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ABSTRACT

Sparse attention can effectively mitigate the significant memory and throughput
demands of Large Language Models (LLMs) in long contexts. Existing methods
typically employ a uniform sparse attention mask, applying the same sparse pattern
across different attention heads and input lengths. However, this uniform approach
fails to capture the diverse attention patterns inherent in LLMs, ignoring their
distinct accuracy-latency trade-offs. To address this challenge, we propose the
Mixture of Attention (MoA), which automatically tailors distinct sparse attention
configurations to different heads and layers. MoA constructs and navigates a search
space of various attention patterns and their scaling rules relative to input sequence
lengths. It profiles the model, evaluates potential configurations, and pinpoints
the optimal sparse attention compression plan. MoA adapts to varying input sizes,
revealing that some attention heads expand their focus to accommodate longer
sequences, while other heads consistently concentrate on fixed-length local contexts.
Experiments show that MoA increases the effective context length by 3.9× with
the same average attention span, boosting retrieval accuracy by 1.5− 7.1× over
the uniform-attention baseline across Vicuna-{7B,13B}, and Llama3-{8B,70B}
models. Moreover, MoA narrows the capability gaps between sparse and dense
models, reducing the maximum relative performance drop from 9% − 36% to
within 5% across two long-context understanding benchmarks. MoA achieves a
1.2−1.4× GPU memory reduction, boosting decode throughput by 6.6−8.2× and
1.7− 1.9× over FlashAttention2 and vLLM, with minimal performance impact.

1 INTRODUCTION
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Figure 1: Retrieval accuracy of the Vicuna-7B model using different attention methods across varying
input lengths and retrieval positions on the LongEval benchmark (Li et al., 2023a). This retrieval
benchmark takes massive key-value pairs as inputs and tests the accuracy to retrieve values based on
given keys from diverse positions. (a) Original model with a full attention span; (b) StreamingLLM
with half the attention span, showing reduced effectiveness beyond the span; (c) MoA with half the
attention span, maintaining effectiveness beyond the span.

Large Language Models (LLMs) exhibit remarkable versatility across numerous applications (Brown
et al., 2020; Tay et al., 2022; Wan et al., 2023). Central to LLM is the attention mechanism (Vaswani
et al., 2017), which computes interactions among tokens within a certain span, thereby enabling
context understanding. Scaling input length is crucial for enhancing LLM capabilities (Chen et al.,
2023; Tworkowski et al., 2023), including fact retrieval, summarization, few-shot learning, question
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answering and so on (Bai et al., 2023; Yuan et al., 2024). However, the ever-growing attention
computation and Key-Value Cache (KV-Cache) pose significant efficiency challenges (Sheng et al.,
2023; Xiao et al., 2024c; Han et al., 2023; Kwon et al., 2023).

Previous work proposes sparse attention methods to address the efficiency challenges of long contexts
in generative LLMs. These methods typically employ a uniform, fixed-span sliding window mask
across all heads and input lengths, limiting attention to local contexts only (Xiao et al., 2024c;
Han et al., 2023). This approach allows the LLM to take long inputs with a fixed attention span,
keeping bounded attention computation and KV caching overhead. Following previous works (Chen
et al., 2023; Tworkowski et al., 2023), we quantify the effective context length as the maximum
input length where content retrieval accuracy exceeds a 90% threshold. In principle, fixed-span
local attention can gradually aggregate global information through multiple model layers, yielding
a longer effective context length than each attention span (Feng et al., 2022; Zaheer et al., 2020).
Nonetheless, we reveal that uniform masks, like StreamingLLM (Xiao et al., 2024c), hardly extend
effective context length beyond the span, as shown in Figure 6. Figure 1(b) further illustrates such
limitation: with a 50% attention span mask, StreamingLLM fails to accurately retrieve content from
the earlier half of the input and performs even worse at longer input lengths. Figure 2 reveals one
possible explanation for the problem: while some attention heads focus on local contexts, others
encompass the broad span of the entire input sequence. Consequently, the uniform approach fails
to achieve a long effective context length as it limits the attention span of the global-context heads,
while excessively allocates compute and memory budget for local-context heads. Additionally, as the
input length increases, some attention heads need a faster increase in attention span than others to
avoid serious performance degradation, as shown in Table 1. Unfortunately, the uniform approaches
do not include heterogeneous rules to scale the attention spans differently for various heads. Besides,
existing model compression methods (Men et al., 2024; Lin et al., 2023; Xiao et al., 2024b; Li et al.,
2024a; Kim et al., 2023; Li et al., 2024b) use general language modeling corpora to decide the
compression plan, which cannot accurately profile the influence of compression on long-context
tasks.

In this work, we propose Mixture of Attention (MoA), a training-free sparse attention method. As
illustrated in Figure 3, MoA constructs the search space of heterogeneous elastic rules of attention
spans. For automatic LLM compression, MoA first utilizes gradient-based profiling to inspect the
influences of each attention position on the prediction loss. Based on the profiling results, MoA
tailors heterogeneous sparse attention configurations for each model layer and attention head. During
profiling, MoA employs a calibration dataset with long-range dependencies and uses the original
dense model’s response instead of the human-written response as the reference to calculate the loss.
This ensures an accurate profiling of the attention influences to facilitate better compression results.
Our contributions are summarized as follows.

• Heterogeneous Elastic Rules. We propose heterogeneous elastic rules for masks of each
attention head. We formulate MoA compression search space to include a diverse range of
elastic rules that tailor the local attention span relative to the input length for each attention
head. The heterogeneous elastic rules improve the fact retrieval accuracy of MoA from 25%
to 98% compared with masks with uniform span and scaling function for each head.

• Calibration Dataset Construction We emphasize the importance of data engineering in
LLM compression. Our findings demonstrate that, instead of relying on general language
modeling datasets and human responses, using datasets with long-range dependencies and
referencing the original LLM’s responses is essential for accurately profiling the effects of
compression.

• Automatic Optimization. We propose an automatic pipeline to find the optimal compression
plan encompassing heterogeneous elastic rules for various attention heads. This pipeline can
efficiently find the optimal plan within several hours, for example, two hours for compressing
Vicuna-13B.

Experiments show that MoA achieves 6.6− 8.2× throughput improvements over FlashAttention2,
1.7− 1.9× over vLLM framework on 7B and 13B dense LLMs at a 50% density (the average of KV-
Cache length / input length), with only a 1% average relative degradation in retrieval accuracy. The
significant throughput improvements of MoA over FlashAttention2 can be attributed to four factors:
(1) the static size of the KV-cache, (2) reduced attention computations, (3) increased batch size
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enabled by reduced memory usage, and (4) a specialized kernel implementation. Additionally, MoA
achieves over 90% retrieval accuracy with just 25% average density, far surpassing sparse attention
baselines that need a density of 75% to 100% for similar performance. On long-context understanding
benchmarks, MoA performs comparably to dense models, with a maximum relative performance drop
of less than 5%, which is about one-sixth of that observed with the uniform sparse attention baseline.
Our code is available at https://anonymous.4open.science/r/MoA-Review.

2 PRELIMINARY AND RELATED WORK

2.1 ATTENTION MECHANISM

The Multi-Head Self Attention (MHA) mechanism (Vaswani et al., 2017) is crucial to the functionality
of LLMs. It starts with an input sequence transformed into query (Q), key (K), and value (V) matrices
through linear projections. These matrices, combined with the cached K and V (KV-Cache) from
previous sequences, compute the attention matrix (A). This calculation is modified by a causal mask
(M) to ensure autoregressive properties, resulting in the output (O), as depicted in Equation 1:

S = QKT , A = softmax(S+M), O = AV (1)

Autoregressive inference in LLMs involves two stages: prefill and decode. During prefill, the
model processes the entire input sequence to generate the initial response token. In the subsequent
decode stage, it uses the newly generated token and previously cached K and V matrices to produce
subsequent tokens until the generation concludes. Although effective, this iterative process increases
memory and computation demands due to the expanding KV-Cache.

2.2 EFFICIENT ATTENTION

Efficient methods are proposed to mitigate the computation and memory costs associated with
attention. One branch of work uses dynamic sparse attention masks to adaptively skip attention
computations during prefill stage (Pagliardini et al., 2023; Qu et al., 2022; Roy et al., 2021; Wang
et al., 2021; Lu et al., 2021; Kitaev et al., 2020) or drop KV-Cache during decode stage (Anagnostidis
et al., 2023; Zhang et al., 2023; Ge et al., 2023; Sheng et al., 2023; Liu et al., 2023a) based on the
input sequences. However, due to the complex control and computation flow, dynamic prefill often
requires specific hardware to achieve substantial wall-time speedup (Qu et al., 2022; Wang et al.,
2021; Lu et al., 2021; Ham et al., 2021; 2020). Additionally, dynamic KV-Cache pruning in the
decode stage may require extensive retraining (Anagnostidis et al., 2023), additional KV-Cache score
computation (Sheng et al., 2023; Zhang et al., 2023; Liu et al., 2023a; Ge et al., 2023; Li et al., 2024c;
Cai et al., 2024), or extensive memory swap for KV-Cache retrieval (Tang et al., 2024b; Xiao et al.,
2024a).

