
Seeker: Towards Exception Safety Code Generation with Intermediate
Language Agents Framework

Anonymous ACL submission

Abstract

In real-world software development, improper001
or missing exception handling can severely im-002
pact the robustness and reliability of code. Ex-003
ception handling mechanisms require develop-004
ers to detect, capture, and manage exceptions005
according to high standards, but many develop-006
ers struggle with these tasks, leading to fragile007
code. This problem is particularly evident in008
open-source projects and impacts the overall009
quality of the software ecosystem. To address010
this challenge, we explore the use of large lan-011
guage models (LLMs) to improve exception012
handling in code. Through extensive analy-013
sis, we identify three key issues: Insensitive014
Detection of Fragile Code, Inaccurate Cap-015
ture of Exception Block, and Distorted Han-016
dling Solution. These problems are widespread017
across real-world repositories, suggesting that018
robust exception handling practices are often019
overlooked or mishandled. In response, we020
propose Seeker, a multi-agent framework in-021
spired by expert developer strategies for excep-022
tion handling. Seeker uses agents—Scanner,023
Detector, Predator, Ranker, and Handler—to024
assist LLMs in detecting, capturing, and resolv-025
ing exceptions more effectively. Our work is026
the first systematic study on leveraging LLMs027
to enhance exception handling practices in real028
development scenarios, providing valuable in-029
sights for future improvements in code reliabil-030
ity. 1 2031

1 Introduction032

In the era of large language models for code gener-033

ation (code LLMs) such as DeepSeek-Coder (Guo034

et al., 2024), Code-Llama (Rozière et al., 2023),035

and StarCoder (Li et al., 2023b), ensuring code036

robustness and security has become paramount037

1Our code is available at https://anonymous.4open.
science/r/Seeker

2CEE for community-contribution is available at https:
//common-exception-enumeration.github.io/CEE/

*Equal contribution.

Figure 1: Overview of the Intermediate Lan-
guage (IL) agents (Right) Compared with Tra-
ditional Code Generation Approaches (Left)
in Exception-Safe Code Generation Tasks The
Seeker framework leverages IL agents to perform
dynamic analysis, transformation, and optimiza-
tion of code to ensure robust exception handling.
In contrast, traditional approaches often rely on
static error-handling routines and lack comprehen-
sive analysis for exception safety.

alongside functional correctness. Traditional evalu- 038

ation metrics, like HumanEval (Chen et al., 2021) 039

which measures the Pass@k rate, and repo-level 040

assessments such as CoderEval (Yu et al., 2024) 041

and DevEval (Li et al., 2024a), primarily focus 042

on the ability of these models to generate correct 043

and functional code based on natural language de- 044

scriptions and real-world development scenarios. 045

As functional correctness improves, attention has 046

shifted to addressing defects in LLM-generated 047

code (Jimenez et al., 2024; Siddiq and Santos, 048

2022; He and Vechev, 2023; Li et al., 2024c). No- 049

tably, KPC (Ren et al., 2023) and Neurex (Cai 050

et al., 2024) explored LLM performance in excep- 051

tion handling, highlighting their potential to predict 052

and mitigate risks before vulnerabilities arise. 053

However, despite advancements in exception de- 054
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tection and handling techniques, there is a signif-055

icant gap in standardizing exception mechanisms,056

particularly for custom exceptions and long-tail057

exception types. Current approaches often define058

problems narrowly from the perspective of excep-059

tion handlers, overlooking the potential role of in-060

termediate languages (IL) in managing complex in-061

heritance relationships inherent in exception types.062

We posit that interpretable and generalizable ex-063

ception handling strategies are critical yet under-064

estimated factors in real-world code development,065

profoundly impacting both code robustness and the066

quality of LLM training data. A schematic diagram067

of IL Agent can be found at Figure 1.068

This paper redefines the research question to069

address overlooked issues in exception handling070

by developers, specifically: What method can ad-071

dress developer defects in Insensitive Detection072

of Fragile Code, Inaccurate Capture of Exception073

Blocks, and Distorted Handling Solutions? The in-074

quiry highlights the importance of exception safety075

while exploring how intermediate languages can076

enhance code analysis beyond traditional human077

capabilities. To investigate this, we introduce four078

sets of prompts—Coarse-grained Reminding, Fine-079

grained Reminding, Fine-grained Inspiring, and080

Fine-grained Guiding. Experiments validate the081

effectiveness of fine-grained guiding prompts in082

improving code exception handling performance.083

Effective exception handling prioritizes capturing084

specific exception types, which enables more pre-085

cise error reporting, such as handling SQLClientIn-086

foException instead of its superclass SQLExcep-087

tion (Osman et al., 2017). However, achieving this088

level of specificity is challenging due to the lack089

of standardized handling paradigms for long-tail090

or customized exceptions, and the complexity of091

intricate inheritance structures.092

To enhance code robustness by leveraging best093

exception handling practices, we propose Seeker,094

a framework that decomposes exception handling095

into five specialized tasks managed by distinct096

agents: Scanner: Responsible for scanning the097

code into manageable unit, Detector: Responsi-098

ble for detecting the fragile unit, Predator: Predate099

the exception block and capture possible excep-100

tions, Ranker: Sorts exception handling strategies101

according to certain criteria and selects appropriate102

exceptions, Handler: Responsible for performing103

the final exception handling. We develop Com-104

mon Exception Enumeration (CEE) from trusted105

external sources, leveraging explainable IL for ex- 106

ception handling to improve detection, capture, and 107

handling processes where LLMs typically under- 108

perform. This approach seamlessly integrates with 109

existing code LLMs to produce highly robust code, 110

while CEE facilitates community contributions by 111

aiding developers in understanding optimal excep- 112

tion handling practices. 113

Addressing the inefficiency of direct retrieval 114

in complex inheritance trees—exemplified by Java 115

exceptions with 433 nodes, 62 branches, and 5 116

layers—we introduce a deep retrieval-augmented 117

generation (Deep-RAG) algorithm. This algorithm 118

is tailored to handle intricate inheritance relation- 119

ships by assigning development scenario labels to 120

branches and employing few-sample verification to 121

fine-tune these labels, thereby enhancing retrieval 122

performance and reducing computational overhead. 123

Experimental results indicate that Seeker signifi- 124

cantly improves the robustness and exception han- 125

dling capabilities of LLM-generated code across 126

various tasks. 127

In summary, our main contributions are: 128

• We highlight the importance of standardiza- 129

tion, interpretability, and generalizability in 130

exception handling mechanisms, identifying 131

a critical gap in existing research. 132

• We propose Seeker, which decomposes ex- 133

ception handling into specialized tasks and 134

incorporates CEE (Contextual Exception En- 135

gineering) to enhance performance. 136

• We conduct extensive experiments demon- 137

strating that Seeker significantly improves 138

code robustness and exception handling per- 139

formance in LLM-generated code, setting a 140

new state-of-the-art (SOTA) in the field of ex- 141

ception handling. 142

2 Preliminary 143

This section explores the effectiveness of Interme- 144

diate Language (IL)-based Large Language Models 145

in exception handling compared to senior program- 146

mers, focusing on standardization, interpretability, 147

and generalizability. Building on prior findings 148

(Appendix A.1), we investigate whether IL can bet- 149

ter mitigate exception-handling challenges. Our 150

analysis includes comparative experiments control- 151

ling three key factors: standardization of exception 152

types, interpretability of risk scenarios, and general- 153

ization of handling strategies. We use four prompt 154

types (Figure 8 and 9): Coarse-grained Reminding, 155
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(a) Preliminary following the four settings and strategies
of KPC. The vertical axis represents the evaluation score
of human code review.

(b) A schematic diagram of human developers who well-
performed in exception handling.

Figure 2: (a) Comparison of LLM and human exception handling performance as prompts evolve from
General prompting (Prompt1), to Coarse-grained Knowledge-driven (Prompt2), Fine-grained Knowledge-
driven (Prompt3), and Fine-grained Knowledge-driven with explicit handling logic (Prompt4). Results
show a clear mitigation effect, where increasingly detailed and context-rich prompts significantly improve
handling quality. (b) How expert human developers integrate programming expertise, domain knowledge,
fine-grained exception hierarchies, and adaptive strategies to achieve robust exception management.

