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Abstract

Synthetic control methods (SCMs) are a canonical approach used to estimate treatment
effects from panel data in the internet economy. We shed light on a frequently overlooked
but ubiquitous assumption made in SCMs of “overlap”: a treated unit can be written as
some combination—typically, convex or linear—of the units that remain under control. We
show that if units select their own interventions, and there is sufficiently large heterogeneity
between units that prefer different interventions, overlap will not hold. We address this
issue by proposing a recommender system which incentivizes units with different preferences
to take interventions they would not normally consider. Specifically, leveraging tools from
information design and online learning, we propose an SCM that incentivizes exploration
in panel data settings by providing incentive-compatible intervention recommendations
to units. We establish this estimator obtains valid counterfactual estimates without the
need for an a priori overlap assumption. We extend our results to the setting of synthetic
interventions, where the goal is to produce counterfactual outcomes under all interventions,
not just control. Finally, we provide two hypothesis tests for determining whether unit
overlap holds for a given panel dataset.

1 Introduction

A ubiquitous task in the internet economy is to estimate counterfactual outcomes for a group of units (e.g.
people, products, geographic regions) under different interventions (e.g. marketing campaigns, discount
levels, legal regulations) over time. Such multi-dimensional data are often referred to as panel data, where
the different units may be thought of as rows of a matrix and the time-steps as columns. A prominent
framework for counterfactual inference using panel data is that of synthetic control methods (SCMs) Abadie
& Gardeazabal (2003); Abadie et al. (2010), which aim to estimate the counterfactual outcome under
control, i.e. no treatment, for units that were treated.

In the SCM framework1, there is a pre-intervention time period, during which all units are under control
(i.e. under no intervention). After the pre-intervention period there is a post-intervention time period, where
each unit is given exactly one intervention from a set of possible interventions (which includes control).

The goal of SCMs is to estimate the counterfactual outcomes under control for a treated unit during the
post-intervention period. To do this, SCMs broadly follow two steps:

1. during the pre-intervention period, linearly regress the outcomes of a treated unit against the out-
comes of the units that remain under control, i.e. the donor units;

2. use the learned linear model and the outcomes of the donor units during the post-intervention period
to produce a counterfactual trajectory of the treated unit under control.

While SCMs were originally applied to public policy domains (e.g. Abadie et al. (2010); Freire (2018)),
they are now often used to estimate counterfactuals in various internet domains, ranging from surge pricing

1See Section 2.1 for a more in depth description of the SCM framework we consider.
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for ride-sharing applications Uber (2019) to the effectiveness of advertisements across different geographic
regions EBay (2022).

From the description of SCMs laid out above, it is clear that for the counterfactual estimate to be valid,
the treated unit’s potential outcomes under control should be linearly expressible by the observed outcomes
of the donor units.2 To provide statistical guarantees on the performance of SCMs, such intuition has
traditionally been made formal by making an overlap assumption on the relationship between the outcomes
of the donor units and the test unit; for instance of the following form:
Unit Overlap Assumption. Denote the potential outcome for unit i under intervention d at time t by
y

(d)
i,t ∈ R. For a given unit i and intervention d, there exists a set of weights ω(i,d) ∈ RNd such that

E[y(d)
i,t ] =

∑
j∈[[Nd]]

ω(i,d)[j] · E[y(d)
j,t ] for all t ∈ [[T ]],

where T is the number of time-steps, Nd is the number of donor units who have received intervention d. The
expectation is taken with respect to the randomness in the unit outcomes.

More broadly, previous works that provide theoretical guarantees for SCMs assume there exists some
underlying mapping ω(i,d) (e.g. linear or convex) through which the outcomes of a treated unit (unit i) may
be expressed by the outcomes of the Nd donor units. Since such a condition appears to be necessary in order
to make valid counterfactual inference, assumptions of this nature are ubiquitous when proving statistical
guarantees about SCMs (e.g. Abadie et al. (2010); Amjad et al. (2018); Agarwal et al. (2020b; 2023)).3

However, despite their ubiquity, such overlap assumptions may not hold in all domains in which one would
like to apply SCMs. For example, consider a streaming service with two service plans (i.e. interventions):
a yearly subscription (the treatment) and a pay-as-you-go model (the control). Suppose that all streamers
(the units in this example) are initially signed up for the pay-as-you-go model, and may choose to switch
to the subscription model after a trial period (the pre-intervention period). Furthermore, suppose that the
streaming service wants to determine the effectiveness of its subscription program on user engagement (the
unit outcome of interest) over the next year (the post-intervention period).

Under this setting, the subpopulation of streamers who self-select the subscription plan is most likely
those who believe they will consume large amounts of content on the platform. In contrast, those who
pay-as-they-go most likely believe they will consume less content. The two subpopulations may have very
different experiences under the two business plans (due to their differing viewing habits), leading to two
different sets of potential outcomes that may not overlap, i.e., are not linearly expressible in terms of each
other. This could make it difficult to draw conclusions about the counterfactual user engagement levels of
one subpopulation using the realized engagement levels of the other.

In this work, our goal is to leverage tools from information design to incentivize the exploration of different
treatments by non-overlapping unit subpopulations in order to obtain valid counterfactual estimates using
SCMs. Specifically, we adopt tools and techniques from the literature on incentivizing exploration in multi-
armed bandits (e.g. Mansour et al. (2015; 2020); Slivkins (2021)) to show how the principal—the platform
running the SCM—can leverage knowledge gained from previous interactions with similar units to persuade
the current unit to take an intervention they would not normally take. The principal achieves this by
sending a signal or recommendation to the unit with information about which intervention is best for them.
The principal’s recommendation policy is designed to be incentive-compatible, i.e. it is in the unit’s best
interests to follow the intervention recommended to them by the policy. In our streaming service example,
incentive-compatible signalling may correspond to recommending a service plan for each user based on their
usage of the platform in a way that guarantees that units are better off in expectation when purchasing
the recommended service plan. Our procedure ensures that the Unit Overlap Assumption becomes satisfied
over time, which enables the principal to do valid counterfactual inference using off-the-shelf SCMs after
they have interacted with sufficiently many units.

2See Section 3 for a mathematical justification of this fact.
3We discuss the role of the Unit Overlap Assumption and related conditions in the literature in Section 1.1.
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Overview of paper. We introduce an online learning model where the principal observes panel data from
a population of units with differing preferences. We show that the Unit Overlap Assumption is indeed a
necessary condition to obtain valid counterfactual estimates in our setting. To achieve overlap, we introduce
a recommender system for incentivizing exploration when there are two interventions: treatment and control.
At a high level, we adapt the “hidden exploration” paradigm from incentivized exploration in bandits to
the panel data setting: First, randomly divide units into “exploit” units and “explore” units. For all exploit
units, recommend the intervention that maximizes their estimated expected utility, given the data seen so
far. For every explore unit, recommend the intervention for which the principal would like the Unit Overlap
Assumption to be satisfied. Units are not aware of their exploit/explore designation by the algorithm,
and the explore probability is chosen to be low enough such that the units have an incentive to follow the
principal’s recommendations. After recommendations have been made to sufficiently-many units, we show
that with high probability, the Unit Overlap Assumption is satisfied for all units and either intervention of
our choosing. This enables the use of existing SCMs to obtain finite sample guarantees for counterfactual
estimation for all units under control after running Algorithm 1.

We extend our methods to the setting of synthetic interventions Agarwal et al. (2020b), in which the
principal may wish to estimate counterfactual outcomes under different treatments in addition to control
(Appendix D). We also provide two hypothesis tests for checking whether the Unit Overlap Assumption
holds for a given treated unit and set of donor units. Finally, we empirically evaluate the performance of our
recommender system. We find that it enables consistent counterfactual outcome estimation when the Unit
Overlap Assumption does not hold a priori while existing SCMs alone do not.

1.1 Related work

Causal inference and synthetic control methods. Popular methods for counterfactual inference using
panel data include SCMs Abadie & Gardeazabal (2003); Abadie et al. (2010), difference-in-differences Angrist
& Pischke (2009); Ashenfelter & Card (1984); Bertrand et al. (2004), and clustering-based methods Zhang
et al. (2019); Dwivedi et al. (2022). Within the literature on synthetic control, our work builds off of
the line of work on robust synthetic control Amjad et al. (2018; 2019); Agarwal et al. (2020a;b; 2023),
which assumes outcomes are generated via a latent factor model (e.g. Chamberlain (1984); Liang & Zeger
(1986); Arellano & Honore (2000)) and leverages principal component regression (PCR) Jolliffe (1982);
Massy (1965); Agarwal et al. (2019; 2020a) to estimate unit counterfactual outcomes. Our work falls in
the small-but-growing line of work at the intersection of SCMs and online learning Chen (2023); Farias
et al. (2022); Agarwal et al. (2023), although we are the first to consider unit incentives in this setting.
Particularly relevant to our work is the model used by Agarwal et al. (2023), which extends the finite
sample guarantees from PCR in the panel data setting to online settings. While Harris et al. (2022) also
consider incentives in SCMs (albeit in an offline setting), they only allow for a principal who can assign
interventions to units (e.g. can force compliance). As a result, the strategizing they consider is that of
units who modify their pre-intervention outcomes in order to be assigned a more desirable intervention. In
contrast, we consider a principal who cannot assign interventions to units but instead must persuade units
to take different interventions by providing them with incentive-compatible recommendations.

Unit overlap and similar conditions. Our notion of unit overlap comes directly from the literature on
robust synthetic control (see the previous paragraph for references). However, it is important to note that
analogous assumptions appear more broadly in the literature on synthetic control. For example, Abadie
et al. (2010) requires that the treated unit’s pre-treatment outcomes and covariates lie in the convex hull of
the donor units pool. Beyond synthetic control, similar assumptions to the Unit Overlap Assumption are
also prevalent in the literature on other matching-based estimators such as difference-in-differences (Donald
& Lang, 2007) or clustering-based methods (Zhang et al., 2019). Finally, it is worth noting that in causal
inference, the term “overlap” is also commonly used to refer to propensity score overlap, which assumes that
the probability a unit receives treatment is bounded in (0, 1). This is in contrast to the unit outcome/latent
factor overlap that we consider.

Incentivized exploration. Our work draws on techniques from the growing literature on incentivizing
exploration (IE) (Kremer et al., 2014; Mansour et al., 2019; 2021; Sellke & Slivkins, 2022; Immorlica et al.,
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Protocol: Incentivizing Exploration for Synthetic Control
For each unit i ∈ [[n]]:

1. Principal observes pre-intervention outcomes yi,pre
2. Principal recommends an intervention d̂i ∈ {0, 1}
3. Unit i chooses intervention di ∈ {0, 1}

4. Principal observes post-intervention outcomes y(di)
i,post

Figure 1: Summary of our setting.

2023; Sellke, 2023; Hu et al., 2022; Ngo et al., 2021).In IE, a principal interacts with a sequence of myopic
agents over time. Each agent takes an action, and the principal can observe the outcome of each action.
While each individual agent would prefer to take the action which appears to be utility-maximizing (i.e. to
exploit), the principal would like to incentivize agents to explore different actions in order to benefit the
population in aggregate. Motivation for IE includes online rating platforms and recommendation systems
which rely on information collected by users to provide informed recommendations about various products
and services.

2 Preliminaries

Notation. Subscripts are used to index the unit and time-step, while superscripts are reserved for
interventions. We use i to index units, t to index time-steps, and d to index interventions. For x ∈ N,
we use the shorthand [[x]] := {1, 2, . . . , x} and [[x]]0 := {0, 1, . . . , x − 1}. y[i] denotes the i-th component of
vector y, where indexing starts at 1. We sometimes use the shorthand T1 := T − T0 for T, T0 ∈ N>0 such
that T > T0. ∆(X ) denotes the set of possible probability distributions over X . 0d is shorthand for the
vector [0, 0, . . . , 0] ∈ Rd. Finally, we use the notation a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2.1 Our panel data setting

We consider an online setting in which the principal interacts with a sequence of n units one-by-one for T time
steps each. As is standard in the literature on synthetic control, we posit that there is a pre-intervention
period of T0 time-steps, for which each unit i ∈ [[n]] is under the same intervention, i.e., under control.
After the pre-intervention period, the principal either recommends the treatment to the unit or suggests
that they remain under control (possibly using knowledge of the outcomes for units j < i). We denote
the principal’s recommended intervention to unit i by d̂i ∈ {0, 1}, where 1 denotes the treatment and 0 the
control. After receiving the recommendation, unit i chooses an intervention di ∈ {0, 1} and remains under
intervention di for the remaining T − T0 time-steps.4 We use yi,pre := [y(0)

i,1 , . . . , y
(0)
i,T0

]⊤ ∈ RT0 to denote
unit i’s pre-treatment outcomes under control, and y(d)

i,post := [y(d)
i,T0+1, . . . , y

(d)
i,T ]⊤ ∈ RT−T0 to refer to unit

i’s post-intervention potential outcomes under intervention d. We denote the set of possible pre-treatment
outcomes by Ypre. See Figure 1 for a summary of our setting.

