
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MOA: MIXTURE OF SPARSE ATTENTION FOR AUTO-
MATIC LARGE LANGUAGE MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse attention can effectively mitigate the significant memory and throughput
demands of Large Language Models (LLMs) in long contexts. Existing methods
typically employ a uniform sparse attention mask, applying the same sparse pattern
across different attention heads and input lengths. However, this uniform approach
fails to capture the diverse attention patterns inherent in LLMs, ignoring their
distinct accuracy-latency trade-offs. To address this challenge, we propose the
Mixture of Attention (MoA), which automatically tailors distinct sparse attention
configurations to different heads and layers. MoA constructs and navigates a search
space of various attention patterns and their scaling rules relative to input sequence
lengths. It profiles the model, evaluates potential configurations, and pinpoints
the optimal sparse attention compression plan. MoA adapts to varying input sizes,
revealing that some attention heads expand their focus to accommodate longer
sequences, while other heads consistently concentrate on fixed-length local contexts.
Experiments show that MoA increases the effective context length by 3.9× with
the same average attention span, boosting retrieval accuracy by 1.5− 7.1× over
the uniform-attention baseline across Vicuna-{7B,13B}, and Llama3-{8B,70B}
models. Moreover, MoA narrows the capability gaps between sparse and dense
models, reducing the maximum relative performance drop from 9% − 36% to
within 5% across two long-context understanding benchmarks. MoA achieves a
1.2−1.4× GPU memory reduction, boosting decode throughput by 6.6−8.2× and
1.7− 1.9× over FlashAttention2 and vLLM, with minimal performance impact.

1 INTRODUCTION
(b) StreamingLLM
attention span = 50% ⨉ input length
ineffective retrieval beyond attention span

(c) MoA
attention span = 50% ⨉ input length
effective retrieval beyond attention span

25%

50%

75%

Re
tr

ie
va

l
 P

os
iti

on
 (%

)

Top of
Input

Bottom of
Input

(a) Original
attention span = 100% ⨉ input length
effective retrieval within attention span

Re
tr

ie
ve

Ac
cu

ra
cy

 (%
)

100%
Accurate

0%
Accurate1k 2k 3k 4k 5k 6k 7k 8k

Input Length
(#Tokens)

1k 2k 3k 4k 5k 6k 7k 8k1k 2k 3k 4k 5k 6k 7k 8k
Input Length

(#Tokens)
Input Length

(#Tokens)

Figure 1: Retrieval accuracy of the Vicuna-7B model using different attention methods across varying
input lengths and retrieval positions on the LongEval benchmark (Li et al., 2023a). This retrieval
benchmark takes massive key-value pairs as inputs and tests the accuracy to retrieve values based on
given keys from diverse positions. (a) Original model with a full attention span; (b) StreamingLLM
with half the attention span, showing reduced effectiveness beyond the span; (c) MoA with half the
attention span, maintaining effectiveness beyond the span.

Large Language Models (LLMs) exhibit remarkable versatility across numerous applications (Brown
et al., 2020; Tay et al., 2022; Wan et al., 2023). Central to LLM is the attention mechanism (Vaswani
et al., 2017), which computes interactions among tokens within a certain span, thereby enabling
context understanding. Scaling input length is crucial for enhancing LLM capabilities (Chen et al.,
2023; Tworkowski et al., 2023), including fact retrieval, summarization, few-shot learning, question

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

answering and so on (Bai et al., 2023; Yuan et al., 2024). However, the ever-growing attention
computation and Key-Value Cache (KV-Cache) pose significant efficiency challenges (Sheng et al.,
2023; Xiao et al., 2024c; Han et al., 2023; Kwon et al., 2023).

Previous work proposes sparse attention methods to address the efficiency challenges of long contexts
in generative LLMs. These methods typically employ a uniform, fixed-span sliding window mask
across all heads and input lengths, limiting attention to local contexts only (Xiao et al., 2024c;
Han et al., 2023). This approach allows the LLM to take long inputs with a fixed attention span,
keeping bounded attention computation and KV caching overhead. Following previous works (Chen
et al., 2023; Tworkowski et al., 2023), we quantify the effective context length as the maximum
input length where content retrieval accuracy exceeds a 90% threshold. In principle, fixed-span
local attention can gradually aggregate global information through multiple model layers, yielding
a longer effective context length than each attention span (Feng et al., 2022; Zaheer et al., 2020).
Nonetheless, we reveal that uniform masks, like StreamingLLM (Xiao et al., 2024c), hardly extend
effective context length beyond the span, as shown in Figure 6. Figure 1(b) further illustrates such
limitation: with a 50% attention span mask, StreamingLLM fails to accurately retrieve content from
the earlier half of the input and performs even worse at longer input lengths. Figure 2 reveals one
possible explanation for the problem: while some attention heads focus on local contexts, others
encompass the broad span of the entire input sequence. Consequently, the uniform approach fails
to achieve a long effective context length as it limits the attention span of the global-context heads,
while excessively allocates compute and memory budget for local-context heads. Additionally, as the
input length increases, some attention heads need a faster increase in attention span than others to
avoid serious performance degradation, as shown in Table 1. Unfortunately, the uniform approaches
do not include heterogeneous rules to scale the attention spans differently for various heads. Besides,
existing model compression methods (Men et al., 2024; Lin et al., 2023; Xiao et al., 2024b; Li et al.,
2024a; Kim et al., 2023; Li et al., 2024b) use general language modeling corpora to decide the
compression plan, which cannot accurately profile the influence of compression on long-context
tasks.

In this work, we propose Mixture of Attention (MoA), a training-free sparse attention method. As
illustrated in Figure 3, MoA constructs the search space of heterogeneous elastic rules of attention
spans. For automatic LLM compression, MoA first utilizes gradient-based profiling to inspect the
influences of each attention position on the prediction loss. Based on the profiling results, MoA
tailors heterogeneous sparse attention configurations for each model layer and attention head. During
profiling, MoA employs a calibration dataset with long-range dependencies and uses the original
dense model’s response instead of the human-written response as the reference to calculate the loss.
This ensures an accurate profiling of the attention influences to facilitate better compression results.
Our contributions are summarized as follows.

• Heterogeneous Elastic Rules. We propose heterogeneous elastic rules for masks of each
attention head. We formulate MoA compression search space to include a diverse range of
elastic rules that tailor the local attention span relative to the input length for each attention
head. The heterogeneous elastic rules improve the fact retrieval accuracy of MoA from 25%
to 98% compared with masks with uniform span and scaling function for each head.

• Calibration Dataset Construction We emphasize the importance of data engineering in
LLM compression. Our findings demonstrate that, instead of relying on general language
modeling datasets and human responses, using datasets with long-range dependencies and
referencing the original LLM’s responses is essential for accurately profiling the effects of
compression.

• Automatic Optimization. We propose an automatic pipeline to find the optimal compression
plan encompassing heterogeneous elastic rules for various attention heads. This pipeline can
efficiently find the optimal plan within several hours, for example, two hours for compressing
Vicuna-13B.

Experiments show that MoA achieves 6.6− 8.2× throughput improvements over FlashAttention2,
1.7− 1.9× over vLLM framework on 7B and 13B dense LLMs at a 50% density (the average of KV-
Cache length / input length), with only a 1% average relative degradation in retrieval accuracy. The
significant throughput improvements of MoA over FlashAttention2 can be attributed to four factors:
(1) the static size of the KV-cache, (2) reduced attention computations, (3) increased batch size

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

enabled by reduced memory usage, and (4) a specialized kernel implementation. Additionally, MoA
achieves over 90% retrieval accuracy with just 25% average density, far surpassing sparse attention
baselines that need a density of 75% to 100% for similar performance. On long-context understanding
benchmarks, MoA performs comparably to dense models, with a maximum relative performance drop
of less than 5%, which is about one-sixth of that observed with the uniform sparse attention baseline.
Our code is available at https://anonymous.4open.science/r/MoA-Review.

2 PRELIMINARY AND RELATED WORK

2.1 ATTENTION MECHANISM

The Multi-Head Self Attention (MHA) mechanism (Vaswani et al., 2017) is crucial to the functionality
of LLMs. It starts with an input sequence transformed into query (Q), key (K), and value (V) matrices
through linear projections. These matrices, combined with the cached K and V (KV-Cache) from
previous sequences, compute the attention matrix (A). This calculation is modified by a causal mask
(M) to ensure autoregressive properties, resulting in the output (O), as depicted in Equation 1:

S = QKT , A = softmax(S+M), O = AV (1)

Autoregressive inference in LLMs involves two stages: prefill and decode. During prefill, the
model processes the entire input sequence to generate the initial response token. In the subsequent
decode stage, it uses the newly generated token and previously cached K and V matrices to produce
subsequent tokens until the generation concludes. Although effective, this iterative process increases
memory and computation demands due to the expanding KV-Cache.

2.2 EFFICIENT ATTENTION

Efficient methods are proposed to mitigate the computation and memory costs associated with
attention. One branch of work uses dynamic sparse attention masks to adaptively skip attention
computations during prefill stage (Pagliardini et al., 2023; Qu et al., 2022; Roy et al., 2021; Wang
et al., 2021; Lu et al., 2021; Kitaev et al., 2020) or drop KV-Cache during decode stage (Anagnostidis
et al., 2023; Zhang et al., 2023; Ge et al., 2023; Sheng et al., 2023; Liu et al., 2023a) based on the
input sequences. However, due to the complex control and computation flow, dynamic prefill often
requires specific hardware to achieve substantial wall-time speedup (Qu et al., 2022; Wang et al.,
2021; Lu et al., 2021; Ham et al., 2021; 2020). Additionally, dynamic KV-Cache pruning in the
decode stage may require extensive retraining (Anagnostidis et al., 2023), additional KV-Cache score
computation (Sheng et al., 2023; Zhang et al., 2023; Liu et al., 2023a; Ge et al., 2023; Li et al., 2024c;
Cai et al., 2024), or extensive memory swap for KV-Cache retrieval (Tang et al., 2024b; Xiao et al.,
2024a).

Another branch of work uses static sparse attention, where predefined masks are applied consistently
across all processed sentences. Thanks to the fixed computation flow, static sparse attention is
generally more efficient and GPU-friendly. For language understanding models such as BERT (Devlin
et al., 2018), various masks are used (Zaheer et al., 2020; Beltagy et al., 2020; Child et al., 2019; Zhou
et al., 2024; Xiao et al., 2024c; Han et al., 2023). But for generative LLMs, the predominant method
is the fixed-span sliding window mask with global attention on a few initial tokens (Xiao et al., 2024c;
Han et al., 2023). With the local attention pattern, the KV-Cache beyond the current attention span
can be dropped, saving much memory for long sequence scenarios. However, the uniform static
masks across different attention heads and input lengths are model- and data-agnostic, which can
compromise LLMs’ effective context length and lead to suboptimal performance in long sequence
scenarios. Our method falls within this category, benefiting from the efficiency and training-free
advantages, while addressing the performance limitations encountered by previous methods.

In addition to sparse attention, alternative mechanisms have been proposed to replace traditional
attention for long-sequence modeling (Gu & Dao, 2023; Peng et al., 2023; Sun et al., 2023; Poli
et al., 2023; Li et al., 2022; Kacham et al., 2023; Peng et al., 2021; Choromanski et al., 2020; Wang
et al., 2020). However, these new mechanisms often require different weights compared to vanilla
transformers, imposing significant re-training overhead for LLMs.

Previous works also propose LLM acceleration frameworks (Gugger et al., 2022; Aminabadi et al.,
2022; Sheng et al., 2023; Kwon et al., 2023), as well as kernel-level optimizations (Dao et al., 2022;

3

https://anonymous.4open.science/r/MoA-Review

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Examples of attention matrices from different
attention heads of the Vicuna-7B model. Each atten-
tion matrix is averaged over 256 data items from the
LongEval dataset.