Fine-grained Reminding, Fine-grained Inspiring,156

and Fine-grained Guiding.157

To ensure a practical evaluation, we drew on158

prior work on KPC(Ren et al., 2023), selecting159

well-maintained codebases and using both manual160

and automated reviews to extract critical exception-161

handling code. Senior programmers and the IL162

then analyzed these filtered segments, document-163

ing their processes. To simulate exception-handling164

thought processes, we established four prompt path-165

ways that progressively offer more detailed guid-166

ance, with results illustrated in Figure 2(a).167

Our experiments revealed key insights. Prompts168

lacking clear guidance were ineffective for both IL169

and programmers. Normative information on ex-170

ception types helped programmers recognize frag-171

ile code but did not significantly improve detec-172

tion or handling precision. Enhanced scenario in-173

terpretability, however, improved understanding174

and sensitivity to potential fragility, boosting de-175

tection accuracy. Generalized handling strategies176

further improved the analysis of fragility sources,177

leading to higher-quality exception handling. To-178

gether, these enhancements — referred to as the179

"mitigation effect" — demonstrate that, with proper180

prompts, IL can match or even surpass senior pro-181

grammers in exception handling.182

These findings inform our proposed Seeker183

method, which integrates external documentation184

to generate fine-grained guidance prompts. Ap-185

pendix A.2.1 offers a deeper analysis of the miti- 186

gation effect, supported by data and methodolog- 187

ical insights. Figure 2(b) illustrates the Chain-of- 188

Thought used by senior developers under Fine- 189

grained Guiding prompts, emphasizing the impor- 190

tance of comprehensive analysis when handling 191

complex exceptions like BrokenBarrierException 192

and AccessControlException. Our study highlights 193

the potential of IL for reliable code generation and 194

offers a foundation for advancing RAG-based code 195

agents. 196

3 Methodology 197

In this section, we introduce the proposed Seeker 198

method, overview in Figure 3. We first review 199

the historical observations of developers on excep- 200

tion handling issues, introducing three exception 201

handling pitfalls, Insensitive-Detection of Fragile 202

Code, Inaccurate-Capture of Exception Block and 203

Distorted Handling Solution in Appendix A.2.1. 204

Then, we introduce the method’s dependency con- 205

struction and the entire method. 206

3.1 Common Exception Enumeration (CEE) 207

In order to enhance the reliability and robustness 208

of large language model (LLM)-assisted code gen- 209

eration, we introduce the Common Exception Enu- 210

meration (CEE). The CEE provides a unified and 211

structured exception documentation base, support- 212

ing developers in accurately identifying and han- 213
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CEE Doc (Exception hierarchy tree format)

Each node has 

Basic exception info, Scenario, Property, and Handling logic.

Planner agent
code

input

manageable units

Exception robust code

output

public void processString(String str) {
  String trimmed = str.trim(); 
  System.out.println(trimmed);
  String upper = trimmed.toUpperCase();
  System.out.println(upper);

}

Detector agent

Predator agent

. . .  

Predator agent

Activate

... 
String trimmed = str.trim(); × Sensitive 
System.out.println(trimmed); √ Pass
...

... 
String trimmed = str.trim(); try-block -> NullPointerException
System.out.println(trimmed); code-line -> None
...

Ranker agent

Feedback ①：Code level likelihood
Accepted, the code scenario and prop fits...
Or Reject, the code is actually...

Feedback ②：Strategy Suitability
Accepted, the code should be handled like...
Or Reject, the code don’t need to...

Handler agent

public void processString(String str) {
  String trimmed;
  try {
    trimmed = str.trim();
  } catch (NullPointerException e) {
    System.err.println("NullPointer");
    return;
  }
  System.out.println(trimmed);
  String upper = trimmed.toUpperCase();
  System.out.println(upper);

}

Feedback ③：Node Selection
Accepted, the exception branch suits for...
Or Reject, the branch is different from...

Figure 3: Comprehensive Workflow of Seeker. Seeker orchestrates the automated exception handling
process through the seamless collaboration of five specialized agents: Scanner, Detector, Predator, Ranker,
and Handler. The colored circles within the workflow illustrate the flow of information and interactions
among the agents, highlighting how each component activates and contributes to the overall exception
handling process. This integrated approach ensures that Seeker delivers highly reliable and maintainable
exception handling solutions, significantly improving code robustness and developer productivity.

dling exceptions. This framework is constructed214

using authoritative Java Development Kit (JDK)215

documentation as a foundation and enriched with216

insights from enterprise practices and open-source217

code analysis.218

The CEE is organized into a hierarchical struc-219

ture, where each exception node includes three220

core elements: Scenario, Property, and Handling221

Logic. By modularizing exception details, devel-222

opers can more effectively pinpoint the conditions223

under which exceptions arise, understand their at-224

tributes, and apply appropriate handling strategies.225

This ensures a more proactive and comprehensive226

approach to exception management than traditional,227

fragmented methods.228

A simplified schematic of the CEE construction229

process is shown in Figure 4. This illustration230

highlights the flow from authoritative documen-231

tation (JDK), through curated enterprise insights,232

to the refined set of exception nodes. Each node is233

annotated with practical handling logic, enabling234

more accurate exception responses within gener-235

ated code.236

A more detailed explanation of the construction,237

iterative refinement processes (including reinforce-238

ment learning-based fine-tuning), and community- 239

driven updates is provided in Appendix A.2.2. 240

3.2 Intermediate Language Agent Framework 241

To enhance the standardization, interpretability, 242

and generalizability of exception handling in real- 243

world code development scenarios, we propose 244

a method called Seeker. Seeker deconstructs the 245

chain-of-thought processes employed by senior hu- 246

man developers and segments the exception han- 247

dling mechanism into five specialized tasks, each 248

managed by a dedicated agent: Scanner, Detector, 249

Predator, Ranker, and Handler. By integrating 250

CEE, a substantial repository of trusted external 251

experience documents with IL between exception 252

handling and code, Seeker retrieves and enhances 253

the detection, capture, and handling tasks, address- 254

ing areas where the original LLM underperforms. 255

This method can be seamlessly integrated into exist- 256

ing code LLMs to generate highly robust code, with 257

CEE offering valuable community contribution and 258

maintenance benefits, thereby aiding developers in 259

comprehending optimal exception handling prac- 260

tices. 261
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Figure 4: An overview of the CEE construction
process. The diagram illustrates how authorita-
tive documentation (JDK), enterprise-level best
practices, and real-world code repositories are in-
tegrated and refined. Each exception node is en-
riched with Scenario, Property, and Handling Logic.
This framework is further optimized through LLM-
based in-context learning and iterative fine-tuning,
ultimately providing a reliable, structured reference
(CEE) to enhance exception handling in generated
code.
Scanner Scanner segments the codebase into262

manageable units such as function blocks, class263

blocks, and file blocks. This segmentation consid-264

ers factors like overall code volume, dependency265

levels, and requirement relationships to mitigate266

processing pressure, particularly concerning con-267

text window limitations and complex dependency268

chains. By balancing the granularity of segmenta-269

tion, the Scanner ensures that no single unit over-270

whelms the analysis agents, maintaining clarity and271

efficiency when handling large and intricate code-272

bases.273

Detector Detector concurrently performs sce-274

nario and property matching alongside static analy-275

sis to identify fragile areas in the code that are sus-276

ceptible to errors or crashes. Static analysis gener-277

ates control flow graphs and exception propagation278

graphs to uncover complex dependencies and deep-279

level defects, while scenario and property matching280

captures vulnerabilities based on semantic cues and281

contextual scenarios that static analysis might over-282

look. By unifying the results from both methods,283

the Detector effectively identifies potential excep-284

tions, including long-tail, domain-specific, or cus-285

tomized exception types. However, as discussed in286

Section 1, detecting exceptions without accounting287

for complex inheritance relationships may result in288

inaccurate exception specificity within the hierar- 289

chy. 290

Predator To address the limitations in exception 291

detection, Predator integrates external knowledge 292

from the CEE. Similar to Retrieval-Augmented 293

Generation (RAG) models, Predator summarizes 294

the code at the function level and queries the CEE 295

for relevant exception attributes. It conducts multi- 296

layered deep searches to retrieve applicable infor- 297

mation for the detected issues, providing valuable 298

context for exception handling. During few-shot 299

testing phases, feedback on both the accuracy and 300

coverage of the retrieved information is supplied, 301

facilitating the agent’s learning process and enhanc- 302

ing the relevance of future retrievals. We intro- 303

duce the Deep Retrieval-Augmented Generation 304

(Deep-RAG) algorithm to manage complex inher- 305

itance relationships in exception types, as further 306

detailed in Appendix A.2.4. 307

Ranker Ranker assigns grades to detected excep- 308

tions based on their likelihood and the suitability 309

of the handling strategies retrieved from the CEE. 310

This grading system prioritizes the most critical 311

exceptions for immediate handling by consider- 312

ing factors such as the probability of occurrence, 313

potential program impact, and the specificity of 314

the exception type within the inheritance hierarchy. 315

The Ranker provides feedback to both the Detec- 316

tor and Predator agents through score ranking and 317

judgment steps, enabling continuous learning from 318

the actual code environment. 319

Handler Analyzing the ranked exceptions, Han- 320

dler generates optimized code incorporating robust 321

handling strategies. Utilizing templates and logic 322

patterns derived from the CEE, the Handler ensures 323

that the generated code is functionally correct. It fo- 324

cuses on capturing precise, fine-grained exceptions 325

by navigating down the class hierarchy to provide 326

additional error information beyond superclass ex- 327

ceptions. This approach enhances code readability 328

and maintainability, allowing developers to swiftly 329

identify problem sources and avoid mishandling 330

diverse error types. 331

Framework The general framework for multiple 332

agents is given in Appendix A.2.3. 333

Scalability Considerations To mitigate compu- 334

tational overhead, we designed a high-concurrency 335

interface that maintains constant additional com- 336

puting time overhead regardless of code volume, 337

provided in Appendix A.3.4. 338
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4 Experiments339