In order to impose structure on how unit outcomes are related for different units, time-steps, and interven-
tions, we assume that outcomes are generated via the following latent factor model, a popular assumption
in the literature on synthetic control (see references in Section 1.1).

Assumption 2.1 (Latent Factor Model). Suppose the outcome for unit i at time t under treatment d ∈ {0, 1}
takes the factorized form E[y(d)

i,t ] = ⟨u(d)
t , vi⟩, y

(d)
i,t = E[y(d)

i,t ] + ε
(d)
i,t , where u(d)

t ∈ Rr is a latent vector which
depends only on the time-step t and intervention d, vi ∈ Rr is a latent vector which only depends on unit i,

4We envision a scenario where both interventions are available to units and they can choose between them.
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and ε
(d)
i,t is zero-mean sub-Gaussian random noise with variance at most σ2. For simplicity, we assume that

|E[y(d)
i,t ]| ≤ 1, ∀ i ∈ [[n]], t ∈ [[T ]], d ∈ {0, 1}.

While we assume the existence of such structure in the data, we do not assume that the principal knows
or gets to observe u(d)

t , vi, or ε
(d)
i,t . In the literature on synthetic control, the goal of the principal is to

estimate unit-specific counterfactual outcomes under different interventions. Specifically, our target causal
parameter is the (counterfactual) average expected post-intervention outcome.5

Definition 2.2. (Average expected post-intervention outcome) The average expected post-intervention out-
come of unit i under intervention d is E[ȳ(d)

i,post] := 1
T1

∑T
t=T0+1 E[y(d)

i,t ], where the expectation is taken with
respect to (ϵ(d)

i,t )T0<t≤T .

2.2 Recommendations and beliefs

The data generated by the interaction between the principal and a unit i may be characterized by the tuple
(yi,pre, d̂i, di, y(di)

i,post), where yi,pre are unit i’s pre-treatment outcomes, d̂i is the intervention recommended
to unit i, di is the intervention taken by unit i, and y(di)

i,post are unit i’s post-intervention outcomes under
intervention di.
Definition 2.3 (Interaction History). The interaction history at unit i is the sequence of outcomes, recom-
mendations, and interventions for all units j ∈ [[i − 1]]. Formally, Hi := {(yj,pre, d̂j , dj , y(dj)

j,post)}i−1
j=1. We

denote the set of all possible histories at unit i as Hi.

We refer to the way the principal assigns interventions to units as a recommendation policy.
Definition 2.4 (Recommendation Policy). A recommendation policy πi : Hi × Ypre → ∆({0, 1}) is a
(possibly stochastic) mapping from histories and pre-treatment outcomes to interventions.

We assume that before the first unit arrives, the principal commits to a method for computing the sequence
of recommendation policies {πi}ni=1 which is fully known to all units. Whenever πi is clear from the context,
we use the shorthand d̂i = πi(Hi, yi,pre) to denote the recommendation of policy πi to unit i.

In addition to having a corresponding latent factor, each unit has an associated belief over the effectiveness
of each intervention. This is made formal through the following definitions.
Definition 2.5 (Unit Belief). Unit i has prior belief Pvi

, which is a joint distribution over potential post-
intervention outcomes {E[ȳ(0)

i,post],E[ȳ(1)
i,post]}. We use the shorthand µ

(d)
vi := EPvi

[ȳ(d)
i,post] to refer to a unit’s

expected average post-intervention outcome, with respect to their prior Pvi
.

Definition 2.6 (Unit Type). Unit i is of type τ ∈ {0, 1} if τ = arg maxd∈{0,1} µ
(d)
vi . We denote the set of all

units of type τ as T (τ) and the dimension of the latent subspace spanned by type τ units as rτ := span(vj :
j ∈ T (τ)).

In other words, a unit’s type is the intervention they would take according to their prior without any
additional information about the effectiveness of each intervention. We consider the setting in which the
possible latent factors associated with each type lie in mutually orthogonal subspaces (i.e. the Unit Overlap
Assumption is not satisfied).See Section 3 for a simple theoretical example of such a data-generating process
and Section 6 for an empirical example. If the principal could get the Unit Overlap Assumption to be satisfied,
they could use existing synthetic control methods off-the-shelf to obtain valid finite sample guarantees.

As is standard in the literature on IE, we assume that units are Bayesian-rational and each unit knows its
place in the sequence of n units (i.e., their index i ∈ [[n]]).Thus given recommendation d̂i, unit i selects
their intervention di such that di ∈ arg maxd∈{0,1} EPvi

[ȳ(d)
i,post|d̂i], i.e. they select the intervention di which

maximizes their utility in expectation over their prior Pvi , conditioned on receiving recommendation d̂i from
the principal.

5Our results hold in the more general setting where the target causal parameter is any linear function of the vector of
expected post-intervention outcomes. We focus on the average as it is a common quantity of interest.
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Definition 2.7 (Bayesian Incentive-Compatibility). We say that a recommendation d is Bayesian
incentive-compatible (BIC) for unit i if, conditional on receiving intervention recommendation
d̂i = d, unit i’s average expected post-intervention outcome under intervention d is at least as
large as their average expected post-intervention outcome under any other intervention. Formally,
EPvi

[ȳ(d)
i,post − ȳ

(d′)
i,post|d̂i = d] ≥ 0 for every d′ ∈ {0, 1}. A recommendation policy is BIC if the above

condition holds for every intervention which is recommended with non-zero probability.

It is worth clarifying the behavioral interpretation of Definition 2.7. Formally, Definition 2.7 assumes that
units are Bayesian-rational, understand the recommendation algorithm, and correctly condition on the infor-
mation conveyed by receiving a particular recommendation. This assumption provides a clean and standard
benchmark that ensures recommendations are followed and allows us to focus on the statistical question of
inducing overlap. At the same time, we do not view this assumption as requiring literal Bayesian reasoning
by agents in practice. In many real-world systems, users may instead follow recommendations with high but
imperfect probability, rely on coarse beliefs about the system’s reliability, or exhibit heterogeneous levels of
sophistication. To this end, we explore a setting in which units follow recommendations imperfectly in Ap-
pendix G, and we find that our recommendation schemes are empirically robust to unit non-compliance.

3 The necessity of overlap

Suppose that the principal would like to estimate counterfactuals for some unit under intervention d. We
begin by showing that the Unit Overlap Assumption must be satisfied for this unit under intervention d in
order for any algorithm to obtain consistent counterfactual estimates under the setting described in Section 2.

Theorem 3.1. Fix a time horizon T , pre-intervention time period T0, and number of donor units n(0). For
any algorithm used to estimate the average post-intervention outcome under control for a test unit, there
exists a problem instance such that the produced estimate has constant error whenever the Unit Overlap
Assumption is not satisfied for the test unit under control, even as T , T0, n(0) → ∞.

The proof of Theorem 3.1 proceeds by constructing a family of problem instances under which the Unit
Overlap Assumption is not satisfied, before showing that no algorithm can consistently estimate E[ȳ(0)

n(0)+1,post]
on all instances in the family.

Proof. Consider the setting in which all type 0 units have latent factor v0 = [0 1]⊤ and all type 1 units have
latent factor v1 = [1 0]⊤. Suppose that u(0)

t = [1 0]⊤ if t mod 2 = 0 and u(0)
t = [0 1]⊤ if t mod 2 = 1 if

t ≤ T0. For all t > T0, let u(0)
t = [H 1]⊤ for some H in range [−c, c], where c > 0. Furthermore, suppose

that there is no noise in the unit outcomes. Under this setting, the (expected) outcomes for type 0 units
under control are

E[y(0)
0,t ] =


0 if t mod 2 = 0, t ≤ T0

1 if t mod 2 = 1, t ≤ T0

1 if t > T0

and the outcomes for type 1 units under control are

E[y(0)
1,t ] =


1 if t mod 2 = 0, t ≤ T0

0 if t mod 2 = 1, t ≤ T0

H if t > T0.

Suppose that H ∼ Unif[−c, c] and consider a principal who wants to estimate E[ȳ(0)
1,post] using just the set of

outcomes E[y0,pre], E[y(0)
0,post], and E[y1,pre]. Since these outcomes do not contain any information about H,

any estimator Ê[ȳ(0)
1,post] cannot be a function of H and thus will be at least a constant distance away from
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the true average post-intervention outcome E[ȳ(0)
1,post] in expectation over H. That is,

EH
∣∣∣E[ȳ(0)

1,post] − Ê[ȳ(0)
1,post]

∣∣∣ = EH
∣∣∣H − Ê[ȳ(0)

1,post]
∣∣∣

= 1
2c

(c2 + (Ê[ȳ(0)
1,post])2) ≥ c

2 .

Note that our choice of T and T0 was arbitrary, and that estimation does not improve as the number of
donor units increases since (1) there is no noise in the outcomes and (2) all type 0 units have the same latent
factor. Therefore any estimator for E[ȳ(0)

1,post] is inconsistent in expectation over H as n(0), T, T0 → ∞. This
implies our desired result because if estimation error is constant in expectation over problem instances, there
must exist at least one problem instance with constant estimation error.

3.1 On estimating unit-specific counterfactual outcomes

To infer the unit outcomes in the post-intervention period from outcomes in the pre-intervention period, we
require the following linear span inclusion condition to hold on the latent factors associated with the pre-
and post-intervention time-steps:
Assumption 3.2 (Linear Span Inclusion). For each intervention d ∈ {0, 1} and time t > T0, we assume
that u(d)

t ∈ span{u(0)
1 , u(0)

2 , . . . , u(0)
T0

}.

Much like the Unit Overlap Assumption, Assumption 3.2 is ubiquitous in the literature on robust synthetic
control (see, e.g. Agarwal et al. (2020b; 2023); Harris et al. (2022)). In essence, Assumption 3.2 requires
that the pre-intervention period be “sufficiently informative” about the post-intervention period. Indeed, As-
sumption 3.2 may be thought of as the “transpose” of the Unit Overlap Assumption, where the “overlap”
condition is required to hold on the time-steps instead of on the units.6 To gain intuition for why such
an assumption is necessary, consider the limiting case in which u(0)

t = 0r for all t ≤ T0. Under such a
setting, all expected unit outcomes in the pre-intervention time period will be 0, regardless of the underlying
unit latent factors, which makes it impossible for the principal to infer anything non-trivial about a unit’s
post-intervention outcomes from looking at their pre-intervention outcomes alone.

Vertical vs. horizontal regression. The following proposition is an important structural result for our
main algorithm, as it will allow us to transform the problem of estimating unit counterfactual outcomes from
a regression over donor units (vertical regression) to a regression over pre-intervention outcomes (horizontal
regression). While Proposition 3.3 is known in the literature on learning from panel data (e.g., (Agarwal
et al., 2023; Harris et al., 2022)), we state it here for completeness.
Proposition 3.3. Under Assumption 2.1 and 3.2, there exists a slope vector θ(d) ∈ RT0 such that the average
expected post-intervention outcome of unit i under intervention d is given by E[ȳ(d)

i,post] = 1
T1

⟨θ(d),E[yi,pre]⟩.
We assume that the principal has knowledge of a valid upper-bound Γ on the ℓ2-norm of θ(d), i.e. ∥θ(d)∥2 ≤ Γ
for d ∈ {0, 1}.