Window/Input Len.
Layers 2k/4k 2k/8k 4k/8k

6, 7, 8 0.83 0.29 0.61
9, 10,11 0.99 0.81 0.96
17,18,19 0.97 0.94 0.97

Table 1: Retrieval accuracy of Vicuna-
7B with sliding-window sparse attention
across various model layers, window
spans, and input lengths.

Dao, 2023; Shah et al., 2024). These kernel and system optimizations are orthogonal to our work and
can be integrated to further enhance efficiency.

3 MIXTURE OF ATTENTION (MOA)

We first illustrate the heterogeneity of the attention patterns in pre-trained LLMs in Section 3.1. Based
on this insight, we define the search space for our Mixture-of-Attention (MoA) method in Section 3.2.

3.1 MIXTURE OF ATTENTION PATTERNS AND ELASTIC RULES

Heterogeneous Attention Patterns. Different attention heads in LLMs exhibit heterogeneous
attention patterns, as shown in Figure 2. For example, the first head primarily focuses on local
contexts with a narrow-span sliding window, while the third head covers nearly the entire input,
indicating global attention. The attention spans of different heads mostly remain constant across
various tasks and datasets, as shown in Appendix D.1. Table 1 demonstrates that applying the
same sliding-window sparse attention mask across model layers can lead to a 65% variance in
retrieval accuracies. It conforms to the multi-head self-attention design principle of capturing varied
information (Vaswani et al., 2017), as well as the findings from concurrent research that identifies
specific attention heads for global text retrieval (Wu et al., 2024).

Heterogeneous Elastic Rules. In addition to heterogeneity at a certain length, different attention
heads also exhibit varying elastic behaviors as the input length changes. Figure 2 illustrates this
variability: for shorter inputs (the upper left part of the attention matrix), the second and third heads
initially show global attention. However, as input length increases, the second head remains the
medium-span local focus, while the third head continues to expand as global attention. Table 1 further
evidences the diverse elastic rules. For example, at 4k input length, a 2k sliding-window sparse
attention mask on layers 9 to 11 yields better retrieval accuracy than on layers 17 to 19. However,
the opposite is true for an 8k input length. This data supports the visual observations from Figure 2,
highlighting that attention patterns respond to input length scaling differently. Leveraging these
insights, MoA encompasses heterogeneous elastic rules as the search space.

3.2 HETEROGENEOUS ELASTIC RULE SEARCH SPACE

In designing the search space for the MoA mask, we consider the inherently heterogeneous and
elastic nature of LLM attention patterns. As shown in Figure 3(a), we adopt a hardware-friendly
sliding-window mask as our base sparse attention mask (Beltagy et al., 2020). Following previous
work (Xiao et al., 2024c; Han et al., 2023), the initial few tokens (64 tokens for MoA) are not masked.
The attention span equals the sliding-window-span plus the number of initial unmasked tokens. We
define the attention span S of head h at input length N using a straightforward linear function:

Sh = αh + βh ·N, (2)
where αh and βh are hyperparameters that control the base span and its expansion rate with input
length of a specific attention head.

The α and β hyperparameters for each attention head are chosen from multiple discrete options. By
default, MoA uses 6 and 9 options for α and β, respectively. For LLMs with many heads and layers,
the search space can become quite large. For example, for a 7B model consisting of 32 attention
heads and 32 layers, the potential search space expands to 541024 configurations. Thus, we design
the automatic pipeline to efficiently pinpoint the optimal αs and βs for any LLM.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

loss

avg. density

optimize

attention
influence

profile

1.0

0.0

0.5

=

head 0
head 1 compression

plan

obj minimize loss
under density
constraint

inputs

search space

he
te

ro
ge

ne
ou

s

elastic

KV-cache

attention
span

mask

supervision

calibration
dataset

LLM

head 0
head 1

(a) (b)

Figure 3: Overview of the MoA. (a) The sparse attention search space includes heterogeneous elastic
rules of the attention span on sliding-window masks. (b) The automatic compression pipeline begins
with a calibration dataset, which includes long-dependency contexts and supervision texts generated
by the original dense LLM. MoA profiles each attention value’s impact on model predictions within
this dataset, revealing accuracy losses for different candidate elastic rules across various input lengths.
The final optimization step selects elastic rules for each attention head to minimize the total prediction
loss while adhering to specified density constraints.

4 AUTOMATIC PIPELINE FOR MOA COMPRESSION

This section outlines the MoA automatic compression pipeline as shown in Figure 3(b). Starting
with a trained LLM and a calibration dataset, MoA first profiles the influence of each attention
value on the model’s prediction loss for various input sequences from the calibration dataset. The
masked sum of the influences represents the accuracy loss associated with each mask at different
input lengths, showing the accuracy loss each candidate elastic rule could cause at that length. Then,
MoA optimizes the compression plan by selecting the optimal elastic rule for each head, which
minimizes the accuracy loss across various lengths while adhering to specified density constraints.
The following sections provide detailed discussions of each step in this pipeline.

4.1 ATTENTION INFLUENCE PROFILING

In the profile step, MoA quantifies the impact of individual attention values on the final prediction loss
of a pre-trained LLM. It informs the subsequent step about the influence of masking each attention
value, revealing the accuracy trade-offs of the candidate elastic rules for each attention head.

The influence of each attention value is derived from the attention matrix A and its gradient ∂L/∂A,
computed over a calibration dataset. When applying sparse attention masks, we approximate the
change in the model’s prediction loss, ∆L, using a first-order Taylor expansion based on variations
in the attention matrices A: ∆L =

∑
h

∑
i

∑
j ∂L/∂Ah,i,j ·∆Ah,i,j . Here, h indexes the attention

heads across all layers, and i, j are the row and column indices within each attention matrix Ah.
Details on the calibration dataset and the prediction loss L are provided in Section 5.

We define the attention influence matrix, Eh,i,j , as the estimated change in loss, ∆L, if the attention
value Ah,i,j is masked (i.e., set to zero). As shown in Equation 3, this measure considers both
the direct and indirect effects of the mask. For notation simplicity, we omit the head index h here.
Initially, masking directly reduces the attention value to zero, represented by ∆Ai,j|j = −Ai,j .
Additionally, the softmax function in attention normalizes the sum of each row in the attention matrix
to one. Thus, setting one attention value at column j to zero causes an increase in the other attention
values, ∆Ai,n|j , n ̸= j, within the same row. These two effects are integrated into the following
formulation, whose derivation is provided in Appendix D.2:

Ei,j =
∑
n

∂L

∂Ai,n
·∆Ai,n|j =

∂L

∂Ai,j
· (−Ai,j) +

∑
n ̸=j

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j
(3)

In practice, we use backpropagation on a calibration dataset to calculate the average attention influence
Ēh of each head across data items. The average attention influence is calculated respectively for
different input lengths. The gradient ∂L/∂Ah is computed using chain derivative in deep learning
frameworks like PyTorch (Paszke et al., 2019). The detailed calibration dataset setup is discussed in
Section 5.

With the average attention influence of each head, MoA can calculate the accuracy loss of applying
a candidate elastic rule at a specific input length. The loss is calculated with the sum of masked

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Calibration dataset design choices: dataset content, supervision, and response reference.
Calibration dataset with long dependency and model alignment improves MoA performance on
retrieval accuracy and perplexity. All tests are done at 25% average density at 8k input length.

Dataset Supervision Reference Long Dep. Align Model Retrieval Acc. ↑ PPL ↓
RedPajama Context - ✗ ✗ 0.25 4.95
MultiNews Context & Summary Human ✗/✓ ✗ 0.27 4.62
MultiNews Summary Human ✓ ✗ 0.87 3.97
MultiNews Summary Model ✓ ✓ 0.95 3.96

average attention influence according to the rule. We denote Mrh as the binary mask at head h that
corresponds to rule r, with masked positions marked as 1 and others as 0. We formalize accuracy
loss ∆L as follows:

∆L =
∑
h

∆Lh,rh =
∑
h

∑
i

∑
j

Mrh,i,j · Ēh,i,j . (4)

After the profile stage, MoA acquires the unique accuracy-density trade-offs of elastic rules. It
informs the allocation of denser masks to more sensitive heads and lighter masks to less sensitive
ones. Profiling at different input lengths enables the identification of the most effective elastic rules,
even for unseen lengths.

4.2 AUTOMATIC OPTIMIZATION

MoA automatically selects the optimal elastic rule for each attention head to minimize accuracy
losses across various sequence lengths under density budgets. Based on the profiling results, MoA
first identifies Pareto front compression plans where any improvement in accuracy loss at one profile
length would worsen another. To ensure the best generalization to lengths beyond those profiled,
MoA then selects the plan that yields the minimum loss at an unseen length among the Pareto front
solutions as the final plan.

Specifically, we utilize multi-objective optimization to search for a set of Pareto optimal compression
plans across the profiled lengths. The objective for each length is to minimize the total accuracy loss
while conforming to any user-defined density constraints. The objective is formulated as follows:

argmin
rh∈R

∆L(Ni), Ni ∈ Nprofile s. t.
1

H

H∑
h=1

d(Ni)
rh

≤ d
(Ni)
constr,∀Ni ∈ Nconstr. (5)

Here, superscript (N) denotes values at different lengths; Nprofile and Nconstr denote the sets of lengths
for profiling and those subject to density constraints, respectively; R denotes the set of candidate
rules; ∆L(Ni) denotes the accuracy loss due to compression; d(Ni)

rh denotes the density of rule rh at
head h; d(Ni)

constr denotes the average density constraint; H denotes the total number of attention heads.

Such formulation corresponds to the classic multi-objective mixed-integer-programming problem,
which can be effectively solved within minutes using existing linear solvers, like Gurobi (Gurobi
Optimization, LLC, 2023). The detailed formulation and solving strategies are discussed in Ap-
pendix D.3.

Among the Pareto optimal compression plans, we select the one with the minimum loss at the unseen
validation length as the optimal solution. This approach allows us to avoid profiling at every possible
length while increasing the likelihood that the plan will generalize effectively to unseen lengths.

Thanks to this automatic pipeline, we efficiently get the elastic rules tailored for each attention
head. With the pipeline, MoA minimizes the accuracy loss caused by attention sparsification, while
conforming to user-defined density constraints.

5 DATASET AND SUPERVISION

In this section, we highlight the overlooked importance of calibration dataset design and its supervision
objective in LLM compression. Calibration datasets are essential for sensitivity analysis across various

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

compression techniques, including weight pruning (Men et al., 2024; Lee et al., 2024; Liu et al.,
2023b) and quantization (Lin et al., 2023; Xiao et al., 2024b; Li et al., 2024a; Kim et al., 2023).
In this work, MoA profiles the attention influence on the calibration dataset, which is crucial for
subsequent automatic optimization.

Current Approach. General language modeling datasets, such as human-written text corpus RedPa-
jama (Computer, 2023), are commonly used as the calibration dataset. These datasets, supervised
by next-token-prediction on the entire corpus, primarily capture attention patterns coherent with
immediately preceding tokens. However, they lack long context dependencies, failing to address the
global attention crucial for tasks like long-range retrieval.

Moreover, a notable misalignment exists between the model response and the human-written supervi-
sion. Consequently, it leads to inaccuracies when using human responses to compute attention values
and gradients during profiling. For example, given the same question, a human might answer ‘Blue’,
while the model could generate ‘The blue color’. Using the human answer for supervision, attention
influence is inaccurately quantified based on probability shift for predicting ‘Blue’; this diverges
from the objective of maintaining crucial attention for the original model prediction, ‘The’. These
inconsistencies arise from various factors, including mismatched positions, tones, and synonyms.

MoA’s Approach. MoA enhances the calibration dataset by integrating long-range dependencies and
model alignment. Specifically, we utilize the long-contextual MultiNews dataset (Fabbri et al., 2019),
which includes summaries heavily dependent on long-range content. The summaries are generated by
the original dense model and serve as supervision. Compared to current approaches that adopt human
responses as the reference to calculate the cross-entropy loss L, using the responses generated by the
original model as the supervision can facilitate accurate profiling, thus benefiting the compression.