In this section, we evaluate the performance of our340

proposed method, Seeker, on the task of exception341

handling code generation.342

4.1 Experiment Setup343

4.1.1 Datasets344

We conduct experiments on a dataset consisting345

of 750 fragile Java code snippets extracted from346

real-world projects. These code snippets are se-347

lected based on their potential for exception han-348

dling improvements, following the rules outlined349

in Appendix A.3.2.350

4.1.2 Baselines351

We compare Seeker with the following methods:352

• General Prompting: A straightforward ap-353

proach where the LLM is prompted to gener-354

ate exception handling code without any spe-355

cialized framework or additional knowledge.356

• Traditional Retrieval-Augmented Genera-357

tion (RAG): A method that retrieves relevant358

information from external sources to assist in359

code generation.360

• KPC (Ren et al., 2023): The state-of-the-art361

method for exception handling code genera-362

tion, which leverages knowledge graphs and363

pattern mining.364

• FuzzyCatch (Nguyen et al., 2020a): A tool365

for recommending exception handling code366

for Android Studio based on fuzzy logic.367

• Nexgen (Zhang et al., 2020): A neural net-368

work pretraining approach for automated ex-369

ception handling in Java, which predicts try370

block locations and generates complete catch371

blocks in relatively high accuracy.372

For more analysis of related work, see Appendix373

B.1.374

4.1.3 Evaluation Metrics375

To comprehensively assess the effectiveness of our376

method, we employ six quantitative metrics. De-377

tails are given in Appendix A.3.1:378

1. Automated Code Review Score (ACRS):379

Measures the overall adherence to coding stan-380

dards based on automated code reviews. It381

provides a percentage indicating how well the382

code aligns with best practices.383

2. Coverage (COV): Assesses the proportion of384

sensitive code segments successfully detected385

by the system. It reflects the effectiveness of386

the method in identifying relevant code seg- 387

ments. 388

3. Coverage Pass (COV-P): Focuses on the ac- 389

curacy of detecting try-blocks. This met- 390

ric evaluates whether the detected try-blocks 391

match the actual regions requiring exception 392

handling, with penalties for over-detection. 393

4. Accuracy (ACC): Evaluates the correctness 394

of identified exception types. It compares the 395

detected exception types to the actual types, 396

accounting for subclass relationships. 397

5. Edit Similarity (ES): Measures the text simi- 398

larity between generated and actual try-catch 399

blocks. A higher similarity indicates better 400

quality in the generated code. 401

6. Code Review Score (CRS): Assesses the 402

quality of generated try-catch blocks through 403

evaluation by a language model. This pro- 404

vides a binary evaluation of whether the gen- 405

erated code meets best practices. 406

4.2 RQ1: Performance Comparison with 407

Baselines 408

We compare the performance of Seeker against 409

several baseline methods on the exception han- 410

dling code generation task. The results are summa- 411

rized in Table 1. We conducted our tests on Java 412

code from GitHub spanning a period of five years 413

(2019-2024) and averaged the results across differ- 414

ent methods to ensure reliability and account for 415

variability in code quality and project types. 416

Table 1: Comparison of Exception Handling Code
Generation Methods

Method ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)

General Prompting 0.21 13 9 8 0.15 24
Traditional RAG 0.35 35 31 29 0.24 31
KPC 0.26 14 11 8 0.17 27
FuzzyCatch 0.47 52 50 43 0.36 48
Nexgen 0.45 56 49 42 0.41 52
Seeker (Ours) 0.85 91 81 79 0.64 92

As depicted in Table 1, Seeker consistently out- 417

performs all baselines across all evaluation metrics. 418

The key observations include: 419

• ACRS: Seeker achieves a significantly higher 420

Average Code Review Score (ACRS) of 0.85, 421

indicating superior overall code quality com- 422

pared to other methods. 423

• Coverage (COV) and Coverage Pass (COV- 424

P): With COV and COV-P scores of 91% and 425

81%, respectively, Seeker demonstrates ex- 426

ceptional capability in detecting and correctly 427

wrapping sensitive code regions. 428
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Figure 5: Comparison of Performance Stability Across Baselines and Our Method over Varying Conditions.
The top set of curves illustrates the performance metrics over time (2019 to 2024) across different baselines
and our method. The bottom set displays performance across increasing function counts.

• Accuracy (ACC): An ACC of 79% reflects429

Seeker’s proficiency in accurately identifying430

the correct exception types, including recog-431

nizing complex subclass relationships.432
• Edit Similarity (ES): The ES score of 0.64433

indicates that the generated code closely434

matches the actual exception handling imple-435

mentations, ensuring minimal discrepancies.436
• Code Review Score (CRS): A CRS of 92%437

confirms that the code generated by Seeker is438

highly regarded during automated and LLM-439

based code reviews, emphasizing its adher-440

ence to best practices.441

Depth of Analysis Beyond surface-level perfor-442

mance metrics, we explore the relationship between443

effective exception handling and overall code qual-444

ity. High ACRS and CRS scores suggest that ro-445

bust exception handling contributes significantly446

to maintaining code quality standards. By accu-447

rately generating exception handling code, Seeker448

not only addresses potential runtime issues but also449

enhances the maintainability and reliability of the450

software, as reflected in higher code review scores.451

Stability and Robustness Figure 5 illustrates the452

stability of Seeker compared to baseline methods453

over time and varying code complexities.454

Stability Over Time: Seeker maintains consis-455

tently high performance levels across different time456

periods, whereas baseline methods exhibit signifi-457

cant variability, particularly in recent years. This458

stability indicates that Seeker is less sensitive to 459

changes in the development environment and can 460

adapt to evolving software trends and requirements. 461

Performance Across Code Complexity: As the 462

number of functions within test snippets increases, 463

baseline methods show a decline in performance, 464

struggling with higher code complexity. In contrast, 465

Seeker sustains its performance across all levels 466

of complexity, demonstrating its ability to handle 467

intricate codebases effectively. 468

4.3 RQ2: Effect of Different Agents in Seeker 469

To understand the contribution of each agent within 470

the Seeker framework, we conducted an ablation 471

study by systematically removing one agent at a 472

time. The results are presented in Table 2. 473

Table 2: Ablation Study on the Effect of Different
Agents

Configuration ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)

Seeker (Full) 0.85 91 81 79 0.64 92
- Scanner 0.78 85 75 73 0.59 86
- Detector 0.76 63 54 61 0.51 84
- Predator 0.72 61 53 42 0.47 81
- Ranker 0.63 90 79 75 0.49 65
- Handler 0.50 91 81 79 0.34 42

• Scanner: Removing the Scanner results in a 474

notable decrease in ACRS and CRS, under- 475

scoring its vital role in initial code analysis 476

and overall quality assessment. 477

• Detector: Its absence significantly reduces 478

coverage metrics, highlighting its importance 479

in identifying sensitive code regions. 480
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• Predator: The Predator is essential for accu-481

rate exception type detection, as evidenced by482

the sharp decline in ACC and related metrics483

when it is removed.484

• Ranker: Without the Ranker, the selection485

of handling strategies becomes less effective,486

impacting the edit similarity and code review487

scores.488

• Handler: The most substantial drop in CRS489

occurs without the Handler, indicating its crit-490

ical role in implementing exception handling491

correctly.492

The ablation study reveals that each agent in the493

Seeker framework contributes uniquely to its over-494

all performance. The interplay between agents en-495

sures comprehensive exception handling, from ini-496

tial detection to the implementation of robust han-497

dling strategies. This synergy not only enhances498

exception handling but also positively impacts code499

quality reviews, as robust exception handling is a500

key indicator of well-structured and maintainable501

code.502

4.4 RQ3: Effect of Underlying Language503

Model504

To evaluate the impact of the underlying LLM on505

Seeker’s performance, we implemented Seeker us-506

ing different models, including various open-source507

and close-source models. The detailed results are508

provided in Appendix A.3.5.509

Advanced language models like GPT-4o signif-510

icantly enhance Seeker’s performance across all511

metrics. This improvement suggests that the ca-512

pabilities of the underlying LLM, such as under-513

standing complex code structures and generating514

accurate exception handling code, play a crucial515

role in the overall effectiveness of Seeker.516

4.5 RQ4: Impact of Domain-Specific517

Knowledge Integration518

To assess the impact of integrating domain-specific519

knowledge, we compared Seeker with and without520

the inclusion of the CEE. The results are presented521

in Table 3.522

Table 3: Impact of Integrating Common Exception
Enumeration (CEE)

Configuration ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)

Seeker 0.85 91 81 79 0.64 92
- CEE 0.38 48 41 32 0.29 46

The inclusion of CEE results in substantial im-523

provements across all metrics. Specifically, ACRS524

increases from 0.38 to 0.85, and CRS jumps from 525

46% to 92%. This significant enhancement high- 526

lights the importance of domain-specific knowl- 527

edge in accurately detecting and handling excep- 528

tions, thereby improving overall code quality and 529

reliability. 530

It is worth mentioning that even without the CEE 531

document, the CoT process for the model under 532

the Seeker framework has brought effective im- 533

provement compared to general prompting, which 534

illustrates the effectiveness of the Seeker program 535

analysis framework. 536

4.6 Additional Analysis 537

Beyond the primary research questions, we con- 538

ducted additional experiments to evaluate Seeker’s 539

performance in generating repository-level code 540

and optimizing code patches for GitHub issues. 541

Detailed results are available in Appendix A.4. 542

Seeker maintains competitive performance in 543

these real-world scenarios, demonstrating its ro- 544

bustness and applicability. The ability to generate 545

repository-level code and effectively optimize code 546

patches underscores Seeker’s versatility and its 547

potential to assist developers in maintaining high- 548

quality codebases. 549

5 Conclusion 550

In this paper, we extend the study of the impact of 551

prompt specifications on the robustness of LLM 552

generated code. We conduct extensive compara- 553

tive experiments using four sets of prompt settings 554

and further confirm the mitigating effect of devel- 555

opers’ poor exception handling practices. To ex- 556

ploit this phenomenon, we introduce the Seeker 557

method, a multi-agent collaboration framework 558

that provides LLM with the prompt information 559

required for mitigation effects with the support of 560

CEE documents and Deep-RAG algorithms. The 561

upper bound model achieves SOTA performance 562

on exception handling tasks. In general, Seeker 563

can be integrated into any base model, extended 564

to multiple programming languages, and even gen- 565

eralized to knowledge analysis and reasoning of 566

general inheritance relations, such as requirements 567

engineering in Appendix A.4. We hope that our 568

findings and proposed methods can provide new 569

insights and promote future research in these areas. 570
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6 Limitations571

