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Abstract

The training process of ReLU neural networks often exhibits complicated nonlinear
phenomena. The nonlinearity of models and non-convexity of loss pose significant
challenges for theoretical analysis. Therefore, most previous theoretical works on
the optimization dynamics of neural networks focus either on local analysis (like the
end of training) or approximate linear models (like Neural Tangent Kernel). In this
work, we conduct a complete theoretical characterization of the training process
of a two-layer ReLU network trained by Gradient Flow on a linearly separable
data. In this specific setting, our analysis captures the whole optimization process
starting from random initialization to final convergence. Despite the relatively
simple model and data that we studied, we reveal four different phases from the
whole training process showing a general simplifying-to-complicating learning
trend. Specific nonlinear behaviors can also be precisely identified and captured
theoretically, such as initial condensation, saddle-to-plateau dynamics, plateau
escape, changes of activation patterns, learning with increasing complexity, etc.

1 Introduction

Deep learning shows its remarkable capabilities across various fields of applications. However, the
theoretical understanding of its great success still has a long way to go. Among all theoretical topics,
one of the most crucial aspect is the understanding of the optimization dynamics of deep neural
network (NN), particularly the dynamics produced by Gradient Descent (GD) and its variants. This
topic is highly challenging due to the highly non-convex loss landscape and existing works usually
work with settings that do not align well with realistic practices. For instance, the extensived studied
Neural Tangent Kernel (NTK) theory (Jacot et al., 2018; Du et al., 2018; 2019; Zou et al., 2018;
Allen-Zhu et al., 2019) proves the global convergence of Stochastic gradient descent (SGD) to zero
training error for highly over-parameterized neural networks; however, the optimization behaviors
are similar to kernel methods and do not exhibit nonlinear behaviors, because neurons remain close
to their initialization throughout training.

In reality, however, the training of practical networks can exhibit plenty of nonlinear behaviors (Chizat
and Bach, 2018; Mei et al., 2019; Woodworth et al., 2020). In the initial stage of the training, a
prevalent nonlinear phenomenon induced by small initialization is initial condensation (Maennel
et al., 2018; Luo et al., 2021), where neurons condense onto a few isolated orientations. At the end
of training, NNs trained by GD can directionally converge to the KKT points of some constrained
max-margin problem (Nacson et al., 2019; Lyu and Li, 2019; Ji and Telgarsky, 2020). However, KKT
points are not generally unique, and determining which direction GD converges to can be challenging.
Nonlinear training behaviors besides initial and terminating stages of optimization are also numerous.
For example, for square loss, Jacot et al. (2021) investigates the saddle-to-saddle dynamics where
GD traverses a sequence of saddles during training, but it is unclear whether similar behavior can
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occur for classification tasks using exp-tailed loss. Moreover, while in lazy regime, most activation
patterns do not change during training ReLU networks, it remains uncertain when and how activation
patterns evolve beyond lazy regime. Additionally, while it is generally conjectured that GD learns
functions of increasing complexity (Nakkiran et al., 2019), this perspective has yet to be proven.

As reviewed in Section 2, works have been done to analyze and explain the nonlinear training
behaviors listed above. However, due to the complexity of the training dynamics, most existing
works only focus on one phenomenon and conduct analysis on a certain stage of the training process.
Few attempts have been done to derive a full characterization of the whole training dynamics from
the initialization to convergence, and the settings adopted by these works are usually too simple to
capture many nonlinear behaviors (Phuong and Lampert, 2021; Lyu et al., 2021; Wang and Ma, 2022;
Boursier et al., 2022).

In this work, we make an attempt to theoretically describe the whole neural network training
dynamics beyond the linear regime, in a setting that many nonlinear behaviors manifest. Specifically,
We analyze the training process of a two-layer ReLU network trained by Gradient Flow (GF) on a
linearly separable data. In this setting, our analysis captures the whole optimization process starting
from random initialization to final convergence. Despite the relatively simple model and data that we
studied, we reveal multiple phases in training process, and show a general simplifying-to-complicating
learning trend by detailed analysis of each phase. Specifically, by our meticulous theoretical analysis
of the whole training process, we precisely identify four different phases that exhibit numerous
nonlinear behaviors. In Phase I, initial condensation and simplification occur as living neurons
rapidly condense in two different directions. Meanwhile, GF escapes from the saddle around
initialization. In Phase II, GF gets stuck into the plateau of training accuracy for a long time, then
escapes. In Phase III, a significant number of neurons are deactivated, leading to self-simplification
of the network, then GF tries to learn using the almost simplest network. In Phase IV, a considerable
number of neurons are reactivated, causing self-complication of the network. Finally, GF converges
towards an initialization-dependent direction, and this direction is not even a local max margin
direction. Overall, the whole training process exhibits a remarkable simplifying-to-complicating
behavior.

2 Other Related Works

Initial condensation phenomenon are studied in (Maennel et al., 2018; Luo et al., 2021; Zhou et al.,
2022a;b; Abbe et al., 2022a;b; Chen et al., 2023). Theoretically, Lyu et al. (2021); Boursier et al.
(2022) analyze the condensation directions under their settings, which are some types of data average.
Additionally, Atanasov et al. (2022) demonstrates that NNs in the rich feature learning regime learn a
kernel machine due to the silent alignment phenomenon, similar to the initial condensation.

The end of training is extensively studied for classification tasks. Specifically, for classification with
exponentially-tailed loss functions, if all the training data can be classified correctly, NNs trained by
GD converge to the KKT directions of some constrained max-margin problem (Nacson et al., 2019;
Lyu and Li, 2019; Chizat and Bach, 2020; Ji and Telgarsky, 2020; Kunin et al., 2023). In (Phuong and
Lampert, 2021; Lyu et al., 2021), they analyze entire training dynamics and derive specific convergent
directions that only depend on the data. Furthermore, another famous phenomenon in the end of
training is the neural collapse (Papyan et al., 2020; Fang et al., 2021; Zhu et al., 2021; Han et al.,
2021), which says the features represented by over-parameterized neural networks for data in a same
class will collapse to one point, and such points for all classes converge to a simplex equiangular
tight frame.

Saddle-to-saddle dynamics are explored for square loss in (Jacot et al., 2021; Zhang et al., 2022;
Boursier et al., 2022; Pesme and Flammarion, 2023; Abbe et al., 2023). Furthermore, learning of
increasing complexity, also called simplifying-to-complicating or frequency-principle, is investigated
in (Arpit et al., 2017; Nakkiran et al., 2019; Xu et al., 2019; Rahaman et al., 2019).

Beyond lazy regime and local analysis, Phuong and Lampert (2021); Lyu et al. (2021); Wang and
Ma (2022); Boursier et al. (2022) also characterize the whole training dynamics and exhibit a few of
nonlinear behaviors. Specifically, Lyu et al. (2021) studies the training dynamics of GF on Leaky
ReLU networks, which differ from ReLU networks because Leaky ReLU is always activated on
any data. In (Safran et al., 2022), they studies the dynamics of GF on one dimensional dataset, and
characterizes the effective number of linear regions. In (Brutzkus et al., 2017), they studies the
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dynamics of SGD on Leaky ReLU networks and linearly separable dataset. Moreover, Boursier
et al. (2022) characterizes the dynamics on orthogonally data for square loss. The studies closest to
our work are Phuong and Lampert (2021); Wang and Ma (2022), exploring the complete dynamics
on classifying orthogonally separable data. However, this data is easy to learn, and all the features
can be learned rapidly (accuracy=100%) in initial training, followed by lazy training (activation
patterns do not change). Unfortunately, this simplicity does not hold true for actual tasks on much
more complex data, and NNs can only learn some features in initial training, which complicates the
overall learning process. Furthermore, we provide a detailed comparison between our results and
these works in Section 5. Another related work (Saxe et al., 2022) introduces a novel bias of learning
dynamics: toward shared representations. This idea and the view of gating networks are enlightening
for extending our two-layer theory to deep ReLU neural networks.

Our work also investigates the max-margin implicit bias of ReLU neural networks, and related works
have been listed above. Although in homogenized neural networks such as ReLU, GD implicitly
converges to a KKT point of the max-margin problem, it is still unclear where it is an actual optimum.
A recent work (Vardi et al., 2022) showed that in many cases, the converged KKT point is not even
a local optimum of the max margin problem. Besides, there are many other attempts to explain
the implicit bias of deep learning (Vardi, 2023). Another popular implicit bias is the flat minima
bias (Hochreiter and Schmidhuber, 1997; Keskar et al., 2016). Recent studies (Wu et al., 2018; Blanc
et al., 2020; Ma and Ying, 2021; Li et al., 2021; Mulayoff et al., 2021; Wu et al., 2022; Wu and Su,
2023) provided explanations for why SGD favors flat minima and flat minima generalize well.

3 Preliminaries

Basic Notations. We use bold letters for vectors or matrices and lowercase letters for scalars,
e.g. x = (x1, · · · , xd)⊤ ∈ Rd and P = (Pij)m1×m2 ∈ Rm1×m2 . We use ⟨·, ·⟩ for the standard
Euclidean inner product between two vectors, and ∥·∥ for the l2 norm of a vector or the spectral norm
of a matrix. We use progressive representation O,Ω,Θ to hide absolute positive constants. For any
positive integer n, let [n] = {1, · · · , n}. Denote by N (µ,Σ) the Gaussian distribution with mean µ
and covariance matrix Σ, U(S) the uniform distribution on a set S. Denote by I{E} the indicator
function for an event E.

3.1 Binary Classification with Two-layer ReLU Networks

Binary classification. In this paper, we consider the binary classification problem. We are given n
training data S = {(xi, yi)}ni=1 ⊂ Rd ×{±1}. Let f(·;θ) be a neural network model parameterized
by θ, and aim to minimize the empirical risk given by:

L(θ) = 1

n

n∑
i=1

ℓ(yif(xi;θ)), (1)

where ℓ(·) : R → R is the exponential-type loss function (Soudry et al., 2018; Lyu and Li, 2019) for
classification tasks, including the most popular classification losses: exponential loss, logistic loss,
and cross-entropy loss. Our analysis focuses on the exponential loss ℓ(z) = e−z , while our method
can be extended to logistic loss and cross-entropy loss.

Two-layer ReLU Network. Throughout the following sections, we consider two-layer ReLU neural
networks comprising m neurons defined as

f(x;θ) =

m∑
k=1

akσ(b
⊤
k x),

where σ(z) = max{z, 0} is the ReLU activation function, b1 · · · , bm ∈ Rd are the weights in the
first layer, a1, · · · , am are the weights in the second layer. And we consider the case that the weights
in the second layer are fixed, which is a common setting used in previous studies (Arora et al.,
2019; Chatterji et al., 2021). We use θ = (b⊤1 , · · · , b⊤m)⊤ ∈ Rmd to denote the concatenation of all
trainable weights.
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3.2 Gradient Flow Starting from Random Initialization

Gradient Flow. As the limiting dynamics of (Stochastic) Gradient Descent with infinitesimal learning
rate (Li et al., 2017; 2019), we study the following Gradient Flow (GF) on the objective function (1):

dθ(t)

dt
∈ −∂◦L(θ(t)), t ≥ 0. (2)

Notice that the ReLU is not differentiable at 0, and therefore, the dynamics is defined as a subgra-
dient inclusion flow (Bolte et al., 2010). Here, ∂◦ denotes the Clarke subdifferential, which is a
generalization of the derivative for non-differentiable functions. Additionally, to address the potential
non-uniqueness of gradient flow trajectories, we adopt the definition of solutions for discontinuous
systems (Filippov, 2013). For formal definitions, please refer to Appendix B, G, and H.

Random Initialization. We consider GF (2) starting from the following initialization:

bk(0)
i.i.d.∼ κ1√

m
U(Sd−1) and ak = sk

κ2√
m

for k ∈ [m];

sk = 1 for k ∈ [m/2]; sk = −1 for k ∈ [m]− [m/2].

Here, 0 < κ1 < κ2 ≤ 1 control the initialization scale. It is worth noting that since the distribution
N (0, Id/d) is close to U(Sd−1) in high-dimensional settings, our result can be extended to the
initialization bk

i.i.d.∼ N (0, κ21Id/md) with high probability guarantees.

3.3 Linearly Separable Data beyond Orthogonally Separable

In previous works (Phuong and Lampert, 2021; Wang and Ma, 2022), a special case of the linearly
separable dataset was investigated, namely “orthogonally separable”. A training dataset is orthog-
onally separable when ⟨xi,xj⟩ ≥ 0 for i, j in the same class, and ⟨xi,xj⟩ ≤ 0 for i, j in different
classes. As mentioned in Section 2, in this case, GF can learn all features and achieve 100% training
accuracy quickly, followed by lazy training. In this work, we consider data that is more difficult
to learn, which leads to more complicated optimization dynamics. Specifically, we consider the
following data.
Assumption 3.1. Consider the linearly separable dataset S = {(xi, yi)}i∈[n] ⊂ Rd × R such that

(xi, yi) =

{
(x+, 1), i ∈ [n+]

(x−,−1), i ∈ [n]− [n+]
, where x+,x− ∈ Sd−1 are two data points with a small

angle ∆ ∈ (0, π/2), and n+, n− are the numbers of positive and negative samples, respectively, with
n = n+ + n−. We also use p := n+/n− to denote the ratio of n+ and n−, which measures the class
imbalance. Furthermore, we assume p cos∆ > 1.
Remark 3.2. We focus on the training dataset satisfying Assumption 3.1 with a small ∆ ≪ 1. The
margin of the dataset is sin(∆/2), which implies that the separability of this data is much weaker
than that of orthogonal separable data. Additionally, the condition p cos∆ > 1 merely requires a
slight imbalance in the data. These two properties work together to produce rich nonlinear behaviors
during training.

4 Characterization of Four-phase Optimization Dynamics

In this section, we study the whole optimization dynamics of GF (2) starting from random initialization
when training the two-layer ReLU network on linearly separable dataset satisfying Assumption 3.1
and using the loss function (1). To begin with, we introduce some additional notations.

Additional Notations. First, we identify several crucial data-dependent directions under Assumption
3.1. These include two directions that are orthogonal to the data, defined as x⊥

+ := x−−⟨x−,x+⟩x+

∥x−−⟨x−,x+⟩x+∥

and x⊥
− := x+−⟨x+,x−⟩x−

∥x+−⟨x+,x−⟩x−∥ , which satisfy
〈
x+,x

⊥
+

〉
=
〈
x−,x

⊥
−
〉
= 0. Additionally, we define the

label-average data direction as µ := z
∥z∥ where z = 1

n

∑n
i=1 yixi. One can verify that ⟨µ,x+⟩ > 0

and ⟨µ,x−⟩ > 0 under the condition p cos∆ > 1. In Figure 3, we visualize these directions.

Second, we use the following notations to denote important quantities during the GF training process.
We denote the prediction on x+ and x− by f+(t) := f(x+;θ(t)), f−(t) := f(x−;θ(t)). We use
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Acc(t) := 1
n

∑n
i=1 I{yif(xi;θ(t)) > 0} to denote the training accuracy at time t. For each neuron

k ∈ [m], we use wk(t) := b(t)/ ∥b(t)∥ and ρk(t) := ∥b(t)∥ to denote its direction and norm,
respectively. To capture the activation dynamics of each neuron k ∈ [m] on each data, we use
sgn+k (t) := sgn(⟨bk(t),x+⟩) to record whether the k-th neuron is activated with respect to x+, and
sgn−k (t) := sgn(⟨bk(t),x−⟩) defined similarly, which we call ReLU activation patterns.

4.1 A Brief Overview of four-phase Optimization Dynamics

We illustrate different phases in the training dynamics by a numerical example. Specifically, we train
a network on the dataset that satisfies Assumption 3.1 with p = 4 and ∆ = π/15. The directions and
magnitudes of the neurons at some important times are shown in Figure 1, reflecting four different
phases on the training behavior and activation patterms. More experiment details and results can be
found in Appendix A.1.
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(e) t = 150000

Figure 1: These figures visualize (in polar coordinates) the projections of all neurons {bk(t)}k∈[m]

onto the 2d subspace span{x+,x−} during training. Each purple star represents a positive neuron
(k ∈ [m/2]), while each brown star represents a negative neuron (k ∈ [m]−[m/2]). Additionally, the
directions of x+,x−,x

⊥
+,x

⊥
−,µ are plotted in blue, orange, green, red and pink colors, respectively.

The complete version of these figures is Figure 4 in Appendix A.1.

From Fig 1(a) to (b) is the Phase I of the dynamics, marked by a condensation of neurons. Although
the initial directions are random, we see that all neurons are rapidly divided into three categories:
living positive neurons (k ∈ K+) and living negative neurons (k ∈ K−) condense in one direction
each (µ and x⊥

+), while other neurons (k /∈ K+ ∪ K−) are deactivated forever. From the perspective
of loss landscape, GF rapidly escapes from the saddle near 0 where the loss gradient vanishes.

From Fig 1(b) to (c) is the Phase II of the dynamics, in which GF gets stuck into a plateau with
training accuracy p

1+p for a long time Tplat before escaping. Once the dynamics escapes from the
plateau, the training accuracy rises to a perfect 100%. Moreover, activation patterns do not change in
this phase.

From Fig 1(c) to (d) is the Phase III of the dynamics. The phase transition from phase II to phase
III sees a rapid deactivation of all the living positive neurons k ∈ K+ on x− rapidly, while other
activation patterns are unchanged. This leads to a simpler network in phase III, in which only living
positive neurons (in K+) predict x+, and only living negative neurons (in K−) predict x−. Hence, in
this phase the GF tries to learn the training data using almost the simplest network by only changing
the norms of the neurons.

Finally, Fig 1(d) to (e) shows Phase IV, starting from another “phase transition” when all the living
negative neurons (k ∈ K−) reactivate simultaneously on x+. This leads to a more complicated
network. After the phase transition, the activation patterns no longer change, and the neurons
eventually converges towards some specific directions dependent on both data and initialization.
Additionally, this direction is not even the local optimal max margin direction.

Overall, the whole dynamics exhibit a simplifying-to-complicating learning trend.

In the following four subsections, we present a meticulously detailed and comprehensive depiction of
the whole optimization dynamics and nonlinear behaviors. For clarity, in Figure 2, we first display
the timeline of our dynamics and some nonlinear behaviors.

In Appendix A.2, we further validate our theoretical bounds on the key time points in Figure 2
numerically. Additionally, in Appendix A.3, we relax the data Assumption 3.1 by perturbing the
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Phase I Phase II Phase III Phase IV

Tplat

Θ
(

p

κ2
2∆

2

)
0 TI

Θ
(√

κ1
κ2

)
TII

Θ
(
p

1
1−α cos∆

κ2
2∆

2

)
TIII

(
1 + Θ(∆2)

)
TII

∞ t

➀➁ ➂ ➃ ➄ ➅➆

Figure 2: Timeline of the four-phase optimization dynamics, containing some key time points
TI, TII, TIII, Tplat and their theoretical estimates, and some basic nonlinear behaviors: ➀ initial
condensation, ➁ saddle escape, ➂ getting stuck in plateau, ➃ plateau escape, ➄ neuron deactivation,
➅ neuron reactivation, ➆ initialization-dependent directional convergence. Notice ➀∼➆ are only
some basic nonlinear behaviors. Moreover, ➁+➂ is saddle-to-plateau, ➀+➄+➅ is simplifying-to-
complicating.

data with random noise, and our experimental results illustrate that similar four-phase dynamics and
nonlinear behaviors persist.

4.2 Phase I. Initial Condensation and Saddle Escape

Let TI = 10
√

κ1

κ2
, and we call t ∈ [0, TI] Phase I. The theorem below is our main result in Phase I.

Theorem 4.1 (Initial Condensation). Let the width m = Ω(log(1/δ)), the initialization κ1, κ2 =
O(1) and κ1/κ2 = O(∆8). Then with probability at least 1− δ, the following results hold at TI:

(S1) Let K+ be the index set of living positive neurons at TI, i.e. K+ := {k ∈ [m/2] : sgn+k (TI) =
1 or sgn−k (TI) = 1}. Then, (i) 0.21m ≤ |K+(TI)| ≤ 0.29m. Moreover, for any k ∈ K+, (ii) its
norm is small but significant: ρk(TI) = Θ

(√
κ1κ2

m

)
; (iii) Its direction is strongly aligned with µ:

⟨wk(TI),µ⟩ ≥ 1−O
(√
κ1κ2

)
−O

(
(κ1/κ2)

0.55
)
; (iv) sgn+k (TI) = sgn−k (TI) = 1.

(S2) Let K− be the index set of living negative neurons at TI, i.e. K− := {k ∈ [m] − [m/2] :
sgn+k (TI) = 1 or sgn−k (TI) = 1}. Then, (i) 0.075m ≤ |K−| ≤ 0.205m. Moreover, for any

k ∈ K−, (ii) its norm is tiny: ρk(TI) = O
(√

κ1κ2√
m

(√
κ1

κ2
+ ∆

p

))
; (iii) its direction is aligned with

x⊥
+:
〈
wk(TI),x

⊥
+

〉
≥ 1−O

(
(
√

κ1

κ2

p
∆ )1.6

)
; (iv) sgn−k (TI) = 1, but sgn+k (TI) = 0.

(S3) For other neuron k /∈ K+ ∪ K−, it dies and remains unchanged during the remaining training
process: sgn+k (t) ≤ 0, sgn−k (t) ≤ 0, bk(t) ≡ bk(TI), ∀t ≥ TI.

(S4). f+(TI) = Θ
(
κ2

√
κ1κ2

)
, f−(TI) = Θ

(
κ2

√
κ1κ2

)
, and Acc(TI) =

p
1+p .

Initial condensation and simplification. Theorem 4.1 (S1)(S2)(S3) show that, after a short time
TI = Θ(

√
κ1/κ2), all neurons are implicitly simplified to three categories: K+, K− and others. The

living positive neurons k ∈ K+ align strongly with µ, and the living negative neurons k ∈ K− align
with x⊥

+ and lie on the manifold orthogonal to x+. Other neurons die and remain unchanged during
the remaining training process. Moreover, we also estimate tight bounds for |K+| and |K+|. Actually,
κ1/κ2 = O(1) can ensure Theorem 4.1 and initial condensation hold (please refer to Appendix C),
and we write κ1/κ2 = O(∆8) here to ensure that the dynamics of later phases hold. In Phase I, the
dynamics exhibit a fast condensation phenomenon, i.e., in addition to dead neurons, living positive
and negative neurons condense in one direction each.

Saddle-to-Plateau. The network is initially close to the saddle point at 0 (where the loss gradient
vanishes). However, Theorem 4.1 (S1) reveals that despite being small, there is a significant growth in
the norm of living positive neuron k ∈ K+ from Θ(κ1/

√
m) to Θ(

√
κ1κ2/

√
m) and the predictions

also experience substantial growth (S4). This means that GF escapes from this saddle rapidly.
Furthermore, it is worth noting that initial training accuracy can randomly be 0, 1

1+p ,
p

1+p , or 1.
However, after Phase I, the training accuracy reaches Acc(TI) = p

1+p which we will prove as a
plateau in the next subsection. Therefore, Phase I exhibits saddle-to-plateau dynamics.

Remark 4.2. Throughout the following subsections, we call the neuron k ∈ K+ the “living positive
neuron”, the neuron k ∈ K− the “living negative neuron”, and the neuron k /∈ K+ ∪ K− the
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“dead neuron”. Moreover, we denote m+ := |K+|, m− := |K−|, and α := m−
m+

. Notice that
Theorem 4.1(S1)(S2) guarantee that 0 < 0.075

0.29 ≤ α ≤ 0.205
0.21 < 1.

Remark 4.3. The results in the following subsections are all based on the occurrence of the events in
Theorem 4.1 and with the same settings as Theorem 4.1. So they all hold with probability at least
1− δ.

Please refer to Appendix C for the proof of Phase I.

4.3 Phase II. Getting Stuck in and Escaping from Plateau

In this phase, we study the dynamics before the patterns of living neurons change again after Phase I.
Specifically, we define

TII := inf{t > TI : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= sgn+k (TI) or sgn−k (t) ̸= sgn−k (TI)},
and call t ∈ (TI, TII] Phase II.

Theorem 4.4 (End of Phase II). (S1) TII = Θ

(
p

1
1−α cos∆

κ2
2∆

2

)
. (S2) L(θ(TII)) = Θ

(
p−

1
1−α cos∆

)
.

(S3) One of living positive neuron k0 ∈ K+ precisely changes its pattern on x− at TII:
lim
t→T−

II

sgn−k0(t) = 1 and lim
t→T+

II

sgn−k0(t) = 0, while all other activation patterns remain unchanged.

Recalling the results in Theorem 4.1, during Phase II, the activation patterns do not change with
sgn+k (t) = sgn−k (t) = 1 for k ∈ K+ and sgn+k (t) = 0, sgn−k (t) = 1 for k ∈ K−. Theorem 4.4
demonstrates that at the end of Phase II, except for one of living positive neuron k0 ∈ K+ precisely
changes its pattern on x−, all other activation patterns remain unchanged.

Theorem 4.5 (Plateau). We define the hitting time Tplat := inf{t ∈ [TI, TII] : Acc(t) = 1}. Then,

(S1) Tplat = Θ
(

p
κ2
2∆

2

)
; (S2) ∀t ∈ [TI, Tplat], Acc(t) ≡ p

1+p ; (S3) ∀t ∈ (Tplat, TII], Acc(t) ≡ 1.

Plateau of training accuracy. According to Theorem 4.5, during Phase II, the training accuracy
gets stuck in a long plateau p

1+p , which lasts for Θ
(

p
κ2
2∆

2

)
time. However, once escaping from

this plateau, the training accuracy rises to 100%. It is worth noting that this plateau is essentially
induced by the dataset. All that’s required is only mild imbalance (p is slightly greater than 1 such
that p cos∆ > 1) and a small margin sin(∆/2) of two data classes. Notably, if the dataset has
an extremely tiny margin (∆ → 0), then the length of this plateau will be significantly prolonged
(Tplat → +∞), which implies how the data separation can affect the training dynamics. Additionally,
using a smaller initialization scale κ1 of the input layers cannot avoid this plateau.

Please refer to Appendix D for the proof of Phase II.

4.4 Phase III. Simplifying by Neuron Deactivation, and Trying to Learn by Simplest Network

Building upon Phase II, we demonstrate that within a short time, all the living positive neurons K+

change their activation patterns, corresponding to a “phase transition”. Specifically, we define

TPT
II := inf{t > TII : ∀k ∈ K+, sgn−k (t) = 0},

and we call t ∈ (TII, T
PT
II ] the phase transition from Phase II to Phase III.

Theorem 4.6 (Phase Transition). (S1) TPT
II =

(
1 +O

(√
κ1κ32

))
TII; (S2) sgn+k (T

PT
II ) = 1 and

sgn−k (T
PT
II ) = 0 for any k ∈ K+; sgn+k (T

PT
II ) = 0 and sgn−k (T

PT
II ) = 1 for any k ∈ K−.

Neuron deactivation. As shown in Theorem 4.6 (S2), after the phase transition, all the living
positive neurons k ∈ K+ undergo deactivation for x−, i.e., sgn−k (t) changes from 1 to 0, while
other activation patterns remain unchanged. Furthermore, Theorem 4.6 (S1) reveals that the phase
transition is completed quite quickly by using sufficiently small initialization value κ1, κ2. A smaller
initialization value leads to a more precise initial condensation wk(TI) ≈ µ, causing all living positive
neurons to remain closer together before TII and thus changing their patterns nearly simultaneously.
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Self-simplifying. As a result, the network implicitly simplifies itself through the deactivation
behavior. At TPT

III , only living negative neurons k ∈ K+ are used for predicting on x−, i.e.,
f−(T

PT
II ) = κ2√

m

∑
k∈K−

σ(
〈
bk(T

PT
II ),x−

〉
). In contrast, during Phase II, both living positive

and living negative neurons jointly predict on x−, i.e., f−(t) = κ2√
m

∑
k∈K+

σ(⟨bk(t),x−⟩) −
κ2√
m

∑
k∈K−

σ(⟨bk(t),x−⟩). As indicated in Table 1, two classes of activation patterns are simplified
from (1, 0) to (0, 0), while others do not change.

After this phase transition, we study the dynamics before the patterns of living neurons change again.
Specifically, we define

TIII := inf{t > TPT
II : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= sgn+k (T

PT
II ) or sgn−k (t) ̸= sgn−k (T

PT
II )},

and call t ∈ (TII, TIII] Phase III.

Theorem 4.7 (End of Phase III). TIII =
(
1 + Θ(∆2)

)
TII.

Learning by simplest network. During t ∈ (TPT
II , TIII), all activation patterns do not change. This

ensures that f+(t) = κ2√
m

∑
k∈K+

σ(⟨bk(t),x+⟩), while f−(t) = − κ2√
m

∑
k∈K−

σ(⟨bk(t),x−⟩).
Additionally, by using sufficiently small κ1, the neurons in K+ and K− keep close together re-
spectively before TIII, making the network close to a simple two-neuron network consisting of one
positive neuron and one negative neuron. Please refer to Appendix E for more details. Furthermore,
this pattern scheme is almost the "simplest" way to ensure binary classification: the living positive
neurons only predict positive data x+ while the living negative neurons only predict negative data
x−. Therefore, GF tries to learn by this almost simplest network in this phase.

Please refer to Appendix E for the proof of Phase III.

4.5 Phase IV. Complicating by Neuron Reactivation, and Directional Convergence

Phase IV begins with an instantaneous phase transition at time TIII.

Theorem 4.8 (Phase Transition). All living negative neuron k ∈ K− simultaneously change their
patterns on x+ at TIII: lim

t→T−
III

sgn+k (t) = 0, lim
t→T+

III

sgn+k (t) = 1, while others remain unchanged.

Neuron reactivation. According to Theorem 4.8, all of living negative neurons k ∈ K− reactivate
simultaneously on x+ at TIII: sgn+k (t) changes from 0 to 1, while other activation patterns remain
unchanged.

Self-Complicating. Along with the reactivation behavior, GF implicitly complicates itself. In
Phase III, only living negative neurons k ∈ K+ are used to predict on x+, i.e., f+(t) =
κ2√
m

∑
k∈K+

σ(⟨bk(t),x+⟩). In contrast, after the phase transition at TIII, both living positive
and living negative neurons jointly predict on x+, i.e. f+(t) = κ2√

m

∑
k∈K+

σ(⟨bk(t),x+⟩) −
κ2√
m

∑
k∈K−

σ(⟨bk(t),x+⟩). As indicated in Table 1, two classes of activation patterns are compli-
cated from (0, 0) to (0, 1), while others do not change.

In this phase, we study the dynamics before activation patterns change again after the phase transition
in Theorem 4.8. We define the hitting time:

TIV := inf{t > TIII : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= lim
s→T+

III

sgn+k (s) or sgn−k (t) ̸= lim
s→T+

III

sgn−k (s)},

and we call t ∈ (TIII, TIV] Phase IV.

Theorem 4.9 (Phase IV). (S1) TIV = +∞. Moreover, for any t > TIII, (S2) all activation patterns

do not change; (S3) the loss converges with L(θ(t)) = Θ

(
1

p
1

1−α cos∆ +κ2
2∆

2(t−TIII)

)
.

Theorem 4.9 illustrates that all activation patterns never change again after the phase transition at
TIII with sgn+k (t) = 1, sgn−k (t) = 0 for any k ∈ K+ and sgn+k (t) = sgn−k (t) = 1 for any k ∈ K−.
Additionally, the loss converges with the polynomial rate Θ(1/κ22∆

2t). Furthermore, we present the
following theorem about the convergent direction of each neuron.
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Theorem 4.10 (Directional Convergence). The limit lim
t→+∞

θ(t)
∥θ(t)∥2

exists and denoted by θ =

(b
⊤
1 , · · · , b

⊤
m)⊤ ∈ Smd−1. Moreover, (i) for any k /∈ K+ ∪ K−, bk = 0; (ii) for any k ∈ K+, bk ≡

v+ = C
(
x+ −x− cos∆

)
; (iii) for any k ∈ K−, bk ≡ v− = C

((
1+ sin2 ∆

α(1+cos∆)

)
x− −x+

)
, where

C > 0 is a scaling constant such that
∥∥θ∥∥

2
= 1. (iv) Additionally, f−(θ) = −f+(θ) > 0.

Initialization-dependent Directional Convergence. As an asymptotic result, Theorem 4.10 provides
the final convergent direction of GF. All living positive neurons (k ∈ K+) directionally converge
to v+ ∥ x⊥

− with ⟨v+,x+⟩ > 0 and ⟨v+,x−⟩ = 0, while all living negative neurons (k ∈ K−)
directionally converge to v− ∈ span{x+,x−} with ⟨v−,x+⟩ > 0 and ⟨v−,x−⟩ > 0. It is worth
noting that v− directly depends not only on the data but also on the ratio α = |K−|/|K+| (defined
in Remark 4.2). Recalling the results in Phase I, α lies in a certain range with high probability; but
it is still a random variable due to its dependence on random initialization. Different initializations
may lead to different values |K−|/|K+| at the end of Phase I, eventually causing different convergent
directions in Phase IV.

Non-(Local)-Max-Margin Direction. Lastly, we study the implicit bias of the final convergence rate.
According to Lyu and Li (2019); Ji and Telgarsky (2020) and our results above, θ in Theorem 4.10
must be a KKT direction of some max-margin optimization problem. However, it is not clear whether
the direction θ is actually an actual optimum of this problem. Surprisingly, in next Theorem, we
demonstrate that the final convergent direction is not even a local optimal direction of this problem,
which enlightens us to rethink the max margin bias of ReLU neural networks.

Theorem 4.11 (Implicit Bias). The final convergent direction θ (in Theorem 4.10) is a KKT direction
of the max-margin problem min : 1

2 ∥θ∥
2
s.t. yif(xi;θ) ≥ 1, i ∈ [n]. However, θ is not even a local

optimal direction of this problem.

Please refer to Appendix F for the proof of Phase IV.

5 Discussion and Comparison on Nonlinear Behaviors

Throughout the whole training process in Section 4, we divide the phases based on the evolution of
ReLU activation patterns. During Phase I, as well as the beginning of Phase II and III, numerous
activation patterns undergo rapid changes. Table 1 summarizes the evolution of activation patterns
for all living neurons after Phase I. These results are also numerically validated in Figure 1.

Table 1: The evolution of two classes of activation patterns of living neurons after Phase I. As for
other two classes, sgn+k (t) (k ∈ K+) and sgn−k (t) (k ∈ K−), they remain equal to 1 after Phase I.

t ∈ (TI, TII) t ∈ (TII, T
PT
II ) t ∈ (TPT

II , TIII) t ∈ (TIII,+∞)
sgn−k (t) (k ∈ K+) 1 1 or 0 0 0
sgn+k (t) (k ∈ K−) 0 0 0 1

Simplifying-to-Complicating. In phase I, GF simplifies all the neurons from random directions
into three categories: living positive neurons K+ and living negative neurons K− condense in one
direction each, which other neurons are deactivated forever. After Phase I, as shown in Table 1,
the two classes of activation patterns change from (1, 0)

simplify→ (0, 0)
complicate→ (0, 1), while other

patterns remain unchanged. Therefore, the evolution of activation patterns exhibits a simplifying-
to-complicating learning trend, which also implies that the network trained by GF learn features in
increasing complexity.