Approach Comparison. We evaluate our design’s effectiveness by varying dataset choices, supervi-
sion types, and summary references, while standardizing data item count and length to 50 and 8k
words, respectively. Additional setups and evaluations are in Appendices A and B.3.1.

We show the importance of long-range dependencies by comparing the MoA compression plan
generated with different datasets and supervisory methods. In Table 2, RedPajama (Computer, 2023)
represents the general language modeling dataset, while MultiNews (Fabbri et al., 2019) highlights
long-range contexts by aggregating multiple documents on a single incident. Additionally, each
MultiNews item includes a human-written summary, providing even stronger long-range dependencies
and better performance. Calculating loss on the summary of MultiNews leads to significantly better
performance, with a 60% increase in retrieval accuracy and a 0.98 decrease in perplexity.

Furthermore, using summaries generated by the original dense model as supervision promotes higher
alignment between its own attention patterns and the text supervision. It improves performance
compared to potentially inconsistent human summaries, as shown in the last two rows of Table 2.

6 EXPERIMENT

6.1 SETUPS

We brief the experiment setups here, with more details in Appendix A.

Baselines. We compare MoA with state-of-the-art static and dynamic sparse attention methods,
including StreamingLLM (Xiao et al., 2024c), InfLLM (Xiao et al., 2024a) and H2O (Zhang et al.,
2023). We define the density of an LLM as the ratio of the average in-memory KV-Cache length to
the sequence length during the sparse decode stage. Notably, in MoA and StreamingLLM, KV-Cache
length equals the attention span during the sparse prefill stage. In contrast, H2O use dense prefill.
Besides, H2O and InfLLM require additional computations to dynamically determine the KV-Cache.

Models and Benchmarks. We evaluate on vicuna-{7b, 13b}-v1.5-16k models (Chiang et al., 2023)
from LMSys and Llama-3-{8b, 70b}-Instruct-262k models (AI, 2024) from Gradient AI. For long-
context retrieval, we use LongEval (Li et al., 2023a) to test key-value retrieval accuracy with 100
data items per length level. For long-context understanding, we use LV-Eval (Yuan et al., 2024) and
LongBench (Bai et al., 2023), which include 11 and 13 sub-datasets, respectively. For coherence
testing, we measure perplexity on four long datasets (Dasigi et al., 2021; Fabbri et al., 2019; Li &
Roth, 2002; Hovy et al., 2001; Mohler et al., 2016) with diverse tasks. Unless otherwise specified,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.00
0.25
0.50
0.75
1.00

0 350 700 1050 1400

Density: 75% 50% 25% 15%

Method:

Decode Throughput (token/s)

Re
tri

ev
al

 A
cc

ur
ac

y

StreamingLLM MoAPyramidKV
H2OBigBirdInfLLM SnapKV

Figure 4: Accuracy-throughput trade-offs of
seven attention methods at different densities,
tested on Vicuna-7B with 8k input length using
one A100-80GB GPU on the LongEval dataset.

Retrieval Acc. PPL
Mask Design 8k 16k 8k 12k

Uniform 0.25 0.15 4.89 5.19
+Hetero. Layers 0.31 0.26 4.55 4.85
+Hetero. Heads 0.95 0.41 3.96 4.30
+Elastic 0.98 0.43 3.96 4.29

Table 3: Ablation study on search space with
consistent 25% density, progressively introduc-
ing heterogeneity in layers, heads, and elastic
rules. Evaluations are done with retrieval accu-
racy and perplexity.

performance experiments are restricted to eight A100-80GB GPUs over a 24-hour period, with OOM
(Out-Of-Memory) and OOT (Out-Of-Time) conditions noted. Efficiency experiments measure the
decode throughput on a single A100-80GB GPU at maximum batch sizes of respective methods.

MoA Settings. We restrict the number of distinct rules to at most two per model layer to ensure
inference-time efficiency. We profile MoA on MultiNews (Fabbri et al., 2019) with model summaries
at 2k, 4k, and 8k lengths. The optimal compression plan is selected with the validation dataset at 12k.
Each model uses the same plan across all benchmarks and lengths. The models are not fine-tuned.

6.2 ACCURACY-THROUGHPUT TRADE-OFF

Figure 4 shows that MoA advances the Pareto Front in context retrieval accuracy and decode
throughput across varied densities and six baselines. At the same densities, MoA notably enhances
throughput by 1.6× to 18.1× compared to H2O, InfLLM, BigBird (Zaheer et al., 2020), SnapKV (Li
et al., 2024c) and PyramidKV (Cai et al., 2024), due to its efficient static attention design. The
throughput even outperforms StreamingLLM thanks to our customized GPU kernel. Additionally,
MoA achieves notably higher retrieval accuracies across a range of densities. We conduct extensive
evaluations for MoA ’s performance and efficiency on various benchmarks across context lengths
from 4k to 256k and model sizes ranging from 7B to 70B in subsequent sections.

6.3 PERFORMANCE

MoA outperforms state-of-the-art sparse attention methods across various model sizes and bench-
marks, achieving comparable performance to the original dense model at 50% density.

Long-Context Retrieval. As shown in Table 4, MoA demonstrates a maximum of 8% relative accu-
racy drop (calculated as max{1−Acc.MoA/Acc.Original} across three lengths and LLMs), significantly
less than the 87%, 58% and 44% for StreamingLLM, InfLLM and H2O. On average, the relative
accuracy drop for MoA is under 1%, much less than others at 51%, 41% and 20%, respectively.
Figure 5(a) shows that MoA retains over 90% retrieval accuracy up to 60k lengths, equaling the
dense model’s effective context length. Note that it is done within 8k profiling and 12k validation. In
contrast, the effective context lengths for H2O, InfLLM, and StreamingLLM are only 8k, <4k, and
<4k, respectively. Appendix B.1.2 shows that MoA extends its effective context to approximately
3.9× the average KV-Cache length.

Long-Context Understanding. As shown in Table 4, MoA minimizes the maximum relative
performance drop in LV-Eval and LongBench benchmarks to only 5% and 3%, respectively—much
lower than the 36% and 18% experienced by StreamingLLM. H2O and InfLLM show maximum
relative drops of 9%-17% and 3%-5% with higher efficiency costs. Similar trends show in perplexity
tests, where MoA maintains less than 1% relative perplexity increase, while others exhibit 4%-13%
increases. This trend holds for other densities, as shown in Appendices B.1.1 and B.1.3. Figure 10
and Table 8 further details the score with different tasks. MoA achieves comprehensive performance
comparable to the original dense model, as well as H2O that requires higher efficiency cost. In
contrast, StreamingLLM and InfLLM display inconsistent performance: it sometimes surpasses the
original model in some tasks, while suffering noticeable degradation in others.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: Comparative analysis of retrieval accuracy, LV-Eval scores, LongBench scores, and perplexity
for various models with different attention methods. All sparse methods employ 50% density in
decode stage. H2O uses dense prefill, while StreamingLLM, InfLLM and MoA use sparse prefill.
InfLLM for 70B model is excluded due to OOT issues.

Retrieve Acc. ↑ LV-Eval ↑ LongBench ↑ PPL ↓
Model Attention 4k 8k 16k 16k 0-16k 8-12k

Vicuna-7B

Original 1.00 0.98 0.62 5.93 34.76 3.79

H2O 0.86 0.68 0.35 5.42 33.59 3.94
InfLLM 0.67 0.57 0.26 5.13 32.97 4.07
StreamingLLM 0.43 0.16 0.08 4.72 31.84 4.48
MoA 1.00 0.97 0.57 5.61 33.96 3.75

Vicuna-13B

Original 0.99 0.98 0.44 5.83 39.23 3.62

H2O 0.88 0.76 0.28 5.66 38.13 3.80
InfLLM 0.70 0.53 0.27 6.80 37.13 4.07
StreamingLLM 0.65 0.49 0.33 5.43 32.13 4.10
MoA 0.99 0.93 0.49 7.16 38.77 3.62

Llama3-8B

Original 0.99 0.99 0.97 17.49 43.69 4.52

H2O 0.94 0.89 0.88 16.03 42.99 4.63
InfLLM 0.65 0.59 0.37 14.44 42.43 4.68
StreamingLLM 0.68 0.55 0.52 11.16 38.22 4.79
MoA 0.99 1.00 1.00 17.46 42.97 4.49

Llama3-70B

Original 1.00 0.99 0.93 24.51 49.10 3.67

H2O 0.93 0.91 OOM OOM OOM OOM
StreamingLLM 0.20 0.15 0.04 17.45 42.53 4.26
MoA 1.00 1.00 0.94 23.65 47.79 3.75

Re
tri

ev
al

 A
cc

.

0.5
0.6
0.7
0.8
0.9

1

Input Length
4k 12k 20k 28k 36k 44k 52k 60k

OOM

Original
StreamingLLMH2O

MoA
InfLLM

(a) Retrieval accuracy and the effective con-
text length (arrow).

Retrieve Acc. ↑ LV-Eval ↑
Attention 32k 64k 128k 256k 32k 64k 128k

Original 0.98 0.93 0.76 0.37 16.74 15.39 14.71

InfLLM 0.43 0.32 0.25 OOT 14.22 12.17 OOT
StreamingLLM 0.52 0.48 0.41 0.25 12.38 11.45 11.94
MoA 1.00 0.92 0.83 0.46 17.07 15.13 14.14

(b) Retrieval accuracy and LV-Eval score at longer lengths
Figure 5: Comparative analysis at extended sequence lengths with different attention methods using
Llama3-8B model. All methods employ 50% density in both prefill and decode stages.

Longer-Context Generalization. By compressing within 12k lengths, MoA effectively generalizes
to lengths of 32k-256k, as shown in Figure 5(b). At the extended lengths, MoA outperforms both
InfLLM and StreamingLLM by 1.9− 3.3× in retrieval accuracy and 1.2− 1.4× in LV-Eval scores,
demonstrating comparable performance to the original dense model.

Ablation Study. We evaluate the performance impact of different sparse mask search spaces in
Table 3. Starting with a basic uniform mask, we observe significant enhancements by sequentially
introducing heterogeneity: layers first, then heads, and finally elastic rules.

6.4 EFFICIENCY

MoA shows high runtime efficiency with a manageable one-time compression overhead.

Runtime Efficiency. Table 5 compares the runtime efficiency of MoA over various attention methods
and LLM frameworks, with the ablation of efficiency improvements brought by each design factor of
MoA. At 50% density, MoA boosts the decode throughput by 6.6× to 8.2× compared to FlashAtten-
tion2. It outperforms H2O and InfLLM with 1.2× to 4.0× decode throughput improvements. Even

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Runtime efficiency of different methods on Vicuna-7B and 13B models. Efficiency improve-
ments of MoA are ablated with four factors. All sparse attention methods use 50% density. Decode
throughput (tokens per second) evaluated at the maximum batch capacity of an A100-80GB GPU.