Base Model The actual performance of Seeker572

framework depends on the base model’s code un-573

derstanding and information analysis capabilities.574

Therefore, in order to achieve good experimen-575

tal performance, it is necessary to introduce base576

model with strong general capabilities.577

Closed-source Model The good performance of578

closed-source models may lead to more overhead579

and privacy leakage issues in enterprise application-580

level development.581
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A Appendix761

A.1 A Revisit of Human Empiricals762

Over the years, there have been numerous empiri-763

cal studies and practical discussions on exception764

handling, but what is common is that exception han-765

dling has been repeatedly emphasized as an impor-766

tant mechanism directly related to code robustness.767

Exception handling is a necessary and powerful768

mechanism to distinguish error handling code from769

normal code, so that the software can do its best to770

run in a normal state(Nakshatri et al., 2016). Excep-771

tion mechanism ensures that unexpected errors do772

not damage the stability or security of the system,773

prevents resource leakage, ensures data integrity,774

and ensures that the program still runs correctly775

when unforeseen errors occur(Weimer and Nec-776

ula, 2004). In addition, exception handling also777

involves solving potential errors in the program778

flow, which can mitigate or eliminate defects that779

may cause program failure or unpredictable behav-780

ior(Jacobs and Piessens, 2009).781

Although the exception mechanism is an impor-782

tant solution to code robustness, developers have783

always shown difficulties in dealing with it due to784

its complex inheritance relationship and processing785

methods. Various programming language projects786

show a long-tail distribution of exception types787

when facing exception handling, which means that788

developers may only have a simple understanding789

of the frequently occurring exception types(de Pá-790

dua and Shang, 2017). However, according to791

section1, good exception practices rely on devel-792

opers to perform fine-grained specific capturing.793

Multi-pattern effect of exception handling is also794

considerable(Nguyen et al., 2020b). For example,795

even for peer code, capturing different exception796

types will play different maintenance functions,797

so exception handling is often not generalized or798

single-mapped. These complex exception mech-799

anism practice skills have high requirements for800

developers’ programming literacy. Previous study801

manually reviewed and counted the exception han-802

dling of a large number of open source projects, and803

believed that up to 62.91% of the exception han-804

dling blocks have violations such as capturing gen-805

eral exceptions and destructive wrapping(de Sousa806

et al., 2020). This seriously violates the starting807

point of the exception mechanism. We also empha-808

size the urgent need and importance of automated809

exception handling suggestion tools(de Pádua and810

Shang, 2017).811

The failure of human developers in the exception 812

handling mechanism seriously affects the quality of 813

LLM’s code training data (He and Vechev, 2023), 814

which further leads to LLM’s inability to under- 815

stand the usage skills of maintenance functions 816

(Wang et al., 2024). To solve the above problems, 817

we first proposed Seeker − Java for the Java lan- 818

guage. This is because the Java language has a 819

more urgent need for exception handling and is 820

completely mapped to the robustness of Java pro- 821

grams. As a fully object-oriented language, Java’s 822

exception handling is more complex than other 823

languages, and it has a higher degree of integra- 824

tion into language structures(Ebert et al., 2020). 825

Therefore, Java projects are more seriously trou- 826

bled by exception handling bugs. In addition, Java 827

relies heavily on exceptions as a mechanism for 828

handling exceptional events. In contrast, other 829

languages may use different methods or have less 830

strict exception handling mechanisms. It is worth 831

mentioning that Seeker’s collaborative solution 832

based on an inherent multi-agent framework plus 833

an external knowledge base, they can quickly mi- 834

grate multiple languages by maintaining documents 835

for different languages. We will also maintain 836

Seeker−Python and Seeker−C# in the future 837

to provide robustness guarantees for the develop- 838

ment of more programming languages. 839

A.2 Method Details 840

A.2.1 Rules of Good Practice 841

In this section, we introduce four progressively 842

refined prompting strategies to guide develop- 843

ers—both humans and LLMs—toward stable and 844

generalizable exception handling practices. As 845

shown in Figure6, our goal is to align developer 846

performance with recognized best practices, gradu- 847

ally helping them move from vague awareness to 848

well-structured and generalizable handling strate- 849

gies. We term the vulnerable code segments as 850

Fraile code, emphasizing that these code fragments 851

are particularly susceptible to runtime exceptions 852

and error propagation if not addressed properly. 853

Specifically, we present: Coarse-grained Re- 854

minding prompting, Fine-grained Reminding 855

prompting, Fine-grained Inspiring prompting, and 856

Fine-grained Guiding prompting. Each prompt 857

setting provides incrementally richer contextual 858

information and guidance about exceptions, their 859

types, and their handling strategies. This incremen- 860

tal approach is designed to gradually improve the 861
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Figure 6: Aligning developers’ exception handling from biased, user-oriented practices to industry-
standard “good practice” distributions through iterative data refinement. Distribution truncation, augmen-
tation, and reconstruction guide a progression from coarse-grained reminders to fine-grained, scenario-
specific guidance—closing the gap between current human methods and stable, high-quality exception
handling.

developer’s in-context learning process, ensuring a862

more accurate understanding of exceptions and a863

stable, repeatable handling methodology that can864

be applied across various development scenarios.865

Coarse-grained Reminding prompting sim-866

ply alerts developers to “pay attention to potential867

exceptions,” nudging them to identify and handle868

Fraile code based on their own experience. As869

shown in Figures 2(a), 8, and 9, while such a re-870

minder can make both human and LLM developers871

more aware of exceptions, it does not significantly872

improve the precision of identifying Fraile code.873

Related studies (Ren et al., 2023) have summarized874

this phenomenon as a series of bad practices—such875

as Incorrect exception handling—where the devel-876

oper’s initial intuition is insufficient for robust code877

improvement.878

Fine-grained Reminding prompting focuses879

on specific exception types in the Fraile code880

scenario, prompting developers to consider their881

sources and standardize their handling. Although882

this level of detail encourages consultation of exter-883

nal documents or examples, these references are of-884

ten too abstract, non-standardized, or insufficiently885

generalizable. Consequently, developers may still886

catch exceptions inaccurately, failing to fundamen-887

tally mitigate underlying risks. Prior work has iden-888

tified patterns such as the Abuse of try-catch as889

common pitfalls even under such guidance.890

Fine-grained Inspiring prompting goes a step891

further by providing a code-level scenario analy-892

sis for the Fraile code. Here, intuitive and inter- 893

pretable natural language guidance helps develop- 894

ers gain deeper insight and analytical capability. 895

While recent studies have shown that such prompt- 896

ing can lead to stable good practices for standalone 897

function-level Fraile code, the complexity and de- 898

pendency chains of real-world scenarios still pose 899

a challenge. As noted by (Zhang et al., 2023), even 900

experienced developers can introduce errors in ex- 901

ception handling within complex projects. 902

Fine-grained Guiding prompting finally offers 903

a generalized handling strategy for the identified ex- 904

ceptions. Building upon the previously established 905

stable exception detection performance, developers 906

are now equipped with a structured, generalizable 907

approach. Prior recommendations (de Pádua and 908

Shang, 2017) strongly advocate for employing such 909

strategies, as developers struggle to perform high- 910

quality optimization without fully understanding 911

the nature of the exception type. By establishing a 912

systematic framework for addressing Fraile code, 913

developers—whether human or model-based—are 914

more likely to achieve high-quality exception han- 915

dling in diverse and complex contexts. 916

In essence, these four prompt settings represent a 917

progression from broad, coarse-grained reminders 918

to fine-grained, scenario-specific guidance and ul- 919

timately to generalizable handling strategies. By 920

gradually improving the developer’s understanding 921

of exceptions and providing actionable insights, we 922

enhance the robustness and quality of the code they 923
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produce. This approach highlights the significant924