Comparison with NTK. In the lazy regime such as NTK, most neurons keep close to the initialization
and most activation patterns do not change during training. Specifically, for any training data xi,
1
m

∑
k∈[m] I{sgn(⟨bk(t),xi⟩) ̸= sgn(⟨bk(0),xi⟩)} = o(1),∀t > 0 (Du et al., 2018). However,

our work stands out from lazy regime as activation patterns undergo numerous changes during
training. In Phase I, initial condensation causes substantial changes in activation patterns, which
is similarly observed in (Phuong and Lampert, 2021). Furthermore, even after Phase I, there are
notable modifications in activation patterns. As shown in Table 1, the proportion of changes in
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activation patterns for any given training data is the Θ(1), as compared with the o(1) in NTK
regime. Specifically, at any t > TIII, 1

m

∑
k∈[m] I{sgn+k (t) ̸= sgn+k (TI)} = 1

m |K−| = Θ(1) and
1
m

∑
k∈[m] I{sgn−k (t) ̸= sgn−k (TI)} = 1

m |K+| = Θ(1). On the other hand, in our analysis, the
requirement on the network’s width m is only m = Ω(log(1/δ)) (Theorem 4.1), regardless of data
parameters p,∆, while NTK regime requires a much larger width m = Ω(log(p/δ)/∆6) (Ji and
Telgarsky, 2019).

Comparison with Phuong and Lampert (2021); Lyu et al. (2021); Wang and Ma (2022); Boursier
et al. (2022). Beyond lazy regime and local analysis, these works also characterize the entire training
dynamics and analyze a few nonlinear behaviors. Now we compare our results with these works in
detail. (i) While Lyu et al. (2021) focuses on training Leaky ReLU NNs, our work and the other three
papers study ReLU NNs. It is worth noting that the dynamics of Leaky ReLU NNs differ from ReLU
due to the permanent activation of Leaky ReLU (σ′(·) ≥ α > 0). (ii) Initial condensation is also
proven in (Lyu et al., 2021; Boursier et al., 2022), and the condensation directions are some types
of data averages. In our work, neurons can aggregate towards not only the average direction µ, but
also another direction x⊥

+. Moreover, we also estimate the number of neurons that condense into two
directions. (iii) Saddle-to-saddle dynamics are proven in (Phuong and Lampert, 2021) for square loss,
where the second saddle is about training loss and caused by incomplete fitting. However, our work
focus on classification with exponential loss and exhibit a similar saddle-to-plateau dynamics, where
the plateau is about training accuracy, caused by incomplete feature learning. (iv) Phased feature
learning. In (Phuong and Lampert, 2021; Wang and Ma, 2022), all features can be rapidly learned in
Phase I (accuracy= 100%), followed by lazy training. However, for practical tasks on more complex
data, NNs can hardly learn all features in such short time. In our work, the data is more difficult to
learn, resulting in incomplete feature learning in Phase I (accuracy< 100%). Subsequently, NNs
experience a long time to learn other features completely. Such multi-phase feature leaning dynamics
are closer to practical training process. (v) Neuron reactivation and deactivation. For ReLU NNs, The
evolution of activation patterns is one of the essential causes of nonlinear dynamics. In (Phuong and
Lampert, 2021; Wang and Ma, 2022), activation patterns only change rapidly in Phase I, after which
they remain unchanged. In (Boursier et al., 2022), their lemma 6 shows that their dynamics lack
neuron reactivation. However, in our dynamics, even after Phase I, our dynamics exhibit significant
neuron deactivation and reactivation as discussed in Table 1. (vi) The final convergent directions
are also derived in (Phuong and Lampert, 2021; Lyu et al., 2021; Boursier et al., 2022), which only
depend on the data. However, in our setting, the convergent direction is more complicated, determined
by both data and random initialization. (vii) Furthermore, our four-phase dynamics demonstrate the
whole evolution of activation patterns during training and reveal a general simplifying-to-complicating
learning trend.

In summary, our whole four-phase optimization dynamics capture more nonlinear behaviors than
these works. Furthermore, we conduct a more thorough and detailed theoretical analysis of these
nonlinear behaviors, providing a more systematic and comprehensive understanding.

6 Conclusion and Future Work

In this work, we study the optimization dynamics of ReLU neural networks trained by GF on a
linearly separable data. Our analysis captures the whole optimization process starting from random
initialization to final convergence. Throughout the whole training process, we reveal four different
phases and identify rich nonlinear behaviors theoretically. However, theoretical understanding of the
training of NNs still has a long way to go. For instance, although we conduct a fine-grained analysis of
GF, the dynamics of GD are more complex and exhibit other nonlinear behaviors such as progressive
sharpening and edge of stability (Wu et al., 2018; Jastrzębski et al., 2019; Cohen et al., 2021; Ma
et al., 2022; Li et al., 2022; Damian et al., 2022; Zhu et al., 2022; Ahn et al., 2022a;b). Additionally,
unlike GD, SGD uses only mini-batches of data and injects noise (Zhu et al., 2019; Thomas et al.,
2020; Feng and Tu, 2021; Liu et al., 2021; Ziyin et al., 2022; Wu et al., 2022; Wojtowytsch, 2023;
Wang and Wu, 2023) in each iteration, which can have a pronounced impact on the optimization
dynamics and nonlinear behaviors. Better understanding of the nonlinear behaviors during GD or
SGD training is an important direction of future work.
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A Experimental Details
All experiments are conducted on a MacBook pro 13 (M2) only using CPU. See the code
at https://github.com/wmz9/Understanding_Multi-phase_Optimization_NeurIPS2023.

A.1 Experiments on standard Dataset
We train the two-layer network on the dataset that satisfies Assumption 3.1 with d = 20, p = 4
and ∆ = π/15. Specifically, we choose the network width m = 100; the initialization scale
κ1 = 0.1, κ2 = 1; the small learning rate η = 0.01.

In Figure 3, we show some key data directions in this dataset, as well as the training accuracy, which
contains a long plateau. Furthermore, in Figure 4, we provide the evolution of all neurons during
training from t = 0 to t = 150000, which is a more complete version of Figure 1.
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Figure 3: (left) Some key data directions: the directions of x+,x−,x
⊥
+,x

⊥
−,µ are plotted in blue,

orange, green, red and pink colors, respectively; (right) The training accuracy.
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Figure 4: (A more complete version of Figure 1) These figures visualize (in polar coordinates) the
projections of all neurons {bk(t)}k∈[m] onto the 2d subspace span{x+,x−} during training (from
t = 0 to t = 150000). Each purple star represents a positive neuron (k ∈ [m/2]), while each brown
star represents a negative neuron (k ∈ [m]− [m/2]).
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A.2 Numerical validation on our theoretical bounds

We conduct experiments to validate our theoretical bounds on Tplat and TIII under different p and ∆,
and the results are shown in 2.

In the first experiment (1st and 2nd subtable), we fix p = 4 for change ∆; in the second experiment
(3rd and 4th subtable), we fix ∆ = π/15 and change p. As for other hyperparameters (such as
κ1, κ2, d,m), we keep the same scales as our setups in Appendix A.1.

We have two main conclusions: (1) four training phases in our theory persistently exist; (the same as
Fig 1 in Appendix A, and be omitted due to the limited space) (2) our theoretical estimates on Tplat
and TIII are relatively tight, basically in the same magnitude as the realistic time.

Table 2: The change of our theoretical bounds on Tplat and TIII under different p and ∆.

∆ 4π
45

4π
45 · 3

4 = π
15

4π
45 · ( 34 )2 4π

45 · ( 34 )3
Realistic Tplat 1.96× 104 3.68× 104 7.25× 104 12.87× 104

Our estimate Θ(1/∆2):
950/∆2 + 1520/∆− 9943

1.90× 104 3.82× 104 7.14× 104 12.89× 104

∆ 4π
45

4π
45 · 3

4 = π
15

4π
45 · ( 34 )2 4π

45 · ( 34 )3
Realistic TIII 4.98× 104 6.14× 104 9.18× 104 15.63× 104

Our estimate Θ(1/∆2):
1772/∆2 − 12218/∆+ 67621

4.97× 104 6.17× 104 9.16× 104 15.63× 104

p 6 8 10 12
Realistic Tplat 6.14× 104 9.57× 104 13.96× 104 17.61× 104

Our estimate Θ(p):
19400p− 56400

6.00× 104 9.88× 104 13.76× 104 17.64× 104

p 6 8 10 12
Realistic TIII 8.92× 104 13.40× 104 19.72× 104 27.68× 104

Our estimate Θ(p
1

1−α cos∆ ):
6912p1.5 − 15897

8.59× 104 14.05× 104 20.27× 104 27.14× 104

A.3 Experiments on Noisy Dataset

We conduct numerical experiments on the setting of adding small stochastic noise on top of x+ and
x−, a little bit more realistic setting. Specifically, in span{x+,x−}, we perturb the angles of n+ − 1
instances of x+ and n− − 1 instances of x− using stochastic noise ξ ∼ Unif([0,∆/4]).

In Figure 5, we visualize (i) the evolution of each neuron throughout the training process; (ii) some
key data directions; (iii) the evolution of training accuracy.

From the numerical results in Figure 5, we have two main conclusions: (1) we ascertain that the same
four-phase optimization dynamics and nonlinear behaviors persist, even for our dataset with small
stochastic noise; (2) a slight difference is that there is more than one plateau of training accuracy in
Phase II. The reason is that for noisy data, GF needs to learn negative data one by one in Phase II. For
example, three distinct negative data are employed in this experiment, so three plateaus of training
accuracy emerge (12/15, 13/15, and 14/15).
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(h) t = 90000

0°

45°

90°

135°

180°

225°

270°

315°

1
2

3
4

5
6

(i) t = 200000

0°

45°

90°

135°

180°

225°

270°

315°

2

4

6

8

(j) t = 400000

Figure 5: The experimental results for noisy data with ∆ = π/15, n+ = 12, n− = 3. Fig
(a): Some key data directions, including x+, x++noise, x−, x−+noise, µ, x⊥

+, and x⊥
−. Fig (b):

The evolution of training accuracy. Figs (c)∼(j): the evolution of the projections of all neurons
{bk(t)}k∈[m] onto the 2d subspace span{x+,x−} during training (from t = 0 to t = 400000). Each
purple star represents a positive neuron (k ∈ [m/2]), while each brown star represents a negative
neuron (k ∈ [m]− [m/2]). Four-phase dynamics: from Fig (c) to (d) is Phase I; from Fig (d) to (g)
is Phase II; from Fig (g) to (h) is Phase III; from Fig (h) to (j) is Phase IV. To compare these results
with noiseless data, please refer to Figures 3 and 4.
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B Proof Preparation

Selection of initialization parameters.

For the data satisfying Assumption 3.1, we consider the regime that ∆ ≪ 1 with p cos∆ > 1. During
the entire proof, we select the initialization scale κ1, κ2 as follows:

κ2 = O(1),
κ1
κ2

= O
(
∆8
)
. (3)

Gradient Flow. In general, for any k ∈ [m], the GF dynamics of bk(t) can be written as

dbk(t)

dt
∈ ∂◦L(θ)

∂bk
=

skκ2√
m

1

n

n∑
i=1

e−yifi(t)∂◦σ(⟨bk(t),xi⟩)yixi

=
skκ2√
m

( p

1 + p
e−f+(t)∂◦σ(⟨bk(t),x+⟩)x+ − 1

1 + p
ef−(t)∂◦σ(⟨bk(t),x−⟩)x−

)
,

(4)

where ∂◦ is Clarke’s subdifferential defined in Defnition G.1. Notice that if L is continuously
differentiable at θ, then ∂◦L(θ) = {∇L(θ)} is unique.

However, for discontinuous differentiable points of L, the differential inclusion flow dθ
dt ∈ ∂◦L(θ)

may not be unique. To study a more specific dynamics, we also utilize Definition H.1 to determine
GF at some of such points, which overcomes non-uniqueness of GF trajectories to some extent. It is
worth noting that Definition H.1 and Definition G.1 are compatible and specifically, the dynamics
defined in Definition H.1(Case I, III) lie in the convex hull defined in Definition G.1.
Remark B.1. In (Lyu et al., 2021), the non-branching starting point Assumption is employed to
address the technical challenge of non-uniqueness in GF trajectories. By comparison, in this work,
we do not need this assumption. We adopt Definition H.1 to uniquely determine the Gradient Flow
trajectories theoretically near some discontinuous differential regions, such as “Ridge”, “Valley”, and
“Refraction edge” discussed in Section I.2 in (Lyu et al., 2021).

Additionally, in the following sections, we may rewrite this dynamics accordingly, such as specific
forms and dynamics decomposition.

Additional Notations. As a similar description to sgn+k (·) and sgn−k (·), we also employ the
following six manifolds to characterize activation patterns (by judging which manifold the neuron
wk belongs to):

M+
+ := {w ∈ Sd−1 : ⟨w,x+⟩ > 0}, M+

− := {w ∈ Sd−1 : ⟨w,x−⟩ > 0},
M0

+ := {w ∈ Sd−1 : ⟨w,x+⟩ = 0}, M0
− := {w ∈ Sd−1 : ⟨w,x−⟩ = 0},

M−
+ := {w ∈ Sd−1 : ⟨w,x+⟩ ≤ 0}, M−

− := {w ∈ Sd−1 : ⟨w,x−⟩ ≤ 0}.

As one of our interested manifolds, the border ∂(M+
+ ∩M+

−) can be divided into

∂(M+
+ ∩M+

−) ={w ∈ Sd−1 : ⟨w,x+⟩ = 0 or ⟨w,x−⟩ = 0}
={w ∈ Sd−1 : ⟨w,x+⟩ = 0, ⟨w,x−⟩ > 0}

⋃
{w ∈ Sd−1 : ⟨w,x+⟩ > 0, ⟨w,x−⟩ = 0}⋃

{w ∈ Sd−1 : ⟨w,x+⟩ = 0, ⟨w,x−⟩ = 0}
=
(
M0

+ ∩M+
−
)
∪
(
M0

− ∩M+
+

)
∪
(
M0

+ ∩M0
−
)
.

Furthermore, we also utilize the following notations:

P+
+ := {b ∈ Rd : ⟨b,x+⟩ > 0}, P+

− := {b ∈ Rd : ⟨b,x−⟩ > 0},
P0
+ := {b ∈ Rd : ⟨b,x+⟩ = 0}, P0

− := {b ∈ Rd−1 : ⟨b,x−⟩ = 0},
P−
+ := {b ∈ Rd : ⟨b,x+⟩ ≤ 0}, P−

− := {b ∈ Rd : ⟨b,x−⟩ ≤ 0}.

Notice that for the direction of a neuron bk ̸= 0, using P+
+ ,P0

+,P−
+ ,P+

− ,P0
−,P−

− to describe bk is
equivalent to using M+

+,M0
+,M−

+,M+
−,M0

−,M−
− to describe wk.

20



Lemma B.2 (Dead neurons keep dead). For the k-th neuron, if there exists a t0 ≥ 0, s.t. wk(t0) ∈
M−

+∩M−
−, then it dies and remains unchanged during the remaining training: wk(t) ∈ M−

+∩M−
−

and bk(t) ≡ bk(t0) for any t ≥ t0.

Proof of Lemma B.2. A straightforward calculation.

The above fact is a basic fact in our setting, which illustrates that if the neuron bk is deactivated for
both data x+ and x− at some time, then it remains “dead” forever.

It is worth mentioning that if the neuron bk is deactivated on x+ but activated on x− at some time, it
can still reactivate on x+ later, which is one of the important reasons why our ReLU optimization
dynamics are complicated.
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C Proofs of Optimization Dynamics in Phase I

In this section, we conduct a detailed analysis of the training dynamics of each neuron in Phase I. The
main proof idea is to decompose neurons’ dynamics into tangential and radial dynamics. For small
initialization, in Phase I, the radial increasing of neurons is much slower than their tangential velocity,
which can result in condensation. However, the main challenges arise from the initial direction’s
randomness and ReLU’s discontinuous derivative, leading to eight categories of neuron dynamics.
Moreover, it is also nontrivial and requires meticulous analysis to estimate the number of two classes
of living neurons at the end of Phase I.

We define the time

TI := 10

√
κ1
κ2
, (5)

and call t ∈ [0, TI] “Phase I”.

Recall that the selection (3) about initialization parameters can guarantee the whole four-phase
optimization dynamics. Nevertheless, when we focus on Phase I, κ2 = O(1) and κ1/κ2 = O(1)
suffice to ensure the dynamics in Phase I. Specifically, during the proof of Phase I, we can use the
following selection (6) on κ1, κ2, which is much weaker than (3):

κ2 = O(1),
κ1
κ2

= O(1). (6)

For simplicity, we assume ∆ ≤ 1
5 . And for convenience, we assume p ≥ 5. It is worth mentioning

that our proof approach also applies for p = 2, 3, 4, with at most one absolute constant difference.

Prepared for the analysis in Phase I, we decompose the dynamics of bk(t) into the radial movement
ρk(t) ∈ R and the tangential movement wk(t) ∈ Sd−1 satisfied to bk(t) = ρk(t)wk(t).
Lemma C.1 (Dynamics decomposition). For any k ∈ [m], the dynamics of bk(t) can be decomposed
into the radial movement ρk(t) ∈ R and the tangential movement wk(t) ∈ Sd−1:

dwk(t)

dt
∈ skκ2√

mρk(t)

(
F k(t)− ⟨F k(t),wk(t)⟩wk(t)

)
,

dρk(t)

dt
∈ skκ2√

m
⟨F k(t),wk(t)⟩ ,

(7)

where ρk(t) = ∥bk(t)∥, wk(t) = bk(t)/ ∥bk(t)∥ and

F k(t) =
1

n

n∑
i=1

e−yifi(t)∂◦σ (⟨wk(t),xi⟩) yixi. (8)

Proof of Lemma C.1.
From the dynamics of bk(t):

dbk(t)

dt
∈ skκ2√

m
F k(t) =

skκ2√
m

1

n

n∑
i=1

e−yifi(t)∂◦σ (⟨wk(t),xi⟩) yixi,

we have
dρk(t)

dt
=

1

2 ∥bk(t)∥
d ∥bk(t)∥2

dt
=

1

∥bk(t)∥

〈
bk(t),

dbk(t)

dt

〉
∈ 1

∥bk(t)∥

〈
bk(t),

skκ2√
m

F k(t)

〉
=

skκ2√
m

⟨F k(t),wk(t)⟩ ,

dwk(t)

dt
=

∥bk(t)∥ dbk(t)
dt − d∥bk(t)∥

dt bk(t)

∥bk(t)∥2
=

1

ρk(t)

(
dbk(t)

dt
− dρk(t)

dt
wk(t)

)
∈ 1

ρk(t)

( skκ2√
m

F k(t)−
skκ2√
m

⟨F k(t),wk(t)⟩wk(t)
)
=

skκ2√
mρk(t)

(
F k(t)− ⟨F k(t),wk(t)⟩wk(t)

)
.
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Prepared for the analysis of the neurons’ dynamics, we establish a rough estimate about the norm and
prediction growth of each neuron in Phase I, and we will improve it later.

Lemma C.2 (A Rough Estimate of Norm and Prediction in Phase I).
For any t ≤ TI, k ∈ [m], and i ∈ [n], we have the following estimates:

ρk(t) ≤
κ1 + 1.1κ2t√

m
,

|fi(t)| ≤
√
κ1κ2,∣∣∣e−yifi(t) − 1

∣∣∣ ≤ 1.1
√
κ1κ2.

Proof of Lemma C.2.
First, we define the hitting time

T√κ1κ2
:= inf

{
t > 0 : max

i∈[n]
|fi(t)| >

√
κ1κ2

}
.

From |fi(0)| ≤ m κ2√
m

κ1√
m

= κ1κ2 <
√
κ1κ2 and the continuity of fi(·), we know T√κ1κ2

> 0.

Then we will prove TI = 10
√

κ1

κ2
≤ T√κ1κ2

.

For any k ∈ [m], i ∈ [n], and t ≤ T√κ1κ2
, we have the following estimates.

Recalling the definition of F k(t) (8), we have

∥F k(t)∥ =

∥∥∥∥∥ 1n
n∑
i=1

e−yifi(t)∂◦σ (⟨wk(t),xi⟩) yixi
∣∣∣∣∣ ≤ max

i∈[n]

∣∣∣e−yifi(t)∥∥∥
≤e

max
i∈[n]

|fi(t)| ≤ e
√
κ1κ2 ≤ 1.1.

Recalling the dynamics (7), for any t ≤ T√κ1κ2
,

dρk(t)

dt
≤ κ2√

m
∥⟨F k(t),wk(t)⟩∥ ≤ κ2√

m
∥F k(t)∥ ≤ 1.1κ2√

m
.

Then combining ρk(0) = κ1√
m

, for any t ≤ T√κ1κ2
,

ρk(t) ≤
κ1 + 1.1κ2t√

m
,

|fi(t)| ≤
m∑
k=1

|ak|ρk(t) ≤ m
κ2√
m

κ1 + 1.1κ2t√
m

≤ κ2
(
κ1 + 1.1κ2t

)
.

(9)

So for any t ≤ TI, we have

|fi(t)| ≤ κ2
(
κ1 + 1.1κ2TI

)
≤ κ2

(
κ1 + 11

√
κ1κ2

)
≤ 12κ2

√
κ1κ2 ≤ √

κ1κ2. (10)

From the definition of T√κ1κ2
, we have proved TI ≤ T√κ1κ2

.

Moreover, from this proof, we know (9) holds for any t ≤ TI. Moreover, by Mean Value Theorem,∣∣∣e−yifi(t) − 1
∣∣∣ ≤ ( max

z∈[0,
√
κ1κ2]

ez
)
| − yifi(t)| ≤ 1.1|fi(t)| ≤ 1.1

√
κ1κ2.

Now we delve into the optimization dynamics of all neurons in Phase I in the following Section C.1
and C.2.
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C.1 The Dynamics of Positive Neurons

According to the initial direction, all positive neurons (sk = 1) can be divided into the following four
classes.

[m/2] =
{
k ∈ [m/2] : wk(0) ∈ M+

+ ∩M+
−
}⋃{

k ∈ [m/2] : wk(0) ∈ M−
+ ∩M+

−
}⋃{

k ∈ [m/2] : wk(0) ∈ M+
+ ∩M−

−
}⋃{

k ∈ [m/2] : wk(0) ∈ M−
+ ∩M−

−
}
.

In the following four lemmas, we will prove the dynamics for these four classes of positive neurons.
In summary, in Phase I (t < TI), some of positive neurons align well with the direction µ, and their
norms experiment a small but significant increase, while other positive neurons go dead.

Lemma C.3 (Positive, M+
+ ∩M+

−).
For positive neuron k ∈ {k ∈ [m/2] : wk(0) ∈ M+

+ ∩M+
−}, at the end of Phase I, it holds that

(Direction). It is aligned with µ : ⟨wk(TI),µ⟩ ≥
(
1−O(

√
κ1κ2)

)(
1−O

(
(
κ1
κ2

)0.55
))

;

(Norm). It has a small but significant norm : ρk(TI) = Θ
(√κ1κ2√

m

)
.

Proof of Lemma C.3.
We do the following analysis for any k ∈ {k ∈ [m/2] : wk(0) ∈ M+

+ ∩ M+
−}, i.e. sk = 1,

⟨wk(0),x+⟩ > 0, and ⟨wk(0),x−⟩ > 0.

Step I. The neuron stays in M+
+ ∩M+

− for any t ≤ TI.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) /∈ ∂(M+

+ ∩M+
−)
}
,

and we aim to prove that Thit does not exist. From the definition of Thit and (4), the dynamics of the
neuron is:

dbk(t)

dt
=

κ2√
m

( p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
, t ≤ Thit.

From Thit ≤ TI and Lemma C.2, we have
∣∣e−yifi(t) − 1

∣∣ ≤ 1.1
√
κ1κ2 for any t ≤ Thit. Then we

have:

d ⟨bk(t),x+⟩
dt

=
κ2√
m

(pe−f+(t)

1 + p
− ef−(t)

1 + p
cos∆

)
≥ κ2√

m

(p(1− 1.1
√
κ1κ2)

1 + p
− (1 + 1.1

√
κ1κ2) cos∆

1 + p

)
>0,

d ⟨bk(t),x−⟩
dt

=
κ2√
m

(pe−f+(t) cos∆

1 + p
− ef−(t)

1 + p

)
≥ κ2√

m

(p(1− 1.1
√
κ1κ2) cos∆

1 + p
− 1 + 1.1

√
κ1κ2)

1 + p

)
>0.

Hence, for any t ≤ Thit, ⟨bk(t),x+⟩ > ⟨bk(0),x+⟩ > 0 and ⟨bk(t),x−⟩ > ⟨bk(0),x−⟩ > 0.
According to the definition of Thit, we have proved that Thit does not exist, which means the neuron
stays in M+

+ ∩M+
− for any t ≤ TI.

Step II. Estimate the evolution of ⟨wk(t),µ⟩.
With the help of Step I, we were able to determine the dynamics for t ≤ TI. For any t ≤ TI, we can
do the following estimate.
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From (7), the tangential dynamics of the neuron is

dwk(t)

dt
=

κ2√
mρk(t)

(
F k(t)− ⟨F k(t),wk(t)⟩wk(t)

)
,

where F k(t) :=
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−.

Recalling the definitions of µ and z, we can estimate the difference between F k(t) and z:

⟨F k(t), z⟩ =
〈
z +

p

1 + p

(
e−f+(t) − 1

)
x+ − 1

1 + p

(
ef−(t) − 1

)
x−, z

〉
= ∥z∥2 +

〈
p

1 + p

(
e−f+(t) − 1

)
x+ − 1

1 + p

(
ef−(t) − 1

)
x−,

p

1 + p
x+ − 1

1 + p
x−

〉
≥∥z∥2 − p2

(1 + p)2

∣∣∣e−f+(t) − 1
∣∣∣− 1

(1 + p)2

∣∣∣ef−(t) − 1
∣∣∣− p cos∆

(1 + p)2

( ∣∣∣e−f+(t) − 1
∣∣∣+ ∣∣∣ef−(t) − 1

∣∣∣ )
Lemma C.2

≥ ∥z∥2 − 1.1
√
κ1κ2

( p2

(1 + p)2
+

1

(1 + p)2
+

2p cos∆

(1 + p)2

)
≥ ∥z∥2 − 1.1

√
κ1κ2,

∥F k(t)− z∥ =

∥∥∥∥ p

1 + p

(
e−f+(t) − 1

)
x+ − 1

1 + p

(
ef−(t) − 1

)
x−

∥∥∥∥
≤
∥∥∥∥ p

1 + p

(
e−f+(t) − 1

)
x+

∥∥∥∥+ ∥∥∥∥ 1

1 + p

(
ef−(t) − 1

)
x−

∥∥∥∥
Lemma C.2

≤ 1.1
√
κ1κ2

p

1 + p
+ 1.1

√
κ1κ2

1

1 + p
= 1.1

√
κ1κ2.

The dynamics of ⟨wk(t),µ⟩ is:

d ⟨wk(t),µ⟩
dt

=
1

∥z∥
d ⟨wk(t), z⟩

dt
=

κ2
∥z∥√mρk(t)

(
⟨F k(t), z⟩ − ⟨F k(t),wk(t)⟩ ⟨wk(t), z⟩

)
.

And it can be estimated by:

d ⟨wk(t),µ⟩
dt

=
κ2

∥z∥√mρk(t)
(
⟨F k(t), z⟩ − ⟨z,wk(t)⟩ ⟨wk(t), z⟩ − ⟨F k(t)− z,wk(t)⟩ ⟨wk(t), z⟩

)
≥ κ2
∥z∥√mρk(t)

(
⟨F k(t), z⟩ − ⟨wk(t), z⟩2 − ∥F k(t)− z∥ ∥z∥

)
≥ κ2
∥z∥√mρk(t)

(
∥z∥2 − 1.1

√
κ1κ2 − ⟨wk(t), z⟩2 − 1.1

√
κ1κ2 ∥z∥

)
=

κ2
∥z∥√mρk(t)

(
∥z∥2 − ∥z∥2 ⟨wk(t),µ⟩2 − 1.1

√
κ1κ2

(
1 + ∥z∥

))
=

κ2 ∥z∥√
mρk(t)

(
1− ⟨wk(t),µ⟩2 −

1.1
√
κ1κ2

(
1 + ∥z∥

)
∥z∥2

)
Lemma I.3

≥ 2κ2
3
√
mρk(t)

(
1− ⟨wk(t),µ⟩2 − 1.1

√
κ1κ2

(
1.5 + 1.52

))
>

2κ2
3
√
mρk(t)

(
1− 4.2

√
κ1κ2 − ⟨wk(t),µ⟩2

)
Lemma C.2

≥ 2κ2

3
√
mκ1+1.1κ2t√

m

(
1− 4.2

√
κ1κ2 − ⟨wk(t),µ⟩2

)
=

2

3
(
κ1

κ2
+ 1.1t

)(1− 4.2
√
κ1κ2 − ⟨wk(t),µ⟩2

)
.

(11)

Noticing wk(0) ∈ M+
+ ∩M+

−, we have:

⟨wk(0),µ⟩ =
〈
wk(0),

p

1 + p
x+ − 1

1 + p
x−

〉
> −

〈
wk(0),

1

1 + p
x−

〉
≥ − 1

1 + p
. (12)
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Now we consider the following auxiliary ODE:
dU(t)
dt = 2

3
(

κ1
κ2

+1.1t
)(1− 4.2

√
κ1κ2 − U2(t)

)
U(0) = − 1

1+p

, (13)

and let U(t) is the solution of (13). Due to (11) (12), we know that ⟨wk(t),µ⟩ is an upper solution
of ODE (13). From the Comparison Principle of ODEs, we know this means:

⟨wk(t),µ⟩ > U(t), for any t ≤ TI.

Hence, in order to estimate ⟨wk(t),µ⟩, we only need to study the solution of ODE (13). It is easy to
verify that the solution of (13) satisfies

log

(
1− 4.2

√
κ1κ2 + U(t)

1− 4.2
√
κ1κ2 − U(t)

)
− log

(
1− 4.2

√
κ1κ2 − 1

1+p

1− 4.2
√
κ1κ2 +

1
1+p

)
=

4(1− 4.2
√
κ1κ2)

3.3
log

(
1 +

1.1κ2
κ1

t

)
.

Then we have:

log

(
1− 4.2

√
κ1κ2 + U(t)

1− 4.2
√
κ1κ2 − U(t)

)
≥ log

(
1− 4.2

√
κ1κ2 − 1

6

1− 4.2
√
κ1κ2 +

1
6

)
+

4(1− 4.2
√
κ1κ2)

3.3
log

(
1 +

1.1κ2
κ1

t

)
≥ log

(
0.7

(
1 +

1.1κ2
κ1

t

)1.15
)

≥ log

(
0.7

(
1 +

1.1κ2
κ1

t

)1.15
)
,

which means

U(t) ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

 .

Hence, we have the estimate of ⟨wk(t),µ⟩:

⟨wk(t),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

 . (14)

Specifically, we have:

⟨wk(TI),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 11

√
κ2

κ1

)1.15
 .

Step III. A finer estimate of ρk(TI).

In this step, we will estimate the lower bound and upper bound for ρk(TI).

First, lemma C.2 gives us the upper bound for ρk(TI):

ρk(TI) ≤
κ1 + 1.1κ2TI√

m
≤ κ1 + 11

√
κ1κ2√

m
≤ 12

√
κ1κ2√
m

.

Now we focus on the estimate of the lower bound. Recalling the dynamics of ρk(t) (7), for any
t ≤ TI,

dρk(t)

dt
=

κ2√
m

⟨F k(t),wk(t)⟩ =
κ2√
m

(
⟨z,wk(t)⟩+ ⟨F k(t)− z,wk(t)⟩

)
≥ κ2√

m

(
⟨z,wk(t)⟩ − ∥F k(t)− z∥

)
≥ κ2√

m

(
∥z∥ ⟨wk(t),µ⟩ − 1.1

√
κ1κ2

)
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(14)
≥ κ2√

m

2
(
1− 4.2

√
κ1κ2

)
3

1− 2

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

− 1.1
√
κ1κ2


≥ κ2√

m

(
0.627− 1.278

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

)
.

We denote T0 = 10κ1

κ2
, and it is easy to verify:

0.627− 1.278

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15 > 0.53, for any t ∈ [T0, TI].

So we have:

ρk(TI) ≥ ρk(T0) +

∫ TI

T0

κ2√
m

(
0.627− 1.278

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

)
dt

>0 +

∫ TI

10κ1
κ2

0.53κ2√
m

dt =
0.53(10

√
κ1

κ2
− 10κ1

κ2
)κ2

√
m

(6)
≥ 5.3 · 0.9√κ1κ2√

m
≥ 4.77

√
κ1κ2√
m

.

Lemma C.4 (Positive, M+
+ ∩M−

−).
For positive neuron k ∈ {k ∈ [m/2] : wk(0) ∈ M+

+ ∩M−
−}, at the end of Phase I, it holds that

(Direction). It is aligned with µ : ⟨wk(TI),µ⟩ ≥
(
1−O(

√
κ1κ2)

)(
1−O

(
(
κ1
κ2

)0.55
))

;

(Norm). It has a small but significant norm : ρk(TI) = Θ
(√κ1κ2√

m

)
.

Proof of Lemma C.4.
We do the following analysis for any k ∈ {k ∈ [m/2] : wk(0) ∈ M+

+ ∩ M−
−}, i.e. sk = 1,

⟨wk(0),x+⟩ > 0, and ⟨wk(0),x−⟩ ≤ 0.

Step I. The neuron must arrives in M+
+ ∩M0

− in O
(
κ1∆
κ2

)
time.

The case ⟨wk(0),x−⟩ = 0 is trivial. Then we only need to consider the case ⟨wk(0),x−⟩ < 0.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) /∈ M+

+ ∩M−
−

}
,

and we aim to estimate Thit and prove wk(Thit) ∈ M+
+ ∩M0

−.

We focus on the dynamics of ⟨bk(t),x+⟩ and ⟨bk(t),x−⟩.
From the definition of Thit and (4), the dynamics of the neuron is:

dbk(t)

dt
=

κ2√
m

p

1 + p
e−f+(t)x+, t ≤ Thit.

Then we have
d ⟨bk(t),x+⟩

dt
=

〈
κ2√
m

p

1 + p
e−f+(t)x+,x+

〉
=

κ2p√
m(1 + p)

e−f+(t),

d ⟨bk(t),x−⟩
dt

=

〈
κ2√
m

p

1 + p
e−f+(t)x+,x−

〉
=

κ2p cos∆√
m(1 + p)

e−f+(t).