Another branch of work uses static sparse attention, where predefined masks are applied consistently
across all processed sentences. Thanks to the fixed computation flow, static sparse attention is
generally more efficient and GPU-friendly. For language understanding models such as BERT (Devlin
et al., 2018), various masks are used (Zaheer et al., 2020; Beltagy et al., 2020; Child et al., 2019; Zhou
et al., 2024; Xiao et al., 2024c; Han et al., 2023). But for generative LLMs, the predominant method
is the fixed-span sliding window mask with global attention on a few initial tokens (Xiao et al., 2024c;
Han et al., 2023). With the local attention pattern, the KV-Cache beyond the current attention span
can be dropped, saving much memory for long sequence scenarios. However, the uniform static
masks across different attention heads and input lengths are model- and data-agnostic, which can
compromise LLMs’ effective context length and lead to suboptimal performance in long sequence
scenarios. Our method falls within this category, benefiting from the efficiency and training-free
advantages, while addressing the performance limitations encountered by previous methods.

In addition to sparse attention, alternative mechanisms have been proposed to replace traditional
attention for long-sequence modeling (Gu & Dao, 2023; Peng et al., 2023; Sun et al., 2023; Poli
et al., 2023; Li et al., 2022; Kacham et al., 2023; Peng et al., 2021; Choromanski et al., 2020; Wang
et al., 2020). However, these new mechanisms often require different weights compared to vanilla
transformers, imposing significant re-training overhead for LLMs.

Previous works also propose LLM acceleration frameworks (Gugger et al., 2022; Aminabadi et al.,
2022; Sheng et al., 2023; Kwon et al., 2023), as well as kernel-level optimizations (Dao et al., 2022;
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Figure 2: Examples of attention matrices from different
attention heads of the Vicuna-7B model. Each atten-
tion matrix is averaged over 256 data items from the
LongEval dataset.

Window/Input Len.
Layers 2k/4k 2k/8k 4k/8k

6, 7, 8 0.83 0.29 0.61
9, 10,11 0.99 0.81 0.96
17,18,19 0.97 0.94 0.97

Table 1: Retrieval accuracy of Vicuna-
7B with sliding-window sparse attention
across various model layers, window
spans, and input lengths.

Dao, 2023; Shah et al., 2024). These kernel and system optimizations are orthogonal to our work and
can be integrated to further enhance efficiency.

3 MIXTURE OF ATTENTION (MOA)

We first illustrate the heterogeneity of the attention patterns in pre-trained LLMs in Section 3.1. Based
on this insight, we define the search space for our Mixture-of-Attention (MoA) method in Section 3.2.

3.1 MIXTURE OF ATTENTION PATTERNS AND ELASTIC RULES

Heterogeneous Attention Patterns. Different attention heads in LLMs exhibit heterogeneous
attention patterns, as shown in Figure 2. For example, the first head primarily focuses on local
contexts with a narrow-span sliding window, while the third head covers nearly the entire input,
indicating global attention. The attention spans of different heads mostly remain constant across
various tasks and datasets, as shown in Appendix D.1. Table 1 demonstrates that applying the
same sliding-window sparse attention mask across model layers can lead to a 65% variance in
retrieval accuracies. It conforms to the multi-head self-attention design principle of capturing varied
information (Vaswani et al., 2017), as well as the findings from concurrent research that identifies
specific attention heads for global text retrieval (Wu et al., 2024).

Heterogeneous Elastic Rules. In addition to heterogeneity at a certain length, different attention
heads also exhibit varying elastic behaviors as the input length changes. Figure 2 illustrates this
variability: for shorter inputs (the upper left part of the attention matrix), the second and third heads
initially show global attention. However, as input length increases, the second head remains the
medium-span local focus, while the third head continues to expand as global attention. Table 1 further
evidences the diverse elastic rules. For example, at 4k input length, a 2k sliding-window sparse
attention mask on layers 9 to 11 yields better retrieval accuracy than on layers 17 to 19. However,
the opposite is true for an 8k input length. This data supports the visual observations from Figure 2,
highlighting that attention patterns respond to input length scaling differently. Leveraging these
insights, MoA encompasses heterogeneous elastic rules as the search space.

3.2 HETEROGENEOUS ELASTIC RULE SEARCH SPACE

In designing the search space for the MoA mask, we consider the inherently heterogeneous and
elastic nature of LLM attention patterns. As shown in Figure 3(a), we adopt a hardware-friendly
sliding-window mask as our base sparse attention mask (Beltagy et al., 2020). Following previous
work (Xiao et al., 2024c; Han et al., 2023), the initial few tokens (64 tokens for MoA) are not masked.
The attention span equals the sliding-window-span plus the number of initial unmasked tokens. We
define the attention span S of head h at input length N using a straightforward linear function:

Sh = αh + βh ·N, (2)
where αh and βh are hyperparameters that control the base span and its expansion rate with input
length of a specific attention head.

The α and β hyperparameters for each attention head are chosen from multiple discrete options. By
default, MoA uses 6 and 9 options for α and β, respectively. For LLMs with many heads and layers,
the search space can become quite large. For example, for a 7B model consisting of 32 attention
heads and 32 layers, the potential search space expands to 541024 configurations. Thus, we design
the automatic pipeline to efficiently pinpoint the optimal αs and βs for any LLM.
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Figure 3: Overview of the MoA. (a) The sparse attention search space includes heterogeneous elastic
rules of the attention span on sliding-window masks. (b) The automatic compression pipeline begins
with a calibration dataset, which includes long-dependency contexts and supervision texts generated
by the original dense LLM. MoA profiles each attention value’s impact on model predictions within
this dataset, revealing accuracy losses for different candidate elastic rules across various input lengths.
The final optimization step selects elastic rules for each attention head to minimize the total prediction
loss while adhering to specified density constraints.

4 AUTOMATIC PIPELINE FOR MOA COMPRESSION

This section outlines the MoA automatic compression pipeline as shown in Figure 3(b). Starting
with a trained LLM and a calibration dataset, MoA first profiles the influence of each attention
value on the model’s prediction loss for various input sequences from the calibration dataset. The
masked sum of the influences represents the accuracy loss associated with each mask at different
input lengths, showing the accuracy loss each candidate elastic rule could cause at that length. Then,
MoA optimizes the compression plan by selecting the optimal elastic rule for each head, which
minimizes the accuracy loss across various lengths while adhering to specified density constraints.
The following sections provide detailed discussions of each step in this pipeline.

4.1 ATTENTION INFLUENCE PROFILING

In the profile step, MoA quantifies the impact of individual attention values on the final prediction loss
of a pre-trained LLM. It informs the subsequent step about the influence of masking each attention
value, revealing the accuracy trade-offs of the candidate elastic rules for each attention head.

The influence of each attention value is derived from the attention matrix A and its gradient ∂L/∂A,
computed over a calibration dataset. When applying sparse attention masks, we approximate the
change in the model’s prediction loss, ∆L, using a first-order Taylor expansion based on variations
in the attention matrices A: ∆L =

∑
h

∑
i

∑
j ∂L/∂Ah,i,j ·∆Ah,i,j . Here, h indexes the attention

heads across all layers, and i, j are the row and column indices within each attention matrix Ah.
Details on the calibration dataset and the prediction loss L are provided in Section 5.

We define the attention influence matrix, Eh,i,j , as the estimated change in loss, ∆L, if the attention
value Ah,i,j is masked (i.e., set to zero). As shown in Equation 3, this measure considers both
the direct and indirect effects of the mask. For notation simplicity, we omit the head index h here.
Initially, masking directly reduces the attention value to zero, represented by ∆Ai,j|j = −Ai,j .
Additionally, the softmax function in attention normalizes the sum of each row in the attention matrix
to one. Thus, setting one attention value at column j to zero causes an increase in the other attention
values, ∆Ai,n|j , n ̸= j, within the same row. These two effects are integrated into the following
formulation, whose derivation is provided in Appendix D.2:

Ei,j =
∑
n

∂L

∂Ai,n
·∆Ai,n|j =

∂L

∂Ai,j
· (−Ai,j) +

∑
n ̸=j

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j
(3)

In practice, we use backpropagation on a calibration dataset to calculate the average attention influence
Ēh of each head across data items. The average attention influence is calculated respectively for
different input lengths. The gradient ∂L/∂Ah is computed using chain derivative in deep learning
frameworks like PyTorch (Paszke et al., 2019). The detailed calibration dataset setup is discussed in
Section 5.

With the average attention influence of each head, MoA can calculate the accuracy loss of applying
a candidate elastic rule at a specific input length. The loss is calculated with the sum of masked
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Table 2: Calibration dataset design choices: dataset content, supervision, and response reference.
Calibration dataset with long dependency and model alignment improves MoA performance on
retrieval accuracy and perplexity. All tests are done at 25% average density at 8k input length.

Dataset Supervision Reference Long Dep. Align Model Retrieval Acc. ↑ PPL ↓
RedPajama Context - ✗ ✗ 0.25 4.95
MultiNews Context & Summary Human ✗/✓ ✗ 0.27 4.62
MultiNews Summary Human ✓ ✗ 0.87 3.97
MultiNews Summary Model ✓ ✓ 0.95 3.96

average attention influence according to the rule. We denote Mrh as the binary mask at head h that
corresponds to rule r, with masked positions marked as 1 and others as 0. We formalize accuracy
loss ∆L as follows:

∆L =
∑
h

∆Lh,rh =
∑
h

∑
i

∑
j

Mrh,i,j · Ēh,i,j . (4)

After the profile stage, MoA acquires the unique accuracy-density trade-offs of elastic rules. It
informs the allocation of denser masks to more sensitive heads and lighter masks to less sensitive
ones. Profiling at different input lengths enables the identification of the most effective elastic rules,
even for unseen lengths.