influence of prompt specification on LLM-driven925

code generation and encourages further research926

into how different levels of guidance can surpass927

traditional human practice, better aligning the fi-928

nal implementation with recognized exception han-929

dling best practices.930

Notably, many programming languages offer931

three main ways to handle exceptions: declaring932

them with the throws keyword in the method sig-933

nature, throwing them with the throw keyword934

inside the method body, and capturing them via935

try-catch blocks. Existing work (Nakshatri et al.,936

2016) points out that simply using throws at the937

method signature may not reflect the true run-938

time conditions, as these exceptions propagate939

up the call stack until caught. Similarly, excep-940

tions thrown within a method body must eventually941

be handled by the caller via try-catch. Thus,942

try-catch blocks represent the most practical and943

common approach. In our method, we adopt this944

third technique as the best practice, integrating it945

into our prompting strategies to guide developers946

toward stable and high-quality exception handling.947

A.2.2 Detailed CEE Construction and948

Refinement Process949

This appendix provides the complete rationale,950

methodologies, and iterative steps undertaken to951

build the CEE in detail. It includes:952

Comprehensive Documentation from the JDK:953

We begin with 433 exception nodes drawn from the954

official Java documentation, spanning 62 branches955

across five hierarchical layers. Each node is an-956

chored to a standard JDK-defined exception class957

or interface.958

Integration of Enterprise Practices: To en-959

hance the practicality of the CEE, we incorporate960

patterns and insights drawn from enterprise-level961

Java development documentation and established962

open-source projects. By analyzing widely adopted963

handling practices, logging standards, and fallback964

mechanisms, we align the CEE with real-world965

coding scenarios, ensuring that recommended han-966

dling logic is both credible and effective.967

Granular Structuring via Scenario, Property,968

and Handling Logic: For each exception node,969

we record:970

• Scenario: Typical contexts or operations971

where the exception may arise.972

• Property: Attributes such as exception sever- 973

ity, root causes, and environmental factors. 974

• Handling Logic: Recommended strategies, 975

including try-catch patterns, logging tech- 976

niques, and fallback operations. 977

This granular detailing enables developers and 978

LLMs to map from a given exception scenario to 979

an appropriate handling strategy more accurately. 980

Reinforcement Learning-Based Fine-Tuning: 981

We employ a testing framework that uses RL-based 982

fine-tuning to improve the mapping between excep- 983

tions and handling logic. Over multiple iterations, 984

false positives and negatives in suggested handling 985

methods are identified and rectified, ensuring that 986

the CEE remains both precise and adaptive. 987

Iterative Refinement and Community Input: 988

The CEE is treated as a living document, continu- 989

ously refined through user feedback and commu- 990

nity contributions. Over time, newly identified 991

exception patterns, handling techniques, or correc- 992

tions are integrated, ensuring that the CEE evolves 993

alongside prevailing development practices and 994

tooling. 995

By following these guidelines and iterative en- 996

hancements, the CEE aims to serve as a robust, 997

trusted reference that enhances both human and 998

LLM-driven exception management in Java. 999
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A.2.3 Seeker Framework1000

Algorithm 1: Seeker Framework
Input: Codebase C
Output: Optimized code C′ with robust exception handling

1 Segment the codebase C into manageable units U = {u1, u2, . . . , uN};
2 foreach code segment ui in C do
3 if (length of ui is within predefined limit) and (function nesting level is low) and (logical flow is clear) then
4 Add ui to U ;

5 Initialize optimized units U ′ = {};
6 foreach unit ui in U do

// Detection Phase
7 Initialize potential exception set Ei = {};
8 Use the Detector agent to analyze unit ui;
9 In parallel do { // Static Analysis

10 Generate control flow graph CFGi and exception propagation graph EPGi for ui;
11 Identify sensitive code segments Sstatic

i = {sstatic
i1 , sstatic

i2 , . . . } in ui;
// Scenario and Property Matching

12 Perform scenario and property matching on ui;
13 Identify sensitive code segments Smatch

i = {smatch
i1 , smatch

i2 , . . . } in ui;
14 } Combine sensitive code segments: Si = Sstatic

i ∪ Smatch
i ;

15 foreach segment sij in Si do
16 Detect potential exception branches Ebij in sij ;
17 Ebi ← Ebi ∪ Ebij ;

// Retrieval Phase
18 Use the Predator agent to retrieve fragile code and try-catch blocks;
19 Summarize unit ui at the function level to obtain code summary Fi;
20 Perform Deep-RAG using Fi and exception branches Ebi, get exception nodes Eni;
21 Mapping relevant exception handling strategies Hi = {hi1, hi2, . . . } from CEE;

// Ranking Phase
22 Use the Ranker agent to assign grades to exceptions in Eni;
23 foreach exception eik in Eni do
24 Calculate exception likelihood score lik based on eik attribute and impact;
25 Calculate suitability score uik of handling strategy hik;
26 Compute overall grade gik = α · lik + β · uik;

27 Rank exceptions in Eni based on grades gik in descending order to get ranked list E′
ni;

// Handling Phase
28 Use the Handler agent to generate optimized code u′

i;
29 foreach exception eik of E′

ni if gik > γ do
30 Mapping handling strategy hik from Hi;
31 Apply hik to code segment(s) related to eik in ui;

32 U ′ ← U ′ ∪ {u′
i};

33 Combine optimized units U ′ to produce the final optimized code C′;
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A.2.4 Deep-RAG Algorithm 1001

Algorithm 2: Deep Retrieval-Augmented Generation (Deep-RAG)
Input: Knowledge hierarchy tree T , unit summary Fi, detected queries Qi, environment context

Env
Output: Relevant information retrievals Ri

1 Initialize relevant knowledge branches set B = {};
2 Assign knowledge scenario labels L = {l1, l2, . . . } to branches of T ;
3 foreach query qik in Qi do
4 Identify branches Bik in T related to qik based on labels L;
5 B ← B ∪Bik;

6 foreach branch bm in B do
// Verification Step

7 Select few-sample document examples Xm = {xm1, xm2, . . . } associated with branch bm;
8 foreach example xmj in Xm do
9 Perform query matching to obtain pass rate pmj and capture accuracy amj ;

10 if pmj or amj below threshold θ then
11 Record failure pattern fpmj based on Env;
12 Update environment context Env with fpmj ;

13 Compute average pass rate p̄m and accuracy ām for branch bm;
14 if p̄m or ām below threshold θ then
15 Fine-tune labels L for branch bm based on aggregated feedback from Env;

16 Initialize information retrievals set Ri = {};
17 foreach branch bm in B do
18 Select depth level D for node evaluation;
19 for d = 1 to D do
20 foreach node nml at depth d in branch bm do
21 Evaluate relevance score rml to summary Fi and queries Qi;
22 if rml > δ then
23 Retrieve information rml from knowledge base;
24 Ri ← Ri ∪ {rml};
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In the Deep-RAG algorithm, we assign develop-1002

ment scenario labels to each branch of the excep-1003

tion inheritance tree based on their inheritance re-1004

lationships, enabling the identification of branches1005

that may correspond to specific information of1006

fragile code segments. Acting as an intelligent1007

agent, the algorithm interacts dynamically with its1008

operational environment by leveraging feedback1009

from detection pass rates and capture accuracies1010

obtained during the few-shot verification step. This1011

feedback mechanism allows the system to refine1012

the granularity and descriptions of the scenario la-1013

bels through regularization prompts derived from1014

failed samples. As a result, Deep-RAG can ac-1015

curately identify the risk scenarios where fragile1016

codes are located and the corresponding knowl-1017

edge branches that are activated. Subsequently, the1018

algorithm selectively performs node evaluations1019

on these branches by depth, thereby enhancing re-1020

trieval performance and optimizing computational1021

overhead. Additionally, we have designed the al-1022

gorithm interface to be highly general, ensuring1023

its applicability across a wide range of RAG sce-1024

narios beyond exception handling. This generality1025

allows Deep-RAG to support diverse applications,1026

as further detailed in Appendix A.4. By integrating1027

environmental feedback and maintaining a flexible,1028

agent-based interaction model, Deep-RAG not only1029

improves retrieval accuracy and efficiency but also1030

adapts seamlessly to various domains and infor-1031

mation retrieval tasks, demonstrating its versatility1032

and robustness in enhancing the performance of1033

large language models.1034

A.3 Experimental Details1035

A.3.1 Metrics1036

1. Automated Code Review Score (ACRS):1037

This metric evaluates the overall quality of1038

the generated code in terms of adherence to1039

coding standards and best practices, based on1040

an automated code review model.1041

ACRS =

∑N
i=1wisi∑N
i=1wi

× 100% (1)1042

where:1043

• N is the total number of code quality1044

checks performed by the automated code1045

review tool.1046

• wi is the weight assigned to the i-th code1047

quality rule, reflecting its importance.1048

• si is the score for the i-th rule, defined 1049

as: 1050

si =
qi
Qi

(2) 1051

where: 1052

– qi is the raw score for the i-th rule, 1053

based on the specific quality mea- 1054

sure (e.g., code readability, efficiency, 1055

etc.). 1056

– Qi is the maximum possible score 1057

for the i-th rule, which ensures that 1058

si is normalized to the range [0, 1]. 1059

A higher ACRS indicates better adherence to 1060

coding standards and best practices. 1061

2. Coverage (COV): This metric measures the 1062

proportion of actual sensitive code segments 1063

that our method successfully detects. 1064

Let S = {s1, s2, . . . , sN} be the set of actual 1065

sensitive code segments. 1066

Let D = {d1, d2, . . . , dM} be the set of de- 1067

tected sensitive code segments. 1068

Define an indicator function: 1069

Idetected(si) =

{
1, if ∃dj ∈ D such that dj = si

0, otherwise
1070

Then, the Coverage is defined as: 1071

COV =

∑N
i=1 Idetected(si)

N
× 100% 1072

This metric reflects the percentage of actual 1073

sensitive code segments correctly detected by 1074

our method. Over-detection (detecting more 1075

code segments than actual sensitive code) is 1076

not penalized in this metric. 1077

3. Coverage Pass (COV-P): This metric as- 1078

sesses the accuracy of the try-blocks detected 1079

by the Predator agent compared to the actual 1080

code that requires try-catch blocks, penalizing 1081

over-detection. Let T = {t1, t2, . . . , tP } be 1082

the set of actual code regions that should be en- 1083

closed in try-catch blocks (actual try-blocks). 1084

Let T̂ = {t̂1, t̂2, . . . , t̂Q} be the set of code 1085

regions detected by the Predator agent as re- 1086

quiring try-catch blocks (detected try-blocks). 1087
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Define an indicator function:1088

