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ABSTRACT

Pruning is a practical approach to mitigate the associated costs and environmental
impact of deploying large neural networks (NNs). Early works, such as OBD (Le-
Cun et al., 1989) and OBS (Hassibi & Stork, 1992), utilize the Hessian matrix to
improve the trade-off between network complexity and performance, demonstrating
that second-order information is valuable for pruning. However, the computation
and storage of the Hessian matrix are infeasible for modern NNs, motivating the
use of approximations. In this work, we revisit one-shot pruning at initialization
(PaI) and examine scalable second-order approximations. We focus on unbiased
estimators, such as the Empirical Fisher and the Hutchinson diagonal, that cap-
ture enough curvature information to improve the identification of structurally
important parameters while keeping the linear computational overhead. Across
extensive experiments on CIFAR-10/100 and TinyImagenet with ResNet and VGG
architectures, we show that incorporating even coarse second-order information
consistently improves pruning outcomes compared to first-order methods like SNIP
and Hessian-vector product approaches like GraSP. We also analyze the problem
of layer collapse, a significant limitation of data-dependent pruning methodolo-
gies, and demonstrate that simply updating the batch-norm statistics mitigates this
problem. Notably, this warm-up phase substantially boosts the performance of
the Hutchinson diagonal approximation in high sparsities, allowing it to surpass
magnitude pruning after training (PaT), providing insight to possibly break through
a long-standing wall for PaI methods (Frankle et al., 2020) and narrow the perfor-
mance gap between PaI and PaT. Our results suggest that scalable second-order
approximations effectively balance computational efficiency and accuracy, making
them a valuable component of the pruning toolkit. Our code is made available to
the public (anonymized for review process)1.

1 INTRODUCTION

Rapid growth in computing power and data availability has enabled Neural Networks (NNs) to
achieve remarkable progress in robotics (Soori et al., 2023), computer vision (Khan & Al-Habsi,
2020), natural language processing (Torfi et al., 2020), and related fields. However, this progress has
come hand in hand with ever-growing model sizes, raising concerns about computational expense
and energy consumption (Han et al., 2015). The prevailing “bigger is better” paradigm limits the
deployment of large NNs in edge devices and resource-constrained settings (Cheng et al., 2024).
Moreover, climate change awareness highlights the environmental impact of large-scale training and
inference (Wu et al., 2022; Chien et al., 2023), making efficient learning an essential dimension for
sustainable Artificial Intelligence (AI).
Model compression techniques, such as quantization (Dettmers et al., 2023), low-rank factorization
(Denton et al., 2014), knowledge distillation (Xu et al., 2024), neural architecture search (Zhang
et al., 2021), and neural network pruning (LeCun et al., 1989), aim to reduce model complexity while
maintaining performance. Among these, pruning stands out because it can substantially reduce model
size and computation workload with minimal performance drop. Cheng et al. (2024) provides a
comprehensive taxonomy of pruning methods, focusing on three questions: (1) Does the pruning
method achieve universal or specific acceleration? (2) At what stage of the training pipeline does the
pruning occur? (3) Is the pruning criterion predefined or learned during training?

1https://anonymous.4open.science/r/revisiting-one-shot_pruning/

1

https://anonymous.4open.science/r/revisiting-one-shot_pruning/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Most research has focused on pruning after training (PaT), given the benefit of working with converged
models that provide reliable estimations of importance. Parameters with values close to optimal
offer more information than randomly initialized ones (Kumar et al., 2024). PaT approaches range
from simple magnitude pruning (Han et al., 2015) to more principled criteria that measure loss
changes (Singh & Alistarh, 2020). Using the Hessian matrix has long been considered valuable in
the PaT setting. The foundational works of Optimal Brain Damage (OBD) (LeCun et al., 1989) and
Optimal Brain Surgeon (OBS) (Hassibi & Stork, 1992) introduced the idea of using second-derivative
information to improve the trade-off between model complexity and performance.

Although effective, PaT comes at the expense of training a fully dense model, followed by parameter
readjustment and/or retraining. This limitation raises interest for pruning at initialization (PaI),
which aims to identify subnetworks before training. The milestone work of Frankle & Carbin (2018)
established the existence of “winning tickets,” sparse subnetworks that can match or even surpass the
performance of their dense counterpart under the same parameter initialization. However, the iterative
prune-retrain strategy to uncover them remains computationally heavy, motivating the search for
more efficient search algorithms (Sreenivasan et al., 2022; You et al., 2022), or one-shot approaches
to minimize computational overhead (Lee et al., 2018; Wang et al., 2020; Tanaka et al., 2020).

Incorporating second-derivative information directly at initialization seems to be a motivated step.
However, there are reservations about relying on information from a randomly initialized model,
given the high variance and the mismatch between the early and converged curvature information
Liao & Mahoney (2021). Furthermore, the computation and storage of the Hessian matrix entries are
infeasible for modern NNs. As a result, PaI research has favored first-order methods, such as SNIP
(Lee et al., 2018), and gradient flow heuristics based on the Hessian-vector product (HVP), such as
GraSP (Wang et al., 2020).

The findings of Gur-Ari et al. (2018) and Karakida et al. (2019) suggest that the curvature of a
randomly initialized wide and overparameterized NN provides information of a small subspace where
optimization takes place, which remains consistent during training. Motivated by these observations,
we revisit the one-shot PaI setting to examine scalable estimators of the Hessian matrix for pruning.
Specifically, we explore using diagonal approximations that allow for matrix-free computations.
We study unbiased estimators of the Hessian diagonal, such as the Empirical Fisher Information
Matrix (FIM) and Hutchinson’s estimator, which reduce the overhead of second-order methods from
quadratic to linear (Yao et al., 2021).

We also propose a method to mitigate layer collapse, a failure mode in data-dependent methods
that disrupts the information flow between layers due to bottlenecks or complete layer removal
(Tanaka et al., 2020). Gradient-based PaI methods often assign disproportionately low scores to wide
layers, pruning them first and rendering the model untrainable (Kumar et al., 2024). We show that
a simple warm-up phase to update batch normalization statistics induces better gradient estimation
and prevents layer collapse. Notably, this adjustment substantially boosts the performance of the
Hutchinson diagonal approximation in high sparsities (≥ 90), allowing it to surpass magnitude PaT, a
long-standing barrier for PaI methods (Frankle et al., 2020).

Our experiments across CIFAR-10/100 and TinyImageNet with ResNet and VGG architectures
demonstrate that incorporating coarse second-order information consistently improves pruning out-
comes compared to long-standing one-shot PaI baselines like SNIP and GraSP. Our key contributions
are summarized as follows: (1) we revisit one-shot PaI with scalable second-order approximations,
focusing on empirical FIM and Hutchinson diagonal approximations for a balance between perfor-
mance and computation overhead. (2) We show that updating batch normalization statistics provides
a simple and effective fix to layer collapse and allows stable training. (3) We empirically demonstrate
that principled pruning methods narrow the gap between PaI and PaT. And (4), our experiments show
that even coarse curvature information outperforms long-standing PaI one-shot baselines, especially
under high sparsity.

2 BACKGROUND & RELATED WORK

Problem Setting. Following the taxonomy in Wang et al. (2022), we focus on unstructured pruning.
First, we create a static mask and then perform sparse training in a supervised learning setting. Given
access to the training set D = {(xn, yn)}Nn=1, composed of tuples of input xn ∈ X and output
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yn ∈ Y , the goal is to learn a model parameterized by w ∈ Rd that maps f : X → Y by minimizing
the objective function:

L(w) = 1
N

∑N
n=1 l(yn, f(xn;w)). (1)

A binary mask m ∈ {0, 1}d is applied to induce sparsity, effectively reducing the parameter count of
the model. We define the pruned model as f(xn;m⊙ w), where ⊙ denotes the Hadamard product
between m and the model weights w. The objective equation 1 then becomes:

L(m⊙ w) = 1
N

∑N
n=1 l(yn, f(xn;m⊙ w)). (2)

We construct m using an importance criterion and the target sparsity level. We denote q ∈ Q, with
Q = {1, 2, . . . , d}, as an index to refer to an element wq in the parameter vector w.

The Hessian Matrix. For a scalar-valued function that is twice differentiable, the matrix of second
partial derivatives is called the Hessian:

H(w) := ∇2L(w) ∈ Rd×d. (3)

It captures the local curvature of the loss landscape around w, indicating how rapidly the gradient
changes in different directions. The direct computation and storage of the entire d× d matrix requires
O(d2) time and O(d2) memory, making it unfeasible for modern NNs with millions, or even billions,
of parameters.

Many second-order methods utilize an approximation of the Hessian entries to alleviate the computa-
tion, especially in optimization research. Hessian-free methods exploit the Hessian-vector (HVP)
product, but might require many iterations or additional techniques for stability (Pearlmutter, 1994;
Martens & Sutskever, 2011), adding computational overhead. Another approach is to approximate
parts of the Hessian, such as the Generalized Gauss-Newton (GGN) method that uses the struc-
ture of the function to approximate a layer-wise block diagonal Hessian (Schraudolph, 2002). The
Kronecker-factored Approximate Curvature method (KFAC) further reduces the GGN computation
of each diagonal block, writing them as products of two smaller matrices (Martens & Grosse, 2015).
Still, storing the Kronecker matrices can become prohibitively expensive for large models.

One can restrict the computation to the Hessian diagonal to minimize storage demand while preserving
some curvature information. Although the exact calculation of the Hessian diagonal still has quadratic
complexity, we can use stochastic methods to compute unbiased estimates (Elsayed et al., 2024).
Martens et al. (2012) developed Curvature Propagation (CP) for an unbiased estimation of the
Hessian diagonal. They can calculate a rank-1 approximation of the whole Hessian at the cost of
two gradient evaluations. More recently, Yao et al. (2021) introduced the AdaHessian algorithm. It
uses Hutchinson’s unbiased estimator to approximate the diagonal of equation 3 using a multivariate
random variable z with a Rademacher distribution.

The Fisher Information Matrix (FIM). The FIM has been employed as an approximation of the
Hessian to increase computational speed (Vacar et al., 2011). It is defined as the expectation of the
score function’s second moment or the log-likelihood gradient. Based on the probabilistic concept
that minimizing the loss function l(y, f(x;w) is equivalent to maximizing the negative log-likelihood
− log p(y | x,w), we can express the FIM in terms of the Hessian of the log-likelihood under
regularity conditions (Schervish, 2012):

F (w) = −E
[
∇2 log p(y | x,w)

]
= E

[
∇2l(y, f(x;w))

]
. (4)

Although the FIM approximation reduces the computation, the size of the FIM still requires O(d2)
memory. Soen & Sun (2024) elaborated on the trade-offs of approximating the FIM only by its
diagonal to reduce its complexity to O(d). In practical settings, equation 4 is approximated using the
empirical training distribution for an unbiased plug-in estimator, allowing the diagonal approximation
to retain relevant geometric information while significantly reducing computational complexity,
leading to the following formulation for the empirical FIM diagonal:

diag(F̂ ) = 1
N

∑N
n=1 ∇l(yn, f(xn;w))

2. (5)

This approximation has an intuitive interpretation: a given entry in diag(F̂ ) corresponds to the
average of the squared gradient of the model’s output with respect to a parameter. The parameters
influencing the model’s output have larger entries, indicating higher importance.

3
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PaT Methods. Early pruning methods established the deletion of parameters with low saliency,
meaning their removal will have the least effect on performance. Hanson & Pratt (1988) compared
different biases in the parameter search space and observed that parameters with larger magnitudes
tend to be more significant. LeCun et al. (1989) went beyond the notion that “magnitude equals
saliency” to present a more principled saliency measure. OBD employs a second-order Taylor series
to measure the analytical change in loss by removing individual parameters under three assumptions:
(1) the computationally expensive Hessian matrix H is approximated using only its diagonal, which is
more tractable; (2) assuming a converged model, the first-order term of the Taylor series