4k 8k 16k
Model Framework Attention Batch Throughput Batch Throughput Batch Throughput

7B

vLLM PagedAttention 30 628.8 15 323.0 8 145.5
FlexGen H2O 20 754.9 6 296.3 1 51.7
HuggingFace InfLLM 15 62.0 10 37.5 6 19.2
HuggingFace StreamingLLM 50 945.1 25 467.3 12 232.0

HuggingFace

FlashAttention2 30 134.6 15 66.9 8 32.9
+Static KV-Cache 30 496.1 15 219.5 8 91.6
+Reduced Attention 30 722.5 15 369.9 8 178.3
+Increased Batch 50 897.7 25 436.7 12 206.4
+Kernel (=MoA) 50 1099.0 25 535.7 12 257.3

13B

vLLM PagedAttention 16 314.8 8 160.5 4 71.1
FlexGen H2O 12 330.2 4 138.2 1 37.4
HuggingFace InfLLM 8 30.3 5 17.63 3 11.3
HuggingFace StreamingLLM 28 478.4 14 241.2 7 116.5

HuggingFace

FlashAttention2 16 81.3 8 40.8 4 19.8
+Static KV-Cache 16 264.6 8 111.3 4 62.2
+Reduced Attention 16 329.6 8 156.4 4 87.3
+Increased Batch 28 471.5 14 222.6 7 108.3
+Kernel (=MoA) 28 550.9 14 267.6 7 132.3

compared to the highly system-level optimized vLLM framework (Kwon et al., 2023), MoA still
achieves a 1.7× to 1.9× throughput increase. MoA also reduces total GPU memory by 1.2× to 1.4×,
as detailed in Appendix B.2.1. Results at a 128k length are in Appendix B.2.2. This throughput gain
results from four main factors: static-sized KV-Cache during generation(≈ 3.0×); reduced attention
computations due to sparsity (≈ 1.5×); increased batch sizes enabled by smaller KV-Cache memory
(≈ 1.4×); and our CUDA-implemented GPU kernel for MoA heterogeneous attention (≈ 1.2×).

Compression Pipeline Efficiency. MoA completes the automatic compression pipeline for the
Vicuna-7B and 13B models within two hours. For the larger Llama3-70B model, the process requires
8.5 hours of real-time and 34.7 hours of GPU time. See Appendix B.2.3. for more details.

6.5 RULES DISCOVERED BY MOA

We investigate MoA’s elastic rules for each head. As shown in Figure 11, masks in the initial and
middle layers exhibit high density, aligning with the conclusions from previous research on LLM’s
intrinsic dimensions (Valeriani et al., 2023) and layer sensitivities (Yuan et al., 2023). Conversely, in
the final layers, most heads require low density, while few need high density. Figure 12 shows that
layers with lower average density typically display more diverse densities among heads, confirming
the need for heterogeneity within the same layer. Further details and insights are in Appendix C.

7 CONCLUSION AND FUTURE WORK

MoA automates the selection of heterogeneous elastic masks for each attention head and input length,
significantly extending the effective context length of LLMs by 3.9×. It enhances retrieval accuracy
by 1.5× to 7.1× over uniform sparse attention method and increases throughput to over 7× at 50%
average density, maintaining performance on par with dense models in rigorous benchmarks.

Limitations and Future Work. Under an extremely low-density budget, MoA fails to maintain
good performance. Designing a dynamic MoA method has the potential to address this issue, which
we leave for future work. Using non-linear elastic rules with bounded attention spans is also worth
exploring. Additionally, MoA’s profiling method can be adapted to evaluate the influence of weights
and other activations, facilitating other compression methods such as quantization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Meta AI. Introducing llama 3: Meta’s latest large language model. https://ai.meta.com/
blog/meta-llama-3/, 2024. Accessed: 2024-05-17.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Ammar Ahmad Awan, Cheng Li,
Du Li, Elton Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, and Yuxiong He. Deepspeed-
inference: Enabling efficient inference of transformer models at unprecedented scale. SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1–15, 2022. URL https://api.semanticscholar.org/CorpusID:250243681.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurélien Lucchi, and Thomas
Hofmann. Dynamic context pruning for efficient and interpretable autoregressive transformers.
ArXiv, abs/2305.15805, 2023. URL https://api.semanticscholar.org/CorpusID:
258888224.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding, 2023.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. ArXiv, abs/2306.15595, 2023. URL
https://api.semanticscholar.org/CorpusID:259262376.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. In International Conference on Learning Representations,
2020.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, April
2023. URL https://github.com/togethercomputer/RedPajama-Data.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning.
ArXiv, abs/2307.08691, 2023. URL https://api.semanticscholar.org/CorpusID:
259936734.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and
memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing
Systems, 2022.

Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape pruning
decisions in large language models. arXiv preprint arXiv:2311.04902, 2023.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. ArXiv, abs/2105.03011,
2021. URL https://api.semanticscholar.org/CorpusID:234093776.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://api.semanticscholar.org/CorpusID:250243681
https://api.semanticscholar.org/CorpusID:258888224
https://api.semanticscholar.org/CorpusID:258888224
https://api.semanticscholar.org/CorpusID:259262376
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/togethercomputer/RedPajama-Data
https://api.semanticscholar.org/CorpusID:259936734
https://api.semanticscholar.org/CorpusID:259936734
https://api.semanticscholar.org/CorpusID:234093776

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R. Radev. Multi-news: A
large-scale multi-document summarization dataset and abstractive hierarchical model. In An-
nual Meeting of the Association for Computational Linguistics, 2019. URL https://api.
semanticscholar.org/CorpusID:174799390.

Aosong Feng, Irene Li, Yuang Jiang, and Rex Ying. Diffuser: Efficient transformers with multi-hop
attention diffusion for long sequences. arXiv preprint arXiv:2210.11794, 2022.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. ArXiv, abs/2310.01801, 2023. URL
https://api.semanticscholar.org/CorpusID:263609075.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
ArXiv, abs/2312.00752, 2023. URL https://api.semanticscholar.org/CorpusID:
265551773.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. Accelerate: Training and inference at scale made simple,
efficient and adaptable. https://github.com/huggingface/accelerate, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Tae Jun Ham et al. Aˆ 3: Accelerating attention mechanisms in neural networks with approximation.
In HPCA, pp. 328–341. IEEE, 2020.

Tae Jun Ham et al. Elsa: Hardware-software co-design for efficient, lightweight self-attention
mechanism in neural networks. In ISCA, pp. 692–705. IEEE, 2021.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-Yew Lin, and Deepak Ravichandran. To-
ward semantics-based answer pinpointing. In Proceedings of the First International Confer-
ence on Human Language Technology Research, 2001. URL https://www.aclweb.org/
anthology/H01-1069.

Cheng Jiang, Ranjun Li, Zhuoyi Zhang, and Yu Shen. Pushing gradient towards zero: A novel
pruning method for large language models, 2023.

Praneeth Kacham, Vahab S. Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers
via sketches for polynomial kernels. ArXiv, abs/2310.01655, 2023. URL https://api.
semanticscholar.org/CorpusID:263609343.

Greg Kamradt. Llmtest_needleinahaystack: Doing simple retrieval from llm models at vari-
ous context lengths to measure accuracy. https://github.com/gkamradt/LLMTest_
NeedleInAHaystack, 2024. Accessed: 2024-11-18.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

12

https://api.semanticscholar.org/CorpusID:174799390
https://api.semanticscholar.org/CorpusID:174799390
https://api.semanticscholar.org/CorpusID:263609075
https://api.semanticscholar.org/CorpusID:265551773
https://api.semanticscholar.org/CorpusID:265551773
https://github.com/huggingface/accelerate
https://www.gurobi.com
https://www.gurobi.com
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://api.semanticscholar.org/CorpusID:263609343
https://api.semanticscholar.org/CorpusID:263609343
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Haotong Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. Proceedings of the 29th Symposium on Operating Systems Principles,
2023. URL https://api.semanticscholar.org/CorpusID:261697361.

Je-Yong Lee, Donghyun Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats: Contextually-
aware thresholding for sparsity in large language models. arXiv preprint arXiv:2404.08763, 2024.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph E. Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context length?,
June 2023a. URL https://lmsys.org/blog/2023-06-29-longchat.

Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao
Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm
deployment. NeurIPS Workshop, 2024a.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024b.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International Confer-
ence on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/
C02-1150.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023b.

Yuhong Li, Tianle Cai, Yi Zhang, De huai Chen, and Debadeepta Dey. What makes convolutional
models great on long sequence modeling? ArXiv, abs/2210.09298, 2022. URL https://api.
semanticscholar.org/CorpusID:252917984.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before generation.
arXiv preprint arXiv:2404.14469, 2024c.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. ArXiv, abs/2305.17118, 2023a. URL
https://api.semanticscholar.org/CorpusID:258947558.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual sparsity for efficient llms
at inference time. In International Conference on Machine Learning, pp. 22137–22176. PMLR,
2023b.

Liqiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo, Peng Li, Tao Wang, and Yun Liang. Sanger: A
co-design framework for enabling sparse attention using reconfigurable architecture. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, pp. 977–991,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480125. URL https://doi.org/10.1145/3466752.3480125.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
ArXiv, abs/2403.03853, 2024. URL https://api.semanticscholar.org/CorpusID:
268253513.

13

https://api.semanticscholar.org/CorpusID:261697361
https://lmsys.org/blog/2023-06-29-longchat
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://github.com/tatsu-lab/alpaca_eval
https://api.semanticscholar.org/CorpusID:252917984
https://api.semanticscholar.org/CorpusID:252917984
https://api.semanticscholar.org/CorpusID:258947558
https://doi.org/10.1145/3466752.3480125
https://api.semanticscholar.org/CorpusID:268253513
https://api.semanticscholar.org/CorpusID:268253513

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Michael Mohler, Mary Brunson, Bryan Rink, and Marc Tomlinson. Introducing the LCC metaphor
datasets. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik,
Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis
(eds.), Proceedings of the Tenth International Conference on Language Resources and Evalua-
tion (LREC’16), pp. 4221–4227, Portorož, Slovenia, May 2016. European Language Resources
Association (ELRA). URL https://aclanthology.org/L16-1668.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and Franccois Fleuret. Faster causal attention
over large sequences through sparse flash attention. ArXiv, abs/2306.01160, 2023. URL https:
//api.semanticscholar.org/CorpusID:259063695.

Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. A flexible framework for multi-
objective bayesian optimization using random scalarizations. In Conference on Uncertainty in
Artificial Intelligence, 2018. URL https://api.semanticscholar.org/CorpusID:
53034523.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Bo Peng, Eric Alcaide, Quentin G. Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, G Kranthikiran, Xuming He, Haowen
Hou, Przemyslaw Kazienko, Jan Kocoń, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna
Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang, Johan Sokrates
Wind, Stansilaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian
Zhu, and Rui Zhu. Rwkv: Reinventing rnns for the transformer era. In Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://api.semanticscholar.
org/CorpusID:258832459.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng
Kong. Random feature attention. ArXiv, abs/2103.02143, 2021. URL https://api.
semanticscholar.org/CorpusID:232105052.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Dota: Detect and
omit weak attentions for scalable transformer acceleration. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’22, pp. 14–26, New York, NY, USA, 2022. Association for Computing
Machinery. ISBN 9781450392051. doi: 10.1145/3503222.3507738. URL https://doi.org/
10.1145/3503222.3507738.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguistics,
9:53–68, 2021.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark W. Barrett, Joseph Gonzalez, Percy Liang, Christopher Ré, Ion Sto-
ica, and Ce Zhang. High-throughput generative inference of large language models with a
single gpu. In International Conference on Machine Learning, 2023. URL https://api.
semanticscholar.org/CorpusID:257495837.

Han Shi, Jiahui Gao, Xiaozhe Ren, Hang Xu, Xiaodan Liang, Zhenguo Li, and James Tin-Yau Kwok.
Sparsebert: Rethinking the importance analysis in self-attention. In International Conference on
Machine Learning, pp. 9547–9557. PMLR, 2021.