Icorrect(t̂j) =

{
1, if t̂j ∈ T

0, otherwise
1089

The number of correctly detected try-blocks1090

is:1091

TP =

Q∑
j=1

Icorrect(t̂j)1092

The number of false positives (incorrectly de-1093

tected try-blocks) is:1094

FP = Q− TP1095

The number of false negatives (actual try-1096

blocks not detected) is:1097

FN = P − TP1098

We define the Coverage Pass (COV-P) as:1099

COV-P =
TP

P + FP
× 100%1100

This formulation penalizes over-detection by1101

including the false positives in the denomi-1102

nator. A try-block is considered correct if1103

it exactly matches the actual code lines; any1104

over-marking or under-marking is counted as1105

incorrect.1106

4. Accuracy (ACC): This metric evaluates the1107

correctness of the exception types identified1108

by the Predator agent compared to the actual1109

exception types.1110

Let E = {e1, e2, . . . , eR} be the set of actual1111

exception types that should be handled.1112

Let Ê = {ê1, ê2, . . . , êS} be the set of excep-1113

tion types identified by the Predator agent.1114

Define an indicator function:1115

Icorrect(êj) =


1, if êj = ei

1, if êj is a subclass of ei
0, otherwise

1116

Then, the Accuracy is defined as:1117

ACC =

∑S
j=1 Icorrect(êj)

S
× 100% 1118

This metric reflects the proportion of identi- 1119

fied exception types that are correct, consider- 1120

ing subclass relationships. Over-detection of 1121

incorrect exception types decreases the accu- 1122

racy. 1123

5. Edit Similarity (ES): This metric computes 1124

the text similarity between the generated try- 1125

catch blocks and the actual try-catch blocks. 1126

1127

Let G be the generated try-catch code, and A 1128

be the actual try-catch code. 1129

The Edit Similarity is defined as: 1130

ES = 1− LevenshteinDistance(G,A)

max(|G|, |A|)
1131

where LevenshteinDistance(G,A) is the min- 1132

imum number of single-character edits (inser- 1133

tions, deletions, or substitutions) required to 1134

change G into A, and |G|, |A| are the lengths 1135

of G and A, respectively. 1136

A higher ES indicates that the generated code 1137

closely matches the actual code. 1138

6. Code Review Score (CRS): This metric 1139

involves submitting the generated try-catch 1140

blocks to an LLM-based code reviewer (e.g., 1141

GPT-4o) for evaluation. The language model 1142

provides a binary assessment: good or bad. 1143

Let Ngood be the number of generated try- 1144

catch blocks evaluated as good, and Ntotal be 1145

the total number of try-catch blocks evaluated. 1146

The Code Review Score is defined as: 1147

CRS =
Ngood

Ntotal
× 100% 1148

This metric reflects the proportion of gener- 1149

ated exception handling implementations that 1150

are considered good according to engineering 1151

best practices. 1152
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Table 4: The Excerpt Data source

Repo Commits Stars Forks Issue Fix Doc Under Maintenance

Anki-Android 18410 8500 2200 262 Y Y
AntennaPod 6197 6300 1400 295 Y Y
connectbot 1845 2480 629 321 N/A Y
FairEmail 30259 3073 640 N/A Y Y
FBReaderJ 7159 1832 802 248 Y N/A
FP2-Launcher 1179 25 2 16 Y N/A
NewsBlur 19603 6800 995 158 Y Y
Launcher3 2932 91 642 2 N/A Y
Lawnchair-V1 4400 93 43 394 Y Y
MozStumbler 1727 619 212 203 Y N/A

A.3.2 Datasets1153

To ensure the quality and representativeness of the1154

dataset, we carefully selected projects on GitHub1155

that are both active and large in scale. We applied1156

stringent selection criteria, including the number of1157

stars, forks, and exception handling repair sugges-1158

tions in the project (Nguyen et al., 2020b), to en-1159

sure that the dataset comprehensively covers the ex-1160

ception handling practices of modern open-source1161

projects. By automating the collection of project1162

metadata and commit history through the GitHub1163

API, and manually filtering commit records related1164

to exception handling, we have constructed a high-1165

quality, representative dataset for exception han-1166

dling that provides a solid foundation for evaluating1167

Seeker.1168

We quantify the quality of datasets in the context1169

of code generation and exception handling using1170

multiple dimensions, encompassing project pop-1171

ularity, community engagement, codebase qual-1172

ity, security posture, documentation integrity and1173

dynamic maintenance. To provide a holistic as-1174

sessment, we propose a Composite Quality Met-1175

ric (CQM) that aggregates these dimensions into1176

a single quantitative indicator. Open source code1177

repositories that perform well under this metric en-1178

ter our semi-automated review process to screen1179

high-quality exception handling blocks for few-1180

shot, CEE building, or testing.1181

To avoid data leakage, we also performed a1182

round of variations on the test set. Considering1183

that our method does not directly rely on data but1184

fully utilizes the LLM’s ability to understand and1185

reason about code, the evaluation results are con-1186

sistent with our predictions, and the impact of data1187

leakage on the credibility of our method is negligi-1188

ble. 1189
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A.3.3 Prompt and Document 1190

CEE Prompt Template

genscenario = “““Below is a kind of exception in java. Please according to the sample discription
of scenario of errortype, provide a scenario description of the exception in java just like the sample
description.Please note that the granularity of the scenario descriptions you generate should be
consistent with the examples.

[Sample Description]
{sample_desc}

[Exception]
{ename}

Note you should output in the json format like below, please note that the granularity of the
scenario descriptions you generate should be consistent with the examples:
{{

“scenario": ...
}}
"""
genproperty = “““Below is a kind of exception in java and its scenario description. Please
according to the sample discription of scenario and property of errortype, provide a property
description of the exception in java just like the sample description. You can alse adjust the given
scenario description to make them consistent. Please note that the granularity of the property
descriptions you generate should be consistent with the examples.

[Sample Description]
{sample_desc}

[Exception]
{ename}

[Scenario Description]
{scenario}

Note you should output in the json format like below, please note that the granularity of the property
descriptions you generate should be consistent with the examples:
{{

“scenario": ...;
“property": ...

}}
"""

1191

Scanner Prompt Template

scanner_prompt = “““You are a software engineer tasked with analyzing a codebase. Your task
is to segment the given codebase into manageable units for further analysis. The criteria for
segmentation are:
- Each unit should have a length within 200 lines.
- The function nesting level should be low.
- The logical flow should be clear and self-contained.

1192
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- The segment should be complete and readable.

Given the following codebase:

[Codebase]
{codebase}

Please segment the codebase into units and list them as:

Unit 1:[Code Segment]
{{unit1}}

Unit 2:[Code Segment]
{{unit2}}
...

Ensure that each unit complies with the criteria specified above.
"""

1193

Detector Prompt Template

detector_senario_match = “““You are a java code auditor. You will be given a doc describe
different exception scenarios and a java code snippet.

Your task is to label each line of the code snippet with the exception scenario that it belongs to. If
a line does not belong to any scenario, label it with “None". If a line belongs to one of the given
scenarios, label it with all the scenarios it belongs to.

[Scenario description]
{scenario}

[Java code]
{code}

Please output the labeling result in the json format like below:
{{

“code_with_label": ...
}}
"""
detector_prop_match = “““You are a java code auditor. You will be given a doc describe different
exception properties and a java code snippet.

Your task is to label each line of the code snippet with the exception property that it belongs to. If
a line does not belong to any property, label it with “None". If a line belongs to one of the given
properties, label it with all the properties it belongs to.

[property description]
{property}

[Java code]
1194
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{code}

Please output the labeling result in the json format like below:
{{

“code_with_label": ...
}}
"""

1195

Predator Prompt Template

predator_prompt = “““You are a code analysis assistant. Your task is to process the given code unit
and identify specific exception types that may be thrown.

[Code Unit]
{code_unit}

[Code Summary]
{code_summary}

Based on the code summary and the potential exception branches provided, identify the specific
exception nodes that may be thrown.

[Potential Exception Branches]
{exception_branches}

Please answer in the following JSON format:
{{

“ExceptionNodes": [
{{

“ExceptionType": “ExceptionType1",
}},
{{

“ExceptionType": “ExceptionType2",
}},
...

]
}}
Ensure that your response strictly follows the specified format.
"""

1196

Ranker Prompt Template

ranker_prompt = “““You are an exception ranking assistant. Your task is to assign grades to the
identified exceptions based on their likelihood and the suitability of their handling strategies.

For each exception, please calculate:

- Exception Likelihood Score (from 0 to 1) based on its attributes and impact.
- Suitability Score (from 0 to 1) of the proposed handling strategy.

1197
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[Identified Exceptions and Handling Strategies]
{exception_nodes}

Provide your calculations and the final grades in the following JSON format:
{{

“Exceptions": [
{{

“ExceptionType": “ExceptionType1",
“LikelihoodScore": value,
“SuitabilityScore": value,

}},
...

]
}}

Please ensure your response adheres to the specified format.

"""
1198

Handler Prompt Template

handler_prompt = “““You are a software engineer specializing in exception handling. Your task is
to optimize the given code unit by applying appropriate exception handling strategies.

[Code Unit]
{code_unit}

[Handling Strategy]
{strategy1}

Generate the optimized code with the applied exception handling strategies.