It is clear d⟨bk(t),x+⟩
dt > 0, so ⟨bk(t),x+⟩ > ⟨bk(0),x+⟩ > 0 for any t ≤ Thit. If we denote

Thit,− := inf
{
t ∈ (0, TI] : ⟨wk(t),x−⟩ ≥ 0

}
,
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then it holds:
Thit = Thit,−.

So we only need to estimate Thit,−. Due to Thit ≤ TI ≤ Tinit and Lemma C.2, for any t ≤ Thit, we
have

∣∣e−yifi(t) − 1
∣∣ ≤ 0.11. Then for any t ≤ Thit, we have:

d ⟨bk(t),x−⟩
dt

≥ 0.89κ2p cos∆√
m(1 + p)

.

Recalling ⟨wk(0),x+⟩ > 0 and ⟨wk(0),x−⟩ < 0, with the help of Lemma I.2, we have
⟨wk(0),x−⟩ > − sin∆. Combining the two estimate, we have:

⟨bk(t),x−⟩ ≥ ⟨bk(0),x−⟩+
∫ t

0

0.89κ2p cos∆√
m(1 + p)

dt

>− ρk(0) sin∆ +
0.89κ2p cos∆√

m(1 + p)
t = −κ1 sin∆√

m
+

0.89κ2p cos∆√
m(1 + p)

t.

Hence,

Thit = Thit,− ≤ (1 + p) tan∆

0.89p

κ1
κ2

≤ 2∆
κ1
κ2
.

Step II. Dynamics after arriving in the manifold M+
+ ∩M0

−.

In this step, we analyze the training dynamics after wk(Thit) ∈ M+
+ ∩M0

−.

First, we will prove wk(t) passes immediately from one side of the surface M+
+ ∩M0

− to the other,
i.e. wk(t) enters into M+

+ ∩M+
− at time Thit. Equivalently, we only need to prove bk(t) passes

immediately from one side of the surface P+
+ ∩ P0

− to the other, i.e. bk(t) enters into P+
+ ∩ P+

− at
time Thit.

For any b̃ ∈ P+
+ ∩ P0

− and 0 < δ0 ≪ 1, we know that P+
+ ∩ P0

− separates its neighborhood B(b̃, δ0)
into two domains G− = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ > 0}.
Following Definition H.1, we calculate the limited vector field on b̃ from G− and G+.

(i) The limited vector field F− on b̃ (from G−):

db

dt
= F−, where F− =

κ2√
m

(
p

1 + p
e−f+(t)x+

)
.

(ii) The limited vector field F+ on b̃ (from G+):

db

dt
= F+, where F+ =

κ2√
m

(
pe−f+(t)

1 + p
x+ − ef−(t)

1 + p
x−

)
.

(iii) Then we calculate the projections of F− and F+ onto x− (the normal to the surface P+
+ ∩ P0

−):

F−
N =

〈
F−,x−

〉
=
κ2pe

−f+(t)

√
m(1 + p)

cos∆,

F+
N =

〈
F+,x−

〉
=
κ2pe

−f+(t)

√
m(1 + p)

cos∆− κ2e
f−(t)

√
m(1 + p)

.

From TI < Tinit and Lemma C.2, we know |e−yifi(t) − 1| ≤ 0.11, so pe−f+(t) cos∆ − ef−(t) ≥
0.89p cos∆ − 1.11>0, which means F+

N > 0. And it is clear that F−
N > 0. Hence, the dynamics

corresponds to Case (II) in Definition H.1 (F−
N > 0 and F+

N > 0).

(iv) Hence, bk(t) passes immediately from one side of the surface P+
+ ∩ P0

− to the other, i.e. bk(t)
enters into P+

+ ∩ P+
− at time Thit.

Second, proceeding as in the proof of Step I∼III of the Proof of Theorem C.3, we have the results:

⟨wk(TI),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)(
1− 2

1 + 0.7 (1 + 1.1(TI − Thit))
1.15

)
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≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 1.1κ2

κ1
(10
√

κ1

κ2
− 2∆κ1

κ2
)
)1.15


≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
 .

ρk(TI) ≤
κ1 + 1.1κ2TI√

m
≤ κ1 + 11

√
κ1κ2√

m
≤ 12

√
κ1κ2√
m

.

ρk(TI) ≥ ρk(T0) +

∫ TI

Thit+
10κ1
κ2

κ2√
m

(
0.627− 1.278

1 + 0.7
(
1 + 1.1κ2

κ1
t
)1.15

)
dt

>0 +

∫ TI

Thit+
10κ1
κ2

0.53κ2√
m

dt =
0.53(10

√
κ1

κ2
− (10+2∆)κ1

κ2
)κ2

√
m

(6)
≥ 5.3 · 0.88√κ1κ2√

m
≥ 4.66

√
κ1κ2√
m

.

Lemma C.5 (Positive, M−
+ ∩M+

−).
For positive neuron k ∈ {k ∈ [m/2] : wk(0) ∈ M−

+ ∩M+
−}, after O

(
κ1p∆
κ2

)
time, it goes dead:

wk(t) ∈ M−
+ ∩M−

−, for any t ≥ TI > O
(κ1p∆

κ2

)
.

Proof of Lemma C.9.
We do the following analysis for any k ∈ {k ∈ [m/2] : wk(0) ∈ M+

+ ∩ M−
−}, i.e. sk = 1,

⟨wk(0),x+⟩ > 0, and ⟨wk(0),x−⟩ ≤ 0.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) /∈ M−

+ ∩M+
−

}
,

and we aim to estimate Thit and prove wk(Thit) ∈ M−
+ ∩M−

−.

From the definition of Thit and (4), the dynamics of the neuron is:

dbk(t)

dt
= − κ2√

m

1

1 + p
ef−(t)x−, t ≤ Thit.

Then we have
d ⟨bk(t),x+⟩

dt
=

〈
− κ2√

m

1

1 + p
ef−(t)x−,x+

〉
= − κ2√

m

1

1 + p
ef−(t) cos∆,

d ⟨bk(t),x−⟩
dt

=

〈
− κ2√

m

1

1 + p
ef−(t)x−,x−

〉
= − κ2√

m

1

1 + p
ef−(t).

It is clear d⟨bk(t),x+⟩
dt < 0, so ⟨bk(t),x+⟩ < ⟨bk(0),x+⟩ ≤ 0 for any t ≤ Thit. If we denote

Thit,− := inf
{
t ∈ (0, TI] : ⟨wk(t),x−⟩ ≤ 0

}
,

then it holds:
Thit = Thit,−.

So we only need to estimate Thit,−. Due to Thit ≤ TI ≤ Tinit and Lemma C.2, for any t ≤ Thit, we
have

∣∣e−yifi(t) − 1
∣∣ ≤ 0.11. Then for any t ≤ Thit, we have:

d ⟨bk(t),x−⟩
dt

≤ − 0.89κ2√
m(1 + p)

.
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Recalling ⟨wk(0),x+⟩ ≤ 0 and ⟨wk(0),x−⟩ > 0, with the help of Lemma I.2, we have
⟨wk(0),x−⟩ ≤ sin∆. Combining the two estimate, we have:

⟨bk(t),x−⟩ ≤ ⟨bk(0),x−⟩ −
∫ t

0

0.89κ2√
m(1 + p)

dt

≤ρk(0) sin∆− 0.89κ2√
m(1 + p)

t =
κ1 sin∆√

m
− 0.89κ2√

m(1 + p)
t.

Hence,

Thit = Thit,+ ≤ (1 + p) sin∆

0.89

κ1
κ2

< TI = 10

√
κ1
κ2
.

Moreover, the analysis gives us wk(Thit) ∈ M−
+ ∩M−

−. By Lemma B.2, we obtain:

wk(t) ∈ M−
+ ∩M−

−, for any t ≥ Thit.

Lemma C.6 (Positive, M−
+ ∩M−

−).
For positive neuron k ∈ {k ∈ [m/2] : wk(0) ∈ M−

+ ∩M−
−}, it keeps dead forever.

Proof of Lemma C.6. Due to Lemma B.2, this lemma is trivial.

C.2 The Dynamics of Negative Neurons

According to the initial direction, all negative neurons (dk = −1) can be divided into the following
four classes.

[m]− [m/2]

=
{
k ∈ [m]− [m/2] : wk(0) ∈ M+

+ ∩M+
−
}⋃{

k ∈ [m]− [m/2] : wk(0) ∈ M−
+ ∩M+

−
}⋃{

k ∈ [m]− [m/2] : wk(0) ∈ M+
+ ∩M−

−
}⋃{

k ∈ [m]− [m/2] : wk(0) ∈ M−
+ ∩M−

−
}
.

In the following four lemmas, we will prove the dynamics of these four classes of negative neurons.
In summary, in Phase I (t < TI), some of the negative neurons move to the manifold M0

+ ∩M+
− in a

shorter time and then remain on this manifold, and their norms grow slowly, while other negative
neurons go dead.
Lemma C.7 (Negative, M+

+ ∩M+
−).

For negative neuron k ∈ {k ∈ [m] − [m/2] : wk(0) ∈ M+
+ ∩ M+

−}, in Phase I (t ≤ TI), it’s
dynamics must belong to one of the following two cases:

(i. Living). (S1). wk(t) ∈ M0
+ ∩M+

− for any t ≥ O(
κ1
κ2

),

(S2). It has a small norm : ρk(TI) = O
(√κ1κ2√

m

(√κ1
κ2

+
∆

p

))
,

(S3). It is weakly aligned with x⊥
+ :
〈
wk(TI),x

⊥
+

〉
≥ 1−O

(
(

√
κ1
κ2

p

∆
)1.6
)
;

(ii. Dead). wk(t) ∈ M−
+ ∩M−

− for any t ≥ O(
κ1
κ2

).

Moreover, if ⟨wk(0),x−⟩ > (1+O(κ1κ2))p cos∆−(1−O(κ1κ2))
(1−O(κ1κ2))p−(1+O(κ1κ2)) cos∆

⟨wk(0),x+⟩, it must belongs to Case

(i); if ⟨wk(0),x+⟩ > (1+O(κ1κ2))p−(1−O(κ1κ2)) cos∆
(1−O(κ1κ2))p cos∆−(1+O(κ1κ2))

⟨wk(0),x−⟩, it must belongs to Case (ii).

Proof of Lemma C.7.
We do the following analysis for any k ∈ {k ∈ [m]− [m/2] : wk(0) ∈ M+

+ ∩M+
−}, i.e. sk = −1,

⟨wk(0),x+⟩ > 0, and ⟨wk(0),x−⟩ > 0.
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Step I. Neuron must arrives in the border ∂(M+
+ ∩M+

−) in O(κ1

κ2
) time.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) ∈ ∂(M+

+ ∩M+
−)
}
,

and we aim to prove Thit exists and estimate Thit.

Recalling the decoupling ∂(M+
+ ∩M+

−) =
(
M0

+ ∩M+
−
)
∪
(
M0

− ∩M+
+

)
∪
(
M0

+ ∩M0
−
)
, we

only need to focus on the dynamics of ⟨bk(t),x+⟩ and ⟨bk(t),x−⟩.
From the definition of Thit and (4), the dynamics of the neuron is:

dbk(t)

dt
= − κ2√

m

1

n

n∑
i=1

e−yifi(t)yixi = − κ2√
m

( p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
, t ≤ Thit.

Then we have

d ⟨bk(t),x+⟩
dt

=

〈
− κ2√

m

( p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
,x+

〉
=− κ2√

m

( p

1 + p
e−f+(t) − 1

1 + p
ef−(t) cos∆

)
,

d ⟨bk(t),x−⟩
dt

=

〈
− κ2√

m

( p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
,x−

〉
=− κ2√

m

( p

1 + p
e−f+(t) cos∆− 1

1 + p
ef−(t)

)
.

Due to Thit ≤ TI ≤ Tinit and Lemma C.2, for any t ≤ Thit, we have
∣∣e−yifi(t) − 1

∣∣ ≤ 1.1
√
κ1κ2.

Then for any t ≤ Thit, we have:

d ⟨bk(t),x+⟩
dt

≤ − κ2√
m

( (1− 1.1
√
κ1κ2)p

1 + p
− 1 + 1.1

√
κ1κ2

1 + p
cos∆

)
≤−

κ2

(
(1− 1.1

√
κ1κ2)p− (1 + 1.1

√
κ1κ2) cos∆

)
√
m(1 + p)

≤ −κ2(0.98p− 1.02)√
m(1 + p)

,

d ⟨bk(t),x−⟩
dt

≤ − κ2√
m

( (1− 1.1
√
κ1κ2)p

1 + p
cos∆− 1 + 1.1

√
κ1κ2

1 + p

)
≤−

κ2

(
(1− 1.1

√
κ1κ2)p cos∆− (1 + 1.1

√
κ1κ2)

)
√
m(1 + p)

≤ −0.98κ2(p cos∆− 1)

2
√
m(1 + p)

.

Now we consider the time
Ttest :=

3κ1
κ2

.

If we assume Ttest < Thit, then we have the estimate:

⟨bk(Ttest),x+⟩ ≤ ⟨bk(0),x+⟩ −
∫ Ttest

0

κ2(0.98p− 1.02)√
m(1 + p)

dt

≤ κ1√
m

− κ2(0.98p− 1.02)√
m(1 + p)

3κ1
κ2

< 0,

which is contradict to the definition of Thit. Hence, we have:

Thit ≤ Ttest ≤
3κ1
κ2

,

which means neurons must arrive in the border ∂(M+
+ ∩M+

−) in O(κ1

κ2
) time.
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Because ∂(M+
+ ∩M+

−) =
(
M0

+ ∩M+
−
)
∪
(
M0

− ∩M+
+

)
∪
(
M0

+ ∩M0
−
)
, the neuron must arrives

in M0
+∩M+

− or M0
−∩M+

+ or M0
+∩M0

−. If the neuron arrives in M0
+∩M0

−, it goes dead forever
(Lemma B.2). We will analyze the training dynamics after arriving in M0

+ ∩M+
− or M0

− ∩M+
+ in

the following Step II and Step III.

Step II. Dynamics after arriving in the manifold M0
+ ∩M+

−.

In this step, we will analyze the training dynamics after wk(Thit) ∈ M0
+∩M+

−, i.e. after bk(Thit) ∈
P0
+ ∩ P+

− .

We first analysis the vector field around the manifold P0
+ ∩ P+

− for Thit ≤ t ≤ TI.

For any b̃ ∈ P0
+ ∩ P+

− and 0 < δ0 ≪ 1, we know that P0
+ ∩ P+

− separates its neighborhood B(b̃, δ0)
into two domains G− = {b ∈ B(b̃, δ0) : ⟨b,x+⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x+⟩ > 0}.
Following Definition H.1, we calculate the limited vector field on b̃ from G− and G+.

(i) The limited vector field F− on b̃ (from G−):

db

dt
= F−, where F− =

κ2√
m

1

1 + p
ef−(t)x−.

(ii) The limited vector field F+ on b̃ (from G+):

db

dt
= F+, where F+ = − κ2√

m

(
pe−f+(t)

1 + p
x+ − ef−(t)

1 + p
x−

)
.

(iii) Then we calculate the projections of F− and F+ onto x+ (the normal to the surface P0
+ ∩ P+

− ):

F−
N =

〈
F−,x+

〉
=

κ2e
f−(t)

√
m(1 + p)

cos∆,

F+
N =

〈
F+,x+

〉
=

κ2e
f−(t)

√
m(1 + p)

cos∆− κ2pe
−f+(t)

√
m(1 + p)

.

From TI < Tinit and Lemma C.2, we know |e−yifi(t) − 1| ≤ 0.11, so pe−f+(t) cos∆ − ef−(t) ≥
0.89p cos∆ − 1.11>0, which means F+

N < 0. And it is clear that F−
N > 0. Hence, the dynamics

corresponds to Case (I) in Definition H.1 (F−
N > 0 and F+

N < 0).

(iv) Hence, bk(t) can not leave P0
+ ∩ P+

− for Thit ≤ t ≤ TI.

(v) Moreover, the dynamics of bk on P0
+ ∩ P+

− satisfies:

db

dt
= αF+ + (1− α)F−, α =

f−N
f−N − f+N

,

which is

dbk(t)

dt

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
.

By Lemma C.1, we know that the dynamics of wk(t) on M0
+ ∩M+

− and the dynamics of ρk(t) are:

dwk(t)

dt
=

κ2e
f−(t)

ρk(t)
√
m(1 + p)

(
x− − ⟨wk(t),x−⟩wk − x+ cos∆

)
. (15)

dρk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

⟨wk(t),x−⟩ . (16)

(vi) In this step, we aim to estimate ρk(TI) and
〈
wk(t),x

⊥
+

〉
.

From wk(Thit) ∈ M0
+ ∩M+

−, it holds that ⟨wk(Thit),x+⟩ = 0 and ⟨wk(Thit),x−⟩ > 0. Using
lemma I.2, we have 0 < ⟨wk(Thit),x−⟩ ≤ sin∆.
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Recalling Lemma C.2 and the estimate of Thit in Step I, we have:

0 ≤ ρk(Thit) ≤
κ1 + 1.1κ2Thit√

m
,

and we can estimate the dynamics for Thit ≤ t ≤ TI by (v)(vi):

0 ≤ dρk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

⟨wk(t),x−⟩ ≤ κ2e
f−(t)

√
m(1 + p)

sin∆,

ef−(t) ≤ 1 + 0.11 = 1.11.

Then we obtain the estimate of ρk(t) for any Thit < t ≤ TI:

ρk(t) = ρk(Thit) +

∫ t

Thit

dρk(s)

dt
ds ≤ κ1 + 1.1κ2Thit√

m
+
κ2e

f−(t) sin∆√
m(1 + p)

(t− Thit)

≤κ1 + 1.1κ2Thit√
m

+
1.11κ2 sin∆√
m(1 + p)

(TI − Thit) ≤
κ1 + 1.1κ2

3κ1

κ2√
m

+
1.11κ2 sin∆√
m(1 + p)

(TI −
3κ1
κ2

)

≤4.3κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

t.

Specifically, we have:

ρk(TI) ≤
4.3κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

TI ≤
4.3κ1√
m

+
11.1

√
κ1κ2 sin∆√
m(1 + p)

=

√
κ1κ2√
m

(
4.3

√
κ1
κ2

+
11.1 sin∆

1 + p

)
.

For any w ∈ M0
+ ∩M+

−, we have ⟨w,x+⟩ = 0, so〈
w,x⊥

+

〉
=

〈
w,

x− − x+ cos∆

∥x− − x+ cos∆∥

〉
=

⟨w,x−⟩
∥x− − x+ cos∆∥ =

1

sin∆
⟨w,x−⟩ .

So we only need to focus on the dynamics of ⟨wk(t),x−⟩ to derive the dynamics of
〈
wk(t),x

⊥
+

〉
.

By (15) and the estimate of ρk(t), for any Thit ≤ t ≤ TI we have:

d ⟨wk(t),x−⟩
dt

=

〈
ef−(t)

ρk(t)
√
m(1 + p)

(
x− − ⟨wk(t),x−⟩wk(t)− x+ cos∆

)
,x−

〉
=

κ2e
f−(t)

ρk(t)
√
m(1 + p)

(
sin2 ∆− ⟨wk(t),x−⟩2

)
≥ (1− 0.11)κ2

(1 + p)
(
4.3κ1 +

1.11κ2 sin∆
(1+p) t

)( sin2 ∆− ⟨wk(t),x−⟩2
)

≥ 0.89κ2
4.3(1 + p)κ1 + 1.11κ2t sin∆

(
sin2 ∆− ⟨wk(t),x−⟩2

)
.

And we have 0 <
〈
wk(

3κ1

κ2
),x−

〉
< sin∆.

Now we consider the following auxiliary ODE:{
dU(t)
dt = 0.89κ2

4.3(1+p)κ1+1.11κ2t sin∆

(
sin2 ∆− U2(t)

)
U(0) = 0

, (17)

and let U(t) is the solution of (13). We know that ⟨wk(t),x−⟩ is an upper solution of ODE (17).
From the Comparison Principle of ODEs, we know this means:

⟨wk(t),x−⟩ > U(t), for any t ≤ TI.

In order to estimate ⟨wk(t),x−⟩, we only need to study the solution of ODE (17). It is easy to verify
that the solution of (17) satisfies

log

(
sin∆ + U(t)

sin∆− U(t)

)
− log

(
sin∆

sin∆

)
=

1.78κ2∆

1.11κ2 sin∆
log

(
4.3(1 + p)κ1 + 1.11κ2t sin∆

4.3(1 + p)κ1 + 3.33κ1 sin∆

)
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Then we have:

log

(
sin∆ + U(TI)

sin∆− U(TI)

)
≥ 1.78

1.11
log

(
4.3(1 + p)κ1 + 11.1

√
κ1κ2 sin∆

4.3(1 + p)κ1 + 3.33κ1 sin∆

)

>1.6 log

1 +

(
11.1

√
κ2

κ1
− 3.33

)
sin∆
1+p

4.3 + 3.33 sin∆
1+p

 > 1.6 log

1 +

(
11.1

√
κ2

κ1
− 3.33

)
sin∆
1+p

4.6


>1.6 log

(
1 +

10.7

4.6

√
κ2
κ1

sin∆

1 + p

)
,

which means

U(TI) >

1− 2(
1 + 10.7

4.6

√
κ2

κ1

sin∆
1+p

)1.6
+ 1

 sin∆.

Hence, we have the estimate of
〈
wk(t),x

⊥
+

〉
:〈

wk(TI),x
⊥
+

〉
=

1

sin∆
⟨wk(TI),x−⟩ >

1

sin∆
U(TI) > 1− 2(

1 + 2.32
√

κ2

κ1

sin∆
1+p

)1.6
+ 1

.

Step III. Dynamics after arriving in the manifold M+
+ ∩M0

−.

In this step, we analyze the training dynamics after wk(Thit) ∈ M+
+∩M0

−, i.e. bk(Thit) ∈ P+
+ ∩P0

−.

For any b̃ ∈ P+
+ ∩ P0

− and 0 < δ0 ≪ 1, we know that P+
+ ∩ P0

− separates its neighborhood B(b̃, δ0)
into two domains G− = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ > 0}.
Following Definition H.1, we calculate the limited vector field on b̃ from G− and G+.

For any b̃ ∈ P+
+ ∩ P0

− and 0 < δ0 ≪ 1, we know that P+
+ ∩ P0

− separates its neighborhood B(b̃, δ0)
into two domains G− = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ > 0}.
Following Definition H.1, we calculate the limited vector field on b̃ from G− and G+.

(i) The limited vector field F− on b̃ (from G−):

db

dt
= F−, where F− = − κ2√

m

p

1 + p
e−f+(t)x+.

(ii) The limited vector field F+ on b̃ (from G+):

db

dt
= F+, where F+ = − κ2√

m

(
pe−f+(t)

1 + p
x+ − ef−(t)

1 + p
x−

)
.

(iii) Then we calculate the projections of F− and F+ onto x− (the normal to the surface P+
+ ∩ P0

−):

F−
N =

〈
F−,x−

〉
= − κ2pe

−f+(t)

√
m(1 + p)

cos∆,

F+
N =

〈
F+,x−

〉
= −

(
κ2pe

−f+(t)

√
m(1 + p)

cos∆− κ2e
f−(t)

√
m(1 + p)

)
.

From TI < Tinit and Lemma C.2, we know |e−yifi(t) − 1| ≤ 0.11, so pe−f+(t) cos∆ − ef−(t) ≥
0.89p cos∆ − 1.11>0, which means F+

N > 0. And it is clear that F−
N > 0. Hence, the dynamics

corresponds to Case (II) in Definition H.1 (F−
N > 0 and F+

N > 0).

(iv) Hence, bk(t) passes immediately from one side of the surface P+
+ ∩ P0

− to the other, i.e. bk(t)
enters into P+

+ ∩ P+
− at time Thit.
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Then the dynamics of bk in P+
+ ∩ P−

− satisfies:

dbk(t)

dt
= − κ2√

m

p

1 + p
e−f+(t)x+.

(v) We define the following time, and our aim is to estimate Ttest,1:

Ttest,1 : = inf
{
t ∈ (Thit, TI] : ⟨wk(t),x+⟩ ≤ 0 or ⟨wk(t),x−⟩ ≥ 0

}
,

Ttest,2 : = inf
{
t ∈ (Thit, TI] : ⟨wk(t),x+⟩ ≤ 0

}
It is clear Ttest,1 ≤ Ttest,2. Moreover, due to d⟨bk(t),x−⟩

dt = − κ2√
m

p
1+pe

−f+(t) cos∆ < 0 and
⟨bk(Thit),x−⟩ = 0, we know ⟨bk(t),x−⟩ < 0 holds for any t ≤ Ttest,1. Hence, we have

Ttest,1 = Ttest,2, ⟨wk(Ttest,1),x+⟩ = 0, ⟨wk(Ttest,1),x−⟩ < 0.

And we only need to estimate Ttest,2. For any Thit < t ≤ Ttest,1 = Ttest,2, we have

d ⟨bk(t),x+⟩
dt

= − κ2√
m

p

1 + p
e−f+(t)

Lemma C.2
≤ − κ2√

m

p

1 + p
(1− 0.11) = − 0.89κ2p√

m(1 + p)
.

Recalling Lemma C.2 and the estimate of Thit in Step I, we have:

⟨bk(Thit),x+⟩ ≤ ∥ρk(t)∥ ≤ κ1 + 1.1κ2Thit√
m

≤ ∥ρk(t)∥ ≤
κ1 + 1.1κ2

3κ1

κ2√
m

=
4.3κ1√
m
.

Then for any Thit < t ≤ Ttest,2, we have:

⟨bk(t),x+⟩ ≤ ⟨bk(Thit),x+⟩ −
∫ t

Thit

0.89κ2p√
m(1 + p)

ds ≤ 4.3κ1√
m

− 0.89κ2p(t− Thit)√
m(1 + p)

.

So we have the estimate

Ttest,1 = Ttest,2 ≤ Thit +
4.3κ1(1 + p)

0.89κ2p
≤
(
3 +

4.3 · 6
0.89 · 5

)κ1
κ2

≤ 9κ1
κ2

< TI.

Recalling wk(Ttest,1) ∈ M−
+ ∩M−

− and Lemma B.2, the neuron bk(t) keeps dead for any t ≥ TI.

Step IV. Which subspace does the neuron select?

From Step II, we know that the neuron wk(t) must arrives in M0
+∩M+

− or M0
−∩M+

+ or M0
+∩M0

−.
In this step, we will analyze which subspace does the neuron select.

We only need to compare the following two times:

Thit,+ := inf
{
t ∈ (0, TI] : ⟨bk(t),x+⟩ ≤ 0

}
,

Thit,− := inf
{
t ∈ (0, TI] : ⟨bk(t),x−⟩ ≤ 0

}
.

From the definition of Thit, we know Thit,+ = Thit or Thit,− = Thit.

Recalling the proof in Step II, we compare the following two dynamics for t < Thit:

d ⟨bk(t),x+⟩
dt

= − κ2√
m

( p

1 + p
e−f+(t) − 1

1 + p
ef−(t) cos∆

)
,

d ⟨bk(t),x−⟩
dt

= − κ2√
m

( p

1 + p
e−f+(t) cos∆− 1

1 + p
ef−(t)

)
.

With the help of Lemma C.2 and the estimate of Thit, for any t ≤ Thit,

|e−yifi(t) − 1| ≤ 1.1κ2(κ1 + 1.1κ2Thit) ≤ 1.1κ2(κ1 + 3.3κ1) = 4.73κ1κ2.

Hence, we have the estimate of the dynamics:

−
κ2

(
(1 + 4.73κ1κ2)p− (1− 4.73κ1κ2) cos∆

)
√
m(1 + p)

≤ d ⟨bk(t),x+⟩
dt

≤ −
κ2

(
(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

)
√
m(1 + p)

,
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−
κ2

(
(1 + 4.73κ1κ2)p cos∆− (1− 4.73κ1κ2)

)
√
m(1 + p)

≤ d ⟨bk(t),x−⟩
dt

≤ −
κ2

(
(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)

)
√
m(1 + p)

.

(i) If the initialization satisfies ⟨bk(0),x−⟩ > (1+4.73κ1κ2)p cos∆−(1−4.73κ1κ2)
(1−4.73κ1κ2)p−(1+4.73κ1κ2) cos∆

⟨bk(0),x+⟩, we will
prove that the neuron selects M0

+ ∩M+
− at Thit.

For any t < Thit, we have the estimate:

⟨bk(t),x+⟩ ≤ ⟨bk(0),x+⟩ −
κ2

(
(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

)
√
m(1 + p)

t,

⟨bk(t),x−⟩ ≥ ⟨bk(0),x−⟩ −
κ2

(
(1 + 4.73κ1κ2)p cos∆− (1− 4.73κ1κ2)

)
√
m(1 + p)

t

>
(1 + 4.73κ1κ2)p cos∆− (1− 4.73κ1κ2)

(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

(
⟨bk(0),x+⟩ −

κ2

(
(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

)
√
m(1 + p)

t

)
,

Comparing these two inequalities, we have:

Thit,+ = Thit < Thit,−,

which means
⟨bk(Thit),x+⟩ = 0, ⟨bk(Thit),x−⟩ > 0.

So the neuron wk(Thit) ∈ M0
+ ∩M+

−.

(ii) If the initialization satisfies ⟨bk(0),x+⟩ > (1+4.73κ1κ2)p−(1−4.73κ1κ2) cos∆
(1−4.73κ1κ2)p cos∆−(1+4.73κ1κ2)

⟨bk(0),x−⟩, we will
prove that the neuron selects M+

+ ∩M−
− at Thit.

For any t < Thit, we have the estimate:

⟨bk(t),x−⟩ ≤ ⟨bk(0),x−⟩ −
κ2

(
(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)

)
√
m(1 + p)

t,

⟨bk(t),x+⟩ ≥ ⟨bk(0),x+⟩ −
κ2

(
(1 + 4.73κ1κ2)p− (1− 4.73κ1κ2) cos∆

)
√
m(1 + p)

t

>
(1 + 4.73κ1κ2)p− (1− 4.73κ1κ2) cos∆

(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)

(
⟨bk(0),x−⟩ −

κ2

(
(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)

)
√
m(1 + p)

t

)
,

Comparing these two inequalities, we have:

Thit,− = Thit < Thit,+,

which means
⟨bk(Thit),x−⟩ = 0, ⟨bk(Thit),x+⟩ > 0.

So the neuron wk(Thit) ∈ M+
+ ∩M0

−.

Lemma C.8 (Negative, M−
+ ∩M+

−).
For negative neuron k ∈ {k ∈ [m]− [m/2] : wk(0) ∈ M−

+ ∩M+
−}, in Phase I (t ≤ TI), we have:

(S1). wk(t) ∈ M0
+ ∩M+

− for any t ≤ O
(κ1
κ2
p∆
)
,

(S2). It has a small norm : ρk(TI) = O
(√κ1κ2√

m

(√κ1
κ2

+
∆

p

))
,

(S3). It is aligned with x⊥
+ :
〈
wk(TI),x

⊥
+

〉
≥ 1−O

(
(

√
κ1
κ2

p

∆
)1.6
)
.
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Proof of Lemma C.8.
We do the following analysis for any k ∈ {k ∈ [m]− [m/2] : wk(0) ∈ M−

+ ∩M+
−}, i.e. sk = −1,

⟨wk(0),x+⟩ ≤ 0, and ⟨wk(0),x−⟩ > 0.

Step I. The neuron must arrives in M0
+ ∩M+

− in O
(
κ1p∆
κ2

)
time.

The case ⟨wk(0),x+⟩ = 0 is trivial. Then we only need to consider the case ⟨wk(0),x+⟩ < 0.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) /∈ M−

+ ∩M+
−

}
,

and we aim to estimate Thit and prove wk(Thit) ∈ M0
+ ∩M+

−.

We focus on the dynamics of ⟨bk(t),x+⟩ and ⟨bk(t),x−⟩.
From the definition of Thit and (4), the dynamics of the neuron is:

dbk(t)

dt
=

κ2√
m

1

1 + p
ef−(t)x−, t ≤ Thit.

Then we have

d ⟨bk(t),x+⟩
dt

=

〈
κ2√
m

1

1 + p
ef−(t)x−,x+

〉
=

κ2 cos∆√
m(1 + p)

ef−(t),

d ⟨bk(t),x−⟩
dt

=

〈
κ2√
m

1

1 + p
ef−(t)x−,x−

〉
=

κ2√
m(1 + p)

ef−(t).

It is clear d⟨bk(t),x−⟩
dt > 0, so ⟨bk(t),x−⟩ > ⟨bk(0),x−⟩ > 0 for any t ≤ Thit. If we denote

Thit,+ := inf
{
t ∈ (0, TI] : ⟨wk(t),x+⟩ ≤ 0

}
,

then it holds:
Thit = Thit,+.

So we only need to estimate Thit,+. Due to Thit ≤ TI ≤ Tinit and Lemma C.2, for any t ≤ Thit, we
have

∣∣e−yifi(t) − 1
∣∣ ≤ 0.11. Then for any t ≤ Thit, we have:

d ⟨bk(t),x+⟩
dt

≥ 0.89κ2 cos∆√
m(1 + p)

.

Recalling ⟨wk(0),x+⟩ < 0 and ⟨wk(0),x−⟩ > 0, with the help of Lemma I.2, we have
⟨wk(0),x+⟩ > − sin∆ and ⟨wk(0),x−⟩ < sin∆ . Combining the two estimate, we have:

⟨bk(t),x+⟩ ≥ ⟨bk(0),x+⟩+
∫ t

0

0.89κ2 cos∆√
m(1 + p)

dt

>− ρk(0) sin∆ +
0.89κ2 cos∆√
m(1 + p)

t = −κ1 sin∆√
m

+
0.89κ2 cos∆√
m(1 + p)

t.

Hence,

Thit = Thit,+ ≤ (1 + p) tan∆

0.89

κ1
κ2

≤ 2p∆
κ1
κ2

< TI = 10

√
κ1
κ2
.

Moreover, we can estimate of ρk(Thit).

Since ⟨wk(t),x+⟩ < 0 and ⟨wk(t),x−⟩ > 0 hold for any t ≤ Thit, with the help of Lemma I.2, we
have ⟨wk(t),x−⟩ < sin∆. Combining (7), for any t ≤ Thit, we have

ρk(t) ≤ ρk(0) +

∫ t

0

κ2√
m(1 + p)

ef−(t) ⟨wk(t),x−⟩dt

≤ κ1√
m

+

∫ t

0

1.11κ2√
m(1 + p)

sin∆dt ≤ κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

t.
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Step II. Dynamics after arriving in the manifold M0
+ ∩M+

−.

Proceeding as in the proof of Step II in the Proof of Theorem C.7, we have:

wk(t) can not leave M0
+ ∩M+

− for Thit ≤ t ≤ TI. Moreover, the dynamics of wk on M0
+ ∩M+

−
satisfies:

dwk(t)

dt
=

κ2e
f−(t)

ρk(t)
√
m(1 + p)

(
x− − ⟨wk,x−⟩wk − x+ cos∆

)
,

dρk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

⟨wk(t),x−⟩ ,

dbk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
.