14

https://aclanthology.org/L16-1668
https://api.semanticscholar.org/CorpusID:259063695
https://api.semanticscholar.org/CorpusID:259063695
https://api.semanticscholar.org/CorpusID:53034523
https://api.semanticscholar.org/CorpusID:53034523
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:258832459
https://api.semanticscholar.org/CorpusID:232105052
https://api.semanticscholar.org/CorpusID:232105052
https://doi.org/10.1145/3503222.3507738
https://doi.org/10.1145/3503222.3507738
https://api.semanticscholar.org/CorpusID:257495837
https://api.semanticscholar.org/CorpusID:257495837

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models.
ArXiv, abs/2307.08621, 2023. URL https://api.semanticscholar.org/CorpusID:
259937453.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan Hong, Yiwu Yao, and Gongyi Wang. Razorat-
tention: Efficient kv cache compression through retrieval heads. arXiv preprint arXiv:2407.15891,
2024a.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024b.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-0300. doi: 10.1145/3530811. URL https:
//doi.org/10.1145/3530811.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Szymon Tworkowski, Konrad Staniszewski, Mikolaj Pacek, Yuhuai Wu, Henryk Michalewski, and
Piotr Milo’s. Focused transformer: Contrastive training for context scaling. ArXiv, abs/2307.03170,
2023. URL https://api.semanticscholar.org/CorpusID:259360592.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and
Alberto Cazzaniga. The geometry of hidden representations of large transformer models.
ArXiv, abs/2302.00294, 2023. URL https://api.semanticscholar.org/CorpusID:
256459698.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models:
A survey. ArXiv, abs/2312.03863, 2023. URL https://api.semanticscholar.org/
CorpusID:266044196.

Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with
cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pp. 97–110. IEEE, 2021.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu,
Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for understanding
extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617, 2024a.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024b.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. The Twelfth International Conference on Learning Repre-
sentations, 2024c.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang, Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, Guohao Dai, Shengen Yan, and Yu Wang. Lv-eval: A balanced
long-context benchmark with 5 length levels up to 256k, 2024.

15

https://api.semanticscholar.org/CorpusID:259937453
https://api.semanticscholar.org/CorpusID:259937453
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://api.semanticscholar.org/CorpusID:259360592
https://api.semanticscholar.org/CorpusID:256459698
https://api.semanticscholar.org/CorpusID:256459698
https://api.semanticscholar.org/CorpusID:266044196
https://api.semanticscholar.org/CorpusID:266044196

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models.
ArXiv, abs/2312.05821, 2023. URL https://api.semanticscholar.org/CorpusID:
266162471.

Yv Haimes Yv, Leon S. Lasdon, and Dang Da. On a bicriterion formation of the problems of integrated
system identification and system optimization. IEEE Transactions on Systems, Man, and Cy-
bernetics, pp. 296–297, 1971. URL https://api.semanticscholar.org/CorpusID:
125851974.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
Opt: Open pre-trained transformer language models. ArXiv, abs/2205.01068, 2022. URL https:
//api.semanticscholar.org/CorpusID:248496292.

Zhenyu (Allen) Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai,
Zhao Song, Yuandong Tian, Christopher Ré, Clark W. Barrett, Zhangyang Wang, and Beidi
Chen. H2o: Heavy-hitter oracle for efficient generative inference of large language models.
ArXiv, abs/2306.14048, 2023. URL https://api.semanticscholar.org/CorpusID:
259263947.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and
Yu Wang. A survey on efficient inference for large language models. ArXiv, abs/2404.14294, 2024.
URL https://api.semanticscholar.org/CorpusID:269293007.

16

https://api.semanticscholar.org/CorpusID:266162471
https://api.semanticscholar.org/CorpusID:266162471
https://api.semanticscholar.org/CorpusID:125851974
https://api.semanticscholar.org/CorpusID:125851974
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:248496292
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:259263947
https://api.semanticscholar.org/CorpusID:269293007

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A DETAILED EXPERIMENT SETUP

A.1 MAIN SETUP

Baselines. In the setup for our experiment, we adhere to specific configurations outlined in the
respective papers. In the case of StreamingLLM (Xiao et al., 2024c), the initial four tokens remain
unmasked, serving as the attention sink, except for the 70b model in Table 4 and the super long
setting in Figure 5, where we use 64 tokens as the attention sink. For InfLLM (Xiao et al., 2024a), we
adhere to the original configuration by maintaining the same local window size and selected memory
size, using 128 initial tokens as specified in their setup. For H2O (Zhang et al., 2023), we ensure the
same number of heavy hitter tokens and recent tokens. Note that H2O uses dense prefill since it relies
on the column sum of the attention matrix to calculate the importance of every token for KV-Cache
eviction. StreamingLLM, InfLLM and MoA use sparse prefill.

Models and Benchmarks. Since vicuna-7b-v1.5-16k and vicuna-13b-v1.5-16k (Chiang et al., 2023)
can only take in 16k context length, we use the 16k split of LV-Eval benchmark (Yuan et al., 2024),
truncating the input to 15500 for model input in Table 4. For the LongBench benchmark (Bai et al.,
2023), we use the LongBench-E split, which features a balanced number of data items at every length
level. The LongBench dataset is segmented into ranges of 0-4k, 4-8k, and 8k+ tokens. We test each
split using the input length truncation thresholds of 3,500, 7,500, and 15,500 tokens, respectively.

Perplexity Evaluation. We construct a comprehensive yet concise test set by sampling 50 × 4
data items for each length level from the test split of four long-context understanding datasets:
Qasper (Dasigi et al., 2021), MultiNew (Fabbri et al., 2019), TREC (Li & Roth, 2002; Hovy et al.,
2001) and LCC (Mohler et al., 2016), representing the question answering, summarization, few-
shot learning, and code completion abilities of the LLM. Following LongBench, the data items are
organized as question-answer pairs. The questions and answers are written by humans and come
with the dataset. The perplexity is calculated solely on the answer part of the data, demonstrating the
model’s coherence in responding to user requests.

Validation Dataset. The validation dataset is used to select the optimal compression plan among the
Pareto front solutions during the optimization step. The validation dataset is similarly constructed as
the perplexity test dataset, but on the respective validation split of the datasets. 50 × 4 data items
are sampled from the same four long-context understanding datasets: Qasper (Dasigi et al., 2021),
MultiNew (Fabbri et al., 2019), TREC (Li & Roth, 2002; Hovy et al., 2001) and LCC (Mohler et al.,
2016). The additional 50 data items from the LongEval (Li et al., 2023a) dataset are also added to
validate the retrieval ability. For the datasets that do not contain the validation split, namely TREC,
MultiNews and LCC, we sample from the test split and ensure different data items with the perplexity
evaluation dataset.

MoA Settings. MoA uses the block sparse attention pattern with a block size of 64, where each grid
depicted in Figure 3(a) represents a block. The first block of tokens is not masked as the attention
sink. For the profile stage, we use the MultiNews (Fabbri et al., 2019) calibration dataset with
model response as supervision, as described in Section 5. We use 50 × 3 data items at 2k, 4k, 8k
lengths. The data items are padded to their corresponding length level in order to ensure a unified
shape of attention influence tensors for each length level. We adopt block granularity during the
profiling stage, calculating the average attention influence within each block to represent the block’s
overall influence. For hyperparameter search space α and β, we use 6 values for α and 9 values
for β, creating a search space of 54 pairs for each attention head. α is uniformly sampled from the
range [−2048, 8192], and β is uniformly sampled from [0, 1]. The resulting attention span lengths
are clipped to the range between 0 and the current input length. The optimization is done with the
multi-objective optimization at the same set of lengths. We limit the number of distinct rules to at
most two per model layer to ensure inference-time efficiency. Among the Pareto front solutions, we
select the one with the lowest perplexity on the validation dataset of length 12k.

A.2 EFFICIENCY EXPERIMENT SETUP

We test the efficiency of different frameworks using a single NVIDIA A100-SXM4-80GB GPU.
To improve the runtime profiling accuracy, we first run five forward passes as warmups. Then we
use torch.CudaEvent to calculate the runtime for each method. Our experiments are structured
around three scenarios: including prefilling 3k tokens and decoding 1k tokens; prefilling 6k tokens

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

and decoding 2k tokens; prefilling 12k tokens and decoding 4k tokens. The labels are marked by the
total sequence length, which equals prefill length plus decode length.

For MoA, The implementation is based on Huggingface Transformers. During the prefill stage,
we use the sparse CUDA kernel designed by us with block size 64. During the decode stage, we
modify the KV-Cache implementation to support our heterogeneous elastic rules. Thanks to our fixed
sliding-window span during the decode stage, we simply replace the old KV-Cache that exceeds the
span with the latest KV-Cache. Our custom decoding CUDA kernel then handles KV-Cache with
varying lengths across different attention heads during the decoding process.

For H2O, we use its official efficient implementation, which is based on Flexgen (Sheng et al., 2023).
Note that H2O uses dense prefill since it relies on the column sum of the attention matrix to calculate
the importance of every token for KV-Cache eviction, which requires the attention matrix to be
explicitly calculated. It makes H2O’s prefill stage currently incompatible with kernel optimizations
like FlashAttention. Therefore, H2O is easy to get OOM (Out-Of-Memory) with large prefill length
and increased batch size.

In our efficiency tests across all frameworks, we implemented a simple optimization at the language
modeling head (lm head) during the prefill stage. Specifically, after the final layer of the transform-
ers, we compute the logits—these are the raw outputs that are transformed into probabilities—for
only the last token. This selective computation avoids generating these probabilities for preceding
tokens, substantially reducing both computational overhead and memory usage. We also set the
environment variable PYTORCH_CUDA_ALLOC_CONF to be expandable_segments:True
for Hugginface and MoA to mitigate memory fragmentation, allowing larger inference batch size.

Following the performance experiments, we use Vicuna-7B and Vicuna-13B for efficiency tests
whenever possible. However, the official efficient implementation of H2O based on Flexgen only
supports OPT (Zhang et al., 2022). Therefore, we use OPT-6.7b and OPT-13b models for H2O in
Table 11 for comparison.

A.3 ABLATION STUDY SETUP

In the ablation study in Table 2 and Table 3, we use 25% density instead of the 50% used in the
main experiment in Table 4. This decision is based on the observation that at a density of 50%,
the performance of the various designs is quite similar, making it difficult to discern significant
differences. In contrast, a lower density of 25% reveals more pronounced disparities between the
designs, providing a clearer basis for comparison.

In the calibration dataset experiments in Table 2, we intentionally exclude the influence of the
validation dataset. We avoid using the validation dataset by profile and optimize solely at 8k length,
reducing the multi-objective optimization problem to a single-objective one with only one optimal
compression plan instead of a set of Pareto fronts.

A.4 INPUT FORMAT AND EXAMPLES

We list the prompt format and input examples used in our primary experiments and datasets. Dashed
lines are included only for illustration clarity and are not part of the texts given to the LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Format 1. LongEval

Below is a record of lines I want you to remember. Each line begins with ’line <line index>’
and contains a ’<REGISTER_CONTENT>’ at the end of the line as a numerical value. For
each line index, memorize its corresponding <REGISTER_CONTENT>. At the end of the
record, I will ask you to retrieve the corresponding <REGISTER_CONTENT> of a certain
line index. Now the record start:

line delightful-incandescence: REGISTER_CONTENT is <19147>
line cloistered-presence: REGISTER_CONTENT is <8862>
...

Now the record is over. Tell me what is the <REGISTER_CONTENT> in line cloistered-
presence? I need the number.

Format 1 illustrates the input format for the LongEval (Li et al., 2023a) retrieval benchmark. The
instruction indicating which line to retrieve is provided after a lengthy context containing massive
lines of register contents to remember.

Format 2. Needle-In-A-Haystack (NIAH)

People who are powerful but uncharismatic will tend to be disliked. Their power makes them
a target for criticism that they don’t have the charisma to disarm. That was Hillary Clinton’s
problem.
The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a
sunny day.
It also tends to be a problem for any CEO who is more of a builder than a schmoozer.
...

What is the best thing to do in San Francisco?

Format 2 depicts the input format for another common retrieval benchmark, Needle-In-A-Haystack
(NIAH) (Kamradt, 2024). The NIAH test comprises a single "needle" sentence that commonly does
not fit into an irrelevant context. The model tries to answer the question based on this needle sentence.

Format 3. MultiNews Calibration Dataset

You are given several news passages. Write a one-page summary of all news.
<News1>
<News2>
...
Now, write a one-page summary of all the news.