4.2 AUTOMATIC OPTIMIZATION

MoA automatically selects the optimal elastic rule for each attention head to minimize accuracy
losses across various sequence lengths under density budgets. Based on the profiling results, MoA
first identifies Pareto front compression plans where any improvement in accuracy loss at one profile
length would worsen another. To ensure the best generalization to lengths beyond those profiled,
MoA then selects the plan that yields the minimum loss at an unseen length among the Pareto front
solutions as the final plan.

Specifically, we utilize multi-objective optimization to search for a set of Pareto optimal compression
plans across the profiled lengths. The objective for each length is to minimize the total accuracy loss
while conforming to any user-defined density constraints. The objective is formulated as follows:

argmin
rh∈R

∆L(Ni), Ni ∈ Nprofile s. t.
1

H

H∑
h=1

d(Ni)
rh

≤ d
(Ni)
constr,∀Ni ∈ Nconstr. (5)

Here, superscript (N) denotes values at different lengths; Nprofile and Nconstr denote the sets of lengths
for profiling and those subject to density constraints, respectively; R denotes the set of candidate
rules; ∆L(Ni) denotes the accuracy loss due to compression; d(Ni)

rh denotes the density of rule rh at
head h; d(Ni)

constr denotes the average density constraint; H denotes the total number of attention heads.

Such formulation corresponds to the classic multi-objective mixed-integer-programming problem,
which can be effectively solved within minutes using existing linear solvers, like Gurobi (Gurobi
Optimization, LLC, 2023). The detailed formulation and solving strategies are discussed in Ap-
pendix D.3.

Among the Pareto optimal compression plans, we select the one with the minimum loss at the unseen
validation length as the optimal solution. This approach allows us to avoid profiling at every possible
length while increasing the likelihood that the plan will generalize effectively to unseen lengths.

Thanks to this automatic pipeline, we efficiently get the elastic rules tailored for each attention
head. With the pipeline, MoA minimizes the accuracy loss caused by attention sparsification, while
conforming to user-defined density constraints.

5 DATASET AND SUPERVISION

In this section, we highlight the overlooked importance of calibration dataset design and its supervision
objective in LLM compression. Calibration datasets are essential for sensitivity analysis across various
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compression techniques, including weight pruning (Men et al., 2024; Lee et al., 2024; Liu et al.,
2023b) and quantization (Lin et al., 2023; Xiao et al., 2024b; Li et al., 2024a; Kim et al., 2023).
In this work, MoA profiles the attention influence on the calibration dataset, which is crucial for
subsequent automatic optimization.

Current Approach. General language modeling datasets, such as human-written text corpus RedPa-
jama (Computer, 2023), are commonly used as the calibration dataset. These datasets, supervised
by next-token-prediction on the entire corpus, primarily capture attention patterns coherent with
immediately preceding tokens. However, they lack long context dependencies, failing to address the
global attention crucial for tasks like long-range retrieval.

Moreover, a notable misalignment exists between the model response and the human-written supervi-
sion. Consequently, it leads to inaccuracies when using human responses to compute attention values
and gradients during profiling. For example, given the same question, a human might answer ‘Blue’,
while the model could generate ‘The blue color’. Using the human answer for supervision, attention
influence is inaccurately quantified based on probability shift for predicting ‘Blue’; this diverges
from the objective of maintaining crucial attention for the original model prediction, ‘The’. These
inconsistencies arise from various factors, including mismatched positions, tones, and synonyms.

MoA’s Approach. MoA enhances the calibration dataset by integrating long-range dependencies and
model alignment. Specifically, we utilize the long-contextual MultiNews dataset (Fabbri et al., 2019),
which includes summaries heavily dependent on long-range content. The summaries are generated by
the original dense model and serve as supervision. Compared to current approaches that adopt human
responses as the reference to calculate the cross-entropy loss L, using the responses generated by the
original model as the supervision can facilitate accurate profiling, thus benefiting the compression.

Approach Comparison. We evaluate our design’s effectiveness by varying dataset choices, supervi-
sion types, and summary references, while standardizing data item count and length to 50 and 8k
words, respectively. Additional setups and evaluations are in Appendices A and B.3.1.

We show the importance of long-range dependencies by comparing the MoA compression plan
generated with different datasets and supervisory methods. In Table 2, RedPajama (Computer, 2023)
represents the general language modeling dataset, while MultiNews (Fabbri et al., 2019) highlights
long-range contexts by aggregating multiple documents on a single incident. Additionally, each
MultiNews item includes a human-written summary, providing even stronger long-range dependencies
and better performance. Calculating loss on the summary of MultiNews leads to significantly better
performance, with a 60% increase in retrieval accuracy and a 0.98 decrease in perplexity.

Furthermore, using summaries generated by the original dense model as supervision promotes higher
alignment between its own attention patterns and the text supervision. It improves performance
compared to potentially inconsistent human summaries, as shown in the last two rows of Table 2.

6 EXPERIMENT

6.1 SETUPS

We brief the experiment setups here, with more details in Appendix A.

Baselines. We compare MoA with state-of-the-art static and dynamic sparse attention methods,
including StreamingLLM (Xiao et al., 2024c), InfLLM (Xiao et al., 2024a) and H2O (Zhang et al.,
2023). We define the density of an LLM as the ratio of the average in-memory KV-Cache length to
the sequence length during the sparse decode stage. Notably, in MoA and StreamingLLM, KV-Cache
length equals the attention span during the sparse prefill stage. In contrast, H2O use dense prefill.
Besides, H2O and InfLLM require additional computations to dynamically determine the KV-Cache.

Models and Benchmarks. We evaluate on vicuna-{7b, 13b}-v1.5-16k models (Chiang et al., 2023)
from LMSys and Llama-3-{8b, 70b}-Instruct-262k models (AI, 2024) from Gradient AI. For long-
context retrieval, we use LongEval (Li et al., 2023a) to test key-value retrieval accuracy with 100
data items per length level. For long-context understanding, we use LV-Eval (Yuan et al., 2024) and
LongBench (Bai et al., 2023), which include 11 and 13 sub-datasets, respectively. For coherence
testing, we measure perplexity on four long datasets (Dasigi et al., 2021; Fabbri et al., 2019; Li &
Roth, 2002; Hovy et al., 2001; Mohler et al., 2016) with diverse tasks. Unless otherwise specified,
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Figure 4: Accuracy-throughput trade-offs of
seven attention methods at different densities,
tested on Vicuna-7B with 8k input length using
one A100-80GB GPU on the LongEval dataset.

Retrieval Acc. PPL
Mask Design 8k 16k 8k 12k

Uniform 0.25 0.15 4.89 5.19
+Hetero. Layers 0.31 0.26 4.55 4.85
+Hetero. Heads 0.95 0.41 3.96 4.30
+Elastic 0.98 0.43 3.96 4.29

Table 3: Ablation study on search space with
consistent 25% density, progressively introduc-
ing heterogeneity in layers, heads, and elastic
rules. Evaluations are done with retrieval accu-
racy and perplexity.

performance experiments are restricted to eight A100-80GB GPUs over a 24-hour period, with OOM
(Out-Of-Memory) and OOT (Out-Of-Time) conditions noted. Efficiency experiments measure the
decode throughput on a single A100-80GB GPU at maximum batch sizes of respective methods.

MoA Settings. We restrict the number of distinct rules to at most two per model layer to ensure
inference-time efficiency. We profile MoA on MultiNews (Fabbri et al., 2019) with model summaries
at 2k, 4k, and 8k lengths. The optimal compression plan is selected with the validation dataset at 12k.
Each model uses the same plan across all benchmarks and lengths. The models are not fine-tuned.

6.2 ACCURACY-THROUGHPUT TRADE-OFF

Figure 4 shows that MoA advances the Pareto Front in context retrieval accuracy and decode
throughput across varied densities and six baselines. At the same densities, MoA notably enhances
throughput by 1.6× to 18.1× compared to H2O, InfLLM, BigBird (Zaheer et al., 2020), SnapKV (Li
et al., 2024c) and PyramidKV (Cai et al., 2024), due to its efficient static attention design. The
throughput even outperforms StreamingLLM thanks to our customized GPU kernel. Additionally,
MoA achieves notably higher retrieval accuracies across a range of densities. We conduct extensive
evaluations for MoA ’s performance and efficiency on various benchmarks across context lengths
from 4k to 256k and model sizes ranging from 7B to 70B in subsequent sections.

6.3 PERFORMANCE

MoA outperforms state-of-the-art sparse attention methods across various model sizes and bench-
marks, achieving comparable performance to the original dense model at 50% density.

Long-Context Retrieval. As shown in Table 4, MoA demonstrates a maximum of 8% relative accu-
racy drop (calculated as max{1−Acc.MoA/Acc.Original} across three lengths and LLMs), significantly
less than the 87%, 58% and 44% for StreamingLLM, InfLLM and H2O. On average, the relative
accuracy drop for MoA is under 1%, much less than others at 51%, 41% and 20%, respectively.
Figure 5(a) shows that MoA retains over 90% retrieval accuracy up to 60k lengths, equaling the
dense model’s effective context length. Note that it is done within 8k profiling and 12k validation. In
contrast, the effective context lengths for H2O, InfLLM, and StreamingLLM are only 8k, <4k, and
<4k, respectively. Appendix B.1.2 shows that MoA extends its effective context to approximately
3.9× the average KV-Cache length.