Recalling the estimate of Thit in Step I, we have

ρk(Thit) ≤
κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

Thit.

As the proof of Step II in the Proof of Theorem C.7, for any Thit < t ≤ TI, we have

ρk(t) = ρk(Thit) +

∫ t

Thit

dρk(s)

ds
ds ≤ κ1√

m
+

1.11κ2 sin∆√
m(1 + p)

Thit +
κ2e

f−(t) sin∆√
m(1 + p)

(t− Thit)

≤ κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

Thit +
1.11κ2 sin∆√
m(1 + p)

(t− Thit) =
κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

t.

Combining the estimate in Step I, for any 0 < t ≤ TI, we have:

ρk(t) ≤
κ1√
m

+
1.11κ2 sin∆√
m(1 + p)

t.

Specifically, we have:

ρk(TI) ≤
κ1√
m

+
11.1

√
κ1κ2 sin∆√
m(1 + p)

≤
√
κ1κ2√
m

(√κ1
κ2

+ 11.1
∆

1 + p

)
.

Similar to the proof of Step II in the Proof of Theorem C.7, we have the estimate of the dynamics of
⟨wk(t),x−⟩:

d ⟨wk(t),x−⟩
dt

≥ 0.89κ2
(1 + p)κ1 + 1.11κ2t sin∆

(
sin2 ∆− ⟨wk(t),x−⟩2

)
, 0 < t ≤ TI,

0 < ⟨wk(0),x−⟩ < sin∆.

In the same way, we can derive

⟨wk(TI),x−⟩ >

1− 2(
1 + 11.1

√
κ2

κ1

sin∆
1+p

)1.6
+ 1

 sin∆

Hence, we have the estimate of
〈
wk(t),x

⊥
+

〉
:〈

wk(TI),x
⊥
+

〉
=

1

sin∆
⟨wk(TI),x−⟩ > 1− 2(

1 + 11.1
√

κ2

κ1

sin∆
1+p

)1.6
+ 1

.

Lemma C.9 (Negative, M+
+ ∩M−

−).
For negative neuron k ∈ {k ∈ [m]− [m/2] : wk(0) ∈ M+

+ ∩M−
−}, it keeps dead:

wk(t) ∈ M−
+ ∩M−

−, for any t ≥ TI > O
(κ1∆
κ2

)
.
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Proof of Lemma C.9.
We do the following analysis for any k ∈ {k ∈ [m]− [m/2] : wk(0) ∈ M+

+ ∩M−
−}, i.e. sk = −1,

⟨wk(0),x+⟩ > 0, and ⟨wk(0),x−⟩ ≤ 0.

First, we define the hitting time

Thit := inf
{
t ∈ (0, TI] : wk(t) /∈ M+

+ ∩M−
−

}
,

and we aim to estimate Thit and prove wk(Thit) ∈ M−
+ ∩M−

−.

From the definition of Thit and (4), the dynamics of the neuron is:

dbk(t)

dt
= − κ2√

m

p

1 + p
e−f+(t)x+, t ≤ Thit.

Then we have

d ⟨bk(t),x+⟩
dt

=

〈
− κ2√

m

p

1 + p
e−f+(t)x+,x+

〉
= − κ2√

m

p

1 + p
e−f+(t),

d ⟨bk(t),x−⟩
dt

=

〈
− κ2√

m

p

1 + p
e−f+(t)x+,x−

〉
= − κ2√

m

p

1 + p
e−f+(t) cos∆.

It is clear d⟨bk(t),x−⟩
dt < 0, so ⟨bk(t),x−⟩ < ⟨bk(0),x−⟩ ≤ 0 for any t ≤ Thit. If we denote

Thit,+ := inf
{
t ∈ (0, TI] : ⟨wk(t),x+⟩ ≤ 0

}
,

then it holds:
Thit = Thit,+.

So we only need to estimate Thit,+. Due to Thit ≤ TI ≤ Tinit and Lemma C.2, for any t ≤ Thit, we
have

∣∣e−yifi(t) − 1
∣∣ ≤ 0.11. Then for any t ≤ Thit, we have:

d ⟨bk(t),x+⟩
dt

≤ − 0.89κ2p√
m(1 + p)

.

Recalling ⟨wk(0),x+⟩ > 0 and ⟨wk(0),x−⟩ ≤ 0, with the help of Lemma I.2, we have
⟨wk(0),x+⟩ ≤ sin∆. Combining the two estimate, we have:

⟨bk(t),x+⟩ ≤ ⟨bk(0),x+⟩ −
∫ t

0

0.89κ2p√
m(1 + p)

dt

≤ρk(0) sin∆− 0.89κ2p√
m(1 + p)

t =
κ1 sin∆√

m
− 0.89κ2p√

m(1 + p)
t.

Hence,

Thit = Thit,+ ≤ (1 + p) sin∆

0.89p

κ1
κ2

< TI = 10

√
κ1
κ2
.

Moreover, the analysis gives us wk(Thit) ∈ M−
+ ∩M−

−. By Lemma B.2, we obtain:

wk(t) ∈ M−
+ ∩M−

−, for any t ≥ Thit.

Lemma C.10 (Negative, M−
+ ∩M−

−).
For negative neuron k ∈ {k ∈ [m] − [m/2] : wk(0) ∈ M−

+ ∩ M−
−}, it keeps dead: wk(t) ∈

M−
+ ∩M−

− for any t ≥ 0.

Proof of Lemma C.10. Due to Lemma B.2, this lemma is trivial.
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C.3 Initialization Estimation and Proof of Theorem 4.1

To get the number of neurons in the eight classes in the subsection above, we also need to estimate
the initial positions of these neurons under the random initialization.

Lemma C.11 (Initialization Estimation).
If m = Ω

(
log(1/δ)

)
, then with probability at least 1− δ, we have:∣∣∣#{k ∈ [m/2] : ⟨wk(0),x+⟩ > 0

}
− m

4

∣∣∣ ≤0.04m,

#
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x−⟩ > A ⟨wk(0),x+⟩

}
≥0.075m,

#
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x+⟩ ≤ B ⟨wk(0),x−⟩

}
≤0.205m.

where A = (1+4.73κ1κ2)p cos∆−(1−4.73κ1κ2)
(1−4.73κ1κ2)p−(1+4.73κ1κ2) cos∆

and B = (1+4.73κ1κ2)p−(1−4.73κ1κ2) cos∆
(1−4.73κ1κ2)p cos∆−(1+4.73κ1κ2)

(mentioned
in Lemma C.7).

Proof of Lemma C.11.
(i) By Hoeffding’s Inequality (Lemma I.1), for any ϵ > 0 we have:

P

(∣∣∣#{k ∈ [m/2] : ⟨wk(0),x+⟩ > 0
}
− m

4

∣∣∣ ≥ mϵ

2

)
= P

(∣∣∣∣∣∣ 2m
∑

k∈[m/2]

I
{
⟨wk(0),x+⟩ > 0

}
− 1

2

∣∣∣∣∣∣ ≥ ϵ

)

=P

(∣∣∣∣∣∣ 2m
∑

k∈[m/2]

I
{
⟨wk(0),x+⟩ > 0

}
− E

[
I
{
⟨w1(0),x+⟩ > 0

}]∣∣∣∣∣∣ ≥ ϵ

)

≤2 exp
(
− 2(m2 )

2ϵ2

m
2

)
= 2 exp(−mϵ2).

(ii) From wk(0) ∼ U(Sd−1), without loss of generality, we can let x− = e1 and x+ = e1 cos∆ +
e2 sin∆.

So we have:{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x−⟩ > A ⟨wk(0),x+⟩

}
=
{
k ∈ [m]− [m/2] : wk,1(0) > 0, wk,1(0) > A

(
wk,1(0) cos∆ + wk,2(0) sin∆

)}
=
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (1−A cos∆)wk,1(0) > Awk,2(0) sin∆

}
.

From (6), we have A > 0 and

A = 1 +

(
(1 + 4.73κ1κ2) cos∆− (1− 4.73κ1κ2)

)
(p+ 1)

(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

≤1 +
4.73κ1κ2(1 + cos∆)

1− 4.73κ1κ2

p+ 1

p− 10
9

≤ 1 +
9.46κ1κ2

1− 1
19

90

71
≤ 1 + 12.66κ1κ2,

A = 1 +

(
(1 + 4.73κ1κ2) cos∆− (1− 4.73κ1κ2)

)
(p+ 1)

(1− 4.73κ1κ2)p− (1 + 4.73κ1κ2) cos∆

≥1− 4.73κ1κ2(1 + cos∆) + (1− cos∆)

1− 4.73κ1κ2

p+ 1

p− 10
9

≥ 1−
2
19 + ∆2

2

1− 1
19

90

71

≥1−
2
19 + 1

19
18
19

90

71
≥ 0.78,
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1−A cos∆

A sin∆
≥ 1−A

A sin∆
≥ −12.66κ1κ2

A sin∆
≥ −12.66κ1κ2

0.78 sin∆
≥ −12.66κ1κ2

0.78 2
π∆

≥ −25.5κ1κ2
∆

≥ − 1

100
.

For simplicity, we denote the event

Ak :=
{
wk,1(0) > 0,− 1

100
wk,1(0) > wk,2(0)

}
, k ∈ [m]− [m/2].

Then we have the estimate:

#
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (1−A cos∆)wk,1(0) > Awk,2(0) sin∆

}
≥#

{
k ∈ [m]− [m/2] : wk,1(0) > 0,− 1

100
wk,1(0) > wk,2(0)

}
=

∑
k∈[m]−[m/2]

I{Ak}.

We first estimate the lower bound for E[I{Am}]:

E
[
I{Am}

]
= P(Am) = P

(
wm,1(0) > 0,− 1

100
wm,1(0) > wk,2(0)

)
g∼N (0,Id)

= P

(
g1
∥g∥ > 0,− 1

100

g1
∥g∥ >

g2
∥g∥

)
= P

(
g1 > 0, g1 < −100g2

)
= P

(
g1 > 0, g1 < 100g2

)
=P
(
100g2 > g1 > 0

)
≥ sup

t>0
P
(
g2 > t, 100t > g1 > 0

)
g∼N (0,1)

= sup
t>0

P
(
g > t

)
P
(
100t > g > 0

)
≥P
(
g >

1

10

)
P
(
10 > g > 0

)
≥ 0.23.

Secondly, by Hoeffding’s inequality (Lemma I.1), for any ϵ > 0, we have

P

( ∑
k∈[m]−[m/2]

I{Ak} − 0.115m ≤ −m
2
ϵ

)
≤ P

( ∑
k∈[m]−[m/2]

I{Ak} −
m

2
E
[
I{Am}

]
≤ −m

2
ϵ

)

=P

(
2

m

∑
k∈[m]−[m/2]

I{Ak} − E
[
I{Am}

]
≤ −ϵ

)
≤ exp

(
− 2(m2 )

2ϵ2

m
2

)
= exp(−mϵ2)

(iii) This proof is similar to (ii). From wk(0) ∼ U(Sd−1), without loss of generality, we can let
x− = e1 and x+ = e1 cos∆ + e2 sin∆.

so we have:{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x+⟩ ≤ B ⟨wk(0),x−⟩

}
=
{
k ∈ [m]− [m/2] : wk,1(0) > 0, wk,1(0) cos∆ + wk,2(0) sin∆ ≤ Bwk,1(0)

}
=
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (B − cos∆)wk,1(0) > wk,2(0) sin∆

}
.

From (6), we have B > 0 and

B − cos∆ =
(1 + 4.73κ1κ2)p− (1− 4.73κ1κ2) cos∆

(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)
− cos∆

=
(1 + 4.73κ1κ2)(p+ cos∆)− (1− 4.73κ1κ2)(1 + p cos∆) cos∆

(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)

=
p sin2 ∆+ 4.73κ1κ2(p+ 2 cos∆ + p cos2 ∆)

(1− 4.73κ1κ2)p cos∆− (1 + 4.73κ1κ2)
≤ sin2 ∆+ 9.46κ1κ2

1− 4.73κ1κ2

p+ 1

p cos∆− 10
9

≤ sin2 ∆+ 9.46 ∆
2550

1− 1
19

p+ 1
9
10p− 10

9

≤ sin2 ∆+ 9.46π sin∆
5100

1− 1
19

p+ 1
9
10p− 10

9

≤0.315 + 9.46π
5100

18
19

10
81
10 − 10

9

sin∆ ≤ sin∆

2
,
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For simplicity, we denote the event

Bk :=
{
wk,1(0) > 0,

1

2
wk,1(0) > wk,2(0)

}
, k ∈ [m]− [m/2].

Then we have the estimate:

#
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (B − cos∆)wk,1(0) > wk,2(0) sin∆

}
≤#

{
k ∈ [m]− [m/2] : wk,1(0) > 0,

1

2
wk,1(0) > wk,2(0)

}
=

∑
k∈[m]−[m/2]

I{Bk}.

We first estimate the lower bound for E[I{Bm}]:

E
[
I{Bm}

]
= P(Bm) = P

(
wm,1(0) > 0,

1

2
wm,1(0) > wk,2(0)

)
g∼N (0,Id)

= P

(
g1
∥g∥ > 0,

1

2

g1
∥g∥ >

g2
∥g∥

)
= P

(
g1 > 0, g1 > 2g2

)
= P

(
g1 > 0, g2 ≤ 0

)
+ P

(
g1 > 2g2 > 0

)
=
1

4
+ P

(
g1 > 2g2 > 0

)
≤ 1

4
+

1

2π

∫ +∞

0

e−
x2

2

∫ x
2

0

e−
y2

2 dydx ≤ 1

4
+

1

2π

∫ +∞

0

x

2
e−

x2

2 dx

≤1

4
+

1

4π
.

Secondly, by Hoeffding’s inequality (Lemma I.1), for any ϵ > 0, we have

P

( ∑
k∈[m]−[m/2]

I{Bk} −
(1
8
+

1

8π

)
m ≥ m

2
ϵ

)
≤ P

( ∑
k∈[m]−[m/2]

I{Bk} −
m

2
E
[
I{Bm}

]
≥ m

2
ϵ

)

=P

(
2

m

∑
k∈[m]−[m/2]

I{Bk} − E
[
I{Bm}

]
≥ ϵ

)
≤ exp

(
− 2(m2 )

2ϵ2

m
2

)
= exp(−mϵ2).

let ϵ = 0.08 and δ = 4 exp(−mϵ2/2). Combining the uniform bounds in (i)(ii)(iii), we obtain this
theorem:

If m ≥ 2 log(4/δ)
0.082 , then with probability at least 1− δ, we have:∣∣∣#{k ∈ [m/2] : ⟨wk(0),x+⟩ > 0

}
− m

4

∣∣∣ ≤0.04m,

#
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (1−A cos∆)wk,1(0) > Awk,2(0) sin∆

}
≥0.075m,

#
{
k ∈ [m]− [m/2] : wk,1(0) > 0, (B − cos∆)wk,1(0) > wk,2(0) sin∆

}
≤0.205m.

So far, Lemma C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10 characterize the training dynamics of each
neuron in Phase I, and Lemma C.11 estimate the initial positions of the neurons. Now we can prove
our main theorem in Phase I.
Theorem C.12 (Restatement of Theorem 4.1).
Under the data Assumption 3.1, let the two-layer network trained by Gradient Flow (2) starting from
random initialization. Let the width m = Ω(log(1/δ)), the initialization scales satisfy (6). Then with
probability at least 1− δ, the following results (S1)∼(S5) hold at the end of Phase I (TI = 10

√
κ1

κ2
):

(S1). For positive neurons k ∈ [m/2] (sk = 1), let K+ be the index set of living neurons, i.e.
K+ := {k ∈ [m/2] : wk(TI) ∈ M+

+ ∪M+
−}. Then 0.21m ≤ |K+| ≤ 0.29m. Moreover, for any

neuron k ∈ K+, it has the following properties (P1)(P2).

(P1). Its norm is small but significant :
4.66

√
κ1κ2√
m

≤ ρk(TI) ≤
12

√
κ1κ2√
m

.
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(P2). Its direction is strongly aligned with µ :

⟨wk(TI),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
 .

(S2). For negative neurons k ∈ [m]− [m/2] (sk = −1), let K− be the index set of living neurons, i.e.
K− := {k ∈ [m] − [m/2] : wk(TI) ∈ M+

+ ∪M+
−}. Then 0.075m ≤ |K−| ≤ 0.205m. Moreover,

for any neuron k ∈ K−, it has the following properties (N1)(N2)(N3).

(N1). Its norm is tiny : ρk(TI) ≤
√
κ1κ2√
m

(
4.3

√
κ1
κ2

+
11.1 sin∆

1 + p

)
.

(N2). It lies on a manifold perpendicular to x+ : wk(t) ∈ M0
+ ∩M+

−.

(N3). Its direction is weakly aligned with x⊥
+ :
〈
wk(TI),x

⊥
+

〉
> 1− 2(

1 + 2.32
√

κ2

κ1

sin∆
1+p

)1.6
+ 1

.

(S3). For other neurons k /∈ K+ ∪ K−, it will remain dead forever:

wk(TI) ∈ M−
+ ∩M−

−, bk(t) ≡ bk(TI), ∀t ∈ [TI,+∞)

(S4). The predictions for x+ and x− have the estimate:

0.978κ2
√
κ1κ2

(
(
p− 1

p+ 1
)2 − 0.11

)
≤f+(TI) ≤ 3.85κ2

√
κ1κ2,

0.947

(
(
p− 1

p+ 1
)2 cos∆− 0.2

)
≤f−(TI) ≤ 3.85κ2

√
κ1κ2,

and the training accuracy is Acc(TI) =
p

1+p .

(S5). 0 < 0.258 ≤ 0.075
0.29 ≤ |K−|

|K+| ≤ 0.205
0.21 ≤ 0.977 < 1.

Proof of Theorem C.12.
This theorem is a corollary of Lemma C.3, Lemma C.4, Lemma C.5, Lemma C.6, Lemma C.7, Lemma
C.8, Lemma C.9, Lemma C.10, and Lemma C.11. We focus on the end of Phase I: TI = 10

√
κ1

κ2
.

Proof of (S1)(S2). From Lemma C.11, we know that: if m = Ω(log(1/δ)), then with probability at
least 1− δ, we have: ∣∣∣#{k ∈ [m/2] : ⟨wk(0),x+⟩ > 0

}
− m

4

∣∣∣ ≤0.04m,

#
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x−⟩ > A ⟨wk(0),x+⟩

}
≥0.075m,

#
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x+⟩ ≤ B ⟨wk(0),x−⟩

}
≤0.205m.

where A = (1+4.73κ1κ2)p cos∆−(1−4.73κ1κ2)
(1−4.73κ1κ2)p−(1+4.73κ1κ2) cos∆

and B = (1+4.73κ1κ2)p−(1−4.73κ1κ2) cos∆
(1−4.73κ1κ2)p cos∆−(1+4.73κ1κ2)

.

Recalling the dynamics analysis in Lemma C.3, C.4, C.5, and C.6, we have:

0.21m ≤ |K+| = #
{
k ∈ [m/2] : ⟨wk(0),x+⟩ > 0

}
≤ 0.29m.

Recalling the dynamics analysis in Lemma C.7, C.8 C.9, and C.10, we have:

|K−| ≥ #
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x−⟩ > A ⟨wk(0),x+⟩

}
≥ 0.075m,

|K−| ≤ #
{
k ∈ [m]− [m/2] : ⟨wk(0),x−⟩ > 0, ⟨wk(0),x+⟩ ≤ B ⟨wk(0),x−⟩

}
≤ 0.205m.
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Moreover, the estimates in Lemma C.3, C.4, C.5, and C.6 ensure that for any k ∈ K+, the following
results hold:

⟨wk(TI),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
 ;

4.66
√
κ1κ2√
m

≤ ρk(TI) ≤
12

√
κ1κ2√
m

.

Similarly, the estimates in Lemma C.7, C.8 C.9, and C.10 ensure that for any k ∈ K−, the following
results hold:

ρk(TI) ≤
√
κ1κ2√
m

(
4.3

√
κ1
κ2

+
11.1 sin∆

1 + p

)
;

wk(TI) ∈ M0
+ ∩M+

−;〈
wk(TI),x

⊥
+

〉
> 1− 2(

1 + 2.32
√

κ2

κ1

sin∆
1+p

)1.6
+ 1

.

Proof of (S3). A direct corollary of Lemma C.3, C.4, C.5, C.6, C.7, C.8, C.9, C.10.

Proof of (S4). (S4) are direct corollaries of (S1)(S2).

For f+(TI), we have the following estimate:

f+(TI) =
∑
k∈K+

akσ
(
bk(TI)

⊤x+

)
+
∑
k∈K−

akσ
(
bk(TI)

⊤x+

)
=
∑
k∈K+

akσ
(
bk(TI)

⊤x+

)
+ 0 =

∑
k∈K+

κ2√
m
ρk(TI)σ

(
wk(TI)

⊤x+

)
≥
∑
k∈K+

κ2√
m

4.66
√
κ1κ2√
m

⟨wk(TI),x+⟩ ≥
∑
k∈K+

κ2√
m

4.66
√
κ1κ2√
m

(
⟨µ,x+⟩ − ∥wk(TI)− µ∥

)
=
∑
k∈K+

κ2√
m

4.66
√
κ1κ2√
m

(
∥z∥ ⟨z,x+⟩ − 2 + 2 ⟨wk(TI),µ⟩

)

≥|K+|
4.66κ2

√
κ1κ2

m

(
p− 1

p+ 1

p− cos∆

p+ 1
− 2 + 2

(
1− 4.2

√
κ1κ2 −

2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15)
)

≥0.21 · 4.66κ2
√
κ1κ2

(
p− 1

p+ 1

p− cos∆

p+ 1
− 8.4

√
κ1κ2 −

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

≥0.978κ2
√
κ1κ2

((
p− 1

p+ 1

)2

− 8.4
√
κ1κ2 −

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

(6)
≥0.978κ2

√
κ1κ2

(
(
p− 1

p+ 1
)2 − 0.11

)
;

f+(TI) =
∑
k∈K+

κ2√
m
ρk(TI)σ

(
wk(TI)

⊤x+

)
≤
∑
k∈K+

κ2√
m

12
√
κ1κ2√
m

⟨wk(TI),x+⟩ ≤
∑
k∈K+

κ2√
m

12
√
κ1κ2√
m

(
⟨µ,x+⟩+ ∥wk(TI)− µ∥

)
=
∑
k∈K+

κ2√
m

12
√
κ1κ2√
m

(
∥z∥ ⟨z,x+⟩+ 2− 2 ⟨wk(TI),µ⟩

)
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≤|K+|
12κ2

√
κ1κ2

m

(
1 · p− cos∆

p+ 1
+ 2− 2 + 8.4

√
κ1κ2 +

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

≤0.29 · 12κ2
√
κ1κ2

(
1 · p− cos∆

p+ 1
+ 8.4

√
κ1κ2 +

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

(6)
≤3.48κ2

√
κ1κ2

(
1 + 0.084 +

4

1 + 0.7(1 + 99)1.15

)
≤ 3.85κ2

√
κ1κ2.

Then we have:

0.978κ2
√
κ1κ2

(
(
p− 1

p+ 1
)2 − 0.11

)
≤ f+(TI) ≤ 3.85κ2

√
κ1κ2.

In the same way, we can estimate f−(TI):

f−(TI) =
∑
k∈K+

akσ
(
bk(TI)

⊤x−
)
+
∑
k∈K−

akσ
(
bk(TI)

⊤x−
)

≥
∑
k∈K+

κ2√
m

4.66
√
κ1κ2√
m

⟨wk(TI),x−⟩ −
∑
k∈K−

κ2√
m

√
κ1κ2√
m

(
4.3

√
κ1
κ2

+
11.1 sin∆

1 + p

)
⟨wk(TI),x−⟩

≥
∑
k∈K+

κ2√
m

4.66
√
κ1κ2√
m

(
⟨µ,x−⟩ − ∥wk(TI)− µ∥

)
−
∑
k∈K−

κ2√
m

√
κ1κ2√
m

(
0.43 +

11.1

12

)
sin∆

≥|K+|
4.66κ2

√
κ1κ2

m

(
p− 1

p+ 1

p cos∆− 1

p+ 1
− 2 + 2

(
1− 4.2

√
κ1κ2 −

2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15)
)

− |K−|
κ2

√
κ1κ2
m

· 1.355 sin∆

≥0.21 · 4.66κ2
√
κ1κ2

(
p− 1

p+ 1

p cos∆− 1

p+ 1
− 0.11

)
− 0.205 · 1.355 sin∆κ2

√
κ1κ2

≥κ2
√
κ1κ2

(
0.978(

p− 1

p+ 1
)2 cos∆− 0.11− 0.28 sin∆

)
≥κ2

√
κ1κ2

(
0.947(

p− 1

p+ 1
)2 cos∆− 0.11− 0.07

)
≥0.947

(
(
p− 1

p+ 1
)2 cos∆− 0.2

)
;

f−(TI) =
∑
k∈K+

akσ
(
bk(TI)

⊤x−
)
+
∑
k∈K−

akσ
(
bk(TI)

⊤x−
)

≤
∑
k∈K+

κ2√
m

12
√
κ1κ2√
m

⟨wk(TI),x−⟩ − 0

=
∑
k∈K+

κ2√
m

12
√
κ1κ2√
m

(
∥z∥ ⟨z,x−⟩+ 2− 2 ⟨wk(TI),µ⟩

)

≤|K+|
12κ2

√
κ1κ2

m

(
1 · p cos∆− 1

p+ 1
+ 2− 2 + 8.4

√
κ1κ2 +

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

≤0.29 · 12κ2
√
κ1κ2

(
1 · p cos∆− 1

p+ 1
+ 8.4

√
κ1κ2 +

4

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15
)

(6)
≤3.48κ2

√
κ1κ2

(
1 + 0.084 +

4

1 + 0.7(1 + 99)1.15

)
≤ 3.85κ2

√
κ1κ2.
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Them we have:

0.947

(
(
p− 1

p+ 1
)2 cos∆− 0.2

)
≤ f−(TI) ≤ 3.85κ2

√
κ1κ2.

Due to f+(TI) > 0 and f−(TI) > 0, we obtain ACC(TI) =
p

1+p .

Moreover, from Theorem C.12 (S1)(S2), we have

0 < 0.258 ≤ 0.075m

0.29m
≤ α =

|K−|
|K+|

=
m−

m+
≤ 0.205m

0.21m
≤ 0.977 < 1. (18)

Remark C.13. The results in the following proofs are all based on the occurrence of the events in
Theorem C.12. All of these results use the same settings as Theorem 4.1, except using a stronger
condition on the initialization parameters (3) than (6) in Theorem C.12. So they all hold with
probability at least 1− δ.
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D Proofs of Optimization Dynamics in Phase II

In this phase, we study the dynamics before the patterns of living neurons change again after Phase I.
Specifically, we define

TII := inf{t > TI : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= sgn+k (TI) or sgn−k (t) ̸= sgn−k (TI)},
and call t ∈ (TI, TII] Phase II.

Recalling the results in Theorem 4.1, during Phase II, the activation patterns do not change with
sgn+k (t) = sgn−k (t) = 1 for k ∈ K+ and sgn+k (t) = 0, sgn−k (t) = 1 for k ∈ K−. Theorem 4.4
demonstrates that at the end of Phase II, except for one of living positive neuron k0 ∈ K+ precisely
changes its pattern on x−, all other activation patterns remain unchanged.

Recall that at the end of Phase I, (i) the neuron k /∈ K+ ∪ K− is dead forever; (ii) as for the living
neuron k ∈ K+ ∪ K−, the activation patterns are:

sgn+k (t) = sgn−k (t) = 1 for k ∈ K+;

sgn+k (t) = 0, sgn−k (t) = 1 for k ∈ K−.

In this section, we will focus on the Phase when the negative neuron k ∈ K− still stays on the
manifold M0

+ ∩M+
− (hence is still dead for x+) and the positive neuron k ∈ K+ is still activated

for x−. In general, we aim to estimate the

As stated in the main text, we define as following hitting time:

TII := inf
{
t > TI : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= sgn+k (TI) or sgn−k (t) ̸= sgn−k (TI)

}
= inf

{
t > TI : ∃k ∈ K+, s.t. ⟨wk(t),x+⟩ ≤ 0 or ⟨wk(t),x−⟩ ≤ 0,

or ∃k ∈ K−, s.t. ⟨wk(t),x+⟩ ≠ 0 or ⟨wk(t),x−⟩ ≤ 0
}
,

(19)

and we call TI ≤ t ≤ TII “Phase II”.

First, we define a more relaxed hitting time than TII, only about the change of living positive neurons:

T+
II := inf

{
t > TI : ∃k ∈ K+, s.t. ⟨wk(t),x+⟩ ≤ 0 or ⟨wk(t),x−⟩ ≤ 0

}
. (20)

Noticing that the changes in activation partitions are essentially caused by the change of discontinuous
vector fields, we first define the following auxiliary hitting time:

T ∗
II := T+

II ∧ inf
{
t > TI : ⟨F+(t),x+⟩ ≤ 0

}
,

where F+(t) =
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−.

(21)

We call TI ≤ t ≤ T ∗
II “Phase II*”.

In the subsequent proof, we first meticulously characterize the optimization dynamics in Phase II*
and then prove TII = T+

II = T ∗
II. The crucial proof technique is fine-grained prior estimations for 2d

ODEs on f+(t) and f−(t), leading to the vector field estimation.

To begin with, we establish the following lemma about the optimization dynamics of living neurons.
Lemma D.1 (Dynamics of living neurons in Phase II*).
In Phase II*, t ∈ [TI, T

∗
II], we have the following dynamics for each neuron k ∈ K− ∪ K+.

(S1) For positive neuron k ∈ K+, we have:
wk(t) ∈ M+

+ ∩M+
−,

dbk(t)

dt
=

κ2√
m
F+(t) =

κ2√
m

(
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
.

(S2). For negative neuron k ∈ K−, we have:

wk(t) ∈ M0
+ ∩M+

−,

dbk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
.
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Proof of Lemma D.1.
(S1) Let k ∈ K+. Recalling the definition of T ∗

II, it holds that ⟨wk(t),x+⟩ > 0 and ⟨wk(t),x−⟩ > 0
for any TI ≤ t ≤ T ∗

II, so the dynamics holds.

(S2) Let k ∈ K−. Recalling the definition of T ∗
II, it holds ⟨F+(t),x+⟩ > 0 for any TI ≤ t ≤ T ∗

II.
Due to wk(TI) ∈ M0

+ ∩M+
−, we first analysis the vector field around the manifold P0

+ ∩ P+
− for

TI ≤ t ≤ T ∗
II.

For any b̃ ∈ P0
+ ∩ P+

− and 0 < δ0 ≪ 1, we know that P0
+ ∩ P+

− separates its neighborhood B(b̃, δ0)
into two domains G− = {b ∈ B(b̃, δ0) : ⟨b,x+⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x+⟩ > 0}.
Following Definition H.1, we calculate the limited vector field on b̃ from G− and G+.

(i) The limited vector field F− on b̃ (from G−):
db

dt
= F−, where F− =

κ2√
m

1

1 + p
ef−(t)x−.

(ii) The limited vector field F+ on b̃ (from G+):

db

dt
= F+, where F+ = − κ2√

m

(
pe−f+(t)

1 + p
x+ − ef−(t)

1 + p
x−

)
.

(iii) Then we calculate the projections of F− and F+ onto x+ (the normal to the surface P0
+ ∩ P+

− ):

F−
N =

〈
F−,x+

〉
=

κ2e
f−(t)

√
m(1 + p)

cos∆,

F+
N =

〈
F+,x+

〉
=

κ2e
f−(t)

√
m(1 + p)

cos∆− κ2pe
−f+(t)

√
m(1 + p)

.

We further define the hitting time to check whether wk(t) ∈ M0
+ ∩M+

− for TI ≤ t ≤ T ∗
II.

τ+− := T ∗
II ∧ inf{t > TI : ∃k ∈ K−, s.t. ⟨wk(t),x−⟩ ≤ 0}.

From the definition of T ∗
II, we know ⟨F+(t),x+⟩ > 0 for any TI ≤ t ≤ T ∗

II, so F+
N < 0. And it is

clear that F−
N > 0. Hence, the dynamics corresponds to Case (I) in Definition H.1 (F−

N > 0 and
F+
N < 0), which means bk(t) can not leave P0

+ (i.e., ⟨bk(t),x+⟩ = 0) for t ∈ [TI, τ
+
− ], and the

dynamics of bk(t) satisfies:

db

dt
= αF+ + (1− α)F−, α =

f−N
f−N − f+N

, t ∈ [TI, τ
+
− ],

which is
dbk(t)

dt

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
, t ∈ [TI, τ

+
− ].

By Lemma C.1, we know that the dynamics of wk(t) on M0
+ ∩M+

− and the dynamics of ρk(t) are:

dwk(t)

dt
=

κ2e
f−(t)

ρk(t)
√
m(1 + p)

(
x− − ⟨wk(t),x−⟩wk − x+ cos∆

)
.

dρk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

⟨wk(t),x−⟩ .

From this dynamics, for any t ∈ [TI, τ
+
− ], we have

⟨bk(t),x−⟩ = ⟨bk(0),x−⟩+
∫ t

0

〈
dbk(s)

ds
,x−

〉
ds

= ⟨bk(0),x−⟩+
∫ t

0

κ2e
f−(s)

√
m(1 + p)

sin2 ∆ds > ⟨bk(0),x−⟩ > 0,

which means that T ∗
II = τ+− .
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Noticing that Lemma D.1 determines the activation patterns for living neurons in Phase II*, the next
lemma gives the first-order dynamics of f+(t) and f−(t).
Lemma D.2 (First-order dynamics of predictions in Phase II*).
In Phase II* (TI ≤ t ≤ T ∗

II), we have the following dynamics for f+(t) and f−(t):

df+(t)

dt
= κ22

m+

m

(pe−f+(t)

1 + p
− ef−(t)

1 + p
cos∆

)
,

df−(t)

dt
= κ22

m+

m

(pe−f+(t)

1 + p
cos∆− ef−(t)

1 + p

)
− κ22

m−

m

ef−(t)

1 + p
sin2 ∆.

Proof of Lemma D.2.
From the definition of T ∗

II, for any TI ≤ t ≤ T ∗
II, we have

f+(t) =
∑
k∈K+

κ2√
m
σ(b⊤k (t)x+)−

∑
k∈K−

κ2√
m
σ(b⊤k (t)x+) =

∑
k∈K+

κ2√
m
b⊤k (t)x+,

f−(t) =
∑
k∈K+

κ2√
m
σ(b⊤k (t)x−)−

∑
k∈K−

κ2√
m
σ(b⊤k (t)x−) =

∑
k∈K+

κ2√
m
b⊤k (t)x− −

∑
k∈K−

κ2√
m
b⊤k (t)x−.