<Summarization>

Format 3 demonstrates the input format for our calibration dataset. The long-contextual MultiNews
dataset (Fabbri et al., 2019) consists of multiple news documents. The context includes a prompt
instructing the original dense model to generate a summarization for these news articles, reflecting
long-range dependencies and model alignment. The generated summarization serves as supervision
during the cross-entropy loss calculation at the profiling stage.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 6: Comparative analysis of retrieval accuracy, LV-Eval scores, LongBench scores, and perplexity
for various models with different attention methods. All methods employ 75% density in both prefill
and decode stages.

Retrieve Acc. ↑ LV-Eval ↑ LongBench ↑ PPL ↓
Model Attention 4k 8k 16k 16k 0-4k 4-8k 8-16k 8-12k

Vicuna-7B StreamingLLM 0.91 0.35 0.09 4.30 36.39 32.44 31.04 3.92
MoA 1.00 0.97 0.58 5.67 38.07 33.80 31.75 3.78

Vicuna-13B StreamingLLM 0.73 0.81 0.37 5.65 36.77 34.65 33.43 3.70
MoA 0.99 0.97 0.42 5.57 41.85 39.76 36.06 3.62

Llama3-8B StreamingLLM 1.00 0.83 0.76 14.89 42.45 40.62 42.51 4.51
MoA 0.99 1.00 0.93 15.61 43.51 43.16 43.58 4.53

1024 2048 3072 4096 5120 6144 7168 8192
Attention Span

81
92

71
68

61
44

51
20

40
96

30
72

20
48

10
24

In
pu

t L
en

gt
h

0.11 0.17 0.16 0.16 0.33 0.35 0.77 0.98

0.12 0.11 0.17 0.28 0.37 0.62 0.97

0.16 0.13 0.25 0.41 0.62 1.00

0.11 0.31 0.46 0.91 0.99

0.25 0.43 0.97 1.00

0.34 0.71 0.99

0.75 1.00

0.99

(a) StreamingLLM

0.0

0.2

0.4

0.6

0.8

1.0

Re
tri

ev
al

 A
cc

ur
ac

y

1024 2048 3072 4096 5120 6144 7168 8192
Attention Span

81
92

71
68

61
44

51
20

40
96

30
72

20
48

10
24

In
pu

t L
en

gt
h

0.05 0.98 0.99 0.97 0.98 0.97 0.99 0.98

0.08 0.97 0.98 0.98 0.97 0.97 0.97

0.69 0.98 0.95 1.00 1.00 1.00

0.95 0.99 0.98 0.99 0.99

0.96 1.00 1.00 1.00

0.94 1.00 0.99

1.00 1.00

0.99

(b) MoA

0.0

0.2

0.4

0.6

0.8

1.0

Re
tri

ev
al

 A
cc

ur
ac

y

Figure 6: Retrieval accuracy of Vicuna-7B model using different attention methods across varying
attention spans and input lengths. The X-axis shows different attention spans; the Y-axis shows
different input lengths for the retrieval task. Subfigure (a) shows results for StreamingLLM, and
subfigure (b) for MoA.

B ADDITIONAL EXPERIMENT RESULTS

B.1 PERFORMANCE

B.1.1 OVERALL PERFORMANCE

Table 6 shows the overall performance of MoA at a higher density of 75%. MoA shows improved
performance over the baseline with the uniform attention baseline. The progressive change of
performance with respect to different densities is also shown in Figure 7(b) and Figure 9

Original

Re
tri

ev
al

 A
cc

.

0.00
0.25
0.50
0.75
1.00

Density
0 0.25 0.50 0.75 1.00

Eff
. L

en
gt

h

0K
3K
6K
9K

12K

Attention Span
0 4k 8k 12k 16k

StreamingLLMH2OMoA

(a) (b)

Figure 7: Retrieval accuracy tests on LongEval with Vicuna-7B. (a) Varies input lengths and densities
to show effective context lengths across attention spans, (b) Set input length at 8k and show retrieval
accuracy across different densities.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

OOM

OOT

H2O

InfLLM

MoA

StreamingLLM

Figure 8: The Needle-In-A-Haystack (NIAH) retrieval accuracy using different attention methods
across 8k to 256k input lengths on Llama-3-8B model. All sparse attention methods employ a 50%
density.

B.1.2 LONG-CONTEXT RETRIEVAL

LongEval Retrieval. We conduct a detailed experiment to test the retrieval ability of different
attention methods across various attention spans and input lengths with the LongEval (Li et al.,
2023a) dataset.

Figure 6 shows the detailed data for effective context length calculation. As shown in the figure,
StreamingLLM can hardly maintain retrieval accuracy when the input length is beyond the attention
span, while MoA can effectively extend the effective context length.

Following previous work (Chen et al., 2023; Tworkowski et al., 2023), we quantify effective context
length as the maximum input length where retrieval accuracy remains above a 90% threshold. As
shown in Figure 7(a), StreamingLLM and H2O achieve effective context lengths of no more than
2k tokens beyond their attention spans. In contrast, MoA expands its effective context length to
approximately 3.9× its attention span before reaching up to the 12k limit of the original model.
Figure 7(b) further shows that at a fixed input length of 8k, MoA reaches over 0.9 retrieval accuracy
with just 25% density, whereas StreamingLLM and H2O require 100% and 75% density, respectively.

Needle-In-A-Haystack (NIAH) Retrieval. We also conduct the retrieval task using the Needle-
In-A-Haystack (NIAH) dataset (Kamradt, 2024). As shown in Figure 8, MoA achieves perfect
retrieval accuracy across input lengths ranging from 8k to 256k. In comparison, StreamingLLM
demonstrates a limited effective context length, while InfLLM exhibits reduced retrieval accuracy
within 64k input lengths. Notably, H2O and InfLLM are unable to complete tests at extreme lengths
due to Out-Of-Memory and Out-Of-Time errors. These findings align with the results observed in the
LongEval benchmark throughout the paper.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

0.25 0.375 0.5 0.625 0.75 0.875 1.0
Density

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Sc
or

e

StreamingII
MoA
Original

Figure 9: LV-Eval score of StreamingLLM and MoA at various densities on Vicuna-7B model.

Table 7: LongBench scores for various models with different attention methods. All methods employ
50% density in the decode stage.

LongBench ↑
Model Attention 0-4k 4-8k 8-16k

Vicuna-7B

Original 37.91 33.82 32.54

H2O 36.23 32.74 31.81
InfLLM 35.23 33.54 30.15
StreamingLLM 30.53 33.28 31.70
MoA 37.04 32.90 31.94

Vicuna-13B

Original 42.25 39.52 35.93

H2O 41.63 38.02 34.75
InfLLM 39.36 37.66 34.36
StreamingLLM 30.65 33.07 32.68
MoA 41.73 38.88 35.69

Llama3-8B

Original 44.27 43.53 43.26

H2O 43.46 43.01 42.50
InfLLM 42.78 42.69 41.81
StreamingLLM 37.20 38.02 39.43
MoA 43.07 42.75 43.09

Llama3-70B

Original 50.70 48.05 48.55

H2O 50.16 47.77 OOM
StreamingLLM 45.14 42.40 40.04
MoA 49.74 46.80 46.84

B.1.3 LONG-CONTEXT UNDERSTANDING

We conduct experiments with various densities on the LV-Eval benchmark (Yuan et al., 2024). As
shown in Figure 9, MoA constantly outperforms the uniform static attention baseline StreamingLLM
at various densities, demonstrating the effectiveness of our heterogeneous elastic rules.

We detailed the respective scores for LongBench and LV-Eval in Table 7 and Table 8. The number in
the bracket of Table 8 indicates the number of sub-datasets for the category.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 8: Performance comparison across different models and attention methods with the LV-Eval
dataset. The numbers in brackets indicate the number of sub-datasets for the category.

Single-QA Multi-QA Retrieval
Model Attention w/o. Conf (2) w. Conf (2) w/o. Conf (3) w. Conf (2) w. Conf (2)

Vicuna-7B

Original 10.49 6.29 6.83 5.60 0.00

H20 9.16 6.20 6.44 4.80 0.00
InfLLM 7.11 6.70 6.07 4.80 0.00
StreamingLLM 7.54 5.90 5.98 3.56 0.00
MoA 9.98 6.27 6.16 5.31 0.09

Vicuna-13B

Original 10.64 7.28 5.32 5.07 1.08

H20 9.53 6.54 5.25 5.36 1.83
InfLLM 10.21 9.35 6.03 3.19 2.08
StreamingLLM 9.05 5.86 5.37 3.19 3.70
MoA 11.04 6.93 5.79 5.84 6.88

Llama3-8B

Original 34.05 19.51 11.41 17.70 7.84

H20 28.52 17.05 11.11 15.98 9.95
InfLLM 24.94 17.75 10.61 14.80 6.04
StreamingLLM 20.21 9.57 8.14 9.36 10.03
MoA 32.98 20.53 10.65 17.57 8.98

Llama3-70B
Original 44.44 25.02 16.71 22.86 17.43

StreamingLLM 26.63 14.22 14.04 14.70 19.38
MoA 42.44 23.58 15.75 21.27 19.19

13B7B

Summarization

Single-

Doc Q
A

Multi-

Doc QA
Code

Completion

Fe
w-

sh
ot

Le
ar

ni
ng

0.50

0.75

1.00(b)
Single-QA 

w/o. Conf

Sing
le-

QA 

w. C
on

f
Multi-QA 

w. Conf

Mult
i-Q

A 

w/o.
 Con

f

0.50

0.75

1.00

Single-QA 

w/o. Conf

Sing
le-

QA 

w. C
on

f
Multi-QA 

w. Conf

Mult
i-Q

A 

w/o.
 Con

f

0.50

0.75

1.00

13B7B

(a)
Summarization

Single- 

Doc Q
A

Multi- 

Doc QA
Code 

Completion

Fe
w-

sh
ot
 

Le
ar

ni
ng

0.50

0.75

1.00

Multi- 

Doc QA

StreamingLLMH2OMoA InfLLM

Multi-QA 
w. Conf 70B

Single-QA 

w/o. Conf

Sing
le-

QA 

w. C
on

f
Multi-QA 

w. Conf

Mult
i-Q

A 

w/o.
 Con

f

0.50

0.75

1.00

70B

Summarization

Single- 

Doc Q
A

Multi- 

Doc QA
Code 

Completion

Fe
w-

sh
ot
 

Le
ar

ni
ng

0.50

0.75

1.00

Multi- 

Doc QA
Multi-QA 

w. Conf

Figure 10: (a) LV-Eval and (b) LongBench scores for different attention methods at 50% density,
tested on Vicuna-7B, 13B and Llama3-70B models. Scores normalized against the original dense
model.

B.1.4 LONGER-CONTEXT GENERALIZATION

We compare the retrieval accuracy with more recent works SnapKV (Li et al., 2024c) and Pyra-
midKV (Cai et al., 2024) on context lengths of 32K to 256K. As shown in Table 9, MoA constantly
outperforms the two latest baselines at longer contexts.

B.1.5 INSTRUCTION-FOLLOWING GENERATION

We evaluate MoA ’s performance on general instruction-following tasks using the AlpacaEval 2.0
benchmark (Li et al., 2023b; Dubois et al., 2024). Following the official setup, we compare the
model’s output with gpt4_turbo using the standard weighted_alpaca_eval_gpt4_turbo evaluator,
which leverages the gpt-4-1106-preview model. The benchmark consists of inputs and outputs with
average lengths of approximately 50 and 450 tokens, respectively. To accommodate the short input
lengths while maintaining a density of around 50% during generation, we set the expected total token
length to 512 and adjust hyperparameters across all methods accordingly.

Thanks to its elastic design, MoA employs the same compression plan used in experiments with input
lengths ranging from 4k to 256k. As shown in Table 10, MoA achieves the highest length-controlled
win rate, outperforming both sparse attention baselines and the original model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 9: Retrieval accuracy at longer lengths for more recent baselines, tested at 50% density.