Please provide the optimized code in the following format:

[Optimized Code]
{{optimized_code}}

Ensure that the code is syntactically correct and adheres to best practices in exception handling.
"""

1199

Sample CEE Node

{
“name": “IOException",
“children": [...],
“info": {

“definition": “IOException is a checked exception that is thrown when an input-output opera-
tion failed or interrupted. It’s a general class of exceptions produced by failed or interrupted I/O
operations.",

“reasons": “There are several reasons that could cause an IOException to be thrown. These
1200
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include: File not found error, when the file required for the operation does not exist; Accessing a
locked file, which another thread or process is currently using; The file system is read only and
write operation is performed; Network connection closed prematurely; Lack of access rights.",

“dangerous_operations": “Operations that could typically raise an IOException include: Read-
ing from or writing to a file; Opening a non-existent file; Attempting to open a socket to a non-
existent server; Trying to read from a connection after it’s been closed; Trying to change the
position of a file pointer beyond the size of the file.",

“sample_code": “String fileName = ’nonexistentfile.txt’; \n FileReader fileReader = new
FileReader(fileName);",

“handle_code": “String fileName = ’nonexistentfile.txt’; \n try { \n FileReader fileReader =
new FileReader(fileName); \n } catch(IOException ex) { \n System.out.println(’An error occurred
while processing the file ’ + fileName); \n ex.printStackTrace(); \n }",

“handle_logic": “Try the codes attempting to establish connection with a file/stream/network,
catch corresponding IOException and report it, output openpath is suggested."

},
“scenario": “attempt to read from or write to a file/stream/network connection",
“property": “There might be an unexpected issue with accessing the file/stream/network due to

reasons like the file not being found, the stream being closed, or the network connection being
interrupted"
}

1201
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A.3.4 Computation Cost Analysis1202

Integrating a comprehensive exception handling1203

mechanism like Seeker introduces potential chal-1204

lenges in computational overhead, especially when1205

dealing with a large number of exception types1206

and complex inheritance relationships. To address1207

this, we designed a high-concurrency interface that1208

keeps the additional computing time overhead con-1209

stant, regardless of the code volume level. This en-1210

sures scalability and controllable complexity when1211

processing any size of codebase.1212

To evaluate the efficiency of our high-1213

concurrency interface, we conducted experiments1214

on 100 Java code files both before and after im-1215

plementing parallel processing. For each code file,1216

we executed the exception handling process and1217

recorded the time taken. In the parallelized version,1218

while the processing between different code files1219

remained sequential, the processing within each1220

code file—specifically, the CEE retrieval involving1221

branch and layered processing—was parallelized.1222

The results are summarized in Table 5. After1223

applying parallel processing, the average time per1224

code file was reduced to approximately 19.4 sec-1225

onds, which is about 1
15 of the time taken with1226

sequential processing. This significant reduction1227

demonstrates the effectiveness of our paralleliza-1228

tion strategy.1229

Table 5: Computation Time Before and After Par-
allelization

Processing Method Average Time per Code File (s) Speedup Factor

Sequential Processing 291.0 1x
Parallel Processing (Seeker) 19.4 15x

Notably, the size of the code files did not affect1230

the processing time, indicating that our method effi-1231

ciently handles codebases of varying sizes without1232

compromising on speed. This stability ensures that1233

Seeker can perform consistent and efficient excep-1234

tion handling across any code, making it highly1235

suitable for practical applications.1236

A.3.5 Further Results on different LLMs1237

We use different open-source (e.g. Code Llama-1238

34B (Rozière et al., 2023), WizardCoder-34B (Luo1239

et al., 2024), Vicuna-13B (Zheng et al., 2023)) and1240

closed-source(e.g. Claude-2 (Clade, 2023), GPT-1241

3-davinci (GPT-3, 2022), GPT-3.5-turbo (GPT-3.5,1242

2023), GPT-4-turbo (GPT-4, 2023), GPT-4o (GPT-1243

4o, 2024)) LLMs as the agent’s internal model to1244

further analyze models’ ability for exception han-1245

dling. The results are summarized in Table 6. 1246

Table 6: Performance of Different Models on Ex-
ception Handling Code Generation

Model ACRS COV (%) COV-P (%) ACC (%) ES CRS (%)

Open-Source Models

Code Llama-34B 0.31 37 35 32 0.25 34
WizardCoder-34B 0.37 35 31 29 0.28 35
Vicuna-13B 0.23 15 9 11 0.19 26

Closed-Source Models

Claude-2 0.42 64 59 54 0.40 54
GPT-3-davinci 0.56 78 68 60 0.48 58
GPT-3.5-turbo 0.63 79 72 66 0.52 71
GPT-4-turbo 0.84 91 83 77 0.63 89
GPT-4o 0.85 91 81 79 0.64 92

The performance variations among different 1247

models can be explained by: 1248

- Pre-training Data: Models pre-trained on 1249

larger and more diverse code datasets (e.g., GPT- 1250

4o) have a better understanding of programming 1251

constructs and exception handling patterns. 1252

- Model Architecture: Advanced architectures 1253

with higher capacities and more layers (e.g., GPT- 1254

4) capture complex patterns more effectively. 1255

- RAG Performance: Models that efficiently in- 1256

tegrate retrieval-augmented generation, effectively 1257

utilizing external knowledge (as in our method), 1258

perform better. 1259

- Understanding Capability: Models with supe- 1260

rior comprehension abilities can accurately detect 1261

sensitive code regions and predict appropriate ex- 1262

ception handling strategies. 1263

Open-source models, while valuable, may lack 1264

the extensive training data and architectural sophis- 1265

tication of closed-source models, leading to lower 1266

performance. Closed-source models like GPT-4o 1267

and GPT-4 benefit from advanced training tech- 1268

niques and larger datasets, enabling them to excel 1269

in tasks requiring nuanced understanding and gen- 1270

eration of code, such as exception handling. 1271

A.4 Other Applicable Scenarios Analysis 1272

Figure 7 shows the migration application of Seeker 1273

multi-agent framework in APP requirement engi- 1274

neering that also includes parent-child inheritance 1275

relationship. We have reason to believe that Seeker 1276

framework can try to be compatible with more com- 1277

plex inheritance relationship, being responsible for 1278

reasoning representation, while having high per- 1279

formance and interpretability. The above achieve- 1280

ments are not easy to accomplish based on graphs 1281

or traditional algorithms. 1282

To validate the general applicability of our sys- 1283

tem in diverse scenarios, we evaluated Seeker on 1284
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Figure 7: A schematic depiction of integrating the Seeker multi-agent framework into APP requirement
engineering workflows. By bridging layered requirements, application functionalities, tool integrations,
and call-level operations, Seeker generalizes beyond isolated exception handling to more complex in-
heritance relationships. This approach improves interpretability, scalability, and reasoning capabilities,
demonstrating the framework’s adaptability and high performance across diverse, real-world engineering
scenarios.

standard code generation benchmarks, including1285

SWE-bench and CoderEval. We present compara-1286

tive results demonstrating the incremental improve-1287

ments achieved by our method.1288

SWE-bench is an evaluation framework com-1289

prising 2,294 software engineering problems de-1290

rived from real GitHub issues and corresponding1291

pull requests across 12 popular Python reposito-1292

ries(Jimenez et al., 2024). It challenges language1293

models to edit a given codebase to resolve specified1294

issues, often requiring understanding and coordi-1295

nating changes across multiple functions, classes,1296

and files simultaneously. This goes beyond tradi-1297

tional code generation tasks, demanding interaction1298

with execution environments, handling extremely1299

long contexts, and performing complex reasoning.1300

For our experiments, we selected 50 issues re-1301

lated to exception handling from the SWE-bench1302

Table 7: Performance on SWE-bench Lite Excep-
tion Handling Issues

Method Resolve Rate (%) Apply Rate (%)

SweAgent + GPT-4o 19 43
Seeker + GPT-4o 26 61

Lite dataset. Using GPT-4o as the internal large 1303

model, the SweAgent(Yang et al., 2024) coupled 1304

with GPT-4o achieved a 19% resolve rate and a 1305

43% apply rate. In contrast, our Seeker framework 1306

attained a 26% resolve rate and a 61% apply rate, 1307

indicating a significant improvement. 1308

CoderEval is a benchmark designed to assess 1309

the performance of models on pragmatic code 1310

generation tasks, moving beyond generating stan- 1311

dalone functions to handling code that invokes or 1312

accesses custom functions and libraries(Yu et al., 1313
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2024). It evaluates a model’s ability to generate1314

functional code in real-world settings, similar to1315

open-source or proprietary projects.1316

In the Java code generation tasks on CoderEval,1317

using Codex(Codex, 2021) directly yielded a1318

Pass@1 score of 27.83%. When integrating our1319

Seeker framework with Codex, the Pass@1 score1320

increased to 38.16%, demonstrating a substantial1321

enhancement in code generation performance.1322

Table 8: Performance on CoderEval Java Code
Generation Tasks

Method Pass@1 (%)

Codex 27.83
Seeker + Codex 38.16

These experiments conclusively demonstrate1323

that our Seeker framework can achieve signifi-1324

cant incremental improvements across different1325

scenarios and benchmarks. By effectively handling1326

exception-related tasks and enhancing code robust-1327

ness, Seeker proves to be a valuable addition to1328

existing code generation models, improving their1329

practical applicability in real-world software engi-1330

neering problems.1331

Inspired by OpenAI o1 (o1, 2024) and DoT1332

(Zhang et al., 2024b), we found that Seeker frame-1333

work has more room for development in LLM rea-1334

soning. Through pre-deduction in tree inference,1335

LLM is expected to enter the problem-solving ideas1336

more efficiently and optimize its reasoning actions1337

through interaction with the external environment.1338

In the future, we will continue to explore research1339

in this direction.1340

B Related Work1341

At present, machine learning has been widely in-1342

tegrated in the field of software engineering, es-1343

pecially in code generation tasks. In this section,1344

we will discuss the progress of Seeker-related work1345

from the latest progress of automatic exception han-1346

dling tools. These methods have contributed to the1347

robustness or productivity of software engineering,1348

but they also have limitations, which is also the1349

focus of Seeker.1350

B.1 Automatic Exception Handling Tools1351

Recent work(Zhang et al., 2020) introduced a neu-1352

ral network approach for automated exception han-1353

dling in Java, which predicts try block locations1354

and generates complete catch blocks in relatively 1355

high accuracy. However, the approach is limited 1356

to Java and not generalize well without retraining. 1357

Additionally, the reliance on GitHub data could 1358

introduce biases based on the types of projects and 1359

code quality present in the dataset. 1360

SCG(Li et al., 2024b) conducted an exploratory 1361

study on fine-tuning LLM for secure code gener- 1362

ation. Their results showed that after fine-tuning 1363

issue fixing commits, the secure code generation 1364

rate was slightly improved. The best performance 1365

was achieved by fine-tuning using function-level 1366

and block-level datasets. However, the limitation 1367

of this study is still generalization, not directly ap- 1368

plicable to other languages. In addition, it limits 1369

the amount and the domain of code that can be 1370

effectively processed. Little much code beyond 1371

training data scale will affect the processing effect. 1372

Besides, in terms of automatic vulnerability de- 1373

tection, the use of traditional fine-tuning methods 1374

may not fully utilize the domain knowledge in the 1375

pre-trained language model, and may overfit to a 1376

specific dataset, resulting in misclassification, ex- 1377

cessive false positives and false negatives(Li et al., 1378

2023c). Its performance is not as good as emerging 1379

methods such as prompt-based learning. 1380

Knowledge-driven Prompt Chaining (KPC)(Ren 1381

et al., 2023), an approach to improve code gener- 1382

ation by chaining fine-grained knowledge-driven 1383

prompts. Their evaluation with 3,079 code gener- 1384

ation tasks from Java API documentation showed 1385

improvements in exception handling. However, the 1386

approach’s efficiency relies heavily on the inquiry 1387

about built-in exceptions for each built-in JDK, and 1388

its practical application is limited if the codebase 1389

is complex. 1390

FuzzyCatch(Nguyen et al., 2020a), a tool for rec- 1391

ommending exception handling code for Android 1392

Studio based on fuzzy logic. However, the per- 1393

formance of FuzzyCatch depends on the quality 1394

and relevance of the training data. In addition, the 1395

tool does not perform well for less common excep- 1396

tions or domains that are not well represented in 1397

the training data. 1398

Neurex(Cai et al., 2024), a learning-based ex- 1399

ception handling recommender that leverages the 1400

CodeBERT model to suggest appropriate try-catch 1401

blocks, the statements to include within try blocks, 1402

and the exception types to catch. However, Neurex 1403

still has several limitations. It cannot generate new 1404

exception types that were not in the training corpus 1405
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with low cost. It does not support the generation1406

of exception handling code inside the catch body.1407

Each project might have a different way to handle1408

exception types in the catch body. And Neurex1409

also needs training data, thus, does not work for1410

a new library without any API usage yet. Most1411

importantly, we compared the experimental results1412

and found that even in the experimental granularity1413

of their method, they perform averagely and are1414

primarily good at finding existing exception han-1415

dling bugs, which is not our focus. Above all, we1416

have had similar method for baseline so we did not1417

compare with them in the formal experimental part.1418

A common limitation of these studies is that the1419

training data they rely on may not fully represent1420

all possible coding scenarios. This may result in1421

a model that is effective in specific situations, but1422

may not generalize well to other situations. In1423

addition, the complexity of exception handling in1424

real-world applications may exceed the capabilities1425

of models trained on more common or simpler1426

cases, so it is crucial to call on the understanding1427

and reasoning capabilities of the model itself. The1428

interpretability of exception handling also provides1429

a guarantee for the improvement of developers’1430

programming literacy. The comparison between1431

the above methods and Seeker is shown in figure 5.1432

B.2 Multi-agent Collaberation1433

Multi-agent collaboration refers to the coordina-1434

tion and collaboration between multiple artificial1435

intelligence (AI) systems, or the symbiotic collabo-1436

ration between AI and humans, working together1437

to achieve a common goal (Smoliar, 1991). This1438

direction has been explored for quite some time1439

(Claus and Boutilier, 1998) (Minsky, 2007). Re-1440

cent developments show that multi-agent collab-1441

oration techniques are being used to go beyond1442

the limitations of LLM, which is a promising tra-1443

jectory. There are many ways for multi-agents to1444

collaborate with LLM.1445

VisualGPT (Wu et al., 2023) and HuggingGPT1446

(Shen et al., 2023) explored the collaboration be-1447

tween LLM and other models. Specifically, LLM1448

was used as a decision center to control and call1449

other models to handle more domains, such as vi-1450

sion, speech, and signals. CAMEL (Li et al., 2023a)1451

explored the possibility of interaction between two1452

LLMs. These studies mainly use case studies in1453

the experimental stage to demonstrate their effec-1454

tiveness and provide specific hints for each case.1455

For multi-agent collaborative software engineer- 1456

ing, which is most relevant to Seeker, (Dong et al., 1457

2023) introduces quantitative analysis to evaluate 1458

agent collaborative code generation. It introduces 1459

the waterfall model in software development meth- 1460

ods into the collaboration between LLMs. How- 1461

ever, there is still a gap between the evaluation 1462

benchmarks used and the actual software develop- 1463

ment scenarios. In addition, although this work 1464

builds a fully autonomous system, adding a small 1465

amount of guidance from human experts to super- 1466

vise the operation of the virtual team will help 1467

improve the practicality of the method in actual 1468

application scenarios. These problems are exactly 1469

what we have improved on Seeker. 1470

CODEAGENT(Zhang et al., 2024a) formal- 1471

ized the repo-level code generation task and pro- 1472

posed a new agent framework based on LLM. 1473

CODEAGENT developed five programming tools 1474

to enable LLM to interact with software artifacts 1475

and designed four agent strategies to optimize the 1476

use of tools. The experiment achieved improve- 1477

ments on various programming tasks. However, it 1478

only integrated simple tools into CODEAGENT. 1479

Some advanced programming tools were not ex- 1480

plored. This limitation limits the ability of the agent 1481

in some challenging scenarios, such as exception 1482

handling tasks. 1483

Above all, nowadays, most code-agent works 1484

focus on the transformation from the requirements 1485

to code and overlook the code robustness during 1486

software evolution, which requires not only un- 1487

derstanding the requirement but also dealing with 1488

potential exceptions. 1489

B.3 Robust Software Development 1490

Mechanism 1491

Code robustness refers to the practices and mecha- 1492

nisms that ensure software to run as expected with- 1493

out causing unexpected side effects, security vul- 1494

nerabilities, or errors. It involves techniques such 1495

as type safety, memory safety, and ensuring that 1496

all code paths are well-defined, including when ex- 1497

ceptions exist. Exception handling is a necessary 1498

programming mechanism to maintain code robust- 1499

ness, allowing programs to manage and respond to 1500

runtime errors or other abnormal events. It helps 1501

maintain the normal flow of execution and ensures 1502

that resources are properly released even when er- 1503

rors occur. Exception handling is critical to code 1504

robustness because it ensures that unexpected er- 1505
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rors do not compromise the stability or security of1506

the system, prevents resource leaks, ensures data1507

integrity, and keeps the program running correctly1508

even when unforeseen errors occur(Weimer and1509

Necula, 2004).1510

From the perspective of code robustness, the1511

defect repair work in the field of software engi-1512

neering is closely related to exception handling1513

mechanisms, because exception handling involves1514

solving potential errors in the program flow, and1515

developers can mitigate or eliminate defects that1516

may cause program failures or unpredictable behav-1517

ior(Jacobs and Piessens, 2009). Currently, since1518

each defect represents a potential vulnerability or1519

instability in the software and is directly related to1520

the functional correctness of the program, research1521

focuses more on defect repair(Wen et al., 2023),1522

Devign (Wen et al., 2023), VulAdisor (Wen et al.,1523

2023), while the program’s exception safety and1524

exception handling, the powerful program defense1525

mechanisms are not considered.1526

When a program lacks good exception handling,1527

errors may propagate uncontrollably, leading to re-1528

source leakage, data corruption, and potential secu-1529

rity vulnerabilities. This situation is called fragile1530

code. After the error occurs, Automatic Program1531

Repair related work performs post-processing to1532

fix the code bug(Zhou et al., 2012). Representative1533

works include Magis (Tao et al., 2024), PatchFinder1534

(Li et al., 2024d). However, they lack the ability to1535

perceive and repair program risks in advance, and1536

there is a risk of accidentally changing the original1537

function of the code(Huang et al., 2025).1538
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Insensitive Detection

Inaccurate Capture

Incorrect Generating

Good Practice

Figure 8: A schematic illustration of the preliminary phenomenon, showing how incremental, targeted
guidance enhances LLM-based exception handling. The depicted code segments and annotations highlight
which specific information supports more accurate detection and handling of fragile code scenarios.
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Insensitive Detection

Inaccurate Capture

Distorted Solution

Good Practice

Human

Figure 9: A schematic illustration of the preliminary phenomenon, demonstrating that incremental,
targeted guidance similarly benefits both LLMs and human developers in exception handling. The
highlighted case study underscores which information elements help bridge the gap between current
human practice and reliable, automated handling strategies.
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