With the help of Lemma D.1, we have the dynamics of predictions:

df+(t)

dt
=
∑
k∈K+

κ2√
m

〈
dbk(t)

dt
,x+

〉
=
κ22
m

∑
k∈K+

( p

1 + p
e−f+(t) − 1

1 + p
ef−(t) cos∆

)
=
m+

m
κ22

(pe−f+(t)

1 + p
− ef−(t)

1 + p
cos∆

)
.

df−(t)

dt
=
∑
k∈K+

κ2√
m

〈
dbk(t)

dt
,x−

〉
−
∑
k∈K−

κ2√
m

〈
dbk(t)

dt
,x−

〉

=
κ22
m

∑
k∈K+

(pe−f+(t)

1 + p
cos∆− ef−(t)

1 + p

)
− κ22
m

∑
k∈K−

ef−(t)

1 + p

(
1− cos2 ∆

)
=
m+

m
κ22

(pe−f+(t)

1 + p
cos∆− ef−(t)

1 + p

)
− m−

m
κ22
ef−(t)

1 + p
sin2 ∆.

Due to the specificity of the first-order dynamics, the following lemma gives an second-order
autonomous dynamics of predictions, which is is the core dynamics in this phase.
Lemma D.3 (Second-order Autonomous Dynamics of predictions in Phase II*).
Consider the following two variables:{

U(t) := κ22
m+

m
p

1+pe
−f+(t),

V(t) := κ22
m+

m
1

1+pe
f−(t).

Then the following autonomous dynamics of U(t) and V(t) hold in Phase II* (TI ≤ t ≤ T ∗
II):{

dU(t)
dt = U(t)V(t) cos∆− U2(t),

dV(t)
dt = U(t)V(t) cos∆− V2(t)

(
1 + α sin2 ∆

)
.

Proof of Lemma D.3.
Recall the first-order dynamics in Lemma D.2:

df+(t)
dt = κ22

m+

m

(
pe−f+(t)

1+p − ef−(t)

1+p cos∆
)
,

df−(t)
dt = κ22

m+

m

(
pe−f+(t)

1+p cos∆− ef−(t)

1+p

)
− κ22

m−
m

ef−(t)

1+p sin2 ∆.
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Then this proof is a straight-forward calculation:

dU(t)
dt

=κ22
m+

m

p

1 + p

de−f+(t)

dt
= −κ22

m+

m

p

1 + p
e−f+(t) df+(t)

dt

=− U(t)df+(t)
dt

= U(t)V(t) cos∆− U2(t),

dV(t)
dt

=κ22
m+

m

1

1 + p

def−(t)

dt
= κ22

m+

m

1

1 + p
ef−(t) df−(t)

dt

=V(t)df−(t)
dt

= U(t)V(t) cos∆− V2(t)
(
1 + α sin2 ∆

)
.

Lemma D.3 enlighten us that we only need to study the dynamics of U(t) and V(t) to study the
dynamics in Phase II, where U(t),V(t) satisfies the following autonomous dynamics:{

dU(t)
dt = U(t)V(t) cos∆− U2(t);

dV(t)
dt = U(t)V(t) cos∆− V2(t)

(
1 + α sin2 ∆

)
,

t ≥ TI;{
U(TI) = κ22

m+

m
p

1+pe
−f+(TI),

V(TI) = κ22
m+

m
1

1+pe
f−(TI).

(22)

The next lemma provides a fine-grained prior estimate of the dynamics (22).
Lemma D.4 (Fine-grained prior estimate of the dynamics (22)).
For the dynamics (22), then we have the following results:

(S1). U(TI) = Θ(κ22) and V(TI) = Θ
(
κ2
2

p

)
.

(S2). For any t ≥ TI, we have U(t) > V(t) > 0.

(S3). If we define the hitting time τ1 := inf
{
t ≥ TI : U(t) cos∆ ≤ V(t)

(
1 + α sin2 ∆

)}
, then

U(τ1) =
1 + α sin2 ∆

cos∆
V(τ1), V(τ1) = Θ

(
κ22p

− 1
1+cos∆

)
,

τ1 = O
(
p

1
1+cos∆ log(1/∆)

κ22

)
= Ω

(
p

1
1+cos∆

κ22

)
= Θ̃

(
p

1
1+cos∆

κ22

)
.

(S4). For any t ≥ τ1, we have

1 +
m−

2m+
sin2 ∆ <

U(t)
V(t) <

1 + 2α sin2 ∆

cos∆
,

U(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 .

(S5). For any t ≥ τ1, we have U(t)− V(t) cos∆ = Θ
(
∆2V(t)

)
> 0.

(S6). For any t ≥ τ2 = Θ

(
p

1
1+cos∆ log(1/∆)

κ2
2

)
≥ 2τ1, we have

U(t) cos∆− V(t) = −Θ
(
∆2V(t)

)
< 0.

Proof of Lemma D.4.
For simplicity, in this proof, we denote

ϵ := α sin2 ∆.
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Step I. Preparation. From Theorem C.12 (S4), we know 0 < f+(TI), f−(TI) ≤ 3.85κ2
√
κ1κ2 ≤

0.04 log(1.1), so

1 < ef−(TI) ≤ 1 + e0.04 log(1.1)3.85κ2
√
κ1κ2 ≤ 1 + 1.004 · 3.85κ2

√
κ1κ2 ≤ 1 + 3.87κ2

√
κ1κ2,

1 > e−f+(TI) ≥ 1− e0.04 log(1.1)3.85κ2
√
κ1κ2 ≥ 1− 1.004 · 3.85κ2

√
κ1κ2 ≥ 1− 3.87κ2

√
κ1κ2.

Notice that U(TI) = κ22
m+

m
p

1+pe
−f+(TI) and V(TI) = κ22

m+

m
1

1+pe
f−(TI). Then we have the estimate:

1− 3.87κ2
√
κ1κ2 ≤ U(TI)

κ22
m+

m
p

1+p

≤ 1,

1 ≤ V(TI)
κ22

m+

m
1

1+p

≤ 1 + 3.87κ2
√
κ1κ2.

From Theorem C.12 (S1)(S2), we have

0.258 ≤ 0.075m

0.29m
≤ α ≤ 0.205m

0.21m
≤ 0.977. (23)

For t = TI, it holds that

U(TI)V(TI) cos∆− U2(TI) < 0,

U(TI)V(TI) cos∆− V2(TI) (1 + ϵ) > 0.

Step II. A rough estimate on U(t) and V(t). In this step, we aim to prove:

U(t) > V(t) > 0, ,U(t) + V(t) ≤ U(TI) + V(TI), ∀t ∈ [TI,∞).

First, from the definition of U(t) and V(t), we have U(t) > 0 and V(t) > 0.

Then we consider the dynamics of U(t) + V(t). From

d

dt

(
U(t) + V(t)

)
= 2U(t)V(t) cos∆− U2(t)− V2(t) (1 + ϵ)

=− (U(t)− V(t))2 cos∆− (1− cos∆)U2(t)− V2(t) (1 + ϵ− cos∆) < 0,

we have
U(t) + V(t) ≤ U(TI) + V(TI), ∀t ≥ TI.

Then we consider the dynamics of U(t)− V(t). We define the hitting time

τU−V := inf
{
t ≥ TI : U(t) ≤ V(t)

}
.

For any t ∈ [TI, τU−V), we have:

d

dt

(
U(t)− V(t)

)
= −U2(t) + V2(t) (1 + ϵ) = −(U(t) + V(t))(U(t)− V(t)) + ϵV2(t)

>− (U(t) + V(t))(U(t)− V(t)) ≥ −(U(TI) + V(TI))(U(t)− V(t)),

We consider the auxiliary ODE: d
dtP(t) = −(U(TI)+V(TI))P(t), where P(TI) = U(TI)−V(TI) >

0. From the Comparison Principle of ODEs, we have:

U(t)− V(t) ≥ P(t) = (U(TI)− V(TI)) exp
(
− (U(TI) + V(TI))(t− TI)

)
> 0, ∀t ∈ [TI, τU−V).

From the definition of τU−V , we have proved

τU−V = +∞;

U(t) > V(t), ∀t ∈ [TI,+∞).

Step III. Finer estimate in the early Phase t ∈ [TI, τ1]. Define the following hitting time

τ1 := inf
{
t ≥ TI : U(t) cos∆ ≤ V(t) (1 + ϵ)

}
.
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From Step I, we know τ1 exists and τ1 > TI. From (22), we have dU(t)
dt < 0 and dV(t)

dt > 0 when
t ∈ [TI, τ1). Moreover, we have the following dynamics for t ∈ [TI, τ1):

dU
dV =

UV cos∆− U2

UV cos∆− V2 (1 + ϵ)
=

U
V cos∆−

(U
V
)2

U
V cos∆− (1 + ϵ)

.

If we define Z(t) := U(t)
V(t) , then we have dU = ZdV + VdZ .

The dynamics above can be transformed to:

V dZ
dV =

Z cos∆−Z2

Z cos∆− (1 + ϵ)
−Z,

which means

1

V dV = − 1

1 + cos∆ + ϵ

(
1 + ϵ

Z +
sin2 ∆+ ϵ

(1 + cos∆ + ϵ)−Z(1 + cos∆)

)
dZ.

Integrating this equation from TI to t ∈ [TI, τ1), we have:

log

( V(t)
V(TI)

)
=− 1 + ϵ

1 + cos∆ + ϵ
log

( Z(t)

Z(TI)

)
+

sin2 ∆+ ϵ

(1 + cos∆ + ϵ)(1 + cos∆)
log

(
(1 + cos∆)Z(t)− (1 + cos∆ + ϵ)

(1 + cos∆)Z(TI)− (1 + cos∆ + ϵ)

)
, t ∈ [TI, τ1).

(24)
From the continuity of U(t), V(t) and Z(t), we have

τ1 = inf
{
t ≥ TI : Z(t) ≤ 1 + ϵ

cos∆

}
. (25)

Combining (25) and (24), let t→ τ−1 . Then we have:

Z(τ1) =
1 + ϵ

cos∆
;

V(τ1) = V(TI)
(Z(τ1)

Z(TI)

)− 1+ϵ
1+cos∆+ϵ

(
(1 + cos∆)Z(τ1)− (1 + cos∆ + ϵ)

(1 + cos∆)Z(TI)− (1 + cos∆ + ϵ)

) sin2 ∆+ϵ
(1+cos∆+ϵ)(1+cos∆)

> 0,

where (
1− 3.87κ2

√
κ1κ2

1 + 3.87κ2
√
κ1κ2

)
p ≤ Z(TI) =

U(TI)
V(TI)

≤ p.

Therefore,

V(τ1)
V(TI)

≤
(
p cos∆

1 + ϵ

) 1+ϵ
1+cos∆+ϵ

(
sin2 ∆+ ϵ

((1 + cos∆)p− (1 + cos∆ + ϵ)) cos∆

) sin2 ∆+ϵ
(1+cos∆+ϵ)(1+cos∆)

V(τ1)
V(TI)

≥
(
(1− 3.87κ2

√
κ1κ2)p cos∆

(1 + 3.87κ2
√
κ1κ2)(1 + ϵ)

) 1+ϵ
1+cos∆+ϵ

 sin2 ∆+ ϵ(
(1−3.87κ2

√
κ1κ2)(1+cos∆)

1+3.87κ2
√
κ1κ2

p− (1 + cos∆ + ϵ)
)
cos∆


sin2 ∆+ϵ

(1+cos∆+ϵ)(1+cos∆)

and
U(τ1) =

1 + ϵ

cos∆
V(τ1),

where 1 ≤ V(TI)

κ2
2

m+
m

1
1+p

≤ 1 + 3.87κ2
√
κ1κ2 is estimated in Step I.

Step IV. Nearly tight bounds for τ1

From the definition of τ1, we have dV(t)
dt > 0 for any t ∈ [TI, τ1), thus V(TI) < V(t) < V(τ1),

∀t ∈ (TI, τ1). So we have

U(t)V(TI) cos∆− U2(t) <
dU(t)
dt

< U(t)V(τ1) cos∆− U2(t), ∀t ∈ (TI, τ1).
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We first estimate the upper bound for τ1. Consider the following dynamics and the hitting time{
dϕ(t)
dt = ϕ(t)V(τ1) cos∆− ϕ2(t), t ≥ TI,

ϕ(TI) = U(TI).

τu1 := inf
{
t > TI : ϕ(t) ≤ U(τ1)

}
Then τ1 < τu1 . From the dynamics of ϕ(t), for any t ∈ (TI, τ

u
1 ], it holds

log

(
ϕ(t)

ϕ(t)− V(τ1) cos∆

) ∣∣∣∣∣
t

TI

= (t− TI)V(τ1) cos∆.

Therefore,

τu1 − TI =
1

V(τ1) cos∆
log

(
ϕ(τu1 )

ϕ(TI)

(ϕ(TI)− V(τ1) cos∆)

(ϕ(τu1 )− V(τ1) cos∆)

)
=

1

V(τ1) cos∆
log

(U(τ1)
U(TI)

(U(TI)− V(τ1) cos∆)

(U(τ1)− V(τ1) cos∆)

)
.

With the help of Theorem C.12, we have m+

m = Θ(1) and m−
m = Θ(1). From Step I, we have

C = Θ
(
κ2
2

∆2

)
, U(TI) = Θ(κ22) and V(TI) = Θ

(
κ2
2

p

)
. Moreover, it holds

V(τ1)
V(TI)

= Θ

(
p

1+ϵ
1+cos∆+ϵ

(∆2

p

) sin2 ∆+ϵ
(1+cos∆+ϵ)(1+cos∆)

)
= Θ

(
p

cos∆
1+cos∆∆

2 sin2 ∆+ϵ
(1+cos∆+ϵ)(1+cos∆)

)
= Θ

(
p

cos∆
1+cos∆

)
,

V(τ1) = Θ
(
V(TI)p

cos∆
1+cos∆

)
= Θ

(
κ22p

− 1
1+cos∆

)
.

It is easy to verify

U(τ1)
U(TI)

=
1 + ϵ

cos∆

V(τ1)
U(TI)

= Θ

(V(TI)
U(TI)

p
cos∆

1+cos∆

)
= Θ

(
p−

1
1+cos∆

)
;

U(TI)− V(τ1) cos∆
U(τ1)− V(τ1) cos∆

= Θ

 κ22

(
1− p−

1
1+cos∆

)
(

1+ϵ
cos∆ − cos∆

)
κ22p

− 1
1+cos∆

 = Θ

κ22
(
1− p−

1
1+cos∆

)
κ22∆

2p−
1

1+cos∆

 = Θ

(
p

1
1+cos∆

∆2

)
.

Hence, we obtain the upper bound for τ1:

τ1 ≤ τu1 = TI +Θ

(
1

κ22p
− 1

1+cos∆

log

(
p−

1
1+cos∆

p
1

1+cos∆

∆2

))

=O
(√

κ1
κ2

)
+Θ

(
p

1
1+cos∆ log(1/∆)

κ22

)
= Θ

(
p

1
1+cos∆ log(1/∆)

κ22

)
.

In a similar way, we can derive the lower bound for τ1. Consider the following dynamics and the
hitting time {

dψ(t)
dt = ψ(t)V(TI) cos∆− ψ2(t), t ≥ TI,

ψ(TI) = U(TI).

τ l1 := inf
{
t > TI : ψ(t) ≤ U(τ1)

}
Then τ1 > τ l1. From the dynamics of ϕ(t), for any t ∈ (TI, τ

l
1], it holds

log

(
ψ(t)

ψ(t)− V(TI) cos∆

) ∣∣∣∣∣
t

TI

= (t− TI)V(TI) cos∆.

Therefore,

τ l1 − TI =
1

V(TI) cos∆
log

(
ϕ(τu1 )

ϕ(TI)

(ϕ(TI)− V(TI) cos∆)

(ϕ(τu1 )− V(TI) cos∆)

)
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=
1

V(TI) cos∆
log

(U(τ1)
U(TI)

(U(TI)− V(TI) cos∆)

(U(τ1)− V(TI) cos∆)

)
=

1

V(TI) cos∆
log

(
1 +

V(TI)
U(TI)

(U(TI)− U(τ1)) cos∆
(U(τ1)− V(TI) cos∆)

)
.

It is easy to verify

V(TI)
U(TI)

(U(TI)− U(τ1)) cos∆
(U(τ1)− V(TI) cos∆)

= Θ

(
1

p

κ22(1− p−
1

1+cos∆ )

κ22(p
− 1

1+cos∆ − p−1)

)
= Θ

(
p−

cos∆
1+cos∆

)
,

thus

log

(
1 +

V(TI)
U(TI)

(U(TI)− U(τ1)) cos∆
(U(τ1)− V(TI) cos∆)

)
= Θ

(
p−

cos∆
1+cos∆

)
,

Hence, we obtain the lower bound for τ1:

τ1 ≥ τ l1 = TI +Θ

 1
κ2
2

p

p−
cos∆

1+cos∆

 = O
(√

κ1
κ2

)
+Θ

(
p

1
1+cos∆

κ22

)
= Θ

(
p

1
1+cos∆

κ22

)
.

Step V. Finer Estimate in the late Phase t > τ1.

In this step, we focus on the dynamics when t > τ1.

First, we will prove the following nearly tight bound about the ratio of U(t) to V(t):

1 +
ϵ

2
<

U(t)
V(t) <

1 + 2ϵ

cos∆
, ∀t ∈ [τ1,+∞).

For the right inequality, we define the hitting time

τ rU/V := inf
{
t > τ1 : U(t) ≥ 1 + 2ϵ

cos∆
V(t)

}
.

From U(τ1)
V(τ1)

= 1+ϵ
cos∆ < 1+2ϵ

cos∆ , we know τ rU/V exists and τ rU/V > τ1.

For any t ∈ (τ1, τ
r
U/V), consider

d

dt

(
U(t)− 1 + 2ϵ

cos∆
V(t)

)
=

(
1− 1 + 2ϵ

cos∆

)
U(t)V(t) cos∆− U2(t) +

1 + 2ϵ

cos∆
(1 + ϵ)V2(t)

=−
(
U(t)− 1 + 2ϵ

cos∆
V(t)

)(
U(t) +

(
(1 + 2ϵ)(1 +

1

cos∆
)− cos∆

)
V(t)

)
+

(
cos∆− (1 + 2ϵ)(1 +

1

cos∆
) +

1 + 2ϵ

cos∆
(1 + ϵ)

)
V2(t)

=−
(
U(t)− 1 + 2ϵ

cos∆
V(t)

)(
U(t) +

(
(1 + 2ϵ)(1 +

1

cos∆
)− cos∆

)
V(t)

)
+

(
(cos∆− 1) + (

1 + 2ϵ

cos∆
ϵ− 2ϵ)

)
V2(t)

<−
(
U(t)− 1 + 2ϵ

cos∆
V(t)

)(
U(t) +

(
(1 + 2ϵ)(1 +

1

cos∆
)− cos∆

)
V(t)

)
Step II
< −

(
(1 + 2ϵ)(1 +

1

cos∆
)− cos∆

)
(U(t) + V(t))

(
U(t)− 1 + 2ϵ

cos∆
V(t)

)
Step II
≤ −

(
(1 + 2ϵ)(1 +

1

cos∆
)− cos∆

)
(U(TI) + V(TI))

(
U(t)− 1 + 2ϵ

cos∆
V(t)

)
.

For simplicity, we denote C1 :=
(
(1 + 2ϵ)(1 + 1

cos∆ )− cos∆
)
(U(TI) + V(TI)) > 0. We consider

the auxiliary ODE: d
dtP(t) = −C1P(t), where P(τ1) = U(τ1) − 1+2ϵ

cos∆V(τ1) < 0. From the
Comparison Principle of ODEs, we have:

U(t)− 1 + 2ϵ

cos∆
V(t) ≤ P(t) = P(τ1)e

−C1(t−τ1) < 0, ∀t ∈ (τ1, τ
r
U/V).
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From the definition of τ rU/V , we have proved

τ rU/V = +∞;

U(t) < 1 + 2ϵ

cos∆
V(t), ∀t ∈ [τ1,+∞).

In the same way, it can be proved that

U(t) > (1 +
ϵ

2
)V(t), ∀t ∈ [τ1,+∞).

Moreover, we also need to derive a tight bound for U(t) and V(t) when t > τ1, respectively.

For any t > τ1, we have

d

dt
V(t) = V(t)

(
U(t) cos∆− (1 + ϵ)V(t)

)
>V(t)

(
(1 +

ϵ

2
)V(t) cos∆− (1 + ϵ)V(t)

)
= −

(
(1 + ϵ)− (1 +

ϵ

2
) cos∆

)
V2(t).

We consider the auxiliary ODE: d
dtP(t) = −

(
(1+ ϵ)− (1+ ϵ

2 ) cos∆
)
P2(t), where P(τ1) = V(τ1).

From the Comparison Principle of ODEs, we have the lower bound for V(t):

V(t) ≥ P(t) =
1

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

, ∀t ∈ (τ1,+∞).

In the same way, for any t > τ1, we have

d

dt
U(t) = U(t)

(
V(t) cos∆− U(t)

)
<U(t)

(
U(t) cos∆

1 + ϵ
2

− U(t)
)
= −

(
1− cos∆

1 + ϵ
2

)
U2(t).

We consider the auxiliary ODE: d
dtP(t) = −

(
1 − cos∆

1+ ϵ
2

)
P2(t), where P(τ1) = U(τ1). From the

Comparison Principle of ODEs, we have the upper bound for U(t):

U(t) ≤ P(t) =
1

1
U(τ1)

+
(
1− cos∆

1+ ϵ
2

)
(t− τ1)

, ∀t ∈ (τ1,+∞).

The upper bound for V(t) and the lower bound for U(t) can be estimated by:

V(t) < U(t)
1 + ϵ

2

≤ 1

1 + ϵ
2

1

1
U(τ1)

+
(
1− cos∆

1+ ϵ
2

)
(t− τ1)

, ∀t ∈ (τ1,+∞),

U(t) >
(
1 +

ϵ

2

)
V(t) ≥ 1 + ϵ

2

1
V(τ1)

+ C
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

, ∀t ∈ (τ1,+∞).

Hence, we obtain the tight bound for U(t) and V(t):
1

1
(1+ ϵ

2 )V(τ1)
+
(

1+ϵ
1+ ϵ

2
− cos∆

)
(t− τ1)

< U(t) ≤ 1

1
U(τ1)

+
(
1− cos∆

1+ ϵ
2

)
(t− τ1)

, ∀t ∈ (τ1,+∞);

1

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

≤ V(t) < 1
1+ ϵ

2

U(τ1)
+
(
1 + ϵ

2 − cos∆
)
(t− τ1)

, ∀t ∈ (τ1,+∞).

It means

U(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , ∀t ≥ τ1 = O
(
p

1
1+cos∆ log(1/∆)

κ22

)
;
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V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , ∀t ≥ τ1 = O
(
p

1
1+cos∆ log(1/∆)

κ22

)
.

Step VI. The tight bound for U(t)− V(t) cos∆.

From 1 + ϵ
2 <

U(t)
V(t) <

1+2ϵ
cos∆ proved in Step V, the two-side bound is straight-forward: for any t ≥ τ1,

U(t)− V(t) cos∆ >
(
1 +

ϵ

2
− cos∆

)
V(t) = Θ

(
∆2V(t)

)
,

U(t)− V(t) cos∆ <
(1 + 2ϵ

cos∆
− cos∆

)
V(t) = Θ

(
∆2V(t)

)
.

Then we obtain

U(t)− V(t) cos∆ = Θ
(
∆2V(t)

)
= Θ

 1

p
1

1+cos∆

κ2
2∆

2 + (t− τ1)

 , ∀t ≥ τ1.

Step VII. The tight bound of U(t) cos∆− V(t).

If we follow the proof in Step VI, 1 + ϵ
2 <

U(t)
V(t) <

1+2ϵ
cos∆ can only gives us a loose two-side bound

for U(t) cos∆− V(t):

U(t) cos∆− V(t) >
(
cos∆ +

m−

2m+
cos∆− 1

)
V(t)

(23)
> −Θ

(
∆2V(t)

)
,

U(t) cos∆− V(t) cos∆ <
(
1 + 2ϵ− 1

)
V(t) = Θ

(
∆2V(t)

)
.

Hence, we need more fine-grained analysis to derive its sharper bounds.

We first focus on its sharper upper bound. From the dynamics (22), for any t ≥ TI, we have

d

dt

(
U(t) cos∆− V(t)

)
=

(
−
(
U(t) cos∆− V(t)

)(
U(t) + (

1

cos∆
+ 1− cos∆)V(t)

)
−
( 1

cos∆
− cos∆− ϵ

)
V2(t)

)
=

(
−
(
U(t) cos∆− V(t)

)(
U(t) + (

1

cos∆
+ 1− cos∆)V(t)

)
− V2(t)

( 1

cos∆
− α

)
sin2 ∆

)
.

We define the hitting time

τ+U/V := inf
{
t > τ1 : U(t) cos∆− V(t) ≤ 0

}
.

From U(τ1)
V(τ1)

= 1+ϵ
cos∆ , we know τ+U/V exists and τ+U/V > τ1.

Then for any t ∈ (τ1, τ
+
U/V), we have U(t) cos∆− V(t) > 0, so

d

dt

(
U(t) cos∆− V(t)

)
=

(
−
(
U(t) cos∆− V(t)

)(
U(t) + (

1

cos∆
+ 1− cos∆)V(t)

)
− V2(t)

( 1

cos∆
− α

)
sin2 ∆

)
Step IV
<

(
−
(
U(t) cos∆− V(t)

)( 1

cos∆
+ 2 +

ϵ

2
− cos∆

)
V(t)− V2(t)

( 1

cos∆
− α

)
sin2 ∆

)
Step IV
≤ −

(
sin2 ∆
cos∆ + 2 + ϵ

2

)(
U(t) cos∆− V(t)

)
1

V(τ1)
+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

−

(
1

cos∆ − α
)
sin2 ∆(

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

)2 .
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For simplicity, we denote A = 1
V(τ1)

, B = (1 + ϵ) − (1 + ϵ
2 ) cos∆, C1 = sin2 ∆

cos∆ + 2 + ϵ
2 ,

C2 =
(

1
cos∆ − α

)
sin2 ∆. And we consider the auxiliary ODE:

dE(t)
dt

= − C1E(t)
A+B(t− τ1)

− C2

(A+B(t− τ1))
2 ,

where E(τ1) = U(τ1) cos∆− V(τ1) = ϵV(τ1).
Its solution is

E(t) =
(
1 +

B

A
(t− τ1)

)−C1
B

(
E(τ1)−

C2

A(C1 −B)

((
1 +

B

A
(t− τ1)

)C1
B −1

− 1

))
.

From the Comparison Principle of ODEs, for any t ∈ (τ1, τ
+
U/V), we have

U(t) cos∆− V(t) ≤ E(t).

Let TE − τ1 = A
B

((
1 + (C1−B)ϵ

C2

) 1
C1
B

−1 − 1

)
, it is easy to verify E(TE) = 0. Moreover,

A

B
= Θ

 1

V(τ1)
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
 = Θ

(
1

κ22p
− 1

1+cos∆∆2

)
= Θ

(
p

1
1+cos∆

κ22∆
2

)
;

1
C1

B − 1
log

(
1 +

(C1 −B)ϵ

C2

)
= Θ

(
∆2 log

(
1 +

Θ(∆2)

Θ(∆2)

))
= Θ(∆2);

(
1 +

(C1 −B)ϵ

C2

) 1
C1
B

−1 − 1 = exp

(
1

C1

B − 1
log

(
1 +

(C1 −B)ϵ

C2

))
− 1 = Θ(∆2).

Therefore,

τ+U/V ≤ TE = τ1 +Θ

(
p

1
1+cos∆

κ42∆
2

∆2

)

=O
(
p

1
1+cos∆ log(1/∆)

κ22

)
+Θ

(
p

1
1+cos∆

κ22

)
= O

(
p

1
1+cos∆ log(1/∆)

κ22

)
.

Then we define the next hitting time

τ−U/V := inf
{
t ≥ τ+U/V : U(t) cos∆− V(t) ≥ 0

}
.

From U(τ+U/V) cos∆−V(τ+U/V) = 0 and d
dt

(
U(t) cos∆−V(t)

)∣∣∣
t=τ+

U/V

< 0, we know τ−U/V exists

and τ−U/V > τ+U/V .

For any t ∈ (τ+U/V , τ
−
U/V), we have U(t) cos∆− V(t) < 0, so

d

dt

(
U(t) cos∆− V(t)

)
=

(
−
(
U(t) cos∆− V(t)

)(
U(t) + (

1

cos∆
+ 1− cos∆)V(t)

)
− V2(t)

( 1

cos∆
− α

)
sin2 ∆

)
Step IV
<

(
−
(
U(t) cos∆− V(t)

)(
1 +

1
cos∆ + 1− cos∆

1 + ϵ
2

)
U(t)− V2(t)

( 1

cos∆
− α

)
sin2 ∆

)
Step IV
≤ −

(
1 +

1
cos∆+1−cos∆

1+ ϵ
2

)(
U(t) cos∆− V(t)

)
1

U(τ1)
+
(
1− cos∆

1+ ϵ
2

)
(t− τ1)

−

(
1

cos∆ − α
)
sin2 ∆(

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

)2
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≤−

(
1 +

1
cos∆+1−cos∆

1+ ϵ
2

)(
U(t) cos∆− V(t)

)
cos∆
1+ϵ

1
V(τ1)

+ 1
3

(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

−

(
1

cos∆ − α
)
sin2 ∆(

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

)2
≤−

3
(
1 +

1
cos∆+1−cos∆

1+ ϵ
2

)(
U(t) cos∆− V(t)

)
1

V(τ1)
+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

−

(
1

cos∆ − α
)
sin2 ∆(

1
V(τ1)

+
(
(1 + ϵ)− (1 + ϵ

2 ) cos∆
)
(t− τ1)

)2 .
For simplicity, we denote C3 = 3

(
1 +

1
cos∆+1−cos∆

1+ ϵ
2

)
. And we consider the auxiliary ODE:

dF(t)

dt
= − C3F(t)

A+B(t− τ1)
− C2

(A+B(t− τ1))
2 ,

where F(τ+U/V) = U(τ+U/V) cos∆− V(τ+U/V) = 0.

Its solution is

F(t) = − C2

A(C3 −B)
(
1 + B

A (t− τ1)
)C3

B

((
1 +

B

A
(t− τ1)

)C3
B −1

− 1

)

≤− C2

AC3

(
1 + B

A (t− τ1)
)
1− 1(

1 + B
A (t− τ1)

)C3
B −1

 .

Let τ ′1 = τ1 +Θ

(
p

1
1+cos∆ log(1/∆)

κ2
2

)
≥ 2τ1. Then for any t ≥ τ ′1, it holds

1(
1 + B

A (t− τ1)
)C3

B −1
≤ 1(

1 + B
A (τ

′
1 − τ1)

)C3
B −1

= exp

(
−
(C3

B
− 1
)
log
(
1 +

B

A
(τ ′1 − τ1)

))

=exp

(
−Θ

(
1

∆2

)
log

(
1 + Θ

(
κ42∆

2

p
1

1+cos∆

p
1

1+cos∆ log(1/∆)

κ22

)))

=exp

(
−Θ

(
1

∆2

)
log
(
1 + Θ

(
∆2 log(1/∆)

)))
= exp

(
−Θ

(
1

∆2

)
Θ
(
∆2 log(1/∆)

))
=exp (−Θ(log(1/∆))) ≤ 1

2
,

thus,

F(t) ≤ − C2

AC3

(
1 + B

A (t− τ1)
)(1− 1

2

)
= −Θ

 ∆2

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 ,

∀t ≥ τ ′1 = τ1 +Θ

(
p

1
1+cos∆ log(1/∆)

κ22

)
≥ 2τ1.

If we let τ2 = Θ

(
p

1
1+cos∆ log(1/∆)

κ2
2

)
≥ 2τ ′1, then we have:

F(t) ≤ −Θ

 ∆2

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , ∀t ≥ τ2.

From the Comparison Principle of ODEs, for any t ∈ (τ+U/V , τ
−
U/V), we have

U(t) cos∆− V(t) ≤ F(t) < 0.
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From the definition of τ−U/V , we obtain

τ−U/V = +∞.

Moreover,

U(t) cos∆− V(t) ≤ −Θ

 ∆2

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , ∀t ≥ τ2 = Θ

(
p

1
1+cos∆ log(1/∆)

κ22

)
.

Recalling the lower bound at the beginning of Step VII, we obtain the tight bound:

U(t) cos∆− V(t) = −Θ

 ∆2

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 = −Θ
(
∆2V(t)

)
, ∀t ≥ τ2 = Θ

(
p

1
1+cos∆ log(1/∆)

κ22

)
.

Lemma D.5 (Hitting time relationship).

T+
II = T ∗

II = inf {t ≥ TI : ∃k ∈ K+, s.t. ⟨bk(t),x−⟩ ≤ 0}

= inf

{
t ≥ TI : ∃k ∈ K+, s.t. ⟨bk(TI),x−⟩+

∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds ≤ 0

}
,

where T+
II and T ∗

II are defined in (20)(21), and U(t),V(t) satisfy (22).

Proof of Lemma D.5.
Recall the definitions of T+

II and T ∗
II:

T+
II = inf

{
t > TI : ∃k ∈ K+, s.t. ⟨wk(t),x+⟩ ≤ 0 or ⟨wk(t),x−⟩ ≤ 0

}
= inf

{
t > TI : ∃k ∈ K+, s.t. ⟨bk(t),x+⟩ ≤ 0 or ⟨bk(t),x−⟩ ≤ 0

}
,

T ∗
II = inf

{
t > TI : ⟨F+(t),x+⟩ ≤ 0 or ∃k ∈ K+, s.t. ⟨bk(t),x+⟩ ≤ 0 or ⟨bk(t),x−⟩ ≤ 0

}
,

where F+(t) =
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−.

Notice

⟨F+(t),x+⟩ =
p

1 + p
e−f+(t) − 1

1 + p
ef−(t) cos∆ =

m

κ22m+

(
U(t)− V(t) cos∆

)
.

And for any k ∈ K+,

⟨bk(t),x+⟩ = ⟨bk(TI),x+⟩+
∫ t

TI

〈
dbk(s)

ds
,x+

〉
ds

= ⟨bk(TI),x+⟩+
∫ t

TI

√
m

κ2m+

(
U(s)− V(s) cos∆

)
ds;

⟨bk(t),x−⟩ = ⟨bk(TI),x−⟩+
∫ t

TI

〈
dbk(s)

ds
,x−

〉
ds

= ⟨bk(TI),x−⟩+
∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds.

So we have

T ∗
II = sup

{
t > TI :U(t)− V(t) cos∆ > 0;

⟨bk(TI),x+⟩+
∫ t

TI

√
m

κ2m+

(
U(s)− V(s) cos∆

)
ds > 0,∀k ∈ K+;
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⟨bk(TI),x−⟩+
∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds > 0,∀k ∈ K+

}
.

With the help of Lemma D.4, we know that U(t)−V(t) cos∆ > 0 for any t ≥ TI. So ⟨bk(TI),x+⟩+∫ t
TI

√
m

κ2m+∆

(
U(s) − V(s) cos∆

)
ds > ⟨bk(TI),x+⟩ > 0,∀k ∈ K+,∀t ≥ TI. Hence, we have the

transformation of the hitting time:

T ∗
II = inf

{
t ≥ TI : ∃k ∈ K+, s.t. ⟨bk(TI),x−⟩+

∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds ≤ 0

}
,

T+
II = T ∗

II.