Long-Context Understanding. As shown in Table 4, MoA minimizes the maximum relative
performance drop in LV-Eval and LongBench benchmarks to only 5% and 3%, respectively—much
lower than the 36% and 18% experienced by StreamingLLM. H2O and InfLLM show maximum
relative drops of 9%-17% and 3%-5% with higher efficiency costs. Similar trends show in perplexity
tests, where MoA maintains less than 1% relative perplexity increase, while others exhibit 4%-13%
increases. This trend holds for other densities, as shown in Appendices B.1.1 and B.1.3. Figure 10
and Table 8 further details the score with different tasks. MoA achieves comprehensive performance
comparable to the original dense model, as well as H2O that requires higher efficiency cost. In
contrast, StreamingLLM and InfLLM display inconsistent performance: it sometimes surpasses the
original model in some tasks, while suffering noticeable degradation in others.
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Table 4: Comparative analysis of retrieval accuracy, LV-Eval scores, LongBench scores, and perplexity
for various models with different attention methods. All sparse methods employ 50% density in
decode stage. H2O uses dense prefill, while StreamingLLM, InfLLM and MoA use sparse prefill.
InfLLM for 70B model is excluded due to OOT issues.

Retrieve Acc. ↑ LV-Eval ↑ LongBench ↑ PPL ↓
Model Attention 4k 8k 16k 16k 0-16k 8-12k

Vicuna-7B

Original 1.00 0.98 0.62 5.93 34.76 3.79

H2O 0.86 0.68 0.35 5.42 33.59 3.94
InfLLM 0.67 0.57 0.26 5.13 32.97 4.07
StreamingLLM 0.43 0.16 0.08 4.72 31.84 4.48
MoA 1.00 0.97 0.57 5.61 33.96 3.75

Vicuna-13B

Original 0.99 0.98 0.44 5.83 39.23 3.62

H2O 0.88 0.76 0.28 5.66 38.13 3.80
InfLLM 0.70 0.53 0.27 6.80 37.13 4.07
StreamingLLM 0.65 0.49 0.33 5.43 32.13 4.10
MoA 0.99 0.93 0.49 7.16 38.77 3.62

Llama3-8B

Original 0.99 0.99 0.97 17.49 43.69 4.52

H2O 0.94 0.89 0.88 16.03 42.99 4.63
InfLLM 0.65 0.59 0.37 14.44 42.43 4.68
StreamingLLM 0.68 0.55 0.52 11.16 38.22 4.79
MoA 0.99 1.00 1.00 17.46 42.97 4.49

Llama3-70B

Original 1.00 0.99 0.93 24.51 49.10 3.67

H2O 0.93 0.91 OOM OOM OOM OOM
StreamingLLM 0.20 0.15 0.04 17.45 42.53 4.26
MoA 1.00 1.00 0.94 23.65 47.79 3.75
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(a) Retrieval accuracy and the effective con-
text length (arrow).

Retrieve Acc. ↑ LV-Eval ↑
Attention 32k 64k 128k 256k 32k 64k 128k

Original 0.98 0.93 0.76 0.37 16.74 15.39 14.71

InfLLM 0.43 0.32 0.25 OOT 14.22 12.17 OOT
StreamingLLM 0.52 0.48 0.41 0.25 12.38 11.45 11.94
MoA 1.00 0.92 0.83 0.46 17.07 15.13 14.14

(b) Retrieval accuracy and LV-Eval score at longer lengths
Figure 5: Comparative analysis at extended sequence lengths with different attention methods using
Llama3-8B model. All methods employ 50% density in both prefill and decode stages.

Longer-Context Generalization. By compressing within 12k lengths, MoA effectively generalizes
to lengths of 32k-256k, as shown in Figure 5(b). At the extended lengths, MoA outperforms both
InfLLM and StreamingLLM by 1.9− 3.3× in retrieval accuracy and 1.2− 1.4× in LV-Eval scores,
demonstrating comparable performance to the original dense model.

Ablation Study. We evaluate the performance impact of different sparse mask search spaces in
Table 3. Starting with a basic uniform mask, we observe significant enhancements by sequentially
introducing heterogeneity: layers first, then heads, and finally elastic rules.

6.4 EFFICIENCY

MoA shows high runtime efficiency with a manageable one-time compression overhead.

Runtime Efficiency. Table 5 compares the runtime efficiency of MoA over various attention methods
and LLM frameworks, with the ablation of efficiency improvements brought by each design factor of
MoA. At 50% density, MoA boosts the decode throughput by 6.6× to 8.2× compared to FlashAtten-
tion2. It outperforms H2O and InfLLM with 1.2× to 4.0× decode throughput improvements. Even
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Table 5: Runtime efficiency of different methods on Vicuna-7B and 13B models. Efficiency improve-
ments of MoA are ablated with four factors. All sparse attention methods use 50% density. Decode
throughput (tokens per second) evaluated at the maximum batch capacity of an A100-80GB GPU.

4k 8k 16k
Model Framework Attention Batch Throughput Batch Throughput Batch Throughput

7B

vLLM PagedAttention 30 628.8 15 323.0 8 145.5
FlexGen H2O 20 754.9 6 296.3 1 51.7
HuggingFace InfLLM 15 62.0 10 37.5 6 19.2
HuggingFace StreamingLLM 50 945.1 25 467.3 12 232.0

HuggingFace

FlashAttention2 30 134.6 15 66.9 8 32.9
+Static KV-Cache 30 496.1 15 219.5 8 91.6
+Reduced Attention 30 722.5 15 369.9 8 178.3
+Increased Batch 50 897.7 25 436.7 12 206.4
+Kernel (=MoA) 50 1099.0 25 535.7 12 257.3

13B

vLLM PagedAttention 16 314.8 8 160.5 4 71.1
FlexGen H2O 12 330.2 4 138.2 1 37.4
HuggingFace InfLLM 8 30.3 5 17.63 3 11.3
HuggingFace StreamingLLM 28 478.4 14 241.2 7 116.5

HuggingFace

FlashAttention2 16 81.3 8 40.8 4 19.8
+Static KV-Cache 16 264.6 8 111.3 4 62.2
+Reduced Attention 16 329.6 8 156.4 4 87.3
+Increased Batch 28 471.5 14 222.6 7 108.3
+Kernel (=MoA) 28 550.9 14 267.6 7 132.3

compared to the highly system-level optimized vLLM framework (Kwon et al., 2023), MoA still
achieves a 1.7× to 1.9× throughput increase. MoA also reduces total GPU memory by 1.2× to 1.4×,
as detailed in Appendix B.2.1. Results at a 128k length are in Appendix B.2.2. This throughput gain
results from four main factors: static-sized KV-Cache during generation(≈ 3.0×); reduced attention
computations due to sparsity (≈ 1.5×); increased batch sizes enabled by smaller KV-Cache memory
(≈ 1.4×); and our CUDA-implemented GPU kernel for MoA heterogeneous attention (≈ 1.2×).

Compression Pipeline Efficiency. MoA completes the automatic compression pipeline for the
Vicuna-7B and 13B models within two hours. For the larger Llama3-70B model, the process requires
8.5 hours of real-time and 34.7 hours of GPU time. See Appendix B.2.3. for more details.

6.5 RULES DISCOVERED BY MOA

We investigate MoA’s elastic rules for each head. As shown in Figure 11, masks in the initial and
middle layers exhibit high density, aligning with the conclusions from previous research on LLM’s
intrinsic dimensions (Valeriani et al., 2023) and layer sensitivities (Yuan et al., 2023). Conversely, in
the final layers, most heads require low density, while few need high density. Figure 12 shows that
layers with lower average density typically display more diverse densities among heads, confirming
the need for heterogeneity within the same layer. Further details and insights are in Appendix C.

7 CONCLUSION AND FUTURE WORK

MoA automates the selection of heterogeneous elastic masks for each attention head and input length,
significantly extending the effective context length of LLMs by 3.9×. It enhances retrieval accuracy
by 1.5× to 7.1× over uniform sparse attention method and increases throughput to over 7× at 50%
average density, maintaining performance on par with dense models in rigorous benchmarks.

Limitations and Future Work. Under an extremely low-density budget, MoA fails to maintain
good performance. Designing a dynamic MoA method has the potential to address this issue, which
we leave for future work. Using non-linear elastic rules with bounded attention spans is also worth
exploring. Additionally, MoA’s profiling method can be adapted to evaluate the influence of weights
and other activations, facilitating other compression methods such as quantization.
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A DETAILED EXPERIMENT SETUP

A.1 MAIN SETUP

Baselines. In the setup for our experiment, we adhere to specific configurations outlined in the
respective papers. In the case of StreamingLLM (Xiao et al., 2024c), the initial four tokens remain
unmasked, serving as the attention sink, except for the 70b model in Table 4 and the super long
setting in Figure 5, where we use 64 tokens as the attention sink. For InfLLM (Xiao et al., 2024a), we
adhere to the original configuration by maintaining the same local window size and selected memory
size, using 128 initial tokens as specified in their setup. For H2O (Zhang et al., 2023), we ensure the
same number of heavy hitter tokens and recent tokens. Note that H2O uses dense prefill since it relies
on the column sum of the attention matrix to calculate the importance of every token for KV-Cache
eviction. StreamingLLM, InfLLM and MoA use sparse prefill.

Models and Benchmarks. Since vicuna-7b-v1.5-16k and vicuna-13b-v1.5-16k (Chiang et al., 2023)
can only take in 16k context length, we use the 16k split of LV-Eval benchmark (Yuan et al., 2024),
truncating the input to 15500 for model input in Table 4. For the LongBench benchmark (Bai et al.,
2023), we use the LongBench-E split, which features a balanced number of data items at every length
level. The LongBench dataset is segmented into ranges of 0-4k, 4-8k, and 8k+ tokens. We test each
split using the input length truncation thresholds of 3,500, 7,500, and 15,500 tokens, respectively.