Given historical data of the form {yj,pre, y(dj)
j,post}

i−1
j=1, we can estimate θ(d) as θ̂

(d)
i using some estimation

procedure, which in turn allows us to estimate E[ȳ(d)
i,post] as Ê[ȳ(d)

i,post] := 1
T1

⟨θ̂
(d)
i , yi,pre⟩ for d ∈ {0, 1}. While

this is not a synthetic control method in the traditional sense, as it does not construct a “synthetic control”
trajectory from the trajectories of the donor units, it turns out that the point estimate it produces (and
assumptions it requires) are equivalent to that of a vertical regression-based SCM in many settings (including
ours). See Shen et al. (2022) for more background on the similarities and differences between using horizontal
regression-based approaches (like ours) and vertical regression-based approaches (like traditional SCMs) in
panel data settings. We choose to use a horizontal regression-based approach because it is easier to work with
in our setting, where units arrive sequentially (recall Figure 1). Importantly, we would still need the Unit
Overlap Assumption to be satisfied for intervention d if we used a vertical regression-based method.

6Note that Assumption 3.2 is not a substitute for the Unit Overlap Assumption by Theorem 3.1.
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ALGORITHM 1: Incentivizing Exploration for Synthetic Control: Type 1 units
Input: First stage length N0, batch size L, number of batches B, failure probability δ, gap C ∈ (0, 1)
Provide no recommendation to first N0 units.
for batch b = 1, 2, . . . , B do

Select an explore index ib ∈ [[L]] uniformly at random.
for j = 1, 2, . . . , L do

if j = ib then
Recommend intervention d̂N0+(b−1)·L+j = 0 to unit N0 + (b − 1) · L + j.

else
if µ(0,1,l) − Ê[ȳ(1)

j,post] ≥ C then
Recommend intervention d̂N0+(b−1)·L+j = 0 to unit N0 + (b − 1) · L + j.

else
Recommend intervention d̂N0+(b−1)·L+j = 1 to unit N0 + (b − 1) · L + j.

For the reader familiar with bandit algorithms, it may be useful to draw the following connection between our
setting and that of linear contextual bandits. In particular, it is sometimes helpful to think of E[yi,pre] as the
“context” of unit i, and E[ȳ(d)

i,post] as the principal’s expected reward of assigning intervention d given E[yi,pre].
Since we observe yi,pre instead of E[yi,pre] we cannot apply linear contextual bandit algorithms to our panel
data setting out-of-the-box. However as we will show in Section 4, one can combine ideas from incentivizing
exploration in contextual bandits with principled ways of handling the noise in the pre-intervention outcomes
to incentivize exploration in panel data settings.

4 Incentivized exploration for synthetic control

In this section, we turn our focus to incentivizing type 1 units (i.e. units who a priori prefer the treatment)
to remain under control in the post-intervention period. The methods we present may also be applied to
incentivize type 0 units (i.e. units who a priori prefer the control) to take the treatment. We focus on
incentivizing control amongst type 1 units in order to be in line with the literature on synthetic control,
which aims to estimate counterfactual unit outcomes under control.

The goal of the principal is to design a sequence of recommendation policies that convinces enough units of
type 1 to select the control in the post-treatment period, such that the Unit Overlap Assumption is satisfied
for both interventions for all units of type 1. At a high level, the principal is able to incentivize units to
explore because they have more information than any one particular unit (as they view the realized history
Hi before making a recommendation), and so they can selectively reveal information in order to persuade
units to take interventions which they would not normally take. Our algorithm (Algorithm 1) is inspired
by the “detail free” algorithm for incentivizing exploration in multi-armed bandits in Mansour et al. (2015).
Furthermore, through our discussion in Section 3, one may view Algorithm 1 as an algorithm for incentivizing
exploration in linear contextual bandit settings with measurement error in the context.

The recommendation policy in Algorithm 1 is split into two stages. In the first stage, the principal provides
no recommendations to the first N0 units. Left to their own devices, these units take their preferred
intervention according to their prior belief: type 0 units take control, and type 1 units take the treatment.
We choose N0 such that it is large enough for the Unit Overlap Assumption to be satisfied for all units of
type 1 under the treatment with high probability.7

In the second stage, we use the initial data collected during the first stage to construct an estimator of
the average expected post-intervention outcome for type 1 units under treatment using PCR, as described
in Section 3.1. By dividing the total number of units in the second stage into phases of L rounds each, the
principal can randomly “hide” one explore recommendation amongst L − 1 exploit recommendations. When

7The Unit Overlap Assumption will always be satisfied w.h.p. for type 1 units under the treatment after seeing sufficiently-
many type 1 units. The hard part is convincing enough type 1 units to remain under control so that the Unit Overlap
Assumption is also satisfied for control.
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the principal sends an exploit recommendation to unit i, they recommend the intervention which would
result in the highest estimated average post-intervention outcome for unit i, where unit i’s post-intervention
outcomes under treatment are estimated using the data collected during the first stage. On the other hand,
the principal recommends that unit i take the control whenever they send an explore recommendation.

Thus under Algorithm 1, if a type 1 unit receives a recommendation to take the treatment, they will always
follow the recommendation since they can infer they must have received an exploit recommendation. However
if a type 1 unit receives a recommendation to take the control, they will be unsure if they have received an
explore or an exploit recommendation, and can therefore be incentivized to follow the recommendation as
long as L is set to be large enough (i.e. the probability of an explore recommendation is sufficiently low).
This works because the sender’s estimate of E[ȳ(1)

i,post] is more informed than unit i’s prior belief, due to the
history of outcomes Hi that the principal has observed.

Our algorithm requires that bounds on various aggregate statistics about the underlying unit population are
common knowledge amongst the principal and all units. Such assumptions are standard in the literature on
incentivized exploration.

We are now ready to present our main result: a way to initialize Algorithm 1 to ensure that the Unit Overlap
Assumption is satisfied with high probability.
Theorem 4.1 (Informal; detailed version in Theorem C.5). Under Assumption C.3, if the number of initial
units N0 and the batch size L are chosen to be sufficiently large, then Algorithm 1 satisfies the BIC property
(Definition 2.7).

Moreover, if the number of batches B is chosen to be sufficiently large, then the conditions of the Unit
Overlap Assumption will be satisfied simultaneously for all type 1 units under control w.h.p.

Summary of Assumption C.3: Assumption C.3 posits that the principal and units know valid upper- and
lower-bounds on various population-level statistics about the underlying unit population (e.g., the fraction
of units of each type, the prior mean for each type and intervention). As these are population-level statistics,
in practice, the principal may be able to learn these bounds from samples of the data and broadcast them
to the unit population. See Appendix C.2 for more details.

Proof Sketch. See Appendix C for complete proof details. At a high level, the analysis follows by expressing
the compliance condition for type 1 units as different cases depending on the principal’s recommendation.
In particular, a type 1 unit could receive recommendation d̂i = 0 for two reasons: (1) Under event ξC,i when
control is indeed the better intervention according to the prior and the observed outcomes of previous units,
or (2) when the unit is randomly selected as an explore unit. Using bounds on the probabilities of these
two events occurring, we can derive a condition on the minimum phase length L such that a unit’s expected
gain from exploiting (when the event ξC,i happens) exceeds the expected (unit) loss from exploring. We
then further simplify the condition on the phase length L so that it is computable by the principal by
leveraging existing finite sample guarantees for PCR using the samples collected in the first stage when no
recommendations are given.

Theorem 4.1 says that after running Algorithm 1 with optimally-chosen parameters, the Unit Overlap
Assumption will be satisfied for all type 1 units under both interventions with high probability. Therefore
after running Algorithm 1 on sufficiently-many units, the principal can use off-the-shelf SCMs (e.g. Agarwal
et al. (2020b; 2023)) to obtain counterfactual estimates with valid confidence intervals for all type 1 units
under control (w.h.p.). Note that all parameters required to run Algorithm 1 are computable by the
principal in polynomial time. See Example C.6 for a concrete instantiation of Algorithm 1.

5 Testing whether the Unit Overlap Assumption holds

So far, our focus has been on designing algorithms to incentivize subpopulations of units to take interventions
for which the Unit Overlap Assumption does not initially hold. In this section we study the complementary
problem of designing a procedure for determining whether the Unit Overlap Assumption holds for a given

9



Under review as submission to TMLR

test unit and set of donor units. In particular, we provide two simple hypothesis tests for deciding whether
the Unit Overlap Assumption holds, by leveraging existing finite sample guarantees for PCR. Our first
hypothesis test is non-asymptotic, and thus is valid under any amount of data. While our second hypothesis
test is asymptotic and therefore valid only in the limit, we anticipate that it may be of more practical use.

5.1 A non-asymptotic hypothesis test

Our first hypothesis test proceeds as follows: Using the PCR techniques described in Appendix B, we learn
a linear relationship between the first T0/2 time-steps in the pre-intervention time period and the average
outcome in the second half of the pre-intervention time period using data from the donor units. Using this
learned relationship, we then compare our estimate for the test unit with their true average outcome in the
second half of the pre-intervention time period. If the difference between the two is larger than the confidence
interval given by PCR (plus an additional term to account for the noise), we can conclude that the Unit
Overlap Assumption is not satisfied with high probability.

In order for our hypothesis test to be valid we require the following assumption, which is analogous to As-
sumption 3.2.

Assumption 5.1 (Linear Span Inclusion, revisited). For every time-step t such that T0/2 < t ≤ T0, we
assume that u(0)

t ∈ span{u(0)
1 , . . . , u(0)

T0/2}.

While Assumption 3.2 requires that the post-intervention latent factors for any intervention fall within
the linear span of the pre-intervention latent factors, Assumption 5.1 requires that the second half of the
pre-intervention latent factors fall within the linear span of the first half. This assumption allows us to
obtain valid confidence bounds when regressing the second half of the pre-intervention outcomes on the
first half. Let yi,pre′ := [y(0)

i,1 , . . . , y
(0)
i,T0/2], yi,pre′′ := [y(0)

i,T0/2+1, . . . , y
(0)
i,T0

], and ȳi,pre′′ := 2
T0

∑T0
t=T0/2+1 y

(0)
i,t .

Under Assumption 5.1 we can estimate E[ȳi,pre′′ ] as Ê[ȳi,pre′′ ] := ⟨θ̂i, yi,pre′⟩, where θ̂i is computed using
the PCR techniques in Appendix B.

We are now ready to introduce our hypothesis test. In what follows, we will leverage the high-probability
confidence interval of Agarwal et al. (2023) (Theorem C.1). Under Assumption 5.1, we can apply Theo-
rem C.1 out-of-the-box to estimate E[ȳi,pre′′ ] using the first T0/2 time-steps as the pre-intervention period
and the next T0/2 time-steps as the post-intervention period.

Hypothesis test. Consider the hypothesis that Unit Overlap Assumption is not satisfied for test unit n.

1. Using donor units I and test unit n, compute Ê[ȳn,pre′′ ] via the PCR method of Appendix B.

2. Let α(δ) be the confidence bound given in Theorem C.1 s.t. |E[ȳi,pre′′ ] − Ê[ȳn,pre′′ ]| ≤ α(δ)with
probability at least 1 − δ. Specifically, compute α(δ) + 2σ

√
log(1/δ)
T0

for confidence level δ by apply-
ing Theorem C.1 with the first T0/2 time-steps as the pre-intervention period and the next T0/2
time-steps as the post-intervention period.

3. If |Ê[ȳn,pre′′ ] − ȳn,pre′′ | > α(δ) + 2σ
√

log(1/δ)
T0

then accept the hypothesis. Otherwise, reject.

Theorem 5.2. Under Assumption 5.1, if the Unit Overlap Assumption is satisfied for unit n, then
|Ê[ȳn,pre′′ ] − ȳn,pre′′ | ≤ α(δ) + 2σ

√
log(1/δ)
T0

with probability 1 − O(δ), where α(δ) is the high-probability confi-
dence interval which is defined in Theorem C.1 when using the first T0/2 time-steps as the pre-intervention
period and the next T0/2 time-steps as the post-intervention period.