Lemma D.6 (Time Estimate of Phase II).

TII = T+
II = T ∗

II = Θ

(
p

1
1−α cos∆

κ22∆
2

)
.

Proof of Lemma D.6.
With the help of Theorem C.12 (S1), for any k ∈ K+, we have:

4.66
√
κ1κ2√
m

≤ ρk(TI) ≤
12

√
κ1κ2√
m

;

⟨wk(TI),µ⟩ ≥
(
1− 4.2

√
κ1κ2

)1− 2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15


>1− 4.2
√
κ1κ2 −

2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15 .
With the help of Lemma I.4, we have the estimate of ⟨wk(TI),x−⟩:

−2
√
ϵ sin∆− ϵ ≤ ⟨wk(TI),x−⟩ −

p cos∆− 1√
p2 + 1− 2p cos∆

≤ 2
√
ϵ sin∆,

where
ϵ = 4.2

√
κ1κ2 +

2

1 + 0.7
(
1 + 9.9

√
κ2

κ1

)1.15 .
Then we have:

⟨bk(TI),x−⟩ ≤
12
√
κ1κ2√
m

(
p cos∆− 1√

p2 + 1− 2p cos∆
+ 2

√
ϵ sin∆

)
,

⟨bk(TI),x−⟩ ≥
4.66

√
κ1κ2√
m

(
p cos∆− 1√

p2 + 1− 2p cos∆
− 2

√
ϵ sin∆− ϵ

)
,

which means

⟨bk(TI),x−⟩ = Θ

(√
κ1κ2√
m

)
.

From the dynamics (22), we have

U(t) cos∆− V(t)

=
m− cos∆

m− +m+

(
U(t)− V(t) cos∆

)
+

m+

m− +m+

(
U(t) cos∆− V(t)

(
1 + α sin2 ∆

))
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=− m− cos∆

m− +m+

dU(t)
U(t)dt +

m+

m− +m+

dV(t)
V(t)dt ,

Taking integral, we obtain:∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds

=

√
m

κ2m+

∫ t

TI

(
−m− cos∆

m− +m+

dU(s)
U(s) +

m+

m− +m+

dV(s)
V(s)

)
=

√
m

κ2m+

(
−m− cos∆

m− +m+
log

( U(t)
U(TI)

)
+

m+

m− +m+
log

( V(t)
V(TI)

))

=

√
m

κ2m+
log

U(TI)
m− cos∆

(m−+m+)

U(t)
m− cos∆

(m−+m+)

· V(t)
m+

m−+m+

V(TI)
m+

m−+m+

 .

From Lemma D.5, we have:

T+
II = T ∗

II = inf

{
t ≥ TI : ∃k ∈ K+, s.t. ⟨bk(TI),x−⟩+

∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds ≤ 0

}
.

Recalling the definition of τ1 in Lemma D.4, we know U(s) cos∆ − V(s) > 0 for any t ≤ τ1, so
T ∗
II > τ1.

From Lemma D.4 (S4), we know

U(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 .

From the proof of Lemma D.4, we know U(TI) = Θ(κ22) and V(TI) = Θ
(
κ2
2

p

)
.

Therefore, solving

0 = ⟨bk(TI),x−⟩+
∫ T∗

II

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds

=Θ

(√
κ1κ2√
m

)
+

√
m

κ2m+
log

 U(TI)
m− cos∆

(m−+m+)

U(T ∗
II)

m− cos∆

(m−+m+)

· V(T
∗
II)

m+
m−+m+

V(TI)
m+

m−+m+


=Θ

(√
κ1κ2√
m

)
+Θ

(
1

κ2
√
m

)
log

 U(TI)
m− cos∆

(m−+m+)

U(T ∗
II)

m− cos∆

(m−+m+)

· V(T
∗
II)

m+
m−+m+

V(TI)
m+

m−+m+

 ,

we obtain

V(T ∗
II)

m+
m−+m+

U(T ∗
II)

m− cos∆

(m−+m+)

· U(TI)
m− cos∆

(m−+m+)

V(TI)
m+

m−+m+

= exp (−Θ(κ2
√
κ1κ2)) = Θ(1).

A straight-forward calculation gives us:

V(T ∗
II)

m+
m−+m+

U(T ∗
II)

m− cos∆

(m−+m+)

· U(TI)
m− cos∆

(m−+m+)

V(TI)
m+

m−+m+

=Θ

 1(
p

1
1+cos∆

κ2
2

+∆2(T ∗
II − τ1)

)m+−m− cos∆

m++m−

· (κ22)
m− cos∆

m++m−(
κ2
2

p

) m+
m++m−


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=Θ

 p
m+

m++m−(
p

1
1+cos∆ + κ22∆

2(T ∗
II − τ1)

)m+−m− cos∆

m++m−

 .

Hence, we get

T ∗
II − τ1 = Θ

(
1

κ22∆
2

(
p

m+
m+−m− cos∆ −Θ

(
p

1
1+cos∆

)))
= Θ

(
p

1
1−α cos∆

κ22∆
2

)
,

Combining Lemma D.4 (S3), we obtain

T+
II = T ∗

II = τ1+Θ

(
p

1
1−α cos∆

κ22∆
2

)
= O

(
p

1
1+cos∆ log(1/∆)

κ22

)
+Θ

(
p

1
1−α cos∆

κ22∆
2

)
= Θ

(
p

1
1−α cos∆

κ22∆
2

)
.

Recall the relationship between TII and T+
II (19)(20):

TII = T+
II ∧ inf{t > TI : ∃k ∈ K−, s.t. ⟨wk(t),x+⟩ ≠ 0 or ⟨wk(t),x−⟩ ≤ 0}.

Then using Lemma D.1 (S2), we obtain:

TII = T+
II = Θ

(
p

1
1−α cos∆

κ22∆
2

)
.

Lemma D.7 (Length of Plateau).
If we define the hitting time Tplat := inf

{
t ∈ [TI, TII] : Acc(t) = 1

}
, then we have:

(S1). Tplat = Θ
(

p
κ2
2∆

2

)
.

(S2). ∀t ∈ [TI, Tplat], Acc(t) ≡ p
1+p .

(S3). ∀t ∈ (Tplat, TII], Acc(t) ≡ 1.

Proof of Lemma D.7.
It is easy to verify

Tplat = inf
{
t ∈ [TI, TII] : f+(t) ≤ 0 or f−(t) > 0

}
.

From Theorem C.12 (S4), we know f+(TI) > 0 and f−(TI) > 0. From Lemma D.3, we have

U(t) = κ22
m+

m

p

1 + p
e−f+(t), V(t) = κ22

m+

m

1

1 + p
ef−(t).

From the proof of Lemma D.4, we know d
dtU(t) < 0, ∀t ∈ [TI, TII], so

U(t) ≤ U(TI), f+(t) ≥ f+(TI) > 0, ∀t ∈ [TI, TII].

Recall the definition of τ1 and τ2 in Lemma D.4. From the proof of Lemma D.4, we know d
dtV(t) >

0, ∀t ∈ [TI, τ1), so

V(t) ≥ V(TI) , f−(t) ≥ f−(TI) > 0, ∀t ∈ [TI, τ1].

With the help of Lemma D.4 (S4), we know

V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , ∀t ∈ (τ1,+∞).
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Because V(Tplat) = κ22
m+

m
1

1+p = Θ
(
κ2
2

p

)
, we have

Θ

(
κ22
p

)
= Θ

 1

p
1

1+cos∆

κ2
2

+∆2(Tplat − τ1)

 , ∀t ∈ (τ1,+∞).

Therefore,

Tplat = τ1 +Θ

(
p

κ22∆
2

(
1−Θ

(
1

p
cos∆

1+cos∆

)))
= τ1 +Θ

(
p

κ22∆
2

)

=O
(
p

1
1+cos∆ log(1/∆)

κ22

)
+Θ

(
p

κ22∆
2

)
= Θ

(
p

κ22∆
2

)
.

It is easy to verify Tplat = Θ
(

p
κ2
2∆

2

)
< TII = Θ

(
p

1
1−α cos∆

κ2
2∆

2

)
.

Because τ2 − τ1 = Θ

(
p

1
1+cos∆ log(1/∆)

κ2
2

)
, for any t ∈ (τ1, τ2], we have

V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(τ2 − τ1)


=Θ

(
κ22

p
1

1+cos∆

)
≫ Θ

(
κ22
p

)
= V(Tplat).

Thus,
f−(t) > f−(Tplat) = 0, ∀t ∈ (τ1, τ2].

From Lemma D.4 (S6), we know that U(t) cos∆ − V(t) < 0, ∀t ∈ (τ2, TII]. Then dV(t)
dt < 0,

∀t ∈ (τ2, TII]. Thus,

f−(t) > f−(Tplat) = 0, ∀t ∈ (τ2, Tplat);

f−(t) < f−(Tplat) = 0, ∀t ∈ (Tplat, TII].

Hence, we know

f−(t) ≥ 0, ∀t ∈ [TI, Tplat];

f−(t) < 0, ∀t ∈ (Tplat, TII].

In summary, we have proved (S1)(S2)(S3).

Lemma D.8 (Prediction at end of Phase II).
(S1) For the predictions, we have:

e−f+(TII) = Θ
(
p−

1
1−α cos∆

)
, ef−(TII) = Θ

(
p−

α cos∆
1−α cos∆

)
, L(θ(TII)) = Θ

(
p−

1
1−α cos∆

)
;

pe−f+(TII)

1 + p
− ef−(TII)

1 + p
cos∆ = Θ

(
∆2p−

1
1−α cos∆

)
,

pe−f+(TII)

1 + p
cos∆− ef−(TII)

1 + p
= −Θ

(
∆2p−

1
1−α cos∆

)
.

(S2). For any k ∈ K+, we have:

⟨bk(TII),x−⟩ = O
(√

κ1κ2√
m

)
.

(S3). For any k ∈ K−, we have ⟨bk(TII),x+⟩ = 0.
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Proof of Lemma D.8.
Proof of (S1). Recall the definitions in Lemma D.3:{

U(t) = κ22
m+

m
p

1+pe
−f+(t),

V(t) = κ22
m+

m
1

1+pe
f−(t).

From Lemma D.4 (S4) and Lemma D.6, we have

U(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 , V(t) = Θ

 1

p
1

1+cos∆

κ2
2

+∆2(t− τ1)

 ,

τ1 = O
(
p

1
1+cos∆ log(1/∆)

κ22

)
, TII = Θ

(
p

1
1−α cos∆

κ22∆
2

)
.

Therefore, we obtain the estimate:

e−f+(TII) = Θ

(
1

κ22

1

U(TII)

)
= Θ

 1

κ22

1

p
1

1+cos∆

κ2
2

+∆2 p
1

1−α cos∆

κ2
2∆

2

 = Θ
(
p−

1
1−α cos∆

)
,

ef−(TII) = Θ

(
p

κ22

1

V(TII)

)
= Θ

 p

κ22

1

p
1

1+cos∆

κ2
2

+∆2 p
1

1−α cos∆

κ2
2∆

2

 = Θ
(
p−

α cos∆
1−α cos∆

)
.

Moreover, Lemma D.4 (S4)(S5)(S6) give us

U(TII)− V(TII) cos∆ = Θ
(
∆2V(TII)

)
= Θ

(
κ22∆

2p−
1

1−α cos∆

)
,

U(TII) cos∆− V(TII) = −Θ
(
∆2V(TII)

)
= −Θ

(
κ22∆

2p−
1

1−α cos∆

)
.

Hence,

pe−f+(TII)

1 + p
− ef−(TII)

1 + p
cos∆ =

1

κ22

(
U(TII)− V(TII) cos∆

)
= Θ

(
∆2p−

1
1−α cos∆

)
,

pe−f+(TII)

1 + p
cos∆− ef−(TII)

1 + p
=

1

κ22

(
U(TII) cos∆− V(TII)

)
= −Θ

(
∆2p−

1
1−α cos∆

)
.

Proof of (S2). Denote K0
+ :=

{
k ∈ K+ : ⟨wk(TII),x−⟩ = 0

}
. From the definition of TII and the

proof in Phase II, we know that ⟨wk(TII),x−⟩ > 0 holds for any k ∈ K+ −K0
+.

From the proof in Lemma D.5, for any k ∈ K+, it holds

⟨bk(t),x−⟩ = ⟨bk(TI),x−⟩+
∫ t

TI

〈
dbk(s)

ds
,x−

〉
ds

= ⟨bk(TI),x−⟩+
∫ t

TI

√
m

κ2m+

(
U(s) cos∆− V(s)

)
ds, ∀t ∈ [TI, TII].

Thus for any k ∈ K+ −K0
+, we have

⟨bk(TII),x−⟩ − ⟨bk(TI),x−⟩ = ⟨bk0(TII),x−⟩ − ⟨bk0(TI),x−⟩ = −⟨bk0(TI),x−⟩ ,
so

⟨bk(TII),x−⟩ = ⟨bk(TI),x−⟩ − ⟨bk0(TI),x−⟩ .
From the proof of Lemma D.6, we know

⟨bk(TI),x−⟩ ≤
12
√
κ1κ2√
m

(
p cos∆− 1√

p2 + 1− 2p cos∆
+ 2

√
ϵ sin∆

)
,
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⟨bk(TI),x−⟩ ≥
4.66

√
κ1κ2√
m

(
p cos∆− 1√

p2 + 1− 2p cos∆
− 2

√
ϵ sin∆− ϵ

)
,

where ϵ = 4.2
√
κ1κ2 +

2

1+0.7
(
1+9.9

√
κ2
κ1

)1.15 . This means

⟨bk(TI),x−⟩ = Θ

(√
κ1κ2√
m

)
.

Hence, for any k ∈ K+ −K0
+,

0 < ⟨bk(TII),x−⟩ = |⟨bk(TI),x−⟩ − ⟨bk0(TI),x−⟩| ≤ |⟨bk(TI),x−⟩|+ |⟨bk0(TI),x−⟩|

=Θ

(√
κ1κ2√
m

)
+Θ

(√
κ1κ2√
m

)
= Θ

(√
κ1κ2√
m

)
.

Proof of (S3). Due to the dynamics of the neuron k ∈ K− in Phase II, this conclusion is clear.

As simple corollaries of these lemmas, we can prove two theorems in Phase II.

Proof of Theorem 4.4 and 4.5.
Theorem 4.5 is Lemma D.7. Theorem 4.4 (S1) has been proven in Lemma D.6; Theorem 4.4 (S2)
has been proven in Lemma D.8. Additionally, combining (i) TII = T+

II in Lemma D.6, (ii) the
transformation in Lemma D.5, and (iii) the definition of TII, we obtain Theorem 4.4 (S3).

65



E Proofs of Optimization Dynamics in Phase III

E.1 Optimization Dynamics during Phase Transition

Building upon Phase II, we will demonstrate that within a short time, all the living positive neurons
K+ change their activation patterns, corresponding to a “phase transition”. After the phase transition,
all the living positive neurons k ∈ K+ undergo deactivation for x−, i.e., sgn−k (t) changes from 1 to
0, while other activation patterns remain unchanged.

Specifically, we define the hitting time

TPT
II := inf{t > TII : ∀k ∈ K+, sgn−k (t) = 0}

= inf
{
t > TII : ∀k ∈ K+, ⟨wk(t),x−⟩ = 0

}
,

(26)

and we call t ∈ (TII, T
PT
II ] “Phase Transition” from Phase II to Phase III.

Notice that the dynamics during phase transition is highly nonlinear with |K+| = Θ(m) changes on
activation partitions. Fortunately, we can keep the neurons of K+ and K− close enough respectively
in Phase I by using sufficiently small initialization κ1. Moreover, their differences do not enlarge in
Phase II. As a result, the phase transition can be completed quickly without significant changes in the
vector field.

In order to analyze the dynamics of neurons and vector fields, we introduce the auxiliary hitting time:

TPT∗
II := TPT

II ∧ inf
{
t > TII : ⟨F+(t),x+⟩ ≤ 0 or ⟨F+(t),x−⟩ ≥ 0

}
;

where F+(t) =
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−.

(27)

We call TII ≤ t ≤ TPT∗
II “Phase Transition*”.

Lemma E.1 (Dynamics of living neurons during Phase Transition*).
In Phase Transition*, i.e., t ∈ [TII, T

PT∗
II ], we have the following dynamics for each neuron k ∈

K− ∪ K+.

(S1). For living negative neuron k ∈ K−, we have:

wk(t) ∈ M0
+ ∩M+

−,

dbk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
.

(S2) For living positive neuron k ∈ K+, we define the hitting time:

TPT∗
II,k := inf

{
t > TII : ⟨wk(t),x−⟩ = 0

}
∧inf

{
t > TII : ⟨F+(t),x+⟩ ≤ 0 or ⟨F+(t),x−⟩ ≥ 0

}
.

Then it holds that:

(P0) TPT∗
II = max

k∈K+

TPT∗
II,k ;

(P1) For any t ∈ [TII, T
PT∗
II,k ), we have

dbk(t)

dt
=

κ2√
m
F+(t);

(P2) If TPT∗
II,k < TPT∗

II strictly, then for any t ∈ [TPT∗
II,k , T

PT∗
II ], we have wk(t) ∈ M+

+ ∩M0
− and

dbk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
.

(P3) Regardless of the relationship between TPT∗
II,k and TPT∗

II , for any t ∈ [TII, T
PT∗
II ], we have

⟨wk(t),x+⟩ > 0, ⟨wk(t),x−⟩ ≥ 0.

Proof of Lemma E.1.
Proof of (S1). Recalling the definition of TPT∗

II , it holds ⟨F+(t),x+⟩ > 0 for any TII ≤ t ≤ TPT∗
II .

So (S1) can be proved in the same way as employed in the proof of Lemma D.1 (S2) and is omitted.
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Proof of (S2)(P0) and (S2)(P1). (S2)(P0) is obvious. Moreover, for any k ∈ K+ and t ∈ [TII, T
PT∗
II,k ),

we have ⟨wk(t),x+⟩ > 0 and ⟨wk(t),x−⟩ > 0 for any TI ≤ t ≤ T ∗
II, so (S2)(P1) can be proved in

the same method as shown in the proof of Lemma D.1 (S1), and we have the dynamics:

dbk(t)

dt
=

κ2√
m
F+(t), t ∈ [TII, T

PT∗
II,k ).

Additionally, recalling the definition of TPT∗
II,k , we know ⟨F+(t),x+⟩ > 0 holds for any t ∈

[TII, T
PT∗
II,k ). Combining the dynamics of bk(t), we further have:

⟨bk(t),x+⟩ = ⟨bk(TII),x+⟩+
κ2√
m

∫ t

TII

⟨F+(s),x+⟩ds

> ⟨bk(TII),x+⟩ > 0, ∀t ∈ [TII, T
PT∗
II,k ].

Proof of (S2)(P2). Let k ∈ K+. If TPT∗
II,k < TPT∗

II , we have the following results:

Step I. wk(T
PT∗
II,k ) ∈ M+

+ ∩M0
−.

Recalling the definition of TPT∗
II,k and TPT∗

II , TPT∗
II,k < TPT∗

II implies that
〈
wk(T

PT∗
II,k ),x−

〉
= 0.

Then recalling our proof of (S2)(P1), we obtain
〈
bk(T

PT∗
II,k ),x+

〉
> 0.

Hence, we obtain w(TPT∗
II,k ) ∈ M+

+ ∩M0
−.

Step II. Dynamics after t = TPT∗
II,k .

In this step, we will analyze the training dynamics after wk(T
PT∗
II,k ) ∈ M+

+ ∩M0
−, i.e. bk(TPT∗

II,k ) ∈
P+
+ ∩ P0

−. We first analysis the vector field around the manifold P+
+ ∩ P0

−. For any b̃ ∈ P+
+ ∩ P0

−
and 0 < δ0 ≪ 1, we know that P0

+ ∩ P+
− separates its neighborhood B(b̃, δ0) into two domains

G− = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ < 0} and G+ = {b ∈ B(b̃, δ0) : ⟨b,x−⟩ > 0}. Following Definition
H.1, we calculate the limited vector field on b̃ from G− and G+.

(i) The limited vector field F− on b̃ (from G−):

db

dt
= F−, where F− =

κ2√
m

p

1 + p
e−f+(t)x+.

(ii) The limited vector field F+ on b̃ (from G+):

db

dt
= F+, where F+ =

κ2√
m

(
pe−f+(t)

1 + p
x+ − ef−(t)

1 + p
x−

)
.

(iii) Then we calculate the projections of F− and F+ onto x− (the normal to the surface P+
+ ∩ P0

−):

F−
N =

〈
F−,x−

〉
=
κ2pe

−f+(t)

√
m(1 + p)

cos∆,

F+
N =

〈
F+,x−

〉
=

κ2e
f−(t)

√
m(1 + p)

cos∆− κ2pe
−f+(t)

√
m(1 + p)

.

We further define the hitting time to check whether wk(t) ∈ M+
+ ∩M0

− for TPT∗
II,k ≤ t ≤ TPT∗

II .

τ++,k := inf
{
t ∈ [TPT∗

II,k , T
PT∗
II ] : ⟨wk(t),x+⟩ ≤ 0

}
.

From the definition of TPT∗
II , we know that ⟨F+(t),x−⟩ = p

1+pe
−f+(t) cos∆− 1

1+pe
f−(t) < 0 for

any t ∈ [TII, T
PT∗
II ], which means F+

N < 0. And it is clear that F−
N > 0. Hence, the dynamics
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corresponds to Case (I) in Definition H.1 (F−
N > 0 and F+

N < 0), which means that bk(t) can not
leave P0

− for any t ∈ [TPT∗
II,k , τ

+
+,k], and the dynamics of bk for t ∈ [TPT∗

II,k , τ
+
+,k] satisfies:

db

dt
= αF+ + (1− α)F−, α =

f−N
f−N − f+N

,

which is

dbk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
, t ∈ [TPT∗

II,k , τ
+
+,k].

By Lemma C.1, we know that the dynamics of wk(t) on M+
+ ∩M0

− and the dynamics of ρk(t) are:

dwk(t)

dt
=

κ2pe
−f+(t)

ρk(t)
√
m(1 + p)

(
x+ − ⟨wk,x+⟩wk − x− cos∆

)
.

dρk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

⟨wk(t),x+⟩ .

Moreover, The dynamics above also ensures that:

⟨bk(t),x+⟩ =
〈
bk(T

PT∗
II,k ),x+

〉
+

∫ t

TPT∗
II,k

κ2pe
−f+(s)

√
m(1 + p)

sin2 ∆ds

>
〈
bk(T

PT∗
II,k ),x+

〉
> 0, ∀t ∈ [TPT∗

II,k , τ
+
+,k].

which means τ++,k = TPT∗
II . Hence, we have proved (S2)(P2).

Proof of (S2)(P3). Our proof for (S2)(P1) and (S2)(P2) imply this result directly.

Lemma E.2 (Evolution of the prediction in Phase III*).
For any t ∈ [TII, T

PT∗
II ], we have

e−C1

1 + C0ef−(TII)(t− TII)
≤ef−(t)−f−(TII) ≤ 1

1 + C0e(f−(TII)−C1)(t− TII)
,

exp (−C2(t− TII)) ≤ef+(TII)−f+(t) ≤ 1,

where

C0 = Θ

(
κ22∆

2

p

)
, C1 = O (κ2

√
κ1κ2) , e

f−(TII) = Θ
(
p−

α cos∆
1−α cos∆

)
, C2 = Θ

(
κ22p

− 1
1−α cos∆

)
.

Proof of Lemma E.2.
Step I. Preparation. With the help of Lemma E.1(S1) and (S2)(P3), we know that

(i) For k ∈ K−, we have

⟨wk(t),x+⟩ = 0, ⟨wk(t),x−⟩ > 0, ∀t ∈ [TII, T
PT∗
II ].

(ii) For k ∈ K+, we have

⟨wk(t),x+⟩ > 0, ⟨wk(t),x−⟩ ≥ 0, ∀t ∈ [TII, T
PT∗
II ];

So f+(t) and f−(t) have the following representation for any t ∈ [TII, T
PT∗
II ]:

f+(t) =
∑
k∈K+

κ2√
m
b⊤k (t)x+,

f−(t) =
∑
k∈K+

κ2√
m
b⊤k (t)x− −

∑
k∈K−

κ2√
m
b⊤k (t)x−.

Step II. Evolution of f−(t).
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To begin with, we need to do a rough estimate of
∑
k∈K+

κ2√
m
b⊤k (t)x−. Let k ∈ K+. For any

t ∈ [TPT∗
II,k , T

PT∗
II ], we have ⟨bk(t),x−⟩ = 0. And for any t ∈ [TII, T

PT∗
II,k ), we have:

d

dt
⟨bk(t),x−⟩ Lemma E.1

=
κ2√
m

⟨F k(t),x−⟩
(27)
< 0.

Therefore, for any t ∈ [TII, T
PT∗
II ], we have 0 ≤ ⟨bk(t),x−⟩ ≤ ⟨bk(TII),x−⟩, so

0 ≤
∑
k∈K+

κ2√
m
b⊤k (t)x− ≤

∑
k∈K+

κ2√
m
b⊤k (TII)x−,

−
∑
k∈K−

κ2√
m
b⊤k (t)x− ≤ f−(t) ≤

∑
k∈K+

κ2√
m
b⊤k (TII)x− −

∑
k∈K−

κ2√
m
b⊤k (t)x−.

According to Lemma E.1, it follows that for any k ∈ K−, its dynamics is dbk(t)
dt = κ2e

f−(t)
√
m(1+p)

(
x− −

x+ cos∆
)
, thus

b⊤k (t)x− = b⊤k (TII)x− +

∫ t

TII

〈
dbk(s)

ds
,x−

〉
ds = b⊤k (TII)x− +

κ2 sin
2 ∆√

m(1 + p)

∫ t

TII

ef−(s)ds,

∑
k∈K−

κ2√
m
b⊤k (t)x− =

∑
k∈K−

κ2√
m
b⊤k (TII)x− +

m−κ
2
2 sin

2 ∆

m(1 + p)

∫ t

TII

ef−(s)ds.

Therefore, we have two-side bounds of f−(t):

f−(t) ≤ −m−κ
2
2 sin

2 ∆

m(1 + p)

∫ t

TII

ef−(s)ds−
∑
k∈K−

κ2√
m
b⊤k (TII)x− +

∑
k∈K+

κ2√
m
b⊤k (TII)x−,

f−(t) ≥ −m−κ
2
2 sin

2 ∆

m(1 + p)

∫ t

TII

ef−(s)ds−
∑
k∈K−

κ2√
m
b⊤k (TII)x−.

For simplicity, we denote C0 :=
m−κ

2
2 sin2 ∆

m(1+p) , C−
− :=

∑
k∈K−

κ2√
m
b⊤k (TII)x− and C+

− :=∑
k∈K+

κ2√
m
b⊤k (TII)x−. Then we have:

−C0

∫ t

TII

ef−(s)ds− C−
− ≤ f−(t) ≤ −C0

∫ t

TII

ef−(s)ds− C−
− + C+

− .

Let Ψ(t) :=
∫ t
TII
ef−(s)ds, then dΨ(t)

dt = ef−(t). So Ψ(TII) = 0 and

−C0Ψ(t)− C−
− ≤ log

(
dΨ(t)

dt

)
≤ −C0Ψ(t)− C−

− + C+
− ,

e−C
−
− e−C0Ψ(t) ≤ dΨ(t)

dt
≤ e−C

−
−+C+

−e−C0Ψ(t)

For the right hand, for any ϵ ∈ (0, 1), we consider the auxiliary ODE:{
dP(t)
dt = e−C

−
−+(1+ϵ)C+

−e−C0P(t),

P(TII) = 0.

The solution of this ODE is P(t) = 1
C0

log
(
1 + C0e

−C−
−+(1+ϵ)C+

− (t− TII)
)

. From the Comparison
Principle of ODEs, we have the upper bound for Ψ(t):

Ψ(t) ≤ P(t) =
1

C0
log
(
1 + C0e

−C−
−+(1+ϵ)C+

− (t− TII)
)
.

Taking ϵ→ 0, we obtain

Ψ(t) ≤ 1

C0
log
(
1 + C0e

−C−
−+C+

− (t− TII)
)
.
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In the similar way, we can derive the lower bound for Ψ(t):

Ψ(t) ≥ 1

C0
log
(
1 + C0e

−C−
− (t− TII)

)
.

Consequently, we infer that

f−(t) ≤ −C0Ψ(t)− C−
− + C+

− ≤ − log
(
1 + C0e

−C−
− (t− TII)

)
− C−

− + C+
− ,

f−(t) ≥ −C0Ψ(t)− C−
− ≥ − log

(
1 + C0e

−C−
−+C+

− (t− TII)
)
− C−

− .

Noticing f−(TII) = C+
− − C−

− , we obtain

− log
(
1 + C0e

−C−
−+C+

− (t− TII)
)
− C+

− ≤ f−(t)− f−(TII) ≤ − log
(
1 + C0e

−C−
− (t− TII)

)
.

Noticing f−(TII) = C+
− − C−

− , this inequality means

e−C
+
−

1 + C0ef−(TII)(t− TII)
≤ ef−(t)−f−(TII) ≤ 1

1 + C0e
(f−(TII)−C+

−)(t− TII)
.

where C0 =
m−κ

2
2 sin2 ∆

m(1+p) = Θ
(
κ2
2∆

2

p

)
. Moreover, according to Lemma D.8 (S1)(S2), we have

ef−(TII) = Θ
(
p−

α cos∆
1−α cos∆

)
,

C+
− =

∑
k∈K+

κ2√
m
b⊤k (TII)x− = O

(
m−

κ2√
m

√
κ1κ2√
m

)
= O (κ2

√
κ1κ2) .

Step III. Evolution of f+(t).

Let k ∈ K+. According to Lemma E.1 (S2)(P2) and (S2)(P3), it follows that for any k ∈ K+, its
dynamics during t ∈ [TII, T

PT∗
II ] is

dbk(t)

dt
=

κ2√
m

⟨F+(t),x+⟩ ;

or
dbk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
.

Notice that

f+(t) =
∑
k∈K+

κ2√
m
b⊤k (t)x+ =

∑
k∈K+

κ2√
m
b⊤k (TII)x+ +

∑
k∈K+

∫ t

TII

κ2√
m

〈
dbk(t)

ds
,x+

〉
ds

=f+(TII) +
κ2√
m

∑
k∈K+

∫ t

TII

〈
dbk(t)

ds
,x+

〉
ds.

On the one hand, for any t ∈ [TII, T
PT∗
II ], we have the lower bound:

f+(t) ≥ f+(TII) +
κ22
m

∑
k∈K+

∫ t

TII

min
{
⟨F+(s),x+⟩ ,

pe−f+(s)

1 + p
sin2 ∆

}
ds ≥ f+(TII).

On the other hand, for any t ∈ [TII, T
PT∗
II ], we can derive an upper bound:

f+(t) ≤f+(TII) +
κ22
m

∑
k∈K+

∫ t

TII

max
{
⟨F+(s),x+⟩ ,

pe−f+(s)

1 + p
sin2 ∆

}
ds

≤f+(TII) +
κ22
m

∑
k∈K+

∫ t

TII

max
{pe−f+(s)

1 + p
,
pe−f+(s)

1 + p
sin2 ∆

}
ds

≤f+(TII) +
κ22
m

∑
k∈K+

∫ t

TII

pe−f+(s)

1 + p
ds ≤ f+(TII) +

κ22m+

m

pe−f+(TII)

1 + p
(t− TII).
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Hence, we obtain

exp

(
−κ

2
2m+

m

pe−f+(TII)

1 + p
(t− TII)

)
≤ ef+(TII)−f+(t) ≤ 1,

where
κ22m+

m

pe−f+(TII)

1 + p

Lemma D.8
= Θ

(
κ22e

−f+(TII)
)
= Θ

(
κ22p

− 1
1−α cos∆

)
.

Lemma E.3 (Nearly fixed vector filed in Phase III*).
There exist absolute constants Q1, Q2 > 0, such that: For any time Tfix ∈ [TII,+∞), if we choose
κ1, κ2 s.t.

κ22

(
Tfix ∧ TPT∗

II − TII

)
p−

1
1−α cos∆ = O(∆2), κ22

√
κ1
κ2

= O(∆2),

then for any t ∈ [TII, Tfix ∧ TPT∗
II ], we have

⟨F+(t),x+⟩ ≤
Q1

2
∆2p−

1
1−α cos∆ , ⟨F+(t),x−⟩ ≥ −Q2

2
∆2p−

1
1−α cos∆ .

Proof of Lemma E.3.
For simplicity, we denote δT := Tfix ∧ TPT∗

II − TII From Lemma E.2, for any t ∈ [TII, Tfix ∧ TPT∗
II ],

we have

ef−(t)−f−(TII) − 1 ≤ 1

1 + C0e(f−(TII)−C1)δT
− 1 ≤ 0,

ef−(t)−f−(TII) − 1 ≥ e−C1

1 + C0ef−(TII)δT
− 1 =

e−C1 − 1− C0e
f−(TII)δT

1 + C0ef−(TII)δT
≥ −C1 + C0e

f−(TII)δT
1 + C0ef−(TII)δT

ef+(TII)−f+(t) − 1 ≤ 0,

ef+(TII)−f+(t) − 1 ≥ e−C2δT − 1 ≥ −C2δT .

Recalling Lemma D.8 (S1), there exists absolute constants Q1, Q2 > 0 such that

⟨F+(TII),x+⟩ =
pe−f+(TII)

1 + p
− ef−(TII)

1 + p
cos∆ ≥ Q1∆

2p−
1

1−α cos∆ ,

⟨F+(TII),x−⟩ =
pe−f+(TII)

1 + p
cos∆− ef−(TII)

1 + p
≤ −Q2∆

2p−
1

1−α cos∆ .

Step I. Bounding the term ⟨F+(t),x+⟩.

|⟨F+(t),x+⟩ − ⟨F+(TII),x+⟩|

=

∣∣∣∣ p

1 + p
e−f+(t) − p

1 + p
e−f+(TII) − ef−(t)

1 + p
cos∆ +

ef−(TII)

1 + p
cos∆

∣∣∣∣
≤
∣∣∣∣ p

1 + p
e−f+(t) − p

1 + p
e−f+(TII)

∣∣∣∣+ ∣∣∣∣ef−(t)

1 + p
cos∆− ef−(TII)

1 + p
cos∆

∣∣∣∣
≤ p

1 + p
e−f+(TII)

∣∣∣ef+(TII)−f+(t) − 1
∣∣∣+ ef−(TII)

1 + p

∣∣∣ef−(t)−f−(TII) − 1
∣∣∣

≤ p

1 + p
e−f+(TII)C2δT +

ef−(TII)

1 + p

C1 + C0e
f−(TII)δT

1 + C0ef−(TII)δT

To ensure |⟨F+(t),x+⟩ − ⟨F+(TII),x+⟩| ≤ 1
2Q1∆

2p−
1

1−α cos∆ , we need only select parameters
such that

p

1 + p
e−f+(TII)C2δT +

ef−(TII)

1 + p

C1 + C0e
f−(TII)δT

1 + C0ef−(TII)δT
≤ 1

2
Q1∆

2p−
1

1−α cos∆ .
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From Lemma E.2 and Lemma D.8, we have:

C0 = Θ

(
κ22∆

2

p

)
, C1 = O (κ2

√
κ1κ2) , C2 = Θ

(
κ22p

− 1
1−α cos∆

)
,

e−f+(TII) = Θ
(
p−

1
1−α cos∆

)
, ef−(TII) = Θ

(
p−

α cos∆
1−α cos∆

)
.