Perplexity Evaluation. We construct a comprehensive yet concise test set by sampling 50 × 4
data items for each length level from the test split of four long-context understanding datasets:
Qasper (Dasigi et al., 2021), MultiNew (Fabbri et al., 2019), TREC (Li & Roth, 2002; Hovy et al.,
2001) and LCC (Mohler et al., 2016), representing the question answering, summarization, few-
shot learning, and code completion abilities of the LLM. Following LongBench, the data items are
organized as question-answer pairs. The questions and answers are written by humans and come
with the dataset. The perplexity is calculated solely on the answer part of the data, demonstrating the
model’s coherence in responding to user requests.

Validation Dataset. The validation dataset is used to select the optimal compression plan among the
Pareto front solutions during the optimization step. The validation dataset is similarly constructed as
the perplexity test dataset, but on the respective validation split of the datasets. 50 × 4 data items
are sampled from the same four long-context understanding datasets: Qasper (Dasigi et al., 2021),
MultiNew (Fabbri et al., 2019), TREC (Li & Roth, 2002; Hovy et al., 2001) and LCC (Mohler et al.,
2016). The additional 50 data items from the LongEval (Li et al., 2023a) dataset are also added to
validate the retrieval ability. For the datasets that do not contain the validation split, namely TREC,
MultiNews and LCC, we sample from the test split and ensure different data items with the perplexity
evaluation dataset.

MoA Settings. MoA uses the block sparse attention pattern with a block size of 64, where each grid
depicted in Figure 3(a) represents a block. The first block of tokens is not masked as the attention
sink. For the profile stage, we use the MultiNews (Fabbri et al., 2019) calibration dataset with
model response as supervision, as described in Section 5. We use 50 × 3 data items at 2k, 4k, 8k
lengths. The data items are padded to their corresponding length level in order to ensure a unified
shape of attention influence tensors for each length level. We adopt block granularity during the
profiling stage, calculating the average attention influence within each block to represent the block’s
overall influence. For hyperparameter search space α and β, we use 6 values for α and 9 values
for β, creating a search space of 54 pairs for each attention head. α is uniformly sampled from the
range [−2048, 8192], and β is uniformly sampled from [0, 1]. The resulting attention span lengths
are clipped to the range between 0 and the current input length. The optimization is done with the
multi-objective optimization at the same set of lengths. We limit the number of distinct rules to at
most two per model layer to ensure inference-time efficiency. Among the Pareto front solutions, we
select the one with the lowest perplexity on the validation dataset of length 12k.

A.2 EFFICIENCY EXPERIMENT SETUP

We test the efficiency of different frameworks using a single NVIDIA A100-SXM4-80GB GPU.
To improve the runtime profiling accuracy, we first run five forward passes as warmups. Then we
use torch.CudaEvent to calculate the runtime for each method. Our experiments are structured
around three scenarios: including prefilling 3k tokens and decoding 1k tokens; prefilling 6k tokens
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and decoding 2k tokens; prefilling 12k tokens and decoding 4k tokens. The labels are marked by the
total sequence length, which equals prefill length plus decode length.

For MoA, The implementation is based on Huggingface Transformers. During the prefill stage,
we use the sparse CUDA kernel designed by us with block size 64. During the decode stage, we
modify the KV-Cache implementation to support our heterogeneous elastic rules. Thanks to our fixed
sliding-window span during the decode stage, we simply replace the old KV-Cache that exceeds the
span with the latest KV-Cache. Our custom decoding CUDA kernel then handles KV-Cache with
varying lengths across different attention heads during the decoding process.

For H2O, we use its official efficient implementation, which is based on Flexgen (Sheng et al., 2023).
Note that H2O uses dense prefill since it relies on the column sum of the attention matrix to calculate
the importance of every token for KV-Cache eviction, which requires the attention matrix to be
explicitly calculated. It makes H2O’s prefill stage currently incompatible with kernel optimizations
like FlashAttention. Therefore, H2O is easy to get OOM (Out-Of-Memory) with large prefill length
and increased batch size.

In our efficiency tests across all frameworks, we implemented a simple optimization at the language
modeling head (lm head) during the prefill stage. Specifically, after the final layer of the transform-
ers, we compute the logits—these are the raw outputs that are transformed into probabilities—for
only the last token. This selective computation avoids generating these probabilities for preceding
tokens, substantially reducing both computational overhead and memory usage. We also set the
environment variable PYTORCH_CUDA_ALLOC_CONF to be expandable_segments:True
for Hugginface and MoA to mitigate memory fragmentation, allowing larger inference batch size.

Following the performance experiments, we use Vicuna-7B and Vicuna-13B for efficiency tests
whenever possible. However, the official efficient implementation of H2O based on Flexgen only
supports OPT (Zhang et al., 2022). Therefore, we use OPT-6.7b and OPT-13b models for H2O in
Table 11 for comparison.

A.3 ABLATION STUDY SETUP

In the ablation study in Table 2 and Table 3, we use 25% density instead of the 50% used in the
main experiment in Table 4. This decision is based on the observation that at a density of 50%,
the performance of the various designs is quite similar, making it difficult to discern significant
differences. In contrast, a lower density of 25% reveals more pronounced disparities between the
designs, providing a clearer basis for comparison.

In the calibration dataset experiments in Table 2, we intentionally exclude the influence of the
validation dataset. We avoid using the validation dataset by profile and optimize solely at 8k length,
reducing the multi-objective optimization problem to a single-objective one with only one optimal
compression plan instead of a set of Pareto fronts.

A.4 INPUT FORMAT AND EXAMPLES

We list the prompt format and input examples used in our primary experiments and datasets. Dashed
lines are included only for illustration clarity and are not part of the texts given to the LLMs.
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Format 1. LongEval

Below is a record of lines I want you to remember. Each line begins with ’line <line index>’
and contains a ’<REGISTER_CONTENT>’ at the end of the line as a numerical value. For
each line index, memorize its corresponding <REGISTER_CONTENT>. At the end of the
record, I will ask you to retrieve the corresponding <REGISTER_CONTENT> of a certain
line index. Now the record start:

line delightful-incandescence: REGISTER_CONTENT is <19147>
line cloistered-presence: REGISTER_CONTENT is <8862>
...

Now the record is over. Tell me what is the <REGISTER_CONTENT> in line cloistered-
presence? I need the number.

Format 1 illustrates the input format for the LongEval (Li et al., 2023a) retrieval benchmark. The
instruction indicating which line to retrieve is provided after a lengthy context containing massive
lines of register contents to remember.

Format 2. Needle-In-A-Haystack (NIAH)

People who are powerful but uncharismatic will tend to be disliked. Their power makes them
a target for criticism that they don’t have the charisma to disarm. That was Hillary Clinton’s
problem.
The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a
sunny day.
It also tends to be a problem for any CEO who is more of a builder than a schmoozer.
...

What is the best thing to do in San Francisco?

Format 2 depicts the input format for another common retrieval benchmark, Needle-In-A-Haystack
(NIAH) (Kamradt, 2024). The NIAH test comprises a single "needle" sentence that commonly does
not fit into an irrelevant context. The model tries to answer the question based on this needle sentence.

Format 3. MultiNews Calibration Dataset

You are given several news passages. Write a one-page summary of all news.
<News1>
<News2>
...
Now, write a one-page summary of all the news.

<Summarization>

Format 3 demonstrates the input format for our calibration dataset. The long-contextual MultiNews
dataset (Fabbri et al., 2019) consists of multiple news documents. The context includes a prompt
instructing the original dense model to generate a summarization for these news articles, reflecting
long-range dependencies and model alignment. The generated summarization serves as supervision
during the cross-entropy loss calculation at the profiling stage.
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Table 6: Comparative analysis of retrieval accuracy, LV-Eval scores, LongBench scores, and perplexity
for various models with different attention methods. All methods employ 75% density in both prefill
and decode stages.

Retrieve Acc. ↑ LV-Eval ↑ LongBench ↑ PPL ↓
Model Attention 4k 8k 16k 16k 0-4k 4-8k 8-16k 8-12k

Vicuna-7B StreamingLLM 0.91 0.35 0.09 4.30 36.39 32.44 31.04 3.92
MoA 1.00 0.97 0.58 5.67 38.07 33.80 31.75 3.78

Vicuna-13B StreamingLLM 0.73 0.81 0.37 5.65 36.77 34.65 33.43 3.70
MoA 0.99 0.97 0.42 5.57 41.85 39.76 36.06 3.62

Llama3-8B StreamingLLM 1.00 0.83 0.76 14.89 42.45 40.62 42.51 4.51
MoA 0.99 1.00 0.93 15.61 43.51 43.16 43.58 4.53
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Figure 6: Retrieval accuracy of Vicuna-7B model using different attention methods across varying
attention spans and input lengths. The X-axis shows different attention spans; the Y-axis shows
different input lengths for the retrieval task. Subfigure (a) shows results for StreamingLLM, and
subfigure (b) for MoA.

B ADDITIONAL EXPERIMENT RESULTS

B.1 PERFORMANCE

B.1.1 OVERALL PERFORMANCE

Table 6 shows the overall performance of MoA at a higher density of 75%. MoA shows improved
performance over the baseline with the uniform attention baseline. The progressive change of
performance with respect to different densities is also shown in Figure 7(b) and Figure 9
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Figure 7: Retrieval accuracy tests on LongEval with Vicuna-7B. (a) Varies input lengths and densities
to show effective context lengths across attention spans, (b) Set input length at 8k and show retrieval
accuracy across different densities.
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Figure 8: The Needle-In-A-Haystack (NIAH) retrieval accuracy using different attention methods
across 8k to 256k input lengths on Llama-3-8B model. All sparse attention methods employ a 50%
density.