Therefore we can conclude that if |Ê[ȳi,pre′′ ] − ȳi,pre′′ | > α(δ) + 2σ
√

log(1/δ)
T0

, then the Unit Overlap
Assumption will not be satisfied for unit i w.h.p.
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5.2 An asymptotic hypothesis test

Next we present a hypothesis test which, while only valid in the limit, may be of more practical use
when compared to the non-asymptotic hypothesis test of Section 5.1. At a high level, our asymptotic
hypothesis test leverages Assumption 5.1 and the guarantees for synthetic interventions (SI) in Agarwal
et al. (2020b) to determine whether the Unit Overlap Assumption holds for a given test unit n. In particular,
their results imply that under Assumption 5.1 and the Unit Overlap Assumption, a rescaled version of
Ê[ȳn,pre′′ ] − E[ȳn,pre′′ ] converges in distribution to the standard normal distribution as |I|, T0, T1 → ∞.
While the rescaling amount depends on quantities which are not computable, a relatively simple application
of the continuous mapping theorem and Slutsky’s theorem imply that we can compute a valid test statistic
which converges in distribution to the standard normal.

Notation. In what follows, let ω(n,0) ∈ R|I| be the linear relationship between the test unit n and donor
units I which is known to exist under the Unit Overlap Assumption, i.e. E[y(0)

n,t] =
∑
i∈I ω(n,0)[i] · E[y(0)

i,t ].
Let ω̃(n,0) be the projection of ω(n,0) onto the subspace spanned by the latent factors of the I test units.
Let ω̂(n,0) be the estimate of ω̃(n,0) and σ̂ be the estimate of the standard deviation of the noise terms
{ϵi,t : i ∈ I, t ∈ [[T ]]} given by SC. Finally, let zα be the z score at significance level α ∈ (0, 1), i.e.
α = P(x ≤ zα), where x ∼ N (0, 1).

Hypothesis test. Consider the hypothesis that the Unit Overlap Assumption is not satisfied for a test unit
n.

1. Using donor units I and test unit n, compute Ê[ȳn,pre′′ ] and ω̂(n,0) using SI.

2. Accept the hypothesis only if
√
T1

σ̂∥ω̂(n,0)∥2
|Ê[ȳn,pre′′ ] − ȳn,pre′′ | > z0.95.

Theorem 5.3 (Informal; detailed version in Theorem F.1). Under Assumption 5.1, if ∥ω̃(n,0)∥2 is sufficiently
large and ω̂(n,0) → ω̃(n,0) at a sufficiently fast rate, then as |I|, T0, T1 → ∞ the Asymptotic Hypothesis Test
falsely accepts the hypothesis with probability at most 5%.

6 Numerical simulations

In this section, we complement our theoretical results with a numerical comparison to standard SCMs which
do not take incentives into consideration.

Experiment Setup. We consider the setting of Section 4: There are two interventions and two unit types.
Type 1 units prefer the treatment and type 0 units prefer the control. Our goal is to incentivize type
1 units to take the control so we can obtain accurate counterfactual estimates of all units under control.
See Appendix G for details about our data-generating process.

We apply the asymptotic hypothesis test of Section 5.2 using all type 0 units as the donor units and a single
type 1 unit as the test unit. We accept the null hypothesis, as the test statistic

√
T1

σ̂∥ω̂(n,0)∥2
|Ê[ȳn,pre′′ ]−ȳn,pre′′ | ≈

2.24, which is much larger than the value of z0.95 ≈ 1.96 needed for acceptance. That is, the asymptotic test
(correctly) returns that the Unit Overlap Assumption is not satisfied for a test unit of type 1 under control.

Using Theorem C.5 (the formal version of Theorem 4.1), we can calculate a lower bound on the phase
length L of Algorithm 1 such that the BIC condition (Definition 2.7) is satisfied for units of type 1 who
are recommended the control. We run three different sets of simulations and compare the estimation error
|Êȳ

(0)
n,post −Eȳ

(0)
n,post| for a new type 1 unit n under control when incentivizing exploration using Algorithm 1

(blue) to the estimation error without incentivizing exploration (orange). For both our method and
the incentive-unaware ablation, we use the adaptive PCR method of Agarwal et al. (2023) to estimate
counterfactuals. All experiments are repeated 50 times and we report both the average prediction error and
the standard deviation for estimating the post-treatment outcome of type 1 units under control.

Varying Strength of Belief. In Figure 2, we explore the effects of changing the units’ “strength of beliefs”.
Specifically, we vary the gap between the prior mean outcome under control and treatment for type 1 units

11



Under review as submission to TMLR

(a) Prior mean gap 0.2 (b) Prior mean gap 0.4

(c) Prior mean gap 0.6 (d) Prior mean gap 0.8

Figure 2: Counterfactual estimation error for units of type 1 under control using Algorithm 1 (blue) and
synthetic control without incentives (orange) with different gaps between the prior mean reward of control
and treatment. Results are averaged over 50 runs, with the shaded regions representing one standard
deviation.

by setting µ
(1)
i − µ

(0)
i ∈ {0.2, 0.4, 0.6, 0.8}. As the gap decreases it becomes easier to persuade units to

explore, and therefore our counterfactual estimates improve.

Varying Latent Factor Size. In Figure 3, we vary r ∈ {2, 4, 6, 8} while keeping all other parameters
of the problem instance constant. Increasing r increases the batch size L, so we see a modest decrease in
performance as r increases.

6.1 Hypothesis test

In order to test the validity of the asymptotic hypothesis test in Section 5.2, we use synthetic data for which
we know the underlying data-generating process.

Specifically, we create two types of synthetic datasets: one where the Unit Overlap Assumption holds (“UOA
data”), and one where it does not (“non-UOA data”). For simplicity, we consider a setting where there are
two interventions and two unit types.

For non-UOA data, we use the same data-generating process as described above, where if unit i is of
type 1 (resp. type 0), we generate a latent vector vi = [0 · · · 0 vi[1] · · · vi[r/2]] (resp. vi =
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[vi[1] · · · vi[r/2] 0 · · · 0]), where ∀j ∈ [r/2] : vi[j] ∼ Unif(0, 1). This dataset then contains 500 units
of each type. On the other hand, UOA data contains 1000 Type 0 units only, where the latent vector is
generated the same way as Type 0 units in non-UOA data. The pre-treatment and post-treatment latent
factors are generated in the same manner as above.

Using this data-generating process, we generate 500 datasets of each type (for a total of 1000 datasets),
and run the asymptotic hypothesis test in Section 5.2 for each dataset. If we accept the null hypothesis,
i.e., the Unit Overlap Assumption is predicted not to be satisfied according to our test, then we say the
’predicted’ label of the dataset is 1; otherwise, the ’predicted’ label is 0. We say that a dataset has (true)
label 1 if the Unit Overlap Assumption is not satisfied, and label 0 if it is.

We report the true positive rate (TPR) and false positive rate (FPR) for this experiment. The resulting
confusion matrix is: [

475 25
22 478

]
with the TPR = 0.956 and FPR = 0.05. This experimental result supports Theorem 5.3, where the FPR is
at most 0.05.

7 Conclusion

We study the problem of non-compliance when estimating counterfactual outcomes using panel data. Our
focus is on synthetic control methods, which canonically require an overlap assumption on the unit outcomes
in order to provide valid finite sample guarantees. We shed light on this often overlooked assumption, and
provide an algorithm for incentivizing units to explore different interventions using tools from information
design and online learning. After running our algorithm, the Unit Overlap Assumption will be satisfied
with high probability, which allows for the principal to obtain valid finite sample guarantees for all units
when using off-the-shelf SCMs to estimate counterfactual outcomes under control. We also extend our
algorithm to satisfy the Unit Overlap Assumption for all units and all interventions when there are more
than two interventions, and we provide two hypothesis tests for determining if the Unit Overlap Assumption
hold for a given test unit and set of donor units. Finally, we complement our theoretical findings with
numerical simulations, and observe that our procedure for estimating counterfactual outcomes produces
significantly more accurate estimates when compared to existing methods which do not take unit incentives
into consideration.

There are several exciting directions for future research. In some multi-armed bandit settings, lower bounds
are known on the sample complexity of incentivizing exploration (Sellke & Slivkins (2022); Sellke (2023)).
It would be interesting to prove analogous bounds on the number of units required to incentivize sufficient
exploration for the Unit Overlap Assumption to be satisfied for all units and all interventions in our setting.
Another avenue for future research is to design difference-in-differences or clustering-based algorithms for
incentivizing exploration in other causal inference settings. Finally it would be interesting to relax other
assumptions typically needed for synthetic control, such as the linear span inclusion assumption on the
time-step latent factors.
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A Additional related work

There has been recent interest in causal inference on characterizing optimal treatment policies which must
satisfy some additional constraint(s). For example, Luedtke & van der Laan (2016) study a setting in which
the treatment supply is limited. Much like us, Qiu et al. (2021) consider a setting in which intervening on
the treatment is not possible, but encouraging treatment is feasible. However their focus is on the setting
in which the treatment is a limited resource, so their goal is to encourage treatment to those who would
benefit from it the most. Since they do not consider panel data and place different behavioral assumptions
on the individuals under intervention, the tools and techniques we use to persuade units in our setting differ
significantly from theirs. Finally, Qiu et al. (2022); Sun et al. (2021) consider settings where there is some
uncertain cost associated with treatment.

Within the literature on IE, the work most related to ours on a conceptual level is that of Li & Slivkins
(2022), who consider the problem of incentivizing exploration in clinical trial settings. Like us, Li & Slivkins
(2022) study a setting in which the principal would like to incentivize agents to explore different treatments.
However, their goal is to estimate population-level statistics about each intervention, while we are interested
in estimating unit-specific counterfactuals under different interventions using panel data. As a result, while
our high-level motivations are somewhat similar, the tools and techniques we use to obtain our results differ
significantly. On a technical level, our mechanisms are somewhat similar to the initial exploration phase
in Mansour et al. (2019), although we consider a more general setting where unit outcomes may vary over
time, in contrast to the simpler multi-armed bandit setting they consider.

Finally, our work is conceptually related to the literature on causal bandits (Lattimore et al., 2016), which
is a sequential decision-making setting where actions correspond to interventions on a causal graph. As we
mention in Section 3, our setting may be viewed as a linear contextual bandit setting, where interventions
are actions and the principal observes a noisy version of the context. Within the literature on causal bandits,
papers on linear causal bandits (where the underlying causal system is assumed to be linear) are perhaps
the most similar to our work (e.g. Yan & Tajer (2024); Yan et al. (2024); Varici et al. (2023)). However
unlike this line of work, we do not study regret minimization under a causal graph, but instead focus on the
problem of identification in the panel data setting. Moreover, our focus is on the regime in which compliance
cannot be enforced and units are free to self-select their interventions.
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B Background on principal component regression

The specific algorithm we use to estimate θ(d) is called principal component regression (PCR). At a high level,
PCR “de-noises” the matrix of covariates (in our case, the set of all pre-treatment outcomes for all donor
units seen so far who underwent intervention d) using hard singular value thresholding, before regressing the
(now-denoised) covariates on the outcomes of interest (in our case, the average post-intervention outcome
under intervention d).

Let I(d)
i be the set of units who have received intervention d before unit i arrives, and let n

(d)
i be the number

of such units. We use
Y

(d)
pre,i := [y⊤

j,pre : j ∈ I(d)
i ] ∈ Rn

(d)
i

×T0

to denote the matrix of pre-treatment outcomes corresponding to the subset of units who have undergone
intervention d before unit i arrives, and

Y
(d)
post,i :=

[
T∑

t=T0+1
y

(d)
j,t : j ∈ I(d)

i

]
∈ Rn

(d)
i

×1

be the vector of the sum of post-intervention outcomes for the subset of units who have undergone intervention
d before unit i arrives. We denote the singular value decomposition of Y

(d)
pre,i as

Y
(d)
pre,i =

n
(d)
i

∧T0∑
ℓ=1

s
(d)
ℓ û(d)

ℓ (v̂(d)
ℓ )⊤,

where {s
(d)
ℓ }n

(d)
i

∧T0
ℓ=1 are the singular values of Y

(d)
pre,i, and û(d)

ℓ and v̂(d)
ℓ are orthonormal column vectors. We

assume that the singular values are ordered such that s1(Y (d)
pre,i) ≥ · · · ≥ s

n
(d)
i

∧T0
(Y (d)
pre,i) ≥ 0. For some

threshold value r, we use

Ŷ
(d)
pre,i :=

r∑
ℓ=1

s
(d)
ℓ û(d)

ℓ (v̂(d)
ℓ )⊤

to refer to the truncation of Y
(d)
pre,i to its top r singular values. We define the projection matrix onto the

subspace spanned by the top r right singular vectors as P̂(d)
i,r ∈ Rr×r, given by P̂(d)

i,r :=
∑r
ℓ=1 v̂(d)

ℓ

(
v̂(d)
ℓ

)⊤
.