Therefore, if we take

C0e
f−(TII)δT = Θ

(
κ22∆

2p−
1

1−α cos∆ δT

)
= O(1),

then we have
p

1 + p
e−f+(TII)C2δT +

ef−(TII)

1 + p

C1 + C0e
f−(TII)δT

1 + C0ef−(TII)δT

=Θ
(
κ22p

− 2
1−α cos∆ δT

)
+Θ

(
p−

1
1−α cos∆

(
O(κ2

√
κ1κ2) + κ22∆

2p−
1

1−α cos∆ δT

))
=Θ

(
κ22p

− 1
1−α cos∆

(
δT p

− 1
1−α cos∆ +O(

√
κ1
κ2

)

))
.

If we can take

κ22δT p
− 1

1−α cos∆ = O(∆2), κ22

√
κ1
κ2

= O(∆2),

then κ22∆
2p−

1
1−α cos∆ δT = O(1) and

|⟨F+(t),x+⟩ − ⟨F+(TII),x+⟩| = O
(
∆2p−

1
1−α cos∆

)
≤ 1

2
Q1∆

2p−
1

1−α cos∆ ,

Hence,
⟨F+(t),x+⟩ ≥ ⟨F+(TII),x+⟩ − |⟨F+(t),x+⟩ − ⟨F+(TII),x+⟩|

≥1

2
Q1∆

2p−
1

1−α cos∆ = Ω
(
∆2p−

1
1−α cos∆

)
, ∀t ∈ [TII, Tfix ∧ TPT∗

II ].

Step II. Bounding the term ⟨F+(t),x−⟩.
The proof can be completed by the method analogous to that used in Step I, and we omit it. The
result is

⟨F+(t),x−⟩ ≥ ⟨F+(TII),x−⟩+ |⟨F+(t),x+⟩ − ⟨F+(TII),x−⟩|

≥ − 1

2
Q2∆

2p−
1

1−α cos∆ ≡ −Ω
(
∆2p−

1
1−α cos∆

)
, ∀t ∈ [TII, Tfix ∧ TPT∗

II ].

Lemma E.4 (The end of Phase Transition).
If we choose κ1, κ2 s.t κ2 = O(1) and

√
κ1

κ2
= O

(
∆4
)

(3), then it holds that

(S1) (Time).

TPT
II = TPT∗

II = TII +O
(√

κ1
κ2

p
1

1−α cos∆

∆2

)
=

(
1 +O

(√
κ1κ32

))
TII;

(S2) (Prediction).

e−f+(TPT
II ) = Θ

(
p−

1
1−α cos∆

)
, ef−(TPT

II ) = Θ
(
p−

α cos∆
1−α cos∆

)
;

pe−f+(TPT
II )

1 + p
− ef−(TPT

II )

1 + p
cos∆ = Θ

(
∆2p−

1
1−α cos∆

)
,

pe−f+(TPT
II )

1 + p
cos∆− ef−(TPT

II )

1 + p
= −Θ

(
∆2p−

1
1−α cos∆

)
.

(S3) (Activation patterns).〈
wk(T

PT
II ),x+

〉
> 0,

〈
wk(T

PT
II ),x−

〉
= 0, ∀k ∈ K+;〈

wk(T
PT
II ),x+

〉
= 0,

〈
wk(T

PT
II ),x−

〉
> 0, ∀k ∈ K−.
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Proof of Lemma E.4.
Step I. Time Estimate. Let k ∈ K+.

Recalling the definition of TPT∗
II,k in Lemma E.1, Lemma E.1 (S2)(P0) also gives us

TPT∗
II = max

k∈K+

TPT∗
II,k .

From Lemma D.8 (S2), we know that there exists an absolute constant Q3 > 0, s.t. 0 ≤
⟨bk(TII),x−⟩ ≤ Q3

√
κ1κ2√
m

. And we let Q2 > 0 be the absolute constant Q2 in Lemma E.3.

First, we choose the time

Tfix = TII +
3Q3

Q2∆2

√
κ1
κ2
p

1
1−α cos∆ .

then we choose κ1, κ2 s.t.

κ2 = O(1),

√
κ1
κ2

= O
(
∆4
)
.

It can ensure

κ22

(
Tfix ∧ TPT∗

II − TII

)
p−

1
1−α cos∆ = Θ

(
κ22
∆2

√
κ1
κ2

)
= O(∆2), κ22

√
κ1
κ2

= O(∆2).

Then according to Lemma E.3, it follows that

⟨F+(t),x−⟩ ≤ −Q2

2
∆2p−

1
1−α cos∆ , ∀t ∈ [TII, T

PT∗
II,k ∧ Tfix).

Now we consider the dynamics for t ∈ [TII, T
PT∗
II,k ∧ Tfix).

Recalling lemma E.1, we have〈
bk(T

PT∗
II,k ∧ Tfix),x−

〉
= ⟨bk(TII),x−⟩+

∫ t

TII

〈
dbk(s)

ds
,x+

〉
ds

= ⟨bk(TII),x−⟩+
κ2√
m

∫ TPT∗
II,k ∧Tfix

TII

⟨F+(s),x−⟩ds

≤Q3

√
κ1κ2√
m

− Q2

2
∆2p−

1
1−α cos∆

(
TPT∗
II,k ∧ Tfix − TII

)
≤Q3

√
κ1κ2√
m

− Q2

2
∆2p−

1
1−α cos∆

(
(TIII,k − TII) ∧

3Q3

Q2∆2

√
κ1
κ2
p

1
1−α cos∆

)
.

We claim TPT∗
II,k − TII ≤ 2Q3

Q2∆2

√
κ1

κ2
p

1
1−α cos∆ . If otherwise, then

〈
bk(T

PT∗
II,k ∧ Tfix),x−

〉
< Q3

√
κ1κ2√
m

−Q3

√
κ1κ2√
m

= 0.

From the definition of TPT∗
II,k , we know TPT∗

II,k < TPT∗
II,k ∧ Tfix, which leads to a contradiction.

therefore, we have proved that for any k ∈ K+,

TPT∗
II,k ∧ Tfix = TPT∗

II,k ;

TPT∗
II,k ≤ TII +

2Q3

Q2∆2

√
κ1
κ2
p

1
1−α cos∆ .

With the help of Lemma E.1 (S2)(P0), we obtain

TPT∗
II ∧ Tfix = TPT∗

II ;

TPT∗
II = max

k∈K+

TPT∗
II,k ≤ TII +

2Q3

Q2∆2

√
κ1
κ2
p

1
1−α cos∆ .
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Recalling Lemma E.3, ⟨F+(t),x+⟩ > 0 and ⟨F+(t),x−⟩ < 0 hold for any t ∈ [TII, T
PT∗
II ∧Tfix] =

[TII, T
PT∗
II ]. From the definitions of TPT

II and TPT∗
II (26)(27), we obtain

TPT
II = TPT∗

II .

In conclusion, we have proved:

TPT
II = TPT∗

II = TII +O
(√

κ1
κ2

p
1

1−α cos∆

∆2

)
Lemma D.6

=

(
1 +O

(√
κ1κ32

))
TII.

Step II. Prediction Estimate. Step I gives us the result:

δT := TPT
II − TII = O

(√
κ1
κ2

p
1

1−α cos∆

∆2

)
.

Recalling the proof of Lemma E.2, we know

−C1 + C0e
f−(TII)δT

1 + C0ef−(TII)δT
≤ef−(t)−f−(TII) − 1 ≤ 0,

−C2δT ≤ef+(TII)−f+(t) − 1 ≤ 0.

where

C0 = Θ

(
κ22∆

2

p

)
, C1 = O (κ2

√
κ1κ2) , C2 = Θ

(
κ22p

− 1
1−α cos∆

)
.

Then a straightforward calculation gives us:

0 ≥ ef−(t)−f−(TII) − 1 = −O
(
κ22

√
κ1
κ2

)
−O

(
κ22

√
κ1
κ2

)
= −O

(
κ22

√
κ1
κ2

)

0 ≥ ef+(TII)−f+(TPT
II ) − 1 = −O

(
κ22

√
κ1
κ2

1

∆2

)
.

With the help of Lemma D.8, we obtain the prediction estimate at the end of Phase III:

e−f+(TPT
II ) =e−f+(TII)ef+(TII)−f+(TPT

II ) = Θ
(
e−f+(TII)

)
= Θ

(
p−

1
1−α cos∆

)
,

ef−(TPT
II ) =ef−(TII)ef−(TPT

II )−f−(TII) = Θ
(
ef−(TII)

)
= Θ

(
p−

α cos∆
1−α cos∆

)
.

Moreover, ∣∣∣∣∣
(
pe−f+(TPT

II )

1 + p
− ef−(TPT

II )

1 + p
cos∆

)
−
(
pe−f+(TII)

1 + p
− ef−(TII)

1 + p
cos∆

)∣∣∣∣∣
≤
∣∣∣∣pe−f+(TII)

1 + p

∣∣∣∣
∣∣∣∣∣∣
pe−f+(TPT

II )

1+p

pe−f+(TII)

1+p

− 1

∣∣∣∣∣∣+
∣∣∣∣ef−(TII) cos∆

1 + p

∣∣∣∣
∣∣∣∣∣∣
ef−(TPT

II ) cos∆
1+p

ef−(TII) cos∆
1+p

− 1

∣∣∣∣∣∣
=O

(
p−

1
1−α cos∆κ22

√
κ1
κ2

1

∆2

)
+O

(
p−

1
1−α cos∆κ22

√
κ1
κ2

)
=O

(
p−

1
1−α cos∆κ22

√
κ1
κ2

1

∆2

)
κ1κ

3
2=O(∆8)
= O

(
∆2p−

1
1−α cos∆

)
,

which means

pe−f+(TPT
II )

1 + p
− ef−(TPT

II )

1 + p
cos∆ = Θ

(
∆2p−

1
1−α cos∆

)
.

In the same way, we can obtain

pe−f+(TPT
II )

1 + p
cos∆− ef−(TPT

II )

1 + p
= −Θ

(
∆2p−

1
1−α cos∆

)
.
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Step III. Activation Patterns.

Recall our proofs in Step I, we know that〈
wk(T

PT
II ),x−

〉
= 0, ∀k ∈ K+.

Moreover, from the dynamics in Lemma E.1 (S1) and (S2)(P3), we obtain:〈
wk(T

PT
II ),x+

〉
> 0, ∀k ∈ K+;〈

wk(T
PT
II ),x+

〉
= 0,

〈
wk(T

PT
II ),x−

〉
> 0, ∀k ∈ K−.

Proof of Theorem 4.6.
Theorem 4.6 (S1) has been proven in Lemma E.4 (S1), and Theorem 4.6 (S2) has been proven in
Lemma E.4 (S3).

E.2 Optimization Dynamics after Phase Transition

After Phase Transition (t > TPT
II ), we study the dynamics before the patterns of living neurons

change again. Specifically, we define the following hitting time

TIII := inf
{
t > TPT

II : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= sgn+k (TI) or sgn−k (t) ̸= sgn−k (TI)
}

= inf
{
t > TPT

II : ∃k ∈ K+, s.t. ⟨wk(t),x+⟩ ≤ 0 or ⟨wk(t),x−⟩ ≠ 0;

or ∃k ∈ K−, s.t. ⟨wk(t),x+⟩ ≠ 0 or ⟨wk(t),x−⟩ ≤ 0
}
,

(28)

and we call t ∈ (TPT
II , TIII) “L-Phase III”.

Moreover, we call t ∈ [TII, TIII) “Phase III”, i.e.. “Phase Transition” + “L-Phase III”.

In order to analyze the dynamics of neurons and vector fields, we introduce the auxiliary hitting time:

T ∗
III := TIII ∧ inf

{
t > TPT

II : ⟨F+(t),x+⟩ ≤ 0 or ⟨F+(t),x−⟩ ≥ 0
}
,

where F+(t) =
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−.

(29)

We call t ∈ (TPT
II , T ∗

III) “L-Phase III*”.

Due to the almost simplest activation patterns, this phase is easier to analyze, and we only need to
estimate the time and size of the changes in the vector field. Nevertheless, our challenge is to prove
that all living negative neurons simultaneously change their activation patterns at T ∗

III, which also
implies that TIII = T ∗

III.

Lemma E.5 (Dynamics of activate neurons during L-Phase III*).
In L-Phase III* (t ∈ [TPT

II , T ∗
III)), we have the following dynamics for each neuron k ∈ K− ∪ K+.

(S1). For negative neuron k ∈ K−, we have:

wk(t) ∈ M0
+ ∩M+

−,

dbk(t)

dt
=

κ2e
f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
.

(S2) For positive neuron k ∈ K+, we have:

wk(t) ∈ M+
+ ∩M0

−,

dbk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
.
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Proof of Lemma E.5.
From the definition of T ∗

III, we know that ⟨F+(t),x+⟩ > 0 and ⟨F+(t),x−⟩ < 0 hold for any
t ∈ [TPT

II , T ∗
III). Moreover, Lemma E.4 ensures that for k ∈ K+, wk(T

PT
II ) ∈ M0

+ ∩ M+
−; for

k ∈ K−, wk(T
PT
II ) ∈ M+

+ ∩M0
−. Hence, this lemma can be proved in the same way as shown in

the proof of Lemma E.1 (S1) and (S2)(P2). We do not repeat it here.

Lemma E.6 (Time and prediction estimate at the end of L-Phase III*).
(S1) (Time).

T ∗
III = TPT

II +Θ

(
p

1
1−α cos∆

κ22

)
=
(
1 + Θ(∆2)

)
TPT
II =

(
1 + Θ(∆2)

)
TII;

(S2) (Prediction).

e−f+(T∗
III) = Θ

(
p−

1
1−α cos∆

)
, ef−(T∗

III) = Θ
(
p−

α cos∆
1−α cos∆

)
;

pe−f+(T∗
III)

1 + p
− ef−(T∗

III)

1 + p
cos∆ = 0,

pe−f+(TPT
II )

1 + p
cos∆− ef−(TPT

II )

1 + p
= −Θ

(
∆2p−

1
1−α cos∆

)
.

Proof of Lemma E.6.
Step I. Explicit Solution to f+(t) and f−(t).

For any t ∈ [TPT
II , T ∗

III), we have:

f+(t) =
κ2√
m

∑
k∈K+

b⊤k (t)x+,

f−(t) = − κ2√
m

∑
k∈K−

b⊤k (t)x−.

Let us consider the dynamics of f+(t) and f−(t). With the help of Lemma E.5, these two dynamics
are nearly independent:

df+(t)

dt
= =

κ2√
m

∑
k∈K+

〈
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
,x+

〉
=
κ22m+p sin

2 ∆

m(1 + p)
e−f+(t),

df−(t)

dt
= = − κ2√

m

∑
k∈K−

〈
κ2e

f−(t)

√
m(1 + p)

(
x− − x+ cos∆

)
,x−

〉
= −κ

2
2m− sin2 ∆

m(1 + p)
ef−(t).

Their solutions are:

e−f+(t) =
e−f+(TPT

II )

1 + e−f+(TPT
II ) κ

2
2m+p sin2 ∆
m(1+p) (t− TPT

II )
,

ef−(t) =
ef−(TPT

II )

1 + ef−(TPT
II ) κ

2
2m− sin2 ∆
m(1+p) (t− TPT

II )
.

Step II. Time Estimate of T ∗
III.

For simplicity, we denote G+ :=
κ2
2m+p sin

2 ∆
m(1+p) and G− :=

κ2
2m− sin2 ∆
m(1+p) .

First, we consider the evolution of the vector field ⟨F+(t),x−⟩:

⟨F+(t),x−⟩ =
pe−f+(t)

1 + p
cos∆− ef−(t)

1 + p
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=
1

1 + p

(
pe−f+(TPT

II ) cos∆

1 + e−f+(TPT
II )G+(t− TPT

II )
− ef−(TPT

II )

1 + ef−(TPT
II )G−(t− TPT

II )

)

=
(pe−f+(TPT

II ) cos∆− ef−(TPT
II )) + ef−(TPT

II −f+(TPT
II )(pG− cos∆−G+)(t− TPT

II )

(1 + p)(1 + e−f+(TPT
II )G+(t− TPT

II ))(1 + ef−(TPT
II )G−(t− TPT

II ))

=
(1 + p)

〈
F+(T

PT
II ),x−

〉
+ ef−(TPT

II −f+(TPT
II )(pG− cos∆−G+)(t− TPT

II )

(1 + p)(1 + e−f+(TPT
II )G+(t− TPT

II ))(1 + ef−(TPT
II )G−(t− TPT

II ))
< 0.

Hence, the hitting time T ∗
III can be converted to the following T ∗∗

III :

T ∗
III = T ∗∗

III := TIII ∧ inf
{
t > TPT

II : ⟨F+(t),x+⟩ ≤ 0
}
.

Then we consider ⟨F+(t),x+⟩:

⟨F+(t),x+⟩ =
pe−f+(t)

1 + p
− ef−(t)

1 + p
cos∆

=
1

1 + p

(
pe−f+(TPT

II )

1 + e−f+(TPT
II )G+(t− TPT

II )
− ef−(TPT

II ) cos∆

1 + ef−(TPT
II )G−(t− TPT

II )

)

=
(pe−f+(TPT

II ) − ef−(TPT
II ) cos∆) + ef−(TPT

II −f+(TPT
II )(pG− −G+ cos∆)(t− TPT

II )

(1 + p)(1 + e−f+(TPT
II )G+(t− TPT

II ))(1 + ef−(TPT
II )G−(t− TPT

II ))

=
(1 + p)

〈
F+(T

PT
II ),x+

〉
+ ef−(TPT

II )−f+(TPT
II )(pG− −G+ cos∆)(t− TPT

II )

(1 + p)(1 + e−f+(TPT
II )G+(t− TPT

II ))(1 + ef−(TPT
II )G−(t− TPT

II ))
.

From Lemma E.4, we know

(1 + p)
〈
F+(T

PT
II ),x+

〉
= (1 + p)

(
pe−f+(t)

1 + p
− ef−(t)

1 + p
cos∆

)
= Θ

(
∆2p−

α cos∆
1−α cos∆

)
,

ef−(TPT
II )−f+(TPT

II ) = Θ
(
ef−(TI+II)−f+(TI+II)

)
= Θ

(
p−

1+α cos∆
1−α cos∆

)
,

pG− −G+ cos∆ =
κ22p sin

2 ∆

1 + p

(m− −m+ cos∆)

m
= −Θ

(
κ22∆

2
)
.

These imply the hitting time:

T ∗
III = T ∗∗

III = TPT
II +Θ

(
∆2p−

α cos∆
1−α cos∆

p−
1+α cos∆
1−α cos∆κ22∆

2

)
= TPT

II +Θ

(
p

1
1−α cos∆

κ22

)
.

Step III. Prediction estimate.

From the explicit solution in Step I and the time estimate in Step II, it is easy to verify

e−f+(T∗
III) =

e−f+(TPT
II )

1 + e−f+(TPT
II ) κ

2
2m+p sin2 ∆
m(1+p) (T ∗

III − TPT
II )

= Θ
(
p−

1
1−α cos∆

)
,

ef−(T∗
III) =

ef−(TPT
II )

1 + ef−(TPT
II ) κ

2
2m− sin2 ∆
m(1+p) (T ∗

III − TPT
II )

= Θ
(
p−

α cos∆
1−α cos∆

)
.

Recalling the calculation in Step II, we have:

⟨F+(T
∗
III),x+⟩ =

pe−f+(T∗
III)

1 + p
− ef−(T∗

III)

1 + p
cos∆ = 0,

⟨F+(T
∗
III),x−⟩ =

pe−f+(T∗
III)

1 + p
cos∆− ef−(T∗

III)

1 + p
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=
(1 + p)

〈
F+(T

PT
II ),x−

〉
+ ef−(TPT

II )−f+(TPT
II )(pG− cos∆−G+)(T

∗
III − TPT

II )

(1 + p)(1 + e−f+(TPT
II )G+(T ∗

III − TPT
II ))(1 + ef−(TPT

II )G−(T ∗
III − TPT

II ))

=Θ

(
−∆2p−

α cos∆
1−α cos∆ −∆2p−

α cos∆
1−α cos∆

p (1 + Θ(∆2)) (1 + Θ(∆2))

)
= −Θ

(
∆2p−

1
1−α cos∆

)
.

Lemma E.7 (Hitting time relationship). If we define the following hitting time:
TW
III = inf

{
t > TPT

II : ∀k ∈ K−, ⟨wk(t),x+⟩ > 0
}
,

then it holds that TIII = T ∗
III = TW

III .

Proof of Lemma E.7.
We define the following hitting time:

TF
III = inf

{
t > TPT

II : ⟨F+(t),x+⟩ ≤ 0
}
;

TN
III = inf

{
t > TPT

II : ∃k ∈ K−, s.t. ⟨wk(t),x+⟩ > 0
}
,

TW
III = inf

{
t > TPT

II : ∀k ∈ K−, ⟨wk(t),x+⟩ > 0
}
,

From the proof in Lemma E.4, we know ⟨F+(T
∗
III),x−⟩ < 0. From the continuity of ⟨F+(·),x−⟩,

we know that there exists τ1 > 0, such that ⟨F+(t),x−⟩ < 0 holds for any t ∈ [T ∗
III, T

∗
III+τ1). Then

in the same way as the proof of Lemma E.5 (S2), we know that for k ∈ K+, w(t) ∈ M+
+ ∩M0

− for
any t ∈ [T ∗

III, T
∗
III + τ1).

Recalling that for any k ∈ K−, ⟨bk(T ∗
III),x−⟩ > 0, from the continuity, we know that there exists

τ2 > 0 such that ⟨bk(t),x−⟩ > 0 holds for any t ∈ [T ∗
III, T

∗
III + τ2).

Hence, we have:
T ∗
III = TF

III ∧ TN
III = inf

{
t > TPT

II : ⟨F+(t),x+⟩ ≤ 0 or ∃k ∈ K−, s.t. ⟨wk(t),x+⟩ ≠ 0
}
.

It is obvious that TN
III ≥ TF

III ∧ TN
III = T ∗

III. Now we prove TN
III = T ∗

III.

If we assume TN
III > T ∗

III strictly, then the dynamics about f+(t) and f−(t) in the proof (Step I) of
Lemma E.6 still hold for any t ∈ [T ∗

III, T
N
III). Using the same calculate about ⟨F+(t),x+⟩ in the

proof (Step II, III) of Lemma E.6, we can obtain: ⟨F+(t),x+⟩ < 0, t ∈ [T ∗
III, T

N
III).

Then we consider the vector field around the manifold M0
+ ∩M+

− for t ∈ [T ∗
III, T

N
III). In the same

way as the proof of Lemma E.1 (S1), we can prove that the two-side projections onto x+ (the
normal to the surface M+

+ ∩ M0
−) satisfies f+N (t, w̃), f−N (t, w̃) > 0 for any t ∈ [T ∗

III, T
∗
III + τ1),

which satisfies (Case II) in Definition H.1. This implies that wk(t) enter the manifold M+
+, i.e.,

⟨wk(t),x+⟩ > 0 for any t ∈ [T ∗
III, T

N
III), which is contradict to the definition of TN

III. Hence, we
have proved

TN
III = TN

III ∧ TF
III = T ∗

III.

Noticing that the change of activation patterns of sgn+k (t) (k ∈ K−) is due to the change of the
vector field ⟨F+(t),x+⟩, it is easy to verify that TF

III = TN
III ∧ TF

III∗. Then we have TN
III = TF

III =
TN
III ∧ TF

III = T ∗
III.

Moreover, noticing that TIII ≤ TN
III and T ∗

III ≤ TIII, we obtain TIII = T ∗
III = TN

III = TF
III.

Lastly, noticing that all living negative neurons (k ∈ K−) belong to M0
+ ∩M+

− at time TIII. As
discussed above, for each living negative neuron k ∈ K−, the vector field near bk(TIII) is the same,
with f−N > 0 and f+N = 0 in Definition H.1 (Case II). Hence, each living positive neuron wk leaves
from M0

+ and enter M+
+ instantly at TIII, which means TW

III = TN
III.

Hence, we have proved TIII = T ∗
III = TW

III = TN
III = TF

III.

Proof of Theorem 4.7.
Combining Lemma E.6 and E.7, we obtain TIII =

(
1 + Θ(∆2)

)
TII.
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F Proofs of Optimization Dynamics in Phase IV

Proof of Theorem 4.8.
From Lemma E.7, we know that all living negative neuron k ∈ K− simultaneously change their
patterns on x+ at TIII: lim

t→T−
III

sgn+k (t) = 0, lim
t→T+

III

sgn+k (t) = 1. Moreover, from our proof of

Lemma E.7, we know that other activation patterns remain unchanged at TIII.

In this phase, we study the dynamics before activation patterns change again after the phase transition
in Theorem 4.8. We define the hitting time:

TIV := inf{t > TIII : ∃k ∈ K+ ∪ K−, sgn+k (t) ̸= lim
s→T+

III

sgn+k (s) or sgn−k (t) ̸= lim
s→T+

III

sgn−k (s)},

and we call t ∈ (TIII, TIV) Phase IV.

In order to analyze the dynamics of neurons and vector fields, we introduce the auxiliary hitting time:

T ∗
IV := inf

{
t > TIII : ⟨F+(t),x+⟩ > 0, or ⟨F+(t),x−⟩ > 0

}
,

where F+(t) =
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−,

(30)

and we call t ∈ (TIII, T
∗
IV) Phase IV*.

First, we will provide meticulous prior estimations for 2d ODEs on f+(t) and f−(t), similar to Phase
II, which can imply T ∗

IV = +∞. Additionally, we can prove TIV = T ∗
IV. Lastly, with the help of

our fine-grained analysis for the 2D dynamics and the results in (Lyu and Li, 2019; Ji and Telgarsky,
2020), we can determine the unique convergent direction from numerous KKT directions.

F.1 Non-asymptotic Analysis of Optimization Dynamics in Phase IV*

Lemma F.1 (Dynamics of activate neurons in Phase IV*).
In Phase IV* (t ∈ (TIII, T

∗
IV)), we have the following dynamics for each neuron k ∈ K− ∪ K+.

(S1). For negative neuron k ∈ K−, we have:

wk(t) ∈ M+
+ ∩M+

−,

dbk(t)

dt
= − κ2√

m
F+(t) = − κ2√

m

(
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
.

(S2) For positive neuron k ∈ K+, we have:

wk(t) ∈ M+
+ ∩M0

−,

dbk(t)

dt
=
κ2pe

−f+(t)

√
m(1 + p)

(
x+ − x− cos∆

)
.

Proof of Lemma F.1.
Using the definition of T ∗

IV, this lemma can be proved in the same way as shown in the proof of
Lemma D.1, E.1 and E.5.

The next lemma gives the first-order dynamics of f+(t) and f−(t).

Lemma F.2 (First-order Dynamics of predictions in Phase IV*).
In Phase IV* (TIII ≤ t ≤ T ∗

IV), we have the following dynamics for f+(t) and f−(t):

df+(t)

dt
= κ22

m+

m

pe−f+(t)

1 + p
sin2 ∆+ κ22

m−

m

(
pe−f+(t)

1 + p
− ef−(t) cos∆

1 + p

)
,

df−(t)

dt
= κ22

m−

m

(
pe−f+(t)

1 + p
cos∆− ef−(t)

1 + p

)
.
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Proof of Lemma F.2.
From the definition of TIV, for any TIII ≤ t ≤ TIV, we have

f+(t) =
∑
k∈K+

κ2√
m
b⊤k (t)x+ −

∑
k∈K−

κ2√
m
b⊤k (t)x+,

f−(t) = −
∑
k∈K−

κ2√
m
b⊤k (t)x−.

With the help of Lemma F.1, we have the dynamics of predictions:

df+(t)

dt
=
∑
k∈K+

κ2√
m

〈
dbk(t)

dt
,x+

〉
−
∑
k∈K−

κ2√
m

〈
dbk(t)

dt
,x+

〉

=
κ22
m

∑
k∈K+

p

1 + p
e−f+(t)

(
1− cos2 ∆

)
− κ22
m

∑
k∈K−

(
cos∆

1 + p
ef−(t) − p

1 + p
e−f+(t)

)

=
m+

m
κ22

p

1 + p
e−f+(t) sin2 ∆+

m−

m
κ22

(
pe−f+(t)

1 + p
− cos∆

1 + p
ef−(t)

)
.

df−(t)

dt
=−

∑
k∈K−

κ2√
m

〈
dbk(t)

dt
,x−

〉
=
κ22
m

∑
k∈K−

(
p

1 + p
e−f+(t) cos∆− 1

1 + p
ef−(t)

)

=
m−

m
κ22

(
p

1 + p
e−f+(t) cos∆− 1

1 + p
ef−(t)

)
.

Following the proof in Phase II, we focus on the dynamics about predictions. Due to the specificity
of the first-order dynamics, the following lemma gives an second-order autonomous dynamics of
predictions.
Lemma F.3 (Second-order Autonomous Dynamics of predictions in Phase IV*).
If we consider the following two variables:{

I(t) := κ22
m−
m

p
1+pe

−f+(t),

J (t) := κ22
m−
m

1
1+pe

f−(t),

then the following autonomous dynamics of U(t) and V(t) hold in Phase IV* (TIII ≤ t ≤ T ∗
IV):{

dI(t)
dt = I(t)J (t) cos∆− I2(t)

(
1 + m+

m−
sin2 ∆

)
,

dJ (t)
dt = I(t)J (t) cos∆− J 2(t).

Proof of Lemma F.3.
With the help of the first-order dynamics in Lemma F.2, the proof is straight-forward.

Lemma F.3 enlighten us that we only need to study the dynamics of I(t) and J (t) to study the
dynamics in Phase IV*, where I(t),J (t) satisfies the following autonomous dynamics:{

dI(t)
dt = I(t)J (t) cos∆− I2(t)

(
1 + m+

m−
sin2 ∆

)
,

dJ (t)
dt = I(t)J (t) cos∆− J 2(t),

t ≥ TIII;{
I(TIII) = κ22

m−
m

p
1+pe

−f+(TIII),

J (TIII) = κ22
m−
m

1
1+pe

f−(TIII).

(31)

The next lemma studies the dynamics (31) for any t ∈ [TIII,+∞).
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Lemma F.4 (Fine-grained analysis of the dynamics (31)).
For the dynamics (31), we have the following results:

(S1). Initialization.

I(TIII) = Θ
(
κ22p

− 1
1−α cos∆

)
, J (TIII) = Θ

(
κ22p

− 1
1−α cos∆

)
,

I(TIII)− J (TIII) cos∆ = 0, I(TIII) cos∆− J (TIII) = −Θ
(
κ22∆

2p−
1

1−α cos∆

)
.

(S2). Fine-grained two-side bound for I(t)/J (t).

1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

<
I(t)
J (t)

< cos∆, ∀t ∈ [TIII,+∞).

(S3). The limit of I(t)/J (t).

lim
t→∞

I(t)
J (t)

=
1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

.

(S4). Tight estimate of I(t) and J (t).

I(t) =Θ

 1

p
1

1−α cos∆

κ2
2

+∆2(t− TIII)

 , ∀t ∈ [TIII,+∞);

J (t) =Θ

 1

p
1

1−α cos∆

κ2
2

+∆2(t− TIII)

 , ∀t ∈ [TIII,+∞).

Proof of Lemma F.4.
For simplicity, in this proof, we denote

ϵ :=
m+

m−
sin2 ∆.

Step I. Preparation. Recalling Lemma E.6, we have:

I(TIII) = Θ
(
κ22p

− 1
1−α cos∆

)
, J (TIII) = Θ

(
κ22p

− 1
1−α cos∆

)
,

I(TIII)− J (TIII) cos∆ = 0, I(TIII) cos∆− J (TIII) = −Θ
(
κ22∆

2p−
1

1−α cos∆

)
.

Step II. A rough estimate on I(t) and J (t). In this step, we aim to prove:

J (t) > I(t) > 0, I(t) + J (t) ≤ I(TIII) + J (TIII), ∀t ∈ [TIII,∞).

First, from the definition of I(t) and J (t), we have I(t) > 0 and J (t) > 0.

Then we consider the dynamics of I(t) + J (t). From

d

dt

(
I(t) + J (t)

)
= 2I(t)J (t) cos∆− I2(t) (1 + ϵ)− J 2(t)

=− (I(t)− J (t))
2
cos∆− (1− cos∆)J 2(t)− I2(t) (1 + ϵ− cos∆) < 0,

we have
I(t) + J (t) ≤ I(TIII) + J (TIII), ∀t ≥ TIII.

Then we consider the dynamics of J (t)− I(t). We define the hitting time

τJ−I := inf
{
t ≥ TIII : J (t) ≤ I(t)

}
.

From Step I, we know J (TIII) − I(TIII) = (1 − cos∆)J (TIII) > 0. From the continuity, τJ−I
exists and τJ−I > TIII.
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For any t ∈ [TIII, τJ−I), we have J (t)− I(t) > 0 and

d

dt

(
J (t)− I(t)

)
= −J 2(t) + I2(t) (1 + ϵ) = −(J (t) + I(t))(J (t)− I(t)) + ϵI2(t)

>− (J (t) + I(t))(J (t)− I(t)) ≥ −(J (TIII) + I(TIII))(J (t)− I(t)),

We consider the auxiliary ODE: d
dtP(t) = −(J (TIII) + I(TIII))P(t), where P(TIII) = J (TIII)−

I(TIII) > 0. From the Comparison Principle of ODEs, we have:

J (t)− I(t) ≥ P(t) = (J (TIII)− I(TIII)) exp
(
− (J (TIII) + I(TIII))(t− TIII)

)
> 0, ∀t ∈ [TI, τU−V).

From the definition of τJ−I , we have proved

τJ−I = +∞;

J (t) > I(t), ∀t ∈ [TIII,+∞).

Step III. A rough two-side bound for I(t)/J (t).

In Step II, we have given a rough upper bound for I(t)/J (t): I(t)/J (t) < 1, ∀t ≥ TIII. And we
want to derive a lower bound for I(t)/J (t) in this step. We aim to prove:

I(t)/J (t) >
1 + cos∆

1 + cos∆ + ϵ
, ∀t ∈ [TIII,+∞).

First, we define the hitting time:

τ lI/J := inf
{
t ≥ TIII : I(t) ≤

1 + cos∆

1 + cos∆ + ϵ
J (t)

}
.