Retrieve Acc. ↑
Attention 32k 64k 128k 256k

SnapKV 1.00 0.88 0.71 0.33
PyramidKV 1.00 0.85 0.62 0.37
MoA 1.00 0.92 0.83 0.46

Table 10: Length-controlled win rate and its standard error of Vicuna-7B with different attention
mechanisms on AlpacaEval 2.0 benchmark. All sparse methods employ 50% density during decoding.

Attention Length-controlled Win Rate ↑ Standard Error

Original 8.84 0.53

H2O 9.66 0.55
InfLLM 5.76 0.42
StreamingLLM 7.96 0.49
MoA 9.83 0.57

B.2 EFFICIENCY

B.2.1 MEMORY AND THROUGHPUT BREAKDOWN

Table 11: Efficiency analysis of different frameworks on 7B and 13B models. H2O and MoA use
50% density. GPU memory evaluated with batch sizes 8 (7B model) and 4 (13B model).

Memory (GB)
Size Framework 4k 8k 16k

7B
FlashAttn2 28.5 44.4 76.3
H2O 36.9 OOM OOM
MoA 22.7 32.9 53.5

13B
FlashAttn2 36.8 49.2 74.0
H2O 40.4 77.9 OOM
MoA 32.0 39.6 55.0

Table 11 highlights the memory efficiency of MoA compared to H2O and FlashAttention2 on 7B
and 13B models. Notably, H2O runs into Out-Of-Memory (OOM) issues at longer input lengths.
In contrast, MoA achieves a significant reduction in memory consumption, using 1.2 to 1.4× less
memory compared to FlashAttenion2.

We further explain the decode throughput breakdown in Table 5, compared to the baseline comprising
Huggingface with FlashAttention2. The observed increase in throughput primarily stems from four
aspects:

Static KV-Cache. MoA only maintains the tokens within the span of each head, thereby preventing
growth in the KV-Cache size. This strategy eliminates the need for additional memory allocation.

Reduced Attention Computation. MoA with features reduced density in attention span and KV-
Cache. It decreases the computation and memory access required for attention computation.

Increased Batch Size. With the reduced size of KV-Cache, MoA supports a larger batch size,
contributing to the increase in throughput.

GPU Kernel Design. We customize MoA GPU kernel using CUDA to support heterogeneous
attention patterns with high efficiency.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 12: Runtime efficiency at 128k input length across different methods on Vicuna-7B and 13B
models. All sparse attention methods use 50% density. Decode throughput (tokens per second) is
measured with a batch size of 1, using the minimum number of A100-80GB GPUs required for
testing. H2O encounters OOM error with 8 GPUs.

Min. Total Total Throughput
Model Size Framework Attention #GPU Throughput Memory (GB) per GPU

7B

vLLM PagedAttention 2 30.2 142.0 15.1
FlexGen H2O >8 - OOM -
HuggingFace InfLLM 1 6.1 47.7 6.1
HuggingFace StreamingLLM 1 19.8 43.9 19.8
HuggingFace FlashAttention2 2 4.3 85.6 2.2
HuggingFace MoA 1 20.3 44.0 20.3

13B

vLLM PagedAttention 2 21.5 142.0 10.8
FlexGen H2O >8 - OOM -
HuggingFace InfLLM 1 4.3 78.6 4.3
HuggingFace StreamingLLM 1 14.0 64.6 14.0
HuggingFace FlashAttention2 2 3.0 130.6 1.5
HuggingFace MoA 1 14.7 63.4 14.7

B.2.2 EFFICIENCY RESULTS FOR LONGER INPUT

We evaluate the runtime efficiency of Vicuna-7B and 13B models at a 128k input length with a
single batch size. Thanks to the reduced KV-Cache, MoA efficiently processes 128k input using
only one A100 GPU, whereas FlashAttention2 and vLLM baselines require at least two GPUs to
handle a single request. As shown in Table 12, MoA achieves a 4.7-4.9× decode speedup compared
to FlashAttention2, while using half the number of GPUs. Additionally, it demonstrates a 1.9-2.1×
reduction in GPU memory usage. Compared to vLLM, which utilizes tensor parallelism, MoA
delivers 1.3-1.4× higher throughput per GPU, alongside significant memory savings.

B.2.3 AUTOMATIC COMPRESSION PIPELINE OVERHEAD

Table 13: Compression overhead for various stages of MoA across models with differing parameter
sizes, reported as the amount of GPU × latency, except when only one GPU is used. Larger models
necessitate more GPUs due to model parallelism. All stages utilize GPUs, except for the Optimize
stage, which uses the CPU.

Stage 7B LLM 13B LLM 70B LLM

Calibration Data Gen. 10min 15min 2 × 60min
Profile 20min 2 × 25min 8 × 210min
Optimize (CPU) 30min 25min 100min
Validate 35min 40min 2 × 140min

Total Latency 1h 35min 1h 45min 8h 30min
Total GPU Time 1h 5min 1h 45min 34h 40min

We present a detailed breakdown of the time usage of MoA pipeline. Table 13 summarizes the time
required for various crucial phases within the MoA framework, encompassing calibration dataset
generation, profiling, optimization, and validation, on the Vicuna-13B model.

Profiling is the most resource-demanding part of our pipeline. For a 13b model with an 8k profile
length, two A100 GPUs are required. In other cases, we only need one single GPU. Profiling on
a 13b model with an 8k profile length and 50 data items takes 15 minutes. Profiling on 4k and 2k
lengths takes less than 5 minutes each.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 14: Progressive compression overhead for various stages of MoA with respect to different
parameter sizes and calibration (validation) dataset sizes.

Stage Complexity w.r.t parameter size Complexity w.r.t dataset size
Calibration Dataset Gen. Linear Linear
Profile Linear Linear
Optimize Polynomial ∼ Exponential for #Head Irrelevant
Validate Linear Linear

Empirical Latency Almost Linear Linear

On the Intel(R) Xeon(R) Platinum 8358 2.60 GHz CPU, the optimization concludes within approxi-
mately 25 minutes. Typically, this phase generates around 10 compression plans. Validating each one
of the compression plans takes about 4 minutes, totaling around 40 minutes.

We also show the progressive compression overhead for MoA in Table 14.

B.3 ABLATION STUDY

B.3.1 CALIBRATION DATASET

Table 15: Performance comparison on various test sets, using different calibration sets. Tested on
Vicuna-7B model. The result is tested with 50% density MoA on LongBench (Bai et al., 2023) 0-4k
split.

Test Score
Dataset Long Dep. & Align Model Qasper MultiNews TREC Avg. Score

Original NA 28.6 28.2 56.0 37.6

RedPajama ✗ 20.6 (-8.0) 19.6 (-8.6) 66.0 (+10.0) 35.4 (-2.2)
Qasper ✓ 25.6 (-3.0) 27.8 (-0.4) 55.0 (-1.0) 36.1 (-1.5)
MultiNews ✓ 29.0 (+0.4) 27.5 (-0.7) 54.0 (-2.0) 36.8 (-0.8)
TREC ✓ 27.3 (-1.3) 27.3 (-0.9) 55.0 (-1.0) 36.5 (-1.1)

In this section, we validate the robustness of our calibration dataset design principles. We select three
sub-tasks and respective datasets from the LongBench benchmark, including Qasper (Dasigi et al.,
2021), MultiNews (Fabbri et al., 2019), and TREC (Li & Roth, 2002; Hovy et al., 2001). We use
their training set to construct the calibration dataset, and use their respective test set in LongBench to
calculate the score. Following Section 5, all calibration datasets are constructed using the original
model’s response to the context and questions as the supervision.

As shown in Table 15, we find that as long as the calibration dataset conforms to the long-range
dependency and model alignment highlighted in section 5, the specific choice of the dataset is less
important. Calibration datasets with long dependency and model alignment show somewhat similar
test results on various datasets. Additionally, they all show strong generalization power to test sets
other than their respective calibration dataset.

In contrast, the RedPajama dataset without long-range dependency and model alignment shows
large variance on various test sets. It also differs from the performance of the original dense model,
which may incur unexpected behaviors after compression. Note that though all datasets exhibit long
dependency, the questions in the TREC dataset can be answered without long context. The context
in the TREC dataset of LongBench is the many-shot examples, each showing a short sentence and
its classification result, while the question is to classify a new short sentence. Although the context
helps to determine the complete set of 50 classes, the model can also directly clarify the sentence
without any context based on common knowledge. It may contribute to a high score on the TREC
test set with the RedPajama calibration dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

C COMPRESSION PLAN ANALYSIS

C.1 STATISTICS ON RULES DISCOVERED BY MOA

0 5 10 15 20 25 30
Layer ID

0.0

0.2

0.4

0.6

0.8

1.0 Vicuna-7B
Length

2k
4k
8k
16k

De
ns

ity

0 5 10 15 20 25 30 35 40
Layer ID

0.0

0.2

0.4

0.6

0.8

1.0 Vicuna-13B
Length

2k
4k
8k
16k

De
ns

ity

Figure 11: The MoA mask density across layers for different LLMs.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
ns

ity
 R

an
ge

Vicuna-7B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Average Density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

De
ns

ity
 R

an
ge

Vicuna-13B

Figure 12: The MoA mask’s average density and the density range for each layer for different LLMs.

This subsection provides empirical evidence for rules discovered by MoA as mentioned in Section
6.5. The lines and spans in Figure 11 show that all heads at the first few layers generally need a high
KV-Cache density. Following that, a few layers generally only require medium density. Then, in
the final layers, most heads require low density, while some outlier heads need high density. This
observation conforms to previous findings of the intrinsic dimension of LLM Valeriani et al. (2023).
The geometry of density is similar to the intrinsic dimension of LLM, with two local minima. As
observed in Figure 11, layers with lower average density (smaller values on the lines) typically display
a wider range of density (wider shades). Figure 12 validates such observation. This observation
confirms the need for heterogeneous attention rules within the same layer.

C.2 CONNECTIONS BETWEEN MOA RULE AND SEMANTIC

In this section, we invest the masks acquired with MoA and show the interpretable semantics of
the masks. Previous works manually restrict the attention pattern of the model, which may harm
the semantics learned by the dense model. In contrast, MoA preserves the semantics with statistic
analysis and optimization. We use visualization, human interpretation and quantitive methods to
analyze the semantics of the original model and to verify whether MoA captures such semantics.

C.2.1 MASK VISUALIZATION AND SEMANTIC CATEGORIZATION

Given any token, two kinds of information are used as the model inputs: position encoding and
token embedding. Position encoding indicates the absolute (Zhang et al., 2022) or relative posi-
tions (Touvron et al., 2023) of tokens in the sentence. Token embedding maps different tokens as
different vectors. The attention head h responds to both information and output the corresponding
attention value Ah. As shown in equation 6, we denote the influence of position and token of head h
as function Ph and Th, respectively. The attention value Ah,i,j between the ith and jth token ti and
tj is determined by the combination fh of position and token influence functions.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Ah,i,j = Ah(ti, tj , i, j) = fh (Ph(i, j), Th(ti, tj)) (6)

Figure 2 visualizes two typical heads that are either dominated by position P or token T function.
For the first attention head in Figure 2, the local positional attention is clearly observed. In this
head, whatever sentences are given, each token pays major attention to the first token and the prior
token. As a result, the mean attention matrix accumulates extremely large attention values at the first
column and the sub-diagonal. In contrast, the second attention head in Figure 2 lays more emphasis
on content-based attention. Since the position distribution of important tokens are generally random,
the attention matrix can show large attention values at any position. It results in a mean attention
matrix without extreme mean attention values.

In conclusion, the mean attention matrix of different sentences provides a valuable insight of whether
attention values of an attention head is more position-based or content-based. Intuitively, the more
uneven the attention matrix value distribution is, the more position-based the head is.