Equipped with this notation, we are now ready to define the procedure for estimating θ(d) using (regularized)
principal component regression.
Definition B.1 (Regularized Principal Component Regression). Given regularization parameter ρ ≥ 0 and

truncation level r ∈ N, for d ∈ {0, 1} and i ≥ 1, let V(d)
i :=

(
Ŷ

(d)
pre,i

)⊤
Ŷ

(d)
pre,i + ρP̂(d)

i,r . Then, regularized PCR
estimates θ(d) as

θ̂
(d)
i :=

(
V(d)
i

)−1
Ŷ

(d)
pre,iY

(d)
i,post,

where θ(d) is defined as in Proposition 3.3. The average post-intervention outcome for unit i under inter-
vention d may then be estimated as Ê[ȳ(d)

i,post] := 1
T1

⟨θ̂
(d)
i , yi,pre⟩.

Observe that if ρ = 0, then V(d)
i :=

(
Ŷ

(d)
pre,i

)⊤
Ŷ

(d)
pre,i and we recover the non-regularized version of PCR.

Under the Unit Overlap Assumption and Assumption 3.2, work on robust synthetic control (see Section 1.1)
uses (regularized) PCR to obtain consistent estimates for counterfactual post-intervention outcomes under
different interventions. Intuitively, the Unit Overlap Assumption is required for consistent estimation because
there needs to be sufficient information about the test unit contained in the data from donor units in order
to accurately make predictions about the test unit using a model learned from the donor units’ data.
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C Appendix for Section 4: Incentivized exploration for synthetic control

C.1 Causal parameter recovery

Theorem C.1 (Theorem G.3 of Agarwal et al. (2023)). Let δ ∈ (0, 1) be an arbitrary confidence parameter
and ρ > 0 be chosen to be sufficiently small. Further, assume that Assumption 2.1 and Unit Overlap
Assumption are satisfied, there is some i0 ≥ 1 such that rank(Xi0 ](d)) = r, and snri(d) ≥ 2 for all i ≥ i0.
Then, with probability at least 1 − O(kδ), simultaneously for all interventions d ∈ [k]0,∣∣∣Ê[ȳ(d)

i,post] − Ē[y(d)
i,post]

∣∣∣ ≤ α(δ),

where α(δ) := 3
√

T0

ŝnri(d)

(
L(

√
74 + 12

√
6κ(Zi(d)))

(T − T0) · ŝnri(d) +
√

2erri(d)√
T − T0 · σr(Zi(d))

)

+ 2L
√

24T0

(T − T0) · ŝnri(d) + 12Lκ(Zi(d))
√

3T0

(T − T0) · ŝnri(d) + 2
√

erri(d)√
T − T0 · σr(Zi(d))

+ Lσ
√

2 log(k/δ)
T − T0

+ Lσ
√

148 log(k/δ)
ŝnri(d)(T − T0) + 24σκ(Zi(d))

√
6 log(k/δ)

ŝnri(d)(T − T0)

+ 2σ
√

erri(d) log(k/δ)
σr(Zi(d))

√
T − T0

where Ê[ȳ(d)
i,post] := 1

T−T0
· ⟨θ̂i(d), yi,pre⟩ is the estimated average post-intervention outcome for unit i under

intervention d and
∥∥∥θ

(d)
i

∥∥∥ ≤ L.

Corollary C.2. Given a gap ϵ and the same assumptions as in Theorem C.1, the probability that∣∣∣Ê[ȳ(d)
i,post] − E[ȳ(d)

i,post]
∣∣∣ ≤ ϵ is at least 1 − δ, where

δ ≤ log(n(d)) ∨ k

exp
((√

σrd
(Zi(d))ϵ−(A+F )(

√
n(d)+

√
T0)

D + α2

4D2 − α
2D

)2
)

with

• A = 3
√

T0

(∥∥θ(d)
i

∥∥(
√

74+12
√

6κ(Zi(d)))
T−T0

+
√

2√
T−T0

)
,

• F =
2
∥∥θ(d)

i

∥∥√
24T0

T−T0
+

12
∥∥θ(d)

i

∥∥κ(Zi(d))
√

3T0

T−T0
+ 2√

T−T0
,

• D =
∥∥θ(d)

i

∥∥σ√
148

T−T0
+ 24σκ(Zi(d))

√
6

T−T0
+ 2σ√

T−T0
,

• E =
√

2
∥∥θ(d)

i

∥∥σ
T−T0

,

• α = A + F + D(
√

n(d) +
√

T0) + σrd
(Zi(d))E

Proof. We begin by setting the right-hand side of Theorem C.1 to be ϵ. The goal is to write the failure
probability δ as a function of ϵ. Then, using the notations above, we can write

ϵ = A

(ŝnri(d))2 + F

ŝnri(d) + D
√

log(k/δ)
ŝnri(d) + E

√
log(k/δ)
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First, we take a look at the signal-to-noise ratio ŝnri(d). By definition, we have:

ŝnri(d) = σr(Zi(d))
Ui

= σr(Zi(d))√
n(d) +

√
T0 +

√
log(log(n(d))/δ)

Hence,

1
ŝnri(d) =

√
n(d) +

√
T0 +

√
log(log(n(d))/δ)

σr(Zi(d))

Observe that since ŝnri(d) ≥ 2, we have 1
(ŝnri(d))2

≤ 1
ŝnri(d)

. Hence, we can write an upper bound on ϵ as:

ϵ ≤ A + F

ŝnri(d) + D
√

log(k/δ)
ŝnri(d) + E

√
log(k/δ)

≤ (A + F )(
√

n(d) +
√

T0)
σrd

(Zi(d)) + (A + F )
√

log(log(n(d))/δ)
σrd

(Zi(d))

+
D
(√

n +
√

d +
√

log(log(n(d))/δ)
)√

log(k/δ)
σr(Zi(d)) + E

√
log(k/δ)

Since log(x) is a strictly increasing function for x > 0, we can simplify the above expression as:

ϵ ≤ (A + F )(
√

n(d) +
√

T0)
σrd

(Zi(d)) +
(A + F )

√
log(log(n(d))∨k/δ)

σrd
(Zi(d))

+
D(

√
n +

√
d)
√

log(log(n(d))∨k/δ)
σrd

(Zi(d)) + D log(log(n(d))∨k/δ)
σrd

(Zi(d)) + E

√
log(log(n(d))∨k/δ)

Subtracting the first term from both sides and multiplying by σr(Zi(d)), we have:

σrd
(Zi(d))ϵ − (A + F )(

√
n(d) +

√
T0)

≤ (A + F )
√

log(log(n(d))∨k/δ) + D(
√

n +
√

d)
√

log(log(n(d))∨k/δ) + D log(log(n(d))∨k/δ)

+ Eσrd
(Zi(d))

√
log(log(n(d))∨k/δ)

= (A + F + D(
√

n +
√

d) + Eσrd
(Zi(d)))

√
log(log(n(d))∨k/δ) + D log(log(n(d))∨k/δ)

Let α = A + F + D(
√

n +
√

d) + Eσrd
(Zi(d)), we can rewrite the inequality above as:

σr(Zi(d))ϵ − (A + F )(
√

n(d) +
√

T0) ≤ α

√
log(log(n(d))∨k/δ) + D log(log(n(d))∨k/δ)

19



Under review as submission to TMLR

Then, we can complete the square and obtain:

log(log(n(d))∨k/δ) + α

D

√
log(log(n(d))∨k/δ) + α2

4D2 ≥ σrd
(Zi(d))ϵ − (A + F )(

√
n(d) +

√
T0)

D
+ α2

4D2

⇐⇒
(√

log(log(n(d))∨k/δ) + α

2D

)2
≥ σrd

(Zi(d))ϵ − (A + F )(
√

n(d) +
√

T0)
D

+ α2

4D2

⇐⇒
√

log(log(n(d))∨k/δ) + α

2D
≥

√
σrd

(Zi(d))ϵ − (A + F )(
√

n(d) +
√

T0)
D

+ α2

4D2

⇐⇒
√

log(log(n(d))∨k/δ) ≥

√
σrd

(Zi(d))ϵ − (A + F )(
√

n(d) +
√

T0)
D

+ α2

4C2 − α

2D

⇐⇒ log(log(n(d))∨k/δ) ≥

√σrd
(Zi(d))ϵ − (A + F )(

√
n(d) +

√
T0)

D
+ α2

4D2 − α

2D

2

⇐⇒ log(n(d)) ∨ k

δ
≥ exp


√σrd

(Zi(d))ϵ − (A + F )(
√

n(d) +
√

T0)
D

+ α2

4D2 − α

2D

2
⇐⇒ δ ≤ log(n(d)) ∨ k

exp
((√

σrd
(Zi(d))ϵ−(A+F )(

√
n(d)+

√
T0)

D + α2

4D2 − α
2D

)2
)

C.2 Proof of Theorem 4.1

Assumption C.3. [Unit Knowledge for Synthetic Control] We assume that the following are common knowl-
edge among all units and the principal:

1. Valid upper- and lower-bounds on the fraction of type 1 units in the population, i.e. if the true proportion
of type 1 units is p1 ∈ (0, 1), the principal and units know pL, pH ∈ (0, 1) such that pL ≤ p1 ≤ pH .

2. Valid upper- and lower-bounds on the prior mean for each receiver type and intervention, i.e. values
µ(d,τ,h), µ(d,τ,l) ∈ R such that µ(d,τ,l) ≤ µ

(d)
vi ≤ µ(d,τ,h) for all units i ∈ [[N ]], receiver types τ ∈ {0, 1}, and

interventions d ∈ {0, 1}.

3. For some C ∈ (0, 1), a lower bound on the smallest probability of the event ξC,i over the priors and latent
factors of type 1 units, denoted by mini∈T (1) PrPi

[ξC,i] ≥ ζC > 0, where ξC,i :=
{

µ
(0)
i ≥ ȳ

(1)
i,post + C

}
and

ȳ
(1)
i,post is the average post-intervention outcome for unit i under intervention 1.

4. A sufficient number of observations N0 needed such that the Unit Overlap Assumption is satisfied for
type 1 units under the treatment with probability at least 1 − δ, for some δ ∈ (0, 1).

At a high level, part (3) requires that (i) there is a non-zero probability under each unit i’s prior that
ȳ

(0)
i,post ≥ ȳ

(1)
i,post and (ii) the principal will be able to infer a lower bound on this probability given the set of

observed outcomes for units in the first phase.8

8Such “fighting chance” assumptions are very common (and are necessary) in the literature on incentivized exploration in
bandits.
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Validity of Assumption C.3.3 First, we note that in the first stage of Algorithm 1, the principal does not
provide any recommendation to the units and instead lets them pick their preferred intervention. The goal
of this first stage is to ensure the linear span inclusion assumption (Unit Overlap Assumption) is satisfied for
type 1 units and intervention 1. This condition is equivalent to having enough samples of type 1 units such
that the set of latent vectors {vi}i∈I(1) spans the latent vector space S1. We invoke the following theorem
from Vershynin (2018) that shows span({vi}i∈I(1)) = S1 with high probability:
Theorem C.4 (Theorem 4.6.1 of Vershynin (2018)). Let A be an m × n matrix whose rows Ai are indepen-
dent, mean zero, sub-gaussian isotropic random vectors in Rn. Then for any t ≥ 0 we have with probability
at least 1 − 2 exp(−t2):

√
m − cVerK2(

√
n + t) ≤ sn(A) ≤ s1(A) ≤

√
m + cVerK2(

√
n + t) (1)

where K = maxi ∥Ai∥ψ2
and cVer is an absolute constant.

Hence, after observing N
(1)
0 samples of type 1 units taking intervention 1, the linear span inclusion assumption

is satisfied with probability at least 1 − 2 exp
(

−
(√

N
(1)
0

cVerK2 − √
r1

)2)
.

