks of small market capitalization are selected from Yahoo
Finance5, respectively. For these stocks, we use the transaction data before 2021 (from 01/06/2018
to 31/12/2020) as the training dataset, and transaction data in 2021 (from 04/01/2018 to 28/05/2021)
are treated as test dataset. The Fama & French factor data is also available6.

We implement the asset pricing experiments via sklearn 7. Meanwhile, linear regression model (i.e.,
initial model f0) is chose as prediction model and mean squared error (MSE) (i.e., evaluation metric
P ) is the loss function. All methods are trained until convergence for fair comparisons.

5.5 RESULTS

Table 4 reports the results of our experiments. Firstly, we observe that our proposed FFM5 (Shapley)
is the top performing model evaluated by MSE and R2 loss Gu et al. (2018). We can observe that
the mean of α obtained by FFM5 (Shapley) is closest to zero, indicating FFM (Shapley) achieves
stronger interpretability by considering the learned feature interactions. In addition, FFM3 (Shapley)
not only improves FFM3 model, but also performs better than FFM5, indicating the learned feature
interactions is even important than the RMW factor and CMA factor in our experimental setting.
This ascertains the effectiveness of our proposed Feature Shapley framework to discovering useful
feature interactions. Moreover, We also find that the interactions learned in FFM3 (Shapley) and
FFM5 (Shapley) is exactly the same (i.e., the market-risk factor and HML factor). Such consistent
results motivates us to discover the underlying relationships between the above two factors. To this
end, we use the SHAP tool Lundberg & Lee (2017) to plot their correlations across companies with
different market capitalizations. As shown in Fig.3, we found a small value of market-risk factor
is more likely to be accompanied by small values of HML (marked blue), while a bigger value of
market-risk factor is more likely to be accompanied by large values of HML (marked red). Their
interaction effect is able to improve the performance of both FF3 and FF5 model.

6 CONCLUSIONS AND FUTURE WORKS

Input data is of important influence to the performance of machine learning systems. In this work, we
propose a game theoretic framework Feature Shapley to discovering useful feature interactions. By
input the original feature along with the learned feature interactions data, we can see even a linear
regression model is able to achieve surprisingly performance on the CTR task and asset pricing
scenarios. Hence, it is a promising direction to feed the ”new feature set” into more powerful
models, to achieve both accuracy and interpretability. However, estimating Feature Shapley values
is still quite expensive, which motivates us to improve the efficiency of Feature Shapley in the future.

5https://finance.yahoo.com/
6https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
7https://scikit-learn.org/
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Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and information systems, 41(3):647–665, 2014.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

11



Under review as a conference paper at ICLR 2022

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. Attentional fac-
torization machines: Learning the weight of feature interactions via attention networks. arXiv
preprint arXiv:1708.04617, 2017.

Rizgar Zebari, Adnan Abdulazeez, Diyar Zeebaree, Dilovan Zebari, and Jwan Saeed. A compre-
hensive review of dimensionality reduction techniques for feature selection and feature extraction.
Journal of Applied Science and Technology Trends, 1(2):56–70, 2020.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
13001–13008, 2020.

Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and Quoc V Le. Learn-
ing data augmentation strategies for object detection. In European Conference on Computer Vi-
sion, pp. 566–583. Springer, 2020.

12


	Introduction
	Related works
	Data-centric Methods
	Shapley value for interpretability

	Feature Shapley
	Shapley Values
	Estimating Feature Shapley Value
	Time Complexity

	Application to CTR Prediction
	Task Description
	Background
	Comparing Methods
	Experimental Settings
	Performance Comparison
	A Toy Test on MovieLens dataset

	Application to Asset Pricing
	Task Description
	Background
	Comparing Methods
	Experimental Settings
	Results

	Conclusions and Future Works