B.1.2 LONG-CONTEXT RETRIEVAL

LongEval Retrieval. We conduct a detailed experiment to test the retrieval ability of different
attention methods across various attention spans and input lengths with the LongEval (Li et al.,
2023a) dataset.

Figure 6 shows the detailed data for effective context length calculation. As shown in the figure,
StreamingLLM can hardly maintain retrieval accuracy when the input length is beyond the attention
span, while MoA can effectively extend the effective context length.

Following previous work (Chen et al., 2023; Tworkowski et al., 2023), we quantify effective context
length as the maximum input length where retrieval accuracy remains above a 90% threshold. As
shown in Figure 7(a), StreamingLLM and H2O achieve effective context lengths of no more than
2k tokens beyond their attention spans. In contrast, MoA expands its effective context length to
approximately 3.9× its attention span before reaching up to the 12k limit of the original model.
Figure 7(b) further shows that at a fixed input length of 8k, MoA reaches over 0.9 retrieval accuracy
with just 25% density, whereas StreamingLLM and H2O require 100% and 75% density, respectively.

Needle-In-A-Haystack (NIAH) Retrieval. We also conduct the retrieval task using the Needle-
In-A-Haystack (NIAH) dataset (Kamradt, 2024). As shown in Figure 8, MoA achieves perfect
retrieval accuracy across input lengths ranging from 8k to 256k. In comparison, StreamingLLM
demonstrates a limited effective context length, while InfLLM exhibits reduced retrieval accuracy
within 64k input lengths. Notably, H2O and InfLLM are unable to complete tests at extreme lengths
due to Out-Of-Memory and Out-Of-Time errors. These findings align with the results observed in the
LongEval benchmark throughout the paper.
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Figure 9: LV-Eval score of StreamingLLM and MoA at various densities on Vicuna-7B model.

Table 7: LongBench scores for various models with different attention methods. All methods employ
50% density in the decode stage.

LongBench ↑
Model Attention 0-4k 4-8k 8-16k

Vicuna-7B

Original 37.91 33.82 32.54

H2O 36.23 32.74 31.81
InfLLM 35.23 33.54 30.15
StreamingLLM 30.53 33.28 31.70
MoA 37.04 32.90 31.94

Vicuna-13B

Original 42.25 39.52 35.93

H2O 41.63 38.02 34.75
InfLLM 39.36 37.66 34.36
StreamingLLM 30.65 33.07 32.68
MoA 41.73 38.88 35.69

Llama3-8B

Original 44.27 43.53 43.26

H2O 43.46 43.01 42.50
InfLLM 42.78 42.69 41.81
StreamingLLM 37.20 38.02 39.43
MoA 43.07 42.75 43.09

Llama3-70B

Original 50.70 48.05 48.55

H2O 50.16 47.77 OOM
StreamingLLM 45.14 42.40 40.04
MoA 49.74 46.80 46.84

B.1.3 LONG-CONTEXT UNDERSTANDING

We conduct experiments with various densities on the LV-Eval benchmark (Yuan et al., 2024). As
shown in Figure 9, MoA constantly outperforms the uniform static attention baseline StreamingLLM
at various densities, demonstrating the effectiveness of our heterogeneous elastic rules.

We detailed the respective scores for LongBench and LV-Eval in Table 7 and Table 8. The number in
the bracket of Table 8 indicates the number of sub-datasets for the category.
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Table 8: Performance comparison across different models and attention methods with the LV-Eval
dataset. The numbers in brackets indicate the number of sub-datasets for the category.

Single-QA Multi-QA Retrieval
Model Attention w/o. Conf (2) w. Conf (2) w/o. Conf (3) w. Conf (2) w. Conf (2)

Vicuna-7B

Original 10.49 6.29 6.83 5.60 0.00

H20 9.16 6.20 6.44 4.80 0.00
InfLLM 7.11 6.70 6.07 4.80 0.00
StreamingLLM 7.54 5.90 5.98 3.56 0.00
MoA 9.98 6.27 6.16 5.31 0.09

Vicuna-13B

Original 10.64 7.28 5.32 5.07 1.08

H20 9.53 6.54 5.25 5.36 1.83
InfLLM 10.21 9.35 6.03 3.19 2.08
StreamingLLM 9.05 5.86 5.37 3.19 3.70
MoA 11.04 6.93 5.79 5.84 6.88

Llama3-8B

Original 34.05 19.51 11.41 17.70 7.84

H20 28.52 17.05 11.11 15.98 9.95
InfLLM 24.94 17.75 10.61 14.80 6.04
StreamingLLM 20.21 9.57 8.14 9.36 10.03
MoA 32.98 20.53 10.65 17.57 8.98

Llama3-70B
Original 44.44 25.02 16.71 22.86 17.43

StreamingLLM 26.63 14.22 14.04 14.70 19.38
MoA 42.44 23.58 15.75 21.27 19.19
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Figure 10: (a) LV-Eval and (b) LongBench scores for different attention methods at 50% density,
tested on Vicuna-7B, 13B and Llama3-70B models. Scores normalized against the original dense
model.

B.1.4 LONGER-CONTEXT GENERALIZATION

We compare the retrieval accuracy with more recent works SnapKV (Li et al., 2024c) and Pyra-
midKV (Cai et al., 2024) on context lengths of 32K to 256K. As shown in Table 9, MoA constantly
outperforms the two latest baselines at longer contexts.

B.1.5 INSTRUCTION-FOLLOWING GENERATION

We evaluate MoA ’s performance on general instruction-following tasks using the AlpacaEval 2.0
benchmark (Li et al., 2023b; Dubois et al., 2024). Following the official setup, we compare the
model’s output with gpt4_turbo using the standard weighted_alpaca_eval_gpt4_turbo evaluator,
which leverages the gpt-4-1106-preview model. The benchmark consists of inputs and outputs with
average lengths of approximately 50 and 450 tokens, respectively. To accommodate the short input
lengths while maintaining a density of around 50% during generation, we set the expected total token
length to 512 and adjust hyperparameters across all methods accordingly.

Thanks to its elastic design, MoA employs the same compression plan used in experiments with input
lengths ranging from 4k to 256k. As shown in Table 10, MoA achieves the highest length-controlled
win rate, outperforming both sparse attention baselines and the original model.
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Table 9: Retrieval accuracy at longer lengths for more recent baselines, tested at 50% density.

Retrieve Acc. ↑
Attention 32k 64k 128k 256k

SnapKV 1.00 0.88 0.71 0.33
PyramidKV 1.00 0.85 0.62 0.37
MoA 1.00 0.92 0.83 0.46

Table 10: Length-controlled win rate and its standard error of Vicuna-7B with different attention
mechanisms on AlpacaEval 2.0 benchmark. All sparse methods employ 50% density during decoding.

Attention Length-controlled Win Rate ↑ Standard Error

Original 8.84 0.53

H2O 9.66 0.55
InfLLM 5.76 0.42
StreamingLLM 7.96 0.49
MoA 9.83 0.57

B.2 EFFICIENCY

B.2.1 MEMORY AND THROUGHPUT BREAKDOWN

Table 11: Efficiency analysis of different frameworks on 7B and 13B models. H2O and MoA use
50% density. GPU memory evaluated with batch sizes 8 (7B model) and 4 (13B model).

Memory (GB)
Size Framework 4k 8k 16k

7B
FlashAttn2 28.5 44.4 76.3
H2O 36.9 OOM OOM
MoA 22.7 32.9 53.5

13B
FlashAttn2 36.8 49.2 74.0
H2O 40.4 77.9 OOM
MoA 32.0 39.6 55.0

Table 11 highlights the memory efficiency of MoA compared to H2O and FlashAttention2 on 7B
and 13B models. Notably, H2O runs into Out-Of-Memory (OOM) issues at longer input lengths.
In contrast, MoA achieves a significant reduction in memory consumption, using 1.2 to 1.4× less
memory compared to FlashAttenion2.

We further explain the decode throughput breakdown in Table 5, compared to the baseline comprising
Huggingface with FlashAttention2. The observed increase in throughput primarily stems from four
aspects:

Static KV-Cache. MoA only maintains the tokens within the span of each head, thereby preventing
growth in the KV-Cache size. This strategy eliminates the need for additional memory allocation.

Reduced Attention Computation. MoA with features reduced density in attention span and KV-
Cache. It decreases the computation and memory access required for attention computation.

Increased Batch Size. With the reduced size of KV-Cache, MoA supports a larger batch size,
contributing to the increase in throughput.

GPU Kernel Design. We customize MoA GPU kernel using CUDA to support heterogeneous
attention patterns with high efficiency.
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Table 12: Runtime efficiency at 128k input length across different methods on Vicuna-7B and 13B
models. All sparse attention methods use 50% density. Decode throughput (tokens per second) is
measured with a batch size of 1, using the minimum number of A100-80GB GPUs required for
testing. H2O encounters OOM error with 8 GPUs.

Min. Total Total Throughput
Model Size Framework Attention #GPU Throughput Memory (GB) per GPU

7B

vLLM PagedAttention 2 30.2 142.0 15.1
FlexGen H2O >8 - OOM -
HuggingFace InfLLM 1 6.1 47.7 6.1
HuggingFace StreamingLLM 1 19.8 43.9 19.8
HuggingFace FlashAttention2 2 4.3 85.6 2.2
HuggingFace MoA 1 20.3 44.0 20.3

13B

vLLM PagedAttention 2 21.5 142.0 10.8
FlexGen H2O >8 - OOM -
HuggingFace InfLLM 1 4.3 78.6 4.3
HuggingFace StreamingLLM 1 14.0 64.6 14.0
HuggingFace FlashAttention2 2 3.0 130.6 1.5
HuggingFace MoA 1 14.7 63.4 14.7

B.2.2 EFFICIENCY RESULTS FOR LONGER INPUT

We evaluate the runtime efficiency of Vicuna-7B and 13B models at a 128k input length with a
single batch size. Thanks to the reduced KV-Cache, MoA efficiently processes 128k input using
only one A100 GPU, whereas FlashAttention2 and vLLM baselines require at least two GPUs to
handle a single request. As shown in Table 12, MoA achieves a 4.7-4.9× decode speedup compared
to FlashAttention2, while using half the number of GPUs. Additionally, it demonstrates a 1.9-2.1×
reduction in GPU memory usage. Compared to vLLM, which utilizes tensor parallelism, MoA
delivers 1.3-1.4× higher throughput per GPU, alongside significant memory savings.

B.2.3 AUTOMATIC COMPRESSION PIPELINE OVERHEAD

Table 13: Compression overhead for various stages of MoA across models with differing parameter
sizes, reported as the amount of GPU × latency, except when only one GPU is used. Larger models
necessitate more GPUs due to model parallelism. All stages utilize GPUs, except for the Optimize
stage, which uses the CPU.

Stage 7B LLM 13B LLM 70B LLM

Calibration Data Gen. 10min 15min 2 × 60min
Profile 20min 2 × 25min 8 × 210min
Optimize (CPU) 30min 25min 100min
Validate 35min 40min 2 × 140min

Total Latency 1h 35min 1h 45min 8h 30min
Total GPU Time 1h 5min 1h 45min 34h 40min

We present a detailed breakdown of the time usage of MoA pipeline. Table 13 summarizes the time
required for various crucial phases within the MoA framework, encompassing calibration dataset
generation, profiling, optimization, and validation, on the Vicuna-13B model.

Profiling is the most resource-demanding part of our pipeline. For a 13b model with an 8k profile
length, two A100 GPUs are required. In other cases, we only need one single GPU. Profiling on
a 13b model with an 8k profile length and 50 data items takes 15 minutes. Profiling on 4k and 2k
lengths takes less than 5 minutes each.
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Table 14: Progressive compression overhead for various stages of MoA with respect to different
parameter sizes and calibration (validation) dataset sizes.

Stage Complexity w.r.t parameter size Complexity w.r.t dataset size
Calibration Dataset Gen. Linear Linear
Profile Linear Linear
Optimize Polynomial ∼ Exponential for #Head Irrelevant
Validate Linear Linear

Empirical Latency Almost Linear Linear

On the Intel(R) Xeon(R) Platinum 8358 2.60 GHz CPU, the optimization concludes within approxi-
mately 25 minutes. Typically, this phase generates around 10 compression plans. Validating each one
of the compression plans takes about 4 minutes, totaling around 40 minutes.

We also show the progressive compression overhead for MoA in Table 14.

B.3 ABLATION STUDY

B.3.1 CALIBRATION DATASET

Table 15: Performance comparison on various test sets, using different calibration sets. Tested on
Vicuna-7B model. The result is tested with 50% density MoA on LongBench (Bai et al., 2023) 0-4k
split.

Test Score
Dataset Long Dep. & Align Model Qasper MultiNews TREC Avg. Score

Original NA 28.6 28.2 56.0 37.6

RedPajama ✗ 20.6 (-8.0) 19.6 (-8.6) 66.0 (+10.0) 35.4 (-2.2)
Qasper ✓ 25.6 (-3.0) 27.8 (-0.4) 55.0 (-1.0) 36.1 (-1.5)
MultiNews ✓ 29.0 (+0.4) 27.5 (-0.7) 54.0 (-2.0) 36.8 (-0.8)
TREC ✓ 27.3 (-1.3) 27.3 (-0.9) 55.0 (-1.0) 36.5 (-1.1)

In this section, we validate the robustness of our calibration dataset design principles. We select three
sub-tasks and respective datasets from the LongBench benchmark, including Qasper (Dasigi et al.,
2021), MultiNews (Fabbri et al., 2019), and TREC (Li & Roth, 2002; Hovy et al., 2001). We use
their training set to construct the calibration dataset, and use their respective test set in LongBench to
calculate the score. Following Section 5, all calibration datasets are constructed using the original
model’s response to the context and questions as the supervision.

As shown in Table 15, we find that as long as the calibration dataset conforms to the long-range
dependency and model alignment highlighted in section 5, the specific choice of the dataset is less
important. Calibration datasets with long dependency and model alignment show somewhat similar
test results on various datasets. Additionally, they all show strong generalization power to test sets
other than their respective calibration dataset.

In contrast, the RedPajama dataset without long-range dependency and model alignment shows
large variance on various test sets. It also differs from the performance of the original dense model,
which may incur unexpected behaviors after compression. Note that though all datasets exhibit long
dependency, the questions in the TREC dataset can be answered without long context. The context
in the TREC dataset of LongBench is the many-shot examples, each showing a short sentence and
its classification result, while the question is to classify a new short sentence. Although the context
helps to determine the complete set of 50 classes, the model can also directly clarify the sentence
without any context based on common knowledge. It may contribute to a high score on the TREC
test set with the RedPajama calibration dataset.
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C COMPRESSION PLAN ANALYSIS

C.1 STATISTICS ON RULES DISCOVERED BY MOA
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Figure 11: The MoA mask density across layers for different LLMs.
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Figure 12: The MoA mask’s average density and the density range for each layer for different LLMs.

This subsection provides empirical evidence for rules discovered by MoA as mentioned in Section
6.5. The lines and spans in Figure 11 show that all heads at the first few layers generally need a high
KV-Cache density. Following that, a few layers generally only require medium density. Then, in
the final layers, most heads require low density, while some outlier heads need high density. This
observation conforms to previous findings of the intrinsic dimension of LLM Valeriani et al. (2023).
The geometry of density is similar to the intrinsic dimension of LLM, with two local minima. As
observed in Figure 11, layers with lower average density (smaller values on the lines) typically display
a wider range of density (wider shades). Figure 12 validates such observation. This observation
confirms the need for heterogeneous attention rules within the same layer.

C.2 CONNECTIONS BETWEEN MOA RULE AND SEMANTIC

In this section, we invest the masks acquired with MoA and show the interpretable semantics of
the masks. Previous works manually restrict the attention pattern of the model, which may harm
the semantics learned by the dense model. In contrast, MoA preserves the semantics with statistic
analysis and optimization. We use visualization, human interpretation and quantitive methods to
analyze the semantics of the original model and to verify whether MoA captures such semantics.

C.2.1 MASK VISUALIZATION AND SEMANTIC CATEGORIZATION

Given any token, two kinds of information are used as the model inputs: position encoding and
token embedding. Position encoding indicates the absolute (Zhang et al., 2022) or relative posi-
tions (Touvron et al., 2023) of tokens in the sentence. Token embedding maps different tokens as
different vectors. The attention head h responds to both information and output the corresponding
attention value Ah. As shown in equation 6, we denote the influence of position and token of head h
as function Ph and Th, respectively. The attention value Ah,i,j between the ith and jth token ti and
tj is determined by the combination fh of position and token influence functions.
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Ah,i,j = Ah(ti, tj , i, j) = fh (Ph(i, j), Th(ti, tj)) (6)

Figure 2 visualizes two typical heads that are either dominated by position P or token T function.
For the first attention head in Figure 2, the local positional attention is clearly observed. In this
head, whatever sentences are given, each token pays major attention to the first token and the prior
token. As a result, the mean attention matrix accumulates extremely large attention values at the first
column and the sub-diagonal. In contrast, the second attention head in Figure 2 lays more emphasis
on content-based attention. Since the position distribution of important tokens are generally random,
the attention matrix can show large attention values at any position. It results in a mean attention
matrix without extreme mean attention values.

In conclusion, the mean attention matrix of different sentences provides a valuable insight of whether
attention values of an attention head is more position-based or content-based. Intuitively, the more
uneven the attention matrix value distribution is, the more position-based the head is.

C.2.2 QUANTITATIVE SEMANTIC ANALYSIS

We quantify how much the attention head is position-based and analyze whether MoA successfully
utilizes such semantics through the evaluate-generate-optimization pipeline. We model equation 6
with a linear approximation. Ph and Th are random variables with the same expectation µ and
standard variance δ for all heads. For attention head h, the weight factor αh evaluates the relatively
influence of position and token to the final attention value.

Ah,i,j = αhPh(i, j) + (1− αh)Th(ti, tj) (7)

Given the randomness of token positions in long context, we assume that the token position and its
content are irrelevant. For different sentences s, the expectation Et of the attention value between
position i and j can be expressed as follows. Note that it excludes the matrix diagonal since
Th(ti, tj), i ̸= j and Th(ti, ti) may follow different distributions.

Et[Ah,i,j ] =
1

S

S∑
s=1

(
αhPh(i, j) + (1− αh)Th(t

(s)
i , t

(s)
j )
)

= αhPh(i, j) + (1− αh)
1

S

S∑
s=1

Th(t
(s)
i , t

(s)
j )

= αhPh(i, j) + (1− αh)µT ,∀i > j

(8)

The standard division σp of Et over different positions of the attention matrix is

σp(Et[Ah,i,j) =

√√√√ 2

(1 +N)N

∑
i,j∈[1,N),i>j

[(αhPh(i, j) + (1− αh)µT )− (αhµP + (1− αh)µT )]2

= αhδp
(9)

We name σp(Et[Ah,i,j ]) the Standard division of Expectation (SoE) of head h. Note that the
expectation is taken over different sentences, while the standard division is taken over different
attention positions. Since δp is the same for all heads, we derive that the position impact αh is
proportional to the SoE of different heads.

The conclusion quantifies the observation stated in Section C.2.1. Intuitively, SoE shows how uneven
the mean attention matrix is, thus showing the influence of position to the attention values. MoA’s
generated mask density shows positive relation with SoE, suggesting that MoA successfully captures
the semantic information of the dense language model as shown in Figure 13.
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Figure 13: Positive correlation between MoA’s mask sparsity and head’s dependency on position
(SoE).

D AUTOMATIC PIPELINE DETAILS

D.1 ADDTIONAL ORACLE ON ELASTIC PATTERN DESIGN

chatting
chatbot_arena_
conversations

dataset

few-shot learning
trec

dataset

coding
lcc

dataset

Layer 17 Head 29 Layer 17 Head 29 Layer 17 Head 29

Figure 14: Examples of attention matrices from different attention heads (columns) and tasks (rows)
of the Vicuna-7B model. The attention matrices were averaged over 256 data items per dataset. The
same head shows a similar attention span across different tasks, explaining the robust cross-dataset
generalizability of our method.

We visualize the attention matrix of the same attention heads across three additional tasks in Figure 14,
as an extension of Figure 2. The consistent attention span across tasks sheds light on the strong
cross-dataset generalization ability of our MoA method.
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D.2 DERIVATION OF ATTENTION INFLUENCE

We use the first-order Taylor expansion to calculate the influence of each attention value. This approx-
imation approach is supported by methodologies commonly employed in other LLM compression
approaches (Li et al., 2024a; Shi et al., 2021; Das et al., 2023; Jiang et al., 2023).

As discussed in Section 4.1, when masking out attention value Ah,i,j at head h, row i, and column j,
it also influences the attention values in the same row by ∆Ah,i,n|j .

Ah,i,n =
eSh,i,n∑
j e

Sh,i,j

∆Ah,i,n|j =

{
−Ah,i,n, n = j

Ah,i,n(
∑

j e
Sh,i,j/

∑
j ̸=n e

Sh,i,j − 1), n ̸= j

(10)

Following the definition, the attention influence Eh is calculated as follows:

Eh,i,j =
∑
n

∂L

∂Ah,i,n
·∆Ah,i,n|j (11)

Given Equation 11 and 10, we derive Equation 3 as follows. For notation simplicity, we omit the
head index h here.

Ei,j =
∑
n

∂L

∂Ai,n
·∆Ai,n|j

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n ·

( ∑
k e

Si,k∑
k ̸=j e

Si,k
− 1

)

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n · eSi,j∑

k e
Si,k − eSi,j

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n ·

eSi,j/
∑

k e
Si,k

1− eSi,j/
∑

k e
Si,k

=
∂L

∂Ai,j
· (−Ai,j) +

∑
n̸=j

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j

=
∂L

∂Ai,j
· (−Ai,j)−

∂L

∂Ai,j
·Ai,j ·

Ai,j

1−Ai,j
+
∑
n

∂L

∂Ai,n
·Ai,n · Ai,j

1−Ai,j

=
∂L

∂Ai,j
·
(
− Ai,j

1−Ai,j

)
+

Ai,j

1−Ai,j
·
∑
n

∂L

∂Ai,n
·Ai,n

= − Ai,j

1−Ai,j

(
∂L

∂Ai,j
−
∑
n

∂L

∂Ai,n
·Ai,n

)

(12)

It is worth noting to mention that it can also be formulated as matrix multiplications:

Eh =
Ah

1− Ah
·
(

∂L

∂Ah
−
(

∂L

∂Ah
· Ah

)
1
N×N

)
. (13)

D.3 OPTIMIZATION DETAILS

D.3.1 OPTIMIZING AT SINGLE LENGTH

The optimization problem is formulated as follows:

argmin∆L =
∑
h

∆Lh,rh , s. t.
1

H

∑
h

drh ≤ dconstr. (14)
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To transform the optimization problem into a standard Mixed-Integer Programming (MIP) framework,
we introduce the binary variable Xh,rh ∈ {0, 1}. It indicates whether to select rule rh for the attention
head h. Assume the model has H attention head, and head h has Rh elastic rules.

argmin
1

H

H−1∑
h=0

Rh−1∑
rh=0

∆Lh,rhXh,rh s. t. (15a)

Rh−1∑
rh=0

Xh,rh = 1, h ∈ {0, · · · , H − 1} (15b)

1

H

H−1∑
h=0

Rh−1∑
rh=0

drhXh,rh ≤ dconstr (15c)

0 ≤ Xh,rh ≤ 1, Xh,rh ∈ Z, ∀h ∈ {0, · · · , H − 1} ,∀rh ∈ R (15d)

In this formulation, (15a) serves as the objective function to minimize the loss, subject to the
constraints that each matrix selects exactly one compression plan (15b), and the average density
does not exceed dconstr (15c). Finally, (15d) enforces that Xh,rh is a binary variable, indicating the
selection of plans.

Additionally, to enforce the restriction that each model layer only has a limited number of different
plans, we bound the norm of element-wise multiplication of Xh = [Xh,0 Xh,1 · · · Xh,Rh−1]

⊤

in a single layer.

D.3.2 OPTIMIZING AT MULTIPLE LENGTHS

(b)(a) (c) (d)

objective

constraint

Figure 15: Illustration of our multi-objective Mixed-Integer Programming (MIP) approach, using a
two-objective optimization example: (a) MoA first minimizes the loss for 4k inputs and records the
corresponding loss for the current optimal plan at 8k. (b) Next, it minimizes the loss for 8k inputs and
records the corresponding loss for the current optimal plan at 4k. These steps establish the loss ranges
R for both 4k and 8k input lengths. (c) MoA then re-optimizes the loss at 4k, this time using the loss
intervals at 8k as different constraints. All plans generated under these constraints are recorded. (d)
The last process (c) is repeated for 8k, using 4k intervals as constraints. Finally, plans meeting the
Pareto front criteria for both 4k and 8k inputs are selected as the final outputs.

With the ability to optimize at a single length, we utilize the same framework for multi-objective MIP
across various lengths. The key is to transform the multi-objective MIP problem into several single-
objective MIP problems (Paria et al., 2018). We utilize the idea of epsilon-constraint method (Yv
et al., 1971).

Figure 15 illustrates the optimization process for two input lengths. We discuss the generalized
approach to handle an arbitrary number of lengths. We first select each input length as our primary
objective to perform the single-objective optimization on it while simultaneously recording the
outcomes of other objectives. Specifically, for N distinct objectives, we do single-objective MIP
optimization on the i-th objective, getting minimum loss ∆L

(Ni)
i , and we concurrently collect

losses of other objectives ∆L
(Nj)
i for j ̸= i. This process allows us to establish the range of loss

R(Nj) =
[
mini ∆L

(Nj)
i ,maxi ∆L

(Nj)
i

]
for each objective. Then, we iterate through each objective

again. Compared with the original multi-objective optimization in Equation 5, we now consider other
objectives as constraints. To implement this, we partition each loss range R(Nj) of other objectives
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j ̸= i into M uniform intervals S(Nj)
k , where 0 ≤ k < M . We then solve the MIP problems for each

objective i and iterating through the constraint intervals:

argmin
rh∈R

∆L(Ni) s. t.
1

H

H∑
h=1

d(Ni)
rh

≤ d
(Ni)
constr,∀Ni ∈ Nconstr; ∆L(Nj) ∈ S

(Nj)
kj

,∀j ̸= i. (16)

where this optimization is performed for each i ranging from 0 to N . For each j, kj can vary
independently from 0 to M . For efficiency consideration, we set the number of intervals as five.
Finally, the results that do not conform to the Pareto front requirements are removed, resulting in the
final Pareto front set of our multi-objective optimization problem.

E CONCURRENT WORK

Current work RazorAttention (Tang et al., 2024a) also proposes to use heterogeneous attention for
better performance. MoA distinguishes from it in the following aspects:

1. Strategies for attention heads: RazorAttention categorizes attention heads into two types:
retrieval and non-retrieval. It adopts bipolar strategies, applying either full attention or
fixed-sized local attention. In contrast, MoA recognizes the diverse attention spans of
different heads and employs a broader range of strategies, covering the entire spectrum from
very limited local attention to full attention.

2. Adaptation to different input lengths: RazorAttention uses a fixed density for non-retrieval
heads across all input lengths. MoA, on the other hand, applies heterogeneous elastic rules
for each head, dynamically adjusting densities based on input length while maintaining
overall density constraints.

3. Determination of strategies: RazorAttention relies on a heuristic approach to assign
strategies. It uses attention scores between the current token and specific tokens (e.g., echo
and induction tokens) to identify retrieval heads and assign full attention. MoA employs a
loss-based method. It uses a first-order Taylor expansion to estimate the impact of a strategy
on end-to-end prediction loss and optimizes strategies to minimize this loss under density
constraints.
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