From Step I, we know

I(TIII)−
1 + cos∆

1 + cos∆ + ϵ
J (TIII) >

(
cos∆− 1 + cos∆

1 + cos∆ + ϵ

)
J (TIII)

=

(
m+

m−
cos∆− 1

)
sin2 ∆

1 + cos∆ + ϵ
J (TIII)≥

(
cos∆
0.977 − 1

)
sin2 ∆

1 + cos∆ + ϵ
J (TIII)

≥
(
0.980
0.977 − 1

)
sin2 ∆

1 + cos∆ + ϵ
J (TIII) > 0.

From the continuity, τ lI/J exists and τ lI/J > TIII.

For any t ∈ [TIII, τ
l
I/J ), we have I(t)− 1+cos∆

1+cos∆+ϵJ (t) > 0 and

d

dt

(
I(t)− 1 + cos∆

1 + cos∆ + ϵ
J (t)

)
=I(t)J (t) cos∆

(
1− 1 + cos∆

1 + cos∆ + ϵ

)
− (1 + ϵ)I2(t) +

1 + cos∆

1 + cos∆ + ϵ
J 2(t)

=−
(
I(t)− 1 + cos∆

1 + cos∆ + ϵ
J (t)

)
((1 + ϵ)I(t) + J (t))

>− (1 + ϵ)

(
I(t)− 1 + cos∆

1 + cos∆ + ϵ
J (t)

)
(I(t) + J (t))

≥− (1 + ϵ) (I(TIII) + J (TIII))

(
I(t)− 1 + cos∆

1 + cos∆ + ϵ
J (t)

)
.

We consider the auxiliary ODE: d
dtQ(t) = −(1 + ϵ)(I(TIII) + J (TIII))Q(t), where Q(TIII) =

I(TIII)− 1+cos∆
1+cos∆+ϵJ (TIII) > 0. From the Comparison Principle of ODEs, we have:

I(t)− 1 + cos∆

1 + cos∆ + ϵ
J (t) ≥ Q(t)
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=

(
I(TIII)−

1 + cos∆

1 + cos∆ + ϵ
J (TIII)

)
exp

(
− (1 + ϵ)(I(TIII) + J (TIII))(t− TIII)

)
> 0, ∀t ∈ [TIII, τ

l
I/J ).

From the definition of τJ−I , we have proved

τ lI/J = +∞;

I(t)/J (t) >
1 + cos∆

1 + cos∆ + ϵ
, ∀t ∈ [TIII,+∞).

Hence, we obtain the two-side bound for I(t)/J (t):

1 + cos∆

1 + cos∆ + ϵ
<

I(t)
J (t)

< 1, ∀t ∈ [TIII,+∞).

Step IV. I(t) cos∆− J (t) and I(t)− J (t) cos∆ are both negative.

The estimate on I(t) cos∆− J (t) is straight-forward:

I(t) cos∆− J (t) < I(t) cos∆− I(t) < 0.

As for I(t)− J (t) cos∆, we will actually prove a tighter upper bound:

I(t)
J (t)

< cos∆.

We need to do finer analysis using the specific dynamics (31). First, we define the following hitting
time:

Define the following hitting time

τuI/J := inf
{
t > TI : I(t)− J (t) cos∆ ≥ 0}.

From I(TIII)− J (TIII) cos∆ = 0, d
dt (I(TIII)− J (TIII) cos∆) < 0 and the continuity, we know

τuI/J exists and τuI/J > TIII.

Recalling I(t) cos∆− J (t) < 0, we have
d

dt
J (t) = J (t) (I(t) cos∆− J (t)) < 0, ∀t ≥ TIII.

So we can consider the following dynamics for t ∈ [TIII, τ
u
I/J ]:

dI
dJ =

IJ cos∆− I2(1 + ϵ)

IJ cos∆− J 2
=

I
J cos∆−

( I
J
)2

(1 + ϵ)
I
J cos∆− 1

.

If we define Z(t) := I(t)
J (t) , then we have dI = ZdJ + J dZ .

The dynamics above can be transformed to:

J dZ
dJ =

Z cos∆−Z2(1 + ϵ)

Z cos∆− 1
−Z =

Z(1 + cos∆)−Z2(1 + cos∆ + ϵ)

Z cos∆− 1
.

Recalling the result in Step III, we have (1 + cos∆) − (1 + cos∆ + ϵ)Z(t) < 0 holds for any
t ≥ TIII. So the dynamics is equal to:

dJ
J =

( Z cos∆− 1

Z(1 + cos∆)−Z2(1 + cos∆ + ϵ)

)
dZ

=− 1

1 + cos∆

(
1

Z +
sin2 ∆+ ϵ

1 + cos∆−Z(1 + cos∆ + ϵ)

)
dZ.

Integrating this equation from TIII to t ∈ [TIII, τ
u
I/J ), we have:

log

( J (t)

J (TIII)

)
=− 1

1 + cos∆
log

( Z(t)

Z(TIII)

)
+

sin2 ∆+ ϵ

(1 + cos∆ + ϵ)(1 + cos∆)
log

(
(1 + cos∆ + ϵ)Z(t)− (1 + cos∆)

(1 + cos∆ + ϵ)Z(TI)− (1 + cos∆)

)
.

(32)
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If we assume τuI/J < +∞, the continuity gives us

lim
t→τu

I/J
−
Z(t) = lim

t→τu
I/J

−
I(t)/J (t) = cos∆ = I(TIII)/J (TIII) = Z(TIII).

Then letting t→ τuI/J
− in (32), we have

lim
t→τu

I/J
−
log

( J (t)

J (TIII)

)
= 0 + 0 = 0,

which means J (τuI/J ) = J (TIII).

But on the other hand, we have:

J (τuI/J ) = J (TIII) +

∫ τu
I/J

TIII

(I(t)J (t) cos∆− J 2(t))dt

=J (TIII) +

∫ τu
I/J

TIII

J (t)(I(t) cos∆− J (t))dt

<J (TIII) + (cos∆− 1)

∫ τu
I/J

TIII

J (t)I(t)dt < J (TIII),

which leads to a contradiction. Hence, we have proved

τuI/J = +∞;

I(t)− J (t) cos∆ < 0, ∀t ∈ [TIII,+∞).

Moreover, we obtain a sharper two-side bound for I(t)/J (t):

1 + cos∆

1 + cos∆ + ϵ
<

I(t)
J (t)

< cos∆, ∀t ∈ [TIII,+∞). (33)

Step V. Tight bound for I(t) and J (t).

In this step, we aim to give a tight bound for I(t) + J (t). With the help of the two-side bound (33),
we have

d

dt

(
I(t) + J (t)

)
= 2I(t)J (t) cos∆− I2(t) (1 + ϵ)− J 2(t)

=− (I(t)− J (t))
2
cos∆− (1− cos∆)J 2(t)− I2(t) (1 + ϵ− cos∆)

<− (1− cos∆)
(
J 2(t) + I2(t)

)
< − (1− cos∆) (I(t) + J (t))

2

2
< −∆2

6
(I(t) + J (t))

2
,

d

dt

(
I(t) + J (t)

)
= 2I(t)J (t) cos∆− I2(t) (1 + ϵ)− J 2(t)

=− (I(t)− J (t))
2
cos∆− (1− cos∆)J 2(t)− I2(t) (1 + ϵ− cos∆)

>−
(
1− 1 + cos∆

1 + cos∆ + ϵ

)2

J 2(t)− (1− cos∆)J 2(t)− I2(t) (1 + ϵ− cos∆)

>− (1 + ϵ− cos∆)
(
I2(t) + J 2(t)

)
> −

(
2

3
+
m+

m−

)
∆2 (I(t) + J (t))

2
>− 2∆2 (I(t) + J (t))

2
.

For the first inequality, we consider the auxiliary ODE: d
dtP(t) = −∆2

6 P2(t), where P(TIII) =
I(TIII) + J (TIII) > 0. From the Comparison Principle of ODEs, we have:

I(t) + J (t) ≤ P(t) =
1

1
I(TIII)+J (TIII)

+ ∆2

6 (t− TIII)
, ∀t ≥ TIII.

In the same way, we can obtain the lower bound:

I(t) + J (t) ≥ 1
1

I(TIII)+J (TIII)
+ 2∆2(t− TIII)

, ∀t ≥ TIII.
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Recalling Step I, we have 1
I(TIII)+J (TIII)

= Θ
(
p

1
1−α cos∆ /κ22

)
. Hence, we obtain the tight bound:

I(t) + J (t) = Θ

 1

p
1

1−α cos∆

κ2
2

+∆2(t− TIII)

 , ∀t ∈ [TIII,+∞).

Taking (33) into the equation above, we have:

I(t) =Θ

 1

p
1

1−α cos∆

κ2
2

+∆2(t− TIII)

 , ∀t ∈ [TIII,+∞);

J (t) =Θ

 1

p
1

1−α cos∆

κ2
2

+∆2(t− TIII)

 , ∀t ∈ [TIII,+∞).

Step VI. The limit of I(t)/J (t).

By Step V and the proof of Step IV, we know lim
t→∞

J (t) = 0 and d
dtJ (t) < 0 holds for any t > TIII.

Then for any ϵ′ > 0, there exists T ′ > TIII such that

log

( J (t)

J (TIII)

)
<

1000

∆2
log(1000ϵ∆2), ∀t > T ′.

Taking it into (32), we obtain that for any t > T ′,

0 < (1 + cos∆ + ϵ)Z(t)− (1 + cos∆) < ϵ′.

By the definition of the limit, we get

lim
t→∞

I(t)
J (t)

=
1 + cos∆

1 + cos∆ + ϵ
=

1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

.

Lemma F.5 (Time and prediction estimate).
(S1). For any t ∈ (TIII,+∞)

pe−f+(t) = Θ

(
1

p
1

1−α cos∆ + κ22∆
2(t− TIII)

)
, ef−(t) = Θ

(
1

p
1

1−α cos∆ + κ22∆
2(t− TIII)

)
;

L(θ(t)) = Θ

(
1

p
1

1−α cos∆ + κ22∆
2(t− TIII)

)
.

(S2). For any t ∈ (TIII,+∞),

1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

< pe−(f+(t)+f−(t)) < cos∆.

Moreover, pe−(f+(TIII)+f−(TIII)) = cos∆ and lim
t→∞

pe−(f+(t)+f−(t)) = 1+cos∆

1+cos∆+
m+
m−

sin2 ∆
.

(S3). For any t ∈ (TIII,+∞),

⟨bk(t),x+⟩ > 0, ⟨bk(t),x−⟩ = 0, k ∈ K+;

⟨bk(t),x+⟩ > 0, ⟨bk(t),x−⟩ > 0, k ∈ K−.

(S4) (Time).

TIV = T ∗
IV = +∞.
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Proof of Lemma F.5.
Notice the relationships: pe−f+(t) = κ22

m−
m

I(t)
1+p , ef−(t) = κ22

m−
m

J (t)
1+p and pe−(f+(t)+f−(t)) =

I(t)/J (t). Then Lemma F.4 implies that T ∗
IV = +∞. Recalling the dynamics in Lemma F.1, then

lemma (S3)(S4) hold. Then using Lemma F.4 again, we obtain (S1)(S2).

Proof of Theorem 4.9.
Theorem 4.9 (S1), (S2), and (S3) are obtained in Lemma F.5 (S4), (S3), and (S1), respectively.

F.2 Asymptotic Directional Convergence

In this section, we will study the final convergence direction in our setting. It mainly depends on our
prior fine-grained analysis of the training dynamics in Phase IV and the following result about the
final convergence direction at the end of training.
Lemma F.6. Let f(·;θ) be a homogeneous neural network parameterized by θ. Consider minimizing
the exponential loss over a binary classification dataset {(xi, yi)}ni=1 (∥xi∥2 ≤ 1, yi ∈ {±1}) using
Gradient Flow. Assume that there exists time t0 such that L(θ(t0)) < 1

n . Then,

(I) (Paraphrased from (Lyu and Li, 2019; Ji and Telgarsky, 2020)). θ(t) converges in direction to a
KKT point (Definition G.3) of the following maximum margin problem:

min :
1

2
∥θ∥22

s.t. yif(xi;θ) ≥ 1.

(II) (Lyu and Li, 2019; Ji and Telgarsky, 2020)). ∥θ(t)∥2 → ∞ and L(θ(t)) → 0.

(III) (Ji and Telgarsky (2020)). −∇L(θ(t)) and θ(t) converge to the same direction, meaning the
angle between θ(t) and −∇L(θ(t)) converges to 0.

Lemma F.7 (Final Convergence Direction). The limit lim
t→+∞

θ(t)
∥θ(t)∥2

exists, and denoted by θ =

(b̄
⊤
1 , · · · , b̄

⊤
m)⊤ ∈ Smd−1, then it satisfies

bk =0, ∀k /∈ K+ ∪ K−;

bk =C
(
x+ − x− cos∆

)
, ∀k ∈ K+;

bk =C

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
, ∀k ∈ K−;

where C > 0 is a scaling constant such that
∥∥θ∥∥

2
= 1. Moreover, f(x+;θ) = −f(x−;θ) > 0.

Proof of Lemma F.7.
Let θ = (b

⊤
1 , · · · , b

⊤
m)⊤ ∈ Smd−1 be the limits point of

{
θ(t)

∥θ(t)∥2
: t ≥ t0

}
. From Lemma F.6 (I),

we know that there exists a scaling factor α > 0 such that αθ satisfies KKT conditions (Definition
G.3) of the maximum-margin problem

min :
1

2
∥θ∥22

s.t. f(x+;θ) ≥ 1, f(x−;θ) ≤ −1.
(34)

For simplicity, we denote θ∗ := αθ̄, where

θ∗ = (b∗1
⊤
, · · · , b∗m⊤

)⊤.

Moreover, let λ∗+, λ
∗
− ≥ 0 be the corresponding Lagrange multipliers (with respect to θ∗) in Definition

G.3.

Step I. The rough direction of each neuron.

Recalling the training dynamics about the dead neurons in Theorem 4.1 (S3),

bk(t) ≡bk(TI), ⟨bk(t),x+⟩ ≤ 0, ⟨bk(t),x−⟩ ≤ 0, k ∈ [m/2]−K+;
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bk(t) ≡bk(TI), ⟨bk(t),x+⟩ ≤ 0, ⟨bk(t),x−⟩ ≤ 0, k ∈ [m]− [m/2]−K−.

Noticing Lemma F.6 (II) or Lemma F.5 (S1), ∥θ(t)∥2 → ∞, so

b∗k = 0, ∀k /∈ K+ ∪ K−.

Then we only need to focus on θ∗
k for k ∈ K+ ∪ K−.

Recalling in Lemma F.5 (S3), for any t > TIV,

⟨bk(t),x+⟩ > 0, ⟨bk(t),x−⟩ = 0, k ∈ K+;

⟨bk(t),x+⟩ > 0, ⟨bk(t),x−⟩ > 0, k ∈ K−.

then we have

⟨b∗k,x+⟩ ≥ 0, ⟨b∗k,x−⟩ = 0, k ∈ K+;

⟨b∗k,x+⟩ ≥ 0, ⟨b∗k,x−⟩ ≥ 0, k ∈ K−.

Moreover,

f(x+;θ
∗) =

κ2√
m

( ∑
k∈K+

σ (⟨b∗k,x+⟩)−
∑
k∈K−

σ (⟨b∗k,x+⟩)
)
,

f(x−;θ
∗) =

κ2√
m

( ∑
k∈K+

σ (⟨b∗k,x−⟩)−
∑
k∈K−

σ (⟨b∗k,x−⟩)
)
= − κ2√

m

∑
k∈K−

σ (⟨b∗k,x−⟩) .

Step II. Determine the direction of the neurons k ∈ K+.

Since θ∗ is a possible point, f(x+;θ
∗) ≥ 1, which gives us∑

k∈K+

σ(⟨b∗k,x+⟩) ≥
√
m

κ2
> 0.

Hence, there exists k1 ∈ K+, s.t.
〈
b∗k1 ,x+

〉
> 0 strictly.

Then we study the neuron k2 ∈ K+ (k2 ̸= k1). Lemma F.1 and Lemma F.5 (S3) give use that

⟨bk1(t),x+⟩ = ⟨bk1(TIV),x+⟩+
∫ t

TIV

κ2pe
−f+(t)

√
m(1 + p)

sin2 ∆dt

= ⟨bk2(TIV),x+⟩+
∫ t

TIV

κ2pe
−f+(t)

√
m(1 + p)

sin2 ∆dt+
(
⟨bk1(TIV),x+⟩ − ⟨bk2(TIV),x+⟩

)
= ⟨bk2(t),x+⟩+

(
⟨bk1(TIV),x+⟩ − ⟨bk2(TIV),x+⟩

)
.

Multiplying the above formula by c/ ∥θ(t)∥2 and taking t go to infinity, we obtain〈
b∗k1 ,x+

〉
=
〈
b∗k2 ,x+

〉
> 0.

Due to the arbitrariness of k2, we know

b∗k ̸= 0, ⟨b∗k,x+⟩ > 0, ⟨b∗k,x−⟩ = 0, ∀k ∈ K+.

Then we can write the KKT condition about the gradient of b∗k (k ∈ K+) of Problem (34):

0 ∈ b∗k − λ∗+
κ2√
m
x+ + λ∗−

κ2√
m
∂◦σ(0)x−.

It is clear that b∗k ∈ span{x+,x−}. Then combining two formulations above, we obtain:

b∗k = λ∗+
κ2√
m

(x+ − x− cos∆) , ∀k ∈ K+.

Step III. Determine the direction of the neurons k ∈ K−.
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Since θ∗ is a possible point, f(x−;θ
∗) ≤ −1, which gives us∑

k∈K−

σ(⟨b∗k,x−⟩) ≥
√
m

κ2
> 0.

Hence, there exists k1 ∈ K−, s.t.
〈
b∗k1 ,x−

〉
> 0 strictly.

Then we study the neuron k2 ∈ K− (k2 ̸= k1). Lemma F.1 and Lemma F.5 (S3) give use that

⟨bk1(t),x−⟩ = ⟨bk1(TIV),x+⟩+
∫ t

TIV

κ2√
m

(
1

1 + p
ef−(t) − p

1 + p
e−f+(t) cos∆

)
dt

= ⟨bk2(TIV),x−⟩+
∫ t

TIV

κ2√
m

(
1

1 + p
ef−(t) − p

1 + p
e−f+(t) cos∆

)
dt+

(
⟨bk1(TIV),x−⟩ − ⟨bk2(TIV),x−⟩

)
= ⟨bk2(t),x−⟩+

(
⟨bk1(TIV),x−⟩ − ⟨bk2(TIV),x−⟩

)
.

Multiplying the above formula by c/ ∥θ(t)∥2 and taking t go to infinity, we obtain〈
b∗k1 ,x−

〉
=
〈
b∗k2 ,x−

〉
> 0.

Due to the arbitrariness of k2, we know

b∗k ̸= 0, ⟨b∗k,x−⟩ > 0, ⟨b∗k,x+⟩ ≥ 0, ∀k ∈ K−.

The next difficulty in this step is to determine whether ⟨b∗k,x+⟩ can be 0. To prove this, we will use
our fine-grained analysis of training dynamics (Lemma F.5) and Lemma F.6 (III).

Let k ∈ K−. Recalling the dynamics of bk(t) in Lemma F.1, we know

−∂L(θ(t))
∂bk

=− κ2√
m

(
p

1 + p
e−f+(t)x+ − 1

1 + p
ef−(t)x−

)
=
κ2√
m

ef−(t)

1 + p

(
x− − pe−(f+(t)+f−(t))x+

)
.

Recalling Lemma Lemma F.5 (S2), lim
t→∞

pe−(f+(t)+f−(t)) = 1+cos∆

1+cos∆+
m+
m−

sin2 ∆
. Then using Lemma

F.6 (III), there exists c1 > 0, s.t.

b∗k = c1

(
x− − 1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

x+

)
.

Hence, we have proved

⟨b∗k,x+⟩ > 0, ∀k ∈ K−.

Then writing the KKT condition about the gradient of b∗k of Problem (34):

0 = b∗k + λ∗+
κ2√
m
x+ − λ∗−

κ2√
m
x−, ∀k ∈ K−.

Combining the two equations about b∗k, we obatin

b∗k = λ∗−
κ2√
m

(
x− − 1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

x+

)
, ∀k ∈ K−;

λ∗+
λ∗−

=
1 + cos∆

1 + cos∆ + m+

m−
sin2 ∆

.

In summary, we have proved the final convergence direction θ = (b̄
⊤
1 , · · · , b̄

⊤
m)⊤ ∈ Smd−1 satisfies

bk =0, ∀k /∈ K+ ∪ K−;

bk =C
(
x+ − x− cos∆

)
, ∀k ∈ K+;
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bk =C

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
, ∀k ∈ K−;

where C > 0 is a scaling constant such that
∥∥θ∥∥

2
= 1.

Moreover, a straight-forward calculation gives us that

f(x+;θ) = −f(x−;θ) > 0.

Proof of Theorem 4.10.
Lemma F.7 implies Theorem 4.10 directly.

Proof of Theorem 4.11.
From Lemma F.7, the final convergence direction θ = (b̄

⊤
1 , · · · , b̄

⊤
m)⊤ ∈ Smd−1 satisfies

bk =0, ∀k /∈ K+ ∪ K−;

bk =C
(
x+ − x− cos∆

)
, ∀k ∈ K+;

bk =C

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
, ∀k ∈ K−;

where C > 0 is a scaling constant such that
∥∥θ∥∥

2
= 1 and f+(θ) = −f−(θ) > 0.

It is easy to verify that There exists a scaling factor C1 > 0 such that f+(θ̂) = −f−(θ̂) = 1, where

θ̂ = C1θ. For simplicity, we denote Q := CC1, then θ̂ = (b̂
⊤
1 , · · · , b̂

⊤
m)⊤ ∈ Rmd satisfies

b̂k =0, ∀k /∈ K+ ∪ K−;

b̂k =Q
(
x+ − x− cos∆

)
, ∀k ∈ K+;

b̂k =Q

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
, ∀k ∈ K−;

f+(θ̂) =− f−(θ̂) = 1.

Therefore, θ̂ is a feasible point of Problem (34). Moreover, from

− 1 = −
∑
k∈K−

κ2√
m

〈
b̂k,x−

〉
=− κ2√

m
m−

〈
Q

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
,x−

〉
=−Q

κ2√
m
m−

(
1− cos∆ +

m+ sin2 ∆

m−(1 + cos∆)

)
=−Q

κ2√
m

(
m−(1− cos∆) +m+

sin2 ∆

1 + cos∆

)
,

we have
κ2√
m
Q =

1

m−(1− cos∆) +m+
sin2 ∆

1+cos∆

.

For any ϵ ≥ 0, now we consider another solution θ̂(ϵ) near θ̂: θ̂(ϵ) = (b̂
⊤
1 (ϵ), · · · , b̂

⊤
m(ϵ))⊤, where

b̂k(ϵ) =0, ∀k /∈ K+ ∪ K−;

b̂k(ϵ) =Q
(
x+ − x− cos∆

)
−Qϵ

(
x+ − x− cos∆

)
, ∀k ∈ K+;
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b̂k(ϵ) =Q

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
+Qϵ

(
x+ − x− cos∆

)
, ∀k ∈ K−.

and it holds that θ̂(0) = θ̂. Moreover, it is easy to verify that θ̂(ϵ) is also a feasible point of
Problem (34).

f−(θ̂(ϵ)) =f−(θ̂(0)) = −1;

f+(θ̂(ϵ)) =f+(θ̂(0)) = 1.

Then we compare the norm of θ̂(ϵ) and θ̂(0).∥∥∥θ̂(ϵ)∥∥∥2 =m+

(
Q
(
x+ − x− cos∆

)
−Qϵ

(
x+ − x− cos∆

))2
+m−

(
Q

((
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+

)
+Qϵ

(
x+ − x− cos∆

))2

,

At ϵ = 0, we can calculate that

d
∥∥∥θ̂(ϵ)∥∥∥2

2m+Q2dϵ

∣∣∣∣∣
ϵ=0

=
1

m+

(
−m+ ∥x+ − x− cos∆∥2 +m−

〈(
1 +

m+ sin2 ∆

m−(1 + cos∆)

)
x− − x+,x+ − x− cos∆

〉)
=

〈(
m−

m+
+

sin2 ∆

1 + cos∆
+ cos∆

)
x− − (1 +

m−

m+
)x+,x+ − x− cos∆

〉
Denote α =

m−
m+

=

〈(
α+

sin2 ∆

1 + cos∆
+ cos∆

)
x− − (1 + α)x+,x+ − x− cos∆

〉
=−

(
α+

sin2 ∆

1 + cos∆
+ cos∆

)
cos∆− (1 + α)

+

(
α+

sin2 ∆

1 + cos∆
+ cos∆

)
cos∆ + (1 + α) cos2 ∆

=− (1 + α) sin2 ∆ < 0

Then combining the continuity of
d∥θ̂(ϵ)∥2

dϵ , there exists δ > 0 such that the following inequality
holds: ∥∥∥θ̂(ϵ)∥∥∥2 < ∥∥∥θ̂(0)∥∥∥2 , ∀ϵ ∈ (0, δ).

Hence, we have proved that θ is not a local optimal direction of the max-margin problem (34).
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G Clarke Subdifferential and KKT Conditions for Non-smooth Optimization

Definition G.1 (Clarke’s Subdifferential (Clarke et al., 2008)). For a locally Lipschitz function
L : Ω → R, the Clarke’s subdifferential at θ ∈ Ω is the convex set

∂◦L(θ) := conv
{
lim
i→∞

∇L(θi) : lim
i→∞

θi = θ,L is differential at θi
}
.

Remark G.2. Notice that if L is continuously differentiable at θ, then ∂◦L(θ) = {∇L(θ)} is unique.
However, for discontinuous differentiable points of L, the differential inclusion flow dθ

dt ∈ ∂◦L(θ)
defined by Definition G.1 may not be unique. To study a more specific dynamics, we also utilize
Definition H.1 to determine GF at some of such points.

Now we review the definition of Karush-Kuhn-Tucker (KKT) conditions for non-smooth optimization
problems (Dutta et al., 2013). Consider the following constrained optimization problem (P):

min
x∈Rd

:f(x)

s.t. gi(x) ≤ 0, ∀i ∈ [N ]

where f, g1, · · · , gN : Rd → R are locally Lipschitz functions. We say that x ∈ R is a feasible point
of (P) if x satisfies gi(x) ≤ 0 for all i ∈ [N ].
Definition G.3 (KKT Point for Non-smooth Optimization). We say that a feasible point of (P) is a
KKT point if there exists λ1, · · · , λN ≥ 0 such that

1. 0 ∈ ∂◦f(x) +
∑
i∈[N ]

λi∂
◦gi(x);

2. ∀i ∈ [N ], λigi(x) = 0.
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H Solution of Discontinuous System

In this section, we add some supplements about the definitions of solutions of discontinuous systems,
which can overcomes non-uniqueness of GF trajectories (2) to some extent. Many definitions of
solutions of differential equations with discontinuous systems have been proposed. In this paper, we
adopt a widely used definition of the solutions in Chapter 2.4 in (Filippov, 2013).
Definition H.1 (Solutions of Discontinuous Systems, Chapter 2.4 in (Filippov, 2013)). Consider a
n-dimensional equation or a system (x ∈ Rn): dx

dt = f(x) with a piecewise continuous function f
in a domain G. We aim to define the dynamics near some discontinuous regions.

Let the function f be discontinuous on a smooth surface S given by the equation ϕ(x) = 0. Let
x∗ ∈ S and the surface S separate the neighborhood of x∗ into domains G− and G+. Let the
function f(x) have the limit values:

f−(x∗) := lim
x∈G−,x→x∗

f(x), f+(x∗) := lim
x∈G+,x∗→x∗

f(x).

Here one should distinguish between two main cases. Let f−N (x∗) and f+N (x∗) be projections of the
vectors f−(x∗) and f+(x∗) onto the normal to the surface S at the point x∗, where the normal is
directed towards the domain G+.

(Case I). If the vectors f(x∗) are directed to the surface S on both sides, i.e. f−N (x∗) > 0,
f+N (x∗) < 0, then the solution the solution starting from x∗ can not leave S for some time. Moreover,
its dynamics on S can be defined in the following way:

dx

dt
= f0(x),

where f0(x) = αf+(x) + (1− α)f−(x), α =
f−N (x)

f−N (x)− f+N (x)
.

(Case II). If f−N (x∗) ≥ 0, f+N (x∗) ≥ 0, but f−N (x∗) and f+N (x∗) are not both 0, then the solution
starting from x∗ passes from one side of the surface S to the other instantly.

(Case III). If f−N (x∗) < 0, f+N (x∗) > 0, then the dynamics is defined in the similar way as (Case I).

(Case IV). If f−N (x∗) ≤ 0, f+N (x∗) ≤ 0, but f−N (x∗) and f+N (x∗) are not both 0, then the dynamics
is defined in the similar way as (Case II).
Remark H.2. Notice that Definition H.1 overcomes non-uniqueness of GF trajectories to some
extent. It is worth noting that Definition H.1 and Definition G.1 are compatible and specifically, the
dynamics defined in Definition H.1(Case I, III) lie in the convex hull defined in Definition G.1.
Remark H.3. In (Lyu et al., 2021), the non-branching starting point Assumption is employed to
address the technical challenge of non-uniqueness in GF trajectories. By comparison, in this work,
we do not need this assumption. We adopt Definition H.1 to uniquely determine the Gradient Flow
trajectories theoretically near some discontinuous differential regions, such as “Ridge”, “Valley”, and
“Refraction edge” discussed in Section I.2 in (Lyu et al., 2021).
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I Some Basic Inequalities

Lemma I.1 (Hoeffding’s Inequality). Let X1, · · · , Xn are independent random variables, and
Xi ∈ [ai, bi] for any i ∈ [n]. Define X̄ = 1

n

∑n
i=1Xi. Then for any ϵ > 0, we have the following

probability inequalities:

P
(
X̄ − E[X̄] ≥ ϵ

)
≤ exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
,

P
(
X̄ − E[X̄] ≤ −ϵ

)
≤ exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
.

Lemma I.2. Consider x1,x2,y ∈ Sd−1, where ⟨x1,x2⟩ = cos∆ (∆ ∈ (0, π/2)). If ⟨y,x1⟩ ≥ 0
and ⟨y,x2⟩ ≤ 0, then we have 0 ≤ ⟨y,x1⟩ ≤ sin∆ and − sin∆ ≤ ⟨y,x2⟩ ≤ 0.

Proof of Lemma I.2.
Denote Mx := span{x1,x2}. We can do the orthogonal decomposition of y:

y = yM + y⊥
M,

where yM ∈ Mx and y⊥
M ⊥ Mx. From y ∈ span{x1,x2}, there exist α, β ∈ R, s.t. yM =

αx1 + βx2.

Due to the orthogonal decomposition, we know ∥yM∥ ≤ 1, which means α2 + β2 +2αβ cos∆ ≤ 1.
Noticing α2 + β2 + 2αβ cos∆ = (α+ β cos∆)2 + α2 sin2 ∆, we know α2 sin2 ∆ ≤ 1.

Due to ⟨y,x1⟩ ≥ 0 and ⟨y,x2⟩ ≤ 0, we have ⟨yM,x1⟩ ≥ 0 and ⟨yM,x2⟩ ≤ 0, which means

α+ β cos∆ ≥ 0, α cos∆ + β ≤ 0.

So α ≥ 0 and α sin∆ ≥ 0. Recalling α2 cos2 ∆ ≤ 1, we know 0 ≤ α sin∆ ≤ 1. Hence, we have
α+ β cos∆ ≤ α− α cos2 ∆ = α sin2 ∆ ≤ sin∆, i.e. ⟨y,x1⟩ ≤ sin∆.

In the same way, we have − sin∆ ≤ ⟨y,x2⟩ ≤ 0.

Lemma I.3. If p ≥ 5, we have ∥z∥ ≥ p−1
p+1 ≥ 2

3 .

Proof of Lemma I.3.

∥z∥2 =

∥∥∥∥∥ 1n
n∑
i=1

yixi

∥∥∥∥∥
2

=

∥∥∥∥ p

1 + p
x+ − 1

1 + p
x−

∥∥∥∥2 =

(
p

1 + p

)2

+

(
1

1 + p

)2

− 2p

(1 + p)2
⟨x+,x−⟩

=

(
p

1 + p
+

1

1 + p

)2

− 2p

(1 + p)2
(cos∆ + 1) ≥ 1− 2p

(p+ 1)2
· 2 =

(
p− 1

p+ 1

)2

.

Lemma I.4. Let w ∈ Sd−1. If ⟨w,µ⟩ ≥ 1− ϵ (ϵ ∈ (0, 1)), p ≥ 5 and cos∆ ≥ 4/5, then we have

−2
√
ϵ sin∆− ϵ ≤ ⟨w,x−⟩ −

p cos∆− 1√
p2 + 1− 2p cos∆

≤ 2
√
ϵ sin∆.

Proof of Lemma I.4.

⟨w,x−⟩ = ⟨w,µ⟩+ ⟨w,x− − µ⟩ = ⟨w,µ⟩+ ⟨µ,x− − µ⟩+ ⟨w − µ,x− − µ⟩ .
It is easy to verify

⟨µ,x− − µ⟩ = ⟨µ,x−⟩ − 1 =

〈
px+ − x−

∥px+ − x−∥
,x−

〉
− 1 =

p cos∆− 1√
p2 + 1− 2p cos∆

− 1;

∥x− − µ∥ =
√

2− 2 ⟨µ,x−⟩ =
√
2− 2

p cos∆− 1√
p2 + 1− 2p cos∆

;
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∥w − µ∥ =
√
2− 2 ⟨w,µ⟩.

Thus,

|⟨w − µ,x− − µ⟩| ≤ ∥w − µ∥ ∥x− − µ∥

=

√
2− 2

p cos∆− 1√
p2 + 1− 2p cos∆

√
2− 2 ⟨w,µ⟩ ≤

√
2− 2

p cos∆− 1√
p2 + 1− 2p cos∆

√
2ϵ

≤
√
2

4
√
p2 + 1− 2p cos∆

√
p2 sin2 ∆√

p2 + 1− 2p cos∆ + p cos∆− 1

√
2ϵ

≤ 2
√
ϵ√

p− 1

p sin∆√
p− 1 + p cos∆− 1

≤ 2
√
ϵ sin∆.

Then we have the bound:

⟨w,x−⟩ ≤
p cos∆− 1√

p2 + 1− 2p cos∆
− 1 + ⟨w,µ⟩+ |⟨w − µ,x− − µ⟩|

≤ p cos∆− 1√
p2 + 1− 2p cos∆

+ 2
√
ϵ sin∆,

⟨w,x−⟩ ≥
p cos∆− 1√

p2 + 1− 2p cos∆
− 1 + ⟨w,µ⟩ − |⟨w − µ,x− − µ⟩|

≥ p cos∆− 1√
p2 + 1− 2p cos∆

− ϵ− 2
√
ϵ sin∆.
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