Theorem C.5. Suppose the there are two interventions, and assume that Assumption C.3 holds for some
constant gap C ∈ (0, 1). If N0 is chosen to be large enough such that Unit Overlap Assumption is satisfied
for all units of type 1 under treatment with probability at least 1 − δ0, then Algorithm 1 with parameters
δ, B, C is BIC for all units of type 1 if

L ≥ 1 + max
i∈T (1)


µ

(1)
vi − µ

(0)
vi(

C − α(δPCR) − σ
√

2 log(1/δϵi
)

T1

)
Pr
[
µ

(0)
vi − ȳ

(1)
i,post ≥ C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1

]
− 2δ


where α(δPCR) is the high-probability confidence bound defined in Theorem C.1, δ = δϵi

+ δ0 + δPCR and
δϵi

∈ (0, 1) is the failure probability of the Chernoff-Hoeffding bound on the average of sub-Gaussian random
noise {ϵ

(1)
i,t }Tt=T0+1, and

δPCR ≤ log(N (1)
0 ) ∨ k

exp


√σr(Y (1)

pre,N0
)(C/2)−(A+F )(

√
N

(1)
0 +

√
T0)

D + α2

4D2 − α
2D

2


and κ
(

Y
(1)
pre,N0

)
= σ1

(
Y

(1)
pre,N0

)
/σr1

(
Y

(1)
pre,N0

)
is the condition number of the matrix of observed pre-intervention

outcomes for the subset of the first N0 units who have taken the treatment. The remaining variables in

δPCR are defined as A = 3
√

T0

(
Γ(

√
74+12

√
6κ(Y (1)

pre,N0
)

T−T0
+

√
2√

T−T0

)
, F = 2Γ

√
24T0

T−T0
+

12Γκ(Y (1)
pre,N0

)
√

3T0

T−T0
+ 2√

T−T0
,

D = Γσ
√

148
T−T0

+
24σκ(Y (1)

pre,N0
)
√

6
T−T0

+ 2σ√
T−T0

, E =
√

2Γσ
T−T0

, and α = A + F + D(
√

N
(1)
0 +

√
T0) + σr1(Y (1)

pre,N0
)E.

Moreover if the number of batches B is chosen to be large enough such that with probability at least 1 − δ,
rank([E[yi,pre]⊤ : d̂i = 0, i ∈ T (1)]N0+B·L

i=1 ) = rank([E[yj,pre]⊤]j∈T (1)), then the Unit Overlap Assumption will
be satisfied for all type 1 units under control with probability at least 1 − 2δ.

Proof. At a particular time step t, unit i of type 1 can be convinced to pick control if Evi
[ȳ(0)
i,post − ȳ

(1)
i,post|d̂ =

0] Pr[d̂ = 0] ≥ 0. There are two possible disjoint events under which unit i is recommended intervention 0:
either intervention 0 is better empirically, i.e. µ

(0)
vi ≥ Ê[ȳ(1)

i,post] + C, or intervention 1 is better and unit i is
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chosen for exploration. Hence, we have

Evi
[ȳ(0)
i,post − ȳ

(1)
i,post|d̂ = 0] Pr[d̂ = 0]

= E[ȳ(0)
i,post − ȳ

(1)
i,post|µ

(0)
vi

≥ Ê[ȳ(1)
i,post] + C] Pr[µ(0)

vi
≥ Ê[ȳ(1)

i,post] + C]
(

1 − 1
L

)
+ 1

L
Evi

[ȳ(0)
i,post − ȳ

(1)
i,post]

=
(

µ0
vi

− Evi [ȳ
(1)
i,post|µ

(0)
vi

≥ Ê[ȳ(1)
i,post] + C]

)
Pr[µ(0)

vi
≥ Ê[ȳ(1)

i,post] + C]
(

1 − 1
L

)
+ 1

L
(µ(0)
vi

− µ(1)
vi

)

Rearranging the terms and taking the maximum over all units of type 1 gives the lower bound on phase
length L:

L ≥ 1 + µ
(1)
vi − µ

(0)
vi

(µ(0)
vi − Evi [Ê[ȳ(1)

i,post]|ξ̂C,i]) Prvi [ξ̂C,i])

To complete the analysis, we want to find a lower bound for the terms in the denominator. That is, we want
to lower bound (

µ(0)
vi

− Evi
[ȳ(1)
i,post|µ

(0)
vi

≥ Ê[ȳ(1)
i,post] + C]

)
Pr
vi

[µ(0)
vi

≥ Ê[ȳ(1)
i,post] + C]

Let ξ0 denote the event that Unit Overlap Assumption is satisfied for type 1 units under treatment. From
Assumption C.3, we know that event ξ0 occurs with probability at least 1−δ0 for some δ0 ∈ (0, 1). Let ξPCR
denote the event that the high-probability concentration bound holds for units of type 1 and intervention 1.
Finally, let ξϵi

denote the event where the Chernoff-Hoeffding bound holds on the average of the sub-Gaussian
noise ϵ

(1)
i,t , that is with probability at least 1 − δϵi , we have:

∣∣∣∣∣ 1
T1

T∑
t=T0+1

ϵ
(1)
i,t

∣∣∣∣∣ ≤ σ

√
2 log(1/δϵi)

T1

Define another clean event ξ where the events ξ0, ξϵi and ξPCR happen simultaneously with probability at
least 1 − δ, where δ = δ0 + δPCR + δϵi . Then, we have:

(µ(0)
vi

− Evi [ȳ
(1)
i,post|ξ̂C,i]) Pr[ξ̂C,i]

= (µ(0)
vi

− Evi
[ȳ(1)
i,post|ξ̂C,i, ξ]) Pr[ξ̂C,i, ξ] + (µ(0)

vi
− Evi

[ȳ(1)
i,post|ξ̂C,i, ¬ξ]) Pr[ξ̂C,i, ¬ξ]

≥ (µ(0)
vi

− Evi [ȳ
(1)
i,post|ξ̂C,i, ξ]) Pr[ξ̂C,i, ξ] − 2δ (since Pr[¬ξ] < δ and µ

(0)
vi − Evi [ȳ

(1)
i,post] ≥ −2)

We proceed to lower bound the expression above as follows:

µ(0)
vi

− Evi
[ȳ(1)
i,post|ξ̂C,i, ξ]

= µ(0)
vi

− Evi

ȳ
(1)
i,post|µ

(0)
vi

≥ Ê[ȳ(1)
i,post + C],

∣∣∣Ê[ȳ(1)
i,post] − E[ȳ(1)

i,post]
∣∣∣ ≤ α(δPCR),

∣∣∣∣∣ 1
T1

T∑
t=T0+1

ϵ
(1)
i,t

∣∣∣∣∣ ≤ σ

√
2 log(1/δϵi)

T1


= µ(0)

vi
− Evi

ȳ
(1)
i,post|µ

(0)
vi

− E[ȳ(1)
i,post] ≥ C − α(δPCR),

∣∣∣∣∣ 1
T1

T∑
t=T0+1

ϵ
(1)
i,t

∣∣∣∣∣ ≤ σ

√
2 log(1/δϵi)

T1


= µ(0)

vi
− E[vi]

ȳ
(1)
i,post|µ

(0)
vi

− ȳ
(1)
i,post ≥ C − α(δPCR) − σ

√
2 log(1/δϵi)

T1


≥ C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1
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Furthermore, we can write the probability of the joint event ξ̂C,i, ξ as:

Pr[ξ̂C,i, ξ]

= Pr

µ(0)
vi

≥ Ê[ȳ(1)
i,post + C],

∣∣∣Ê[ȳ(1)
i,post] − E[ȳ(1)

i,post]
∣∣∣ ≤ α(δPCR),

∣∣∣∣∣ 1
T1

T∑
t=T0+1

ϵ
(1)
i,t

∣∣∣∣∣ ≤ σ

√
2 log(1/δϵi

)
T1


= Pr

µ(0)
vi

− ȳ
(1)
i,post ≥ C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1


Hence, we can derive the following lower bound on the denominator of L:

µ(0)
vi

− Evi [ȳ
(1)
i,post|ξ̂C,i]

≥

C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1

Pr

µ(0)
vi

− ȳ
(1)
i,post ≥ C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1

− 2δ

Applying this lower bound to the expression of L and taking the maximum over type 1 units, we have:

L ≥ 1 + max
i∈I(1)


µ

(1)
vi − µ

(0)
vi(

C − α(δPCR) − σ
√

2 log(1/δϵi
)

T1

)
Pr
[
µ

(0)
vi − ȳ

(1)
i,post ≥ C − α(δPCR) − σ

√
2 log(1/δϵi

)
T1

]
− 2δ



Example C.6. Consider the following data-generating process: Suppose there are two receiver types,
each with equal probability; type 1 units prefer the treatment and type 0 units prefer control. Let vi ∼
Unif[0.25, 0.75]. If unit i is a type 1 unit, they have latent factor vi = [vi 0]. Otherwise they have latent
factor vi = [0 vi]. Suppose that the pre-intervention period is of length T0 = 2 and the post-intervention
period is of length T1 = 1. We leave u(0)

1 , u(0)
2 , u(0)

3 , u(1)
3 unspecified.

Since r1 = 1, we only need to incentivize a single type 1 unit to take the control in order for the Unit Overlap
Assumption to be satisfied for type 1 units under control. Therefore, for a given confidence level δ, it suffices
to set N0 = B = log(1/δ)

log(2) . After the first N0 time-steps, the principal will know all of the parameters necessary
to compute the batch size L.

Since T1 = 1, unit i’s prior is over {E[y(0)
i,3 ],E[y(1)

i,3 ]}. For simplicity, suppose that (1) all type 1 units believe
that E[y(0)

i,3 ] ∼ Unif[0, 0.5] and E[y(1)
i,3 ] ∼ Unif[0, 1] and (2) there is no noise in the post-intervention outcome.

Under this setting, the event ξC,i simplifies to ξC,i =
{

0.25 ≤ E[y(1)
i,3 ] + C

}
for any unit i and constant

C ∈ (0, 1). Therefore
ζC = Pr

Pi

[E[y(1)
i,3 ] ≤ 0.25 − C] = max{0, 0.25 − C}.

D Extension to synthetic interventions

Our focus so far has been to incentivize units who a priori prefer the (single) treatment to take the control in
order to obtain accurate counterfactual estimates for all units under control. In this section, we extend Algo-
rithm 1 to the setting where there are multiple treatments. Now our goal is to incentivize enough exploration
across all interventions such that the Unit Overlap Assumption is satisfied for every intervention and thus
our counterfactual estimates are valid simultaneously for all units in the population under every intervention.
In order to do so, we use tools from the literature on synthetic interventions, which is a generalization of the
synthetic control framework to allows for counterfactual estimation under different treatments, in addition
to control Agarwal et al. (2020b; 2023).
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ALGORITHM 2: Incentivizing Exploration for Synthetic Interventions: sub-type τ units
Input: Group size L, number of batches B, failure probability δ, fixed gap C ∈ (0, 1)
Provide no recommendation to first N0 units.
// Loop through explore interventions
for ℓ = τ [k], τ [k − 1], . . . , τ [2] do

for batch b = 1, 2, · · · , B do
Select an explore index ib ∈ [L] uniformly at random.
for j = 1, 2, · · · , L do

if j = ib then
Recommend intervention d̂N0+(b−1)·L+j = ℓ

else
if Ê[ȳ(τ [1])

i,post] + C < Ê[ȳ(d)
i,post] < µ(ℓ,τ ,l) − C for every intervention d ∈ {ℓ − 1, . . . , τ [k]} then

Recommend intervention d̂N0+(b−1)·L+j = ℓ
else

Recommend intervention d̂N0+(b−1)·L+j = τ [1]

Our setup is the same as in Section 4, with the only difference being that each unit may choose one of k ≥ 2
interventions after the pre-treatment period. We assume that Assumption 2.1, Definition 2.4, Definition 2.5,
and Assumption 3.2 are all extended to hold under k interventions. Under this setting, a unit’s beliefs
induce a preference ordering over different interventions. We capture this through the notion of a unit
sub-type, which is a generalization of our definition of unit type to the setting with k interventions.
Definition D.1 (Unit Sub-type). A unit sub-type τ ∈ [k]k0 is a preference ordering over interventions. Unit
i is of sub-type τ if for every κ ≤ k,

τ [κ] = arg max
d∈[[k]]0\{τ [κ′]}κ′<κ

µ(d)
vi

.

Unit i’s type is τ [1]. We denote the set of all units of sub-type τ as T (τ ) and the dimension of the latent
subspace spanned by sub-type τ units as rτ := span(vj : j ∈ T (τ )).