C.2.2 QUANTITATIVE SEMANTIC ANALYSIS

We quantify how much the attention head is position-based and analyze whether MoA successfully
utilizes such semantics through the evaluate-generate-optimization pipeline. We model equation 6
with a linear approximation. Ph and Th are random variables with the same expectation µ and
standard variance δ for all heads. For attention head h, the weight factor αh evaluates the relatively
influence of position and token to the final attention value.

Ah,i,j = αhPh(i, j) + (1− αh)Th(ti, tj) (7)

Given the randomness of token positions in long context, we assume that the token position and its
content are irrelevant. For different sentences s, the expectation Et of the attention value between
position i and j can be expressed as follows. Note that it excludes the matrix diagonal since
Th(ti, tj), i ̸= j and Th(ti, ti) may follow different distributions.

Et[Ah,i,j] =
1

S

S∑
s=1

(
αhPh(i, j) + (1− αh)Th(t

(s)
i , t

(s)
j)
)

= αhPh(i, j) + (1− αh)
1

S

S∑
s=1

Th(t
(s)
i , t

(s)
j)

= αhPh(i, j) + (1− αh)µT ,∀i > j

(8)

The standard division σp of Et over different positions of the attention matrix is

σp(Et[Ah,i,j) =

√√√√ 2

(1 +N)N

∑
i,j∈[1,N),i>j

[(αhPh(i, j) + (1− αh)µT)− (αhµP + (1− αh)µT)]2

= αhδp
(9)

We name σp(Et[Ah,i,j]) the Standard division of Expectation (SoE) of head h. Note that the
expectation is taken over different sentences, while the standard division is taken over different
attention positions. Since δp is the same for all heads, we derive that the position impact αh is
proportional to the SoE of different heads.

The conclusion quantifies the observation stated in Section C.2.1. Intuitively, SoE shows how uneven
the mean attention matrix is, thus showing the influence of position to the attention values. MoA’s
generated mask density shows positive relation with SoE, suggesting that MoA successfully captures
the semantic information of the dense language model as shown in Figure 13.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

0.25 0.50 0.75 1.00 1.25 1.50 1.75
SoE(E-2)

60

65

70

75

80

85

90

95

100

sp
ar

sit
y(

%
)

Figure 13: Positive correlation between MoA’s mask sparsity and head’s dependency on position
(SoE).

D AUTOMATIC PIPELINE DETAILS

D.1 ADDTIONAL ORACLE ON ELASTIC PATTERN DESIGN

chatting
chatbot_arena_
conversations

dataset

few-shot learning
trec

dataset

coding
lcc

dataset

Layer 17 Head 29 Layer 17 Head 29 Layer 17 Head 29

Figure 14: Examples of attention matrices from different attention heads (columns) and tasks (rows)
of the Vicuna-7B model. The attention matrices were averaged over 256 data items per dataset. The
same head shows a similar attention span across different tasks, explaining the robust cross-dataset
generalizability of our method.

We visualize the attention matrix of the same attention heads across three additional tasks in Figure 14,
as an extension of Figure 2. The consistent attention span across tasks sheds light on the strong
cross-dataset generalization ability of our MoA method.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

D.2 DERIVATION OF ATTENTION INFLUENCE

We use the first-order Taylor expansion to calculate the influence of each attention value. This approx-
imation approach is supported by methodologies commonly employed in other LLM compression
approaches (Li et al., 2024a; Shi et al., 2021; Das et al., 2023; Jiang et al., 2023).

As discussed in Section 4.1, when masking out attention value Ah,i,j at head h, row i, and column j,
it also influences the attention values in the same row by ∆Ah,i,n|j .

Ah,i,n =
eSh,i,n∑
j e

Sh,i,j

∆Ah,i,n|j =

{
−Ah,i,n, n = j

Ah,i,n(
∑

j e
Sh,i,j/

∑
j ̸=n e

Sh,i,j − 1), n ̸= j

(10)

Following the definition, the attention influence Eh is calculated as follows:

Eh,i,j =
∑
n

∂L

∂Ah,i,n
·∆Ah,i,n|j (11)

Given Equation 11 and 10, we derive Equation 3 as follows. For notation simplicity, we omit the
head index h here.

Ei,j =
∑
n

∂L

∂Ai,n
·∆Ai,n|j

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n ·

(∑
k e

Si,k∑
k ̸=j e

Si,k
− 1

)

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n · eSi,j∑

k e
Si,k − eSi,j

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n ·

eSi,j/
∑

k e
Si,k

1− eSi,j/
∑

k e
Si,k

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j

=
∂L

∂Ai,j
· (−Ai,j)−

∂L

∂Ai,j
·Ai,j ·

Ai,j

1−Ai,j
+
∑
n

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j

=
∂L

∂Ai,j
·
(
− Ai,j

1−Ai,j

)
+

Ai,j

1−Ai,j
·
∑
n

∂L

∂Ai,n
·Ai,n

= − Ai,j

1−Ai,j

(
∂L

∂Ai,j
−
∑
n

∂L

∂Ai,n
·Ai,n

)

(12)

It is worth noting to mention that it can also be formulated as matrix multiplications:

Eh =
Ah

1− Ah
·
(

∂L

∂Ah
−
(

∂L

∂Ah
· Ah

)
1
N×N

)
. (13)

D.3 OPTIMIZATION DETAILS

D.3.1 OPTIMIZING AT SINGLE LENGTH

The optimization problem is formulated as follows:

argmin∆L =
∑
h

∆Lh,rh , s. t.
1

H

∑
h

drh ≤ dconstr. (14)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

To transform the optimization problem into a standard Mixed-Integer Programming (MIP) framework,
we introduce the binary variable Xh,rh ∈ {0, 1}. It indicates whether to select rule rh for the attention
head h. Assume the model has H attention head, and head h has Rh elastic rules.

argmin
1

H

H−1∑
h=0

Rh−1∑
rh=0

∆Lh,rhXh,rh s. t. (15a)

Rh−1∑
rh=0

Xh,rh = 1, h ∈ {0, · · · , H − 1} (15b)

1

H

H−1∑
h=0

Rh−1∑
rh=0

drhXh,rh ≤ dconstr (15c)

0 ≤ Xh,rh ≤ 1, Xh,rh ∈ Z, ∀h ∈ {0, · · · , H − 1} ,∀rh ∈ R (15d)

In this formulation, (15a) serves as the objective function to minimize the loss, subject to the
constraints that each matrix selects exactly one compression plan (15b), and the average density
does not exceed dconstr (15c). Finally, (15d) enforces that Xh,rh is a binary variable, indicating the
selection of plans.

Additionally, to enforce the restriction that each model layer only has a limited number of different
plans, we bound the norm of element-wise multiplication of Xh = [Xh,0 Xh,1 · · · Xh,Rh−1]

⊤

in a single layer.

D.3.2 OPTIMIZING AT MULTIPLE LENGTHS

(b)(a) (c) (d)

objective

constraint

Figure 15: Illustration of our multi-objective Mixed-Integer Programming (MIP) approach, using a
two-objective optimization example: (a) MoA first minimizes the loss for 4k inputs and records the
corresponding loss for the current optimal plan at 8k. (b) Next, it minimizes the loss for 8k inputs and
records the corresponding loss for the current optimal plan at 4k. These steps establish the loss ranges
R for both 4k and 8k input lengths. (c) MoA then re-optimizes the loss at 4k, this time using the loss
intervals at 8k as different constraints. All plans generated under these constraints are recorded. (d)
The last process (c) is repeated for 8k, using 4k intervals as constraints. Finally, plans meeting the
Pareto front criteria for both 4k and 8k inputs are selected as the final outputs.

With the ability to optimize at a single length, we utilize the same framework for multi-objective MIP
across various lengths. The key is to transform the multi-objective MIP problem into several single-
objective MIP problems (Paria et al., 2018). We utilize the idea of epsilon-constraint method (Yv
et al., 1971).

Figure 15 illustrates the optimization process for two input lengths. We discuss the generalized
approach to handle an arbitrary number of lengths. We first select each input length as our primary
objective to perform the single-objective optimization on it while simultaneously recording the
outcomes of other objectives. Specifically, for N distinct objectives, we do single-objective MIP
optimization on the i-th objective, getting minimum loss ∆L

(Ni)
i , and we concurrently collect

losses of other objectives ∆L
(Nj)
i for j ̸= i. This process allows us to establish the range of loss

R(Nj) =
[
mini ∆L

(Nj)
i ,maxi ∆L

(Nj)
i

]
for each objective. Then, we iterate through each objective

again. Compared with the original multi-objective optimization in Equation 5, we now consider other
objectives as constraints. To implement this, we partition each loss range R(Nj) of other objectives

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

j ̸= i into M uniform intervals S(Nj)
k , where 0 ≤ k < M . We then solve the MIP problems for each

objective i and iterating through the constraint intervals:

argmin
rh∈R

∆L(Ni) s. t.
1

H

H∑
h=1

d(Ni)
rh

≤ d
(Ni)
constr,∀Ni ∈ Nconstr; ∆L(Nj) ∈ S

(Nj)
kj

,∀j ̸= i. (16)

where this optimization is performed for each i ranging from 0 to N . For each j, kj can vary
independently from 0 to M . For efficiency consideration, we set the number of intervals as five.
Finally, the results that do not conform to the Pareto front requirements are removed, resulting in the
final Pareto front set of our multi-objective optimization problem.

E CONCURRENT WORK

Current work RazorAttention (Tang et al., 2024a) also proposes to use heterogeneous attention for
better performance. MoA distinguishes from it in the following aspects:

1. Strategies for attention heads: RazorAttention categorizes attention heads into two types:
retrieval and non-retrieval. It adopts bipolar strategies, applying either full attention or
fixed-sized local attention. In contrast, MoA recognizes the diverse attention spans of
different heads and employs a broader range of strategies, covering the entire spectrum from
very limited local attention to full attention.

2. Adaptation to different input lengths: RazorAttention uses a fixed density for non-retrieval
heads across all input lengths. MoA, on the other hand, applies heterogeneous elastic rules
for each head, dynamically adjusting densities based on input length while maintaining
overall density constraints.

3. Determination of strategies: RazorAttention relies on a heuristic approach to assign
strategies. It uses attention scores between the current token and specific tokens (e.g., echo
and induction tokens) to identify retrieval heads and assign full attention. MoA employs a
loss-based method. It uses a first-order Taylor expansion to estimate the impact of a strategy
on end-to-end prediction loss and optimizes strategies to minimize this loss under density
constraints.

32

	Introduction
	Preliminary and Related work
	Attention mechanism
	Efficient Attention

	Mixture of Attention (MoA)
	Mixture of Attention Patterns and Elastic Rules
	Heterogeneous Elastic Rule Search Space

	Automatic Pipeline for MoA Compression
	Attention Influence Profiling
	Automatic Optimization

	Dataset and Supervision
	Experiment
	Setups
	Accuracy-Throughput Trade-off
	Performance
	Efficiency
	Rules Discovered by MoA

	Conclusion and Future Work
	Detailed Experiment Setup
	Main Setup
	Efficiency Experiment Setup
	Ablation Study Setup
	Input Format And Examples

	Additional Experiment Results
	Performance
	Overall Performance
	Long-Context Retrieval
	Long-Context Understanding
	Longer-Context Generalization
	Instruction-following Generation

	Efficiency
	Memory and Throughput Breakdown
	Efficiency Results for Longer Input
	Automatic Compression Pipeline Overhead

	Ablation Study
	Calibration Dataset

	Compression Plan Analysis
	Statistics on Rules Discovered by MoA
	Connections Between MoA Rule and Semantic
	Mask Visualization and Semantic Categorization
	Quantitative Semantic Analysis

	Automatic Pipeline Details
	Addtional Oracle on Elastic Pattern Design
	Derivation of Attention Influence
	Optimization Details
	Optimizing at Single Length
	Optimizing at Multiple Lengths

	Concurrent Work