Intuitively, a unit sub-type τ is just the preference ordering over interventions such that intervention τ [a]
is preferred to intervention τ [b] for a < b.9 Since different unit sub-types have different preference orderings
over interventions, we design our algorithm (Algorithm 2) to be BIC for all units of a given sub-type (in
contrast to Algorithm 1, which is BIC for all units of a given type).

While there can be up to k! possible sub-types, recall that the unit latent space has dimension r. Therefore,
there can be at most r linearly independent subspaces that matter for overlap. As a result, if we want to
satisfy overlap for all k! subtypes, we only need to run Algorithm 2 for enough unit subtypes to span this r
dimensional space. 10

For a given sub-type τ , the goal of Algorithm 2 is to incentivize sufficient exploration for the Unit Overlap
Assumption to be satisfied for all interventions with high probability. As was the case in Section 4, the
algorithm will still be split into two phases, and units will not be given any recommendation in the first
phase. The main difference compared to Algorithm 1 is how the principal chooses the exploit intervention
in the second phase.

When there are only two interventions, the principal can compare their estimate of the average counterfactual
outcome under treatment to the lower bound on the prior-mean average counterfactual outcome for control
for type 1 units (and vice versa for type 0 units). However, a more complicated procedure is required to
maintain Bayesian incentive-compatibility when there are more than two interventions.

9Note that it is without loss of generality to assume that units have a preference ordering over the interventions, as long as
any tie-breaking is done in a known and deterministic way.

10This is because if the Unit Overlap Assumption is satisfied for a specific unit sub-type whose latent factors lie within a
particular subspace, it is also satisfied for all other units whose latent factors lie within the same subspace, and there are of
course at most r different subspaces by Assumption 2.1.
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Instead, in Algorithm 2, the principal will set the exploit intervention as follows: For receiver sub-type
τ , Algorithm 2 sets intervention ℓ to be the exploit intervention for unit i only if the sample average of all
interventions d ∈ {ℓ − 1, . . . , τ [k]} are both (1) larger than the sample average of intervention τ [1] by some
constant gap C and (2) less than the lower bound on the prior-mean average counterfactual outcome µ

(ℓ)
i by

C. If no such intervention satisfies both conditions, intervention τ [1] is chosen to be the exploit intervention.

We require the following “common knowledge” assumption for Algorithm 2, which is analogous to Assump-
tion C.3:
Assumption D.2. We assume that the following are common knowledge among all units and the principal:

1. Valid upper- and lower-bounds on the fraction of sub-type τ units in the population, i.e. if the true
proportion of sub-type τ units is pτ ∈ (0, 1), the principal knows pτ ,L, pτ ,H ∈ (0, 1) such that

pτ ,L ≤ pτ ≤ pτ ,H .

2. Valid upper- and lower-bounds on the prior mean for each receiver sub-type and intervention, i.e.
values µ(d,τ ,h), µ(d,τ ,l) ∈ R such that

µ(d,τ ,l) ≤ µ
(d)
i ≤ µ(d,τ ,h)

for all receiver sub-types τ , interventions d ∈ [[k]]0 and all units i ∈ T (τ ).

3. For some C ∈ (0, 1), a lower bound on the smallest probability of the event EC,i over the prior and
latent factors of sub-type τ units, denoted by mini∈T (τ) PrPi

[EC,i] ≥ ζC > 0, where

EC,i := {∀j ∈ [[k]]0\{τ [1], τ [k]} : ȳ
(τ [1])
i,post + C ≤ ȳ

(j)
i,post ≤ µ

(τ [k])
i − C}

and ȳ
(ℓ)
i,post is the average post-intervention outcome for unit i under intervention ℓ ∈ [[k]]0.

4. A sufficient number of observations N0 needed such that the Unit Overlap Assumption is satisfied
for sub-type τ units under intervention τ [1] with probability at least 1 − δ, for some δ ∈ (0, 1).

Theorem D.3 (Informal; detailed version in Theorem E.1). Under Assumption D.2, if the number of initial
units N0 and batch size L are chosen to be sufficiently large, then Algorithm 2 satisfies the BIC property
(Definition 2.7).

Moreover, if the number of batches B is chosen to be sufficiently large, then the Unit Overlap Assumption
will be satisfied for all units of sub-type τ under all interventions with high probability.

See Appendix E for the proof. The main difference compared to the analysis of Algorithm 1 is in the
definition of the “exploit” intervention: First, when there are k interventions, an intervention ℓ is chosen
as the exploit intervention only when the sample average of each intervention d ∈ {ℓ − 1, . . . , τ [k]} is (i)
larger than the sample average of intervention τ [1], and (ii) smaller than the prior-mean average outcome of
intervention ℓ (with some margin C). Second, instead of choosing between a “previously best” intervention
(i.e., an intervention τ [j] < ℓ with the highest sample average) and intervention ℓ to be the ’exploit’ inter-
vention, Algorithm 2 always choose between τ [1] and ℓ. This is because in the former case, conditional on
any given intervention being chosen as the exploit intervention, it is an open technical challenge to show that
the exploit intervention will have a higher average expected outcome compared to all other interventions.11

E Appendix for Section D: Extension to synthetic interventions

Theorem E.1. Suppose that Assumption D.2 holds for some constant gap C ∈ (0, 1). If the number of
initial units N0 is chosen to be large enough such that Unit Overlap Assumption is satisfied for all units of

11This observation is in line with work on frequentist-based BIC algorithms for incentivizing exploration in bandits. See
Section 6.2 of Mansour et al. (2015) for more details.
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subtype τ under intervention τ [1] with probability 1 − δ, then Algorithm 2 with parameters δ, L, B, C is BIC
for all units of subtype τ if:

L ≥ 1 + max
i∈T (τ)


µ

(τ [1])
i − µ

(τ [k])
i(

C − 2α(δPCR) − 2σ
√

2 log(1/δϵi
)

T1

)
(1 − δ) Pr [EC,i] − 2δ


Moreover, if the number of batches B is chosen to be large enough such that with probability at least 1 − δ,
we have rank([E[yi,pre]⊤ : d̂i = ℓ ̸= τ [1], i ∈ T (τ)]N0+B·L

i=1 ) = rank([E[yj,pre]⊤]j∈T (τ)), then the Unit Overlap
Assumption will be satisfied for all units of subtype τ under all interventions with probability at least 1−O(kδ).

Proof. According to our recommendation policy, unit i is either recommended intervention τ [1] or interven-
tion ℓ. We will prove that in either case, unit i will comply with the principal’s recommendation.

Let Ê(ℓ)
C,i denote the event that the exploit intervention for unit i is intervention ℓ. Formally, we have

Ê(ℓ)
C,i =

{
Ê[ȳ(τ [1])

i,post] ≤ min
1<j<ℓ

Ê[ȳ(τ [j])
i,post] − C and max

1≤j<ℓ
Ê[ȳ(τ [j])

i,post] ≤ µ(ℓ)
vi

− C

}

When unit i is recommended intervention ℓ: When a unit i ∈ T (τ ) is recommended intervention ℓ,
we argue that this unit will not switch to any other intervention j ̸= ℓ. Because of our ordering of the prior
mean reward, any intervention j > ℓ has had no sample collected by a type τ unit and µ

(τ [j])
vi ≤ µ

(τ [ℓ])
vi .

Hence, we only need to focus on the cases where j < ℓ. For the recommendation policy to be BIC, we need
to show that

E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|d̂ = ℓ] Pr[d̂ = ℓ] ≥ 0

There are two possible disjoint events under which unit i is recommended intervention ℓ: either ℓ is de-
termined to be the ’exploit’ intervention or unit i is chosen as an ’explore’ unit. Since being chosen as an
explore unit does not imply any information about the rewards, we can derive that conditional on being in
an ’explore’ unit, the expected gain for unit i to switch to intervention j is simply µ

(ℓ)
vi −µ

(τ [j])
vi . On the other

hand, if intervention ℓ is the ’exploit’ intervention, then event Ê(ℓ)
C,i has happened. Hence, we can rewrite the

left-hand side of the BIC condition above as:

E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|d̂ = ℓ] Pr[d̂ = ℓ] = E[µ(ℓ)

vi
− ȳ

(τ [j])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i]
(

1 − 1
L

)
+ 1

L
(µ(ℓ)
vi

− µ(j)
vi

)

Rearranging the terms, we have the following lower bound on the phase length L for the algorithm to be
BIC for type 1 units:

L ≥ 1 + µ
(τ [j])
vi − µ

(ℓ)
vi

E[µ(ℓ)
vi − ȳ

(τ [j])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i]

To complete the analysis, we need to lower bound the denominator of the expression above. Consider the
following event C:

C = {∀j ∈ [k] :
∣∣∣Ê[ȳ(τ [j])

i ] − E[ȳ(τ [j])
i,post]

∣∣∣ ≤ α(δPCR)}

Let E0 denote the event that Unit Overlap Assumption is satisfied for units of type τ under intervention
τ [1]. From Assumption D.2, we know that event E0 occurs with probability at least 1 − δ0 for some δ0 ∈
(0, 1). Furthermore, let Eϵi denote the event where the Chernoff-Hoeffding bound on the noise sequences
{ϵ

(τ [j])
i,t }Tt=T0+1 holds, that is with probability at least 1 − δϵi

, we have:∣∣∣∣∣ 1
T1

T∑
t=T0+1

ϵ
(τ [j])
i,t

∣∣∣∣∣ ≤ σ

√
2 log(1/δϵi

)
T1

26



Under review as submission to TMLR

Then, we can define a clean event E where the events C, E0 and Eϵi
happens simultaneously with probability

at least 1 − δ, where δ = δPCRϵ + δϵi + δ0.

Note that since
∣∣∣ȳ(τ [j])
i,post

∣∣∣ ≤ 1, we can rewrite the denominator as:

E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|ÊC,i] Pr[Ê(ℓ)

C,i]

= E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|Ê

(ℓ)
C,i, E ] Pr[Ê(ℓ)

C,i, E ] + E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|Ê

(ℓ)
C,i, ¬E ] Pr[Ê(ℓ)

C,i, ¬E ]

≥ E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|Ê

(ℓ)
C,i, E ] Pr[Ê(ℓ)

C,i, E ] − 2δ

Define an event E(ℓ)
i on the true average expected post-intervention outcome of each intervention as follows:

E(ℓ)
i :=

{
ȳ

(τ [1])
i,post ≤ min

1<j<ℓ
ȳ

(τ [j])
i,post − C − 2α(δPCR) − 2σ

√
2 log(1/δϵi

)
T1

and max
1≤j<ℓ

ȳ
(τ [j])
i,post ≤ µ(ℓ)

vi
− C − 2α(δPCR) − 2σ

√
2 log(1/δϵi)

T1

}

We can observe that under event E , event Ê(ℓ)
C,i is implied by event E(ℓ)

i . Hence, we have:

Pr[E , E(ℓ)
i ] ≤ Pr[E , Ê(ℓ)

C,i]

We can rewrite the left-hand side as:

Pr[C, Ei] = Pr[C|E(ℓ)
i ] Pr[E(ℓ)

i ] ≥ (1 − δ) Pr[E(ℓ)
i ]

Substituting these expressions using E(ℓ)
i for the ones using ÊC,i in the denominator gives:

E[µ(ℓ)
vi

− ȳ
(τ [j])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i] ≥

C − 2α(δPCR) − 2σ

√
2 log(1/δϵi)

T1

 (1 − δ) Pr[E(ℓ)
i ] − 2δ

Applying this lower bound to the expression of L and taking the maximum over type 1 units, we have:

L ≥ 1 + max
i∈I(1)


µ

(τ [1])
vi − µ

(τ [k])
vi(

C − 2α(δPCR) − 2σ
√

2 log(1/δϵi
)

T1

)
(1 − δ) Pr

[
E(ℓ)
C,i

]
− 2δ


When unit i is recommended intervention τ [1]: When unit i gets recommended intervention τ [1],
they know that they are not in the explore group. Hence, the event ÊC,i did not happen, and the BIC
condition, in this case, can be written as: for any intervention τ [j] ̸= τ [1],

E[ȳ(τ [1])
i,post − ȳ

(τ [j])
i,post|¬Ê(ℓ)

C,i] Pr[¬Ê(ℓ)
C,i] ≥ 0

Similar to the previous analysis on the recommendation of intervention ℓ, it suffices to only consider inter-
ventions τ [j] < ℓ. We have:

E[ȳ(τ [1])
i,post − ȳ

(τ [j])
i,post|¬Ê(ℓ)

C,i] Pr[¬Ê(ℓ)
C,i] = E[ȳ(τ [1])

i,post − ȳ
(τ [j])
i,post] − E[ȳ(τ [1])

i,post − ȳ
(τ [j])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i]

= µ(τ [1])
vi

− µ(τ [j])
vi

+ E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i]

By definition, we have µ
(τ [1])
vi ≥ µ

(τ [j])
vi . Hence, it suffices to show that for any intervention 1 < τ [j] < ℓ, we

have:
E[ȳ(τ [j])

i,post − ȳ
(τ [1])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i] ≥ 0
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Observe that with the event E defined above, we can write:

E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i]

= E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i, E ] Pr[Ê(ℓ)

C,i, E ] + E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i, ¬C] Pr[Ê(ℓ)

C,i, ¬E ]

≥ E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i, E ] Pr[Ê(ℓ)

C,i, E ] − 2δ

When event Ê(ℓ)
C,i happens, we know that Ê[ȳ(τ [j])

i,post] ≥ Ê[ȳ(τ [1])
i,post] + C. Furthermore, when event E happens, we

know that ȳ
(τ [j])
i,post ≥ Ê[ȳ(τ [j])

i,post] − α(δPCR) − σ
√

2 log(1/δϵi
)

T1
and Ê[ȳ

(τ [1])
i,post] ≥ ȳ

(τ [1])
i,post − α(δPCR) − σ

√
2 log(1/δϵi

)
T1

.
Hence, when these two events Ê(ℓ)

C,i and E happen simultaneously, we have ȳ
(τ [j])
i,post ≥ ȳ

(τ [1])
i,post + C − 2α(δPCR) −

2σ
√

2 log(1/δϵi
)

T1
. Therefore, the lower bound can be written as:

E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|Ê

(ℓ)
C,i] Pr[Ê(ℓ)

C,i] ≥

C − 2α(δPCR) − 2σ

√
2 log(1/δϵi

)
T1

Pr[Ê(ℓ)
C,i, E ] − 2δ

Similar to the previous analysis when unit i gets recommended intervention ℓ, we have:

E[ȳ(τ [j])
i,post − ȳ

(τ [1])
i,post|ÊC,i] Pr[ÊC,i] ≥

C − 2α(δPCR) − 2σ

√
2 log(1/δϵi

)
T1

 (1 − δ) Pr[E(ℓ)
i ] − 2δ

Choosing a large enough C such that the right-hand side is non-negative, we conclude the proof.

F Appendix for Section 5: Testing whether the Unit Overlap Assumption holds

Theorem 5.2. Under Assumption 5.1, if the Unit Overlap Assumption is satisfied for unit n, then
|Ê[ȳn,pre′′ ] − ȳn,pre′′ | ≤ α(δ) + 2σ

√
log(1/δ)
T0

with probability 1 − O(δ), where α(δ) is the high-probability confi-
dence interval which is defined in Theorem C.1 when using the first T0/2 time-steps as the pre-intervention
period and the next T0/2 time-steps as the post-intervention period.

Proof.
|Ê[ȳi,pre′′ ] − ȳi,pre′′ | ≤ |Ê[ȳi,pre′′ ] − E[ȳi,pre′′ ]| + |E[ȳi,pre′′ ] − ȳi,pre′′ |

≤ α(δ) +

∣∣∣∣∣∣ 2
T0

T0∑
t=T0/2+1

ϵ
(0)
i,t

∣∣∣∣∣∣
with probability at least 1−O(δ), where the second inequality follows from Theorem C.1. The result follows
from a Hoeffding bound.

Theorem F.1. Under Assumption 5.1, if

r3/2
√

log(T0|I|)
∥ω̃(n,0)∥2 · min{T0, |I|, T

1/4
0 |I|1/2}

= o(1) (2)

and
1√

T1∥ω̃(n,0)∥2

T∑
t=T0+1

∑
i∈I

E[y(0)
i,t ] · (ω̂(n,0)[i] − ω̃(n,0)[i]) = op(1) (3)

then as |I|, T0, T1 → ∞ the Asymptotic Hypothesis Test falsely accepts the hypothesis with probability at most
5%, where σ̂2 is defined as in Equation (4) and ω̂(n,0) is defined as in Equation (5) in Agarwal et al. (2020b).

Condition (2) requires that the ℓ2 norm of ω̃(n,0) is sufficiently large, and condition (3) requires that the
estimation error of ω̂(n,0) decreases sufficiently fast. See Section 5.3 of Agarwal et al. (2020b) for more
details.
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Proof. We use x
p→ y (resp. x

d→ y) if x converges in probability (resp. distribution) to y. Let σ′ denote the
true standard deviation of ϵi,t. By Theorem 3 of Agarwal et al. (2020b) we know that as |I|, T0, T1 → ∞,

1.
√
T1

σ′∥ω̃(n,0)∥2
(Ê[ȳn,pre′′ ] − E[ȳn,pre′′ ]) d→ N (0, 1)

2. σ̂
p→ σ′ and

3. ω̂(n,0) p→ ω̃(n,0).

By the continuous mapping theorem, we know that 1
σ̂

p→ 1
σ′ and 1

∥ω̂(n,0)∥2

p→ 1
∥ω̃(n,0)∥2

. We can rewrite

Ê[ȳn,pre′′ ] − E[ȳn,pre′′ ] as Ê[ȳn,pre′′ ] − ȳn,pre′′ + ϵ̄n,pre′′ , and we know that ϵ̄n,pre′′
p→ 0. Applying Slutksy’s

theorem several times obtains the desired result.

G Appendix for Section 6: Numerical simulations

Experimental Setup. If unit i is of type 1 (resp. type 0), we generate a latent factor vi =
[0 · · · 0 vi[1] · · · vi[r/2]] (resp. vi = [vi[1] · · · vi[r/2] 0 · · · 0]), where ∀j ∈ [r/2] : vi[j] ∼ Unif(0, 1).
We consider an online setting where 500 units of alternating types arrive sequentially.12 We consider a
pre-intervention time period of length T0 = 100 with latent factors as follows:

• If t mod 2 = 0, generate latent factor
u(0)
t = [0 · · · 0 u

(0)
t [1] · · · u

(0)
t [r/2]], where ∀ℓ ∈ [r/2] : u

(0)
t [ℓ] ∼ Unif[0.25, 0.75].

• If t mod 2 = 1, generate latent factor
u(0)
t = [u(0)

t [1] · · · u
(0)
t [r/2] 0 · · · 0], where ∀ℓ ∈ [r/2] : u

(0)
t [ℓ] ∼ Unif[0.25, 0.75].

We consider a post-intervention period of length T1 = 100 and generate the following post-intervention latent
factors:

• If d = 0, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r]] : t ∈ [T0 + 1, T ], where ∀ℓ ∈ [r] : u

(d)
t [ℓ] ∼ Unif[0, 1].

• If d = 1, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r]] : t ∈ [T0 + 1, T ], where ∀ℓ ∈ [r] : u

(d)
t [ℓ] ∼ Unif[−1, 0].

Finally, outcomes are generated by adding independent Gaussian noise ϵ
(d)
i,t ∼ N (0, 0.01) to each inner

product of latent factors.

Non-compliance setting Following the standard in the literature on IE, we assume that all units are
Bayesian-rational (Definition 2.7). That is, given a recommendation d̂i, unit i will select an intervention di
that maximizes their utility in expectation over their prior conditional on the recommendation d̂i. However,
in practice, units may exhibit sub-rational behaviors, where they neglect the principal’s recommendation
and act according to their initial prior. In Figure 4, we examine the performance of Algorithm 1 in the
presence of such non-compliance behavior.

We use the same data-generating process as described above. When running Algorithm 1, we let a random
p−proportion of the units ignore the principal’s recommendation and choose their initially preferred inter-
vention, i.e., type 1 units will select the treatment and type 0 units will select the control. In Figure 4,
we vary the non-compliance parameter p ∈ {0, 0.2, 0.4, 0.6, 0.8} and calculate the counterfactual estimation
error for units of type 1 under control. As the non-compliance level p increases, it becomes more challenging
to persuade units to explore, and the counterfactual estimation error increases.

12The alternating arrival of different unit types is done only for convenience. The order of unit arrival is unknown to the
algorithms.
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(a) 4-dimensional latent factor (b) 6-dimensional latent factor

(c) 8-dimensional latent factor (d) 10-dimensional latent factor

Figure 3: Counterfactual estimation error for units of type 1 under control using Algorithm 1 (blue) and
synthetic control without incentives (orange) with increasing number of units and different lengths of the
latent factors. Results are averaged over 50 runs, with the shaded regions representing one standard deviation.

Violation of Linear Span Inclusion assumption 3.2 Similar to prior work in the literature on synthetic
control, our theoretical framework relies on the linear span inclusion assumption (Assumption 3.2), which
is necessary to ensure the counterfactual estimation procedure in Appendix B is accurate. In Figure 5, we
investigate the performance of our algorithm when this assumption does not hold.

Specifically, we make the following modifications to the data-generating process. If unit i is of type 1 (resp.
type 0), we generate a latent factor vi = [0 · · · 0 vi[1] · · · vi[(r − 1)/2] 1] (resp. vi = [vi[1] · · · vi[(r −
1)/2] 0 · · · 0 1]), where ∀j ∈ [(r − 1)/2] : vi[j] ∼ Unif(0, 1). In the pre-intervention time period of length
T0 = 100, the time latent factors are generated with a padded entry 0 at the end as follows:

• If t mod 2 = 0, generate latent factor u(0)
t = [0 · · · 0︸ ︷︷ ︸

(r−1)/2

u
(0)
t [1] · · · u

(0)
t [(r − 1)/2]︸ ︷︷ ︸

(r−1)/2

0], where ∀ℓ ∈ [(r − 1)/2] :

u
(0)
t [ℓ] ∼ Unif[0.25, 0.75].

• If t mod 2 = 1, generate latent factor u(0)
t = [u(0)

t [1] · · · u
(0)
t [(r − 1)/2]︸ ︷︷ ︸

(r−1)/2

0 · · · 0︸ ︷︷ ︸
(r−1)/2

0], where ∀ℓ ∈ [(r − 1)/2] :

u
(0)
t [ℓ] ∼ Unif[0.25, 0.75].
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Figure 4: Counterfactual estimation error for units of type 1 under control using Algorithm 1 with increasing
number of units and different non-compliance level p ∈ {0.0, 0.2, 0.4, 0.6, 0.8}. Results are averaged over 50
runs, with the shaded regions representing one standard error.

In the post-intervention period of length T1 = 100, the time-and-intervention latent factors are generated as
follows.

• If d = 0, with probability p, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r]] : t ∈ [T0 + 1, T ], where ∀ℓ ∈ [r] : u

(d)
t [ℓ] ∼

Unif[0, 1]; and with probability 1 − p, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r − 1] 0] : t ∈ [T0 + 1, T ], where

∀ℓ ∈ [r − 1] : u
(d)
t [ℓ] ∼ Unif[0, 1].

• If d = 1, with probability p, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r]] : t ∈ [T0 + 1, T ], where ∀ℓ ∈ [r] : u

(d)
t [ℓ] ∼

Unif[−1, 0]; with probability 1 − p, we set u(d)
t = [u(d)

t [1] · · · u
(d)
t [r − 1] 0] : t ∈ [T0 + 1, T ], where

∀ℓ ∈ [r − 1] : u
(d)
t [ℓ] ∼ Unif[−1, 0].

That is, with probability p, the post-intervention latent factor u(d)
t does not lie in the span of the pre-

intervention latent factors {u(0)
1 , · · · u(0)

T0
}. In Figure 5, as the probability p of post-intervention latent

factors not lying in the pre-intervention span increases, i.e., more severe violation of Assumption 3.2, the
counterfactual estimation error does not decrease to zero and instead may increase as more units arrive.
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Figure 5: Counterfactual estimation error for units of type 1 under control using Algorithm 1 with increasing
number of units and probability of linear span inclusion violation p ∈ {0, 0.2, 0.4, 0.6, 0.8}. Results are
averaged over 50 runs, with the shaded regions representing one standard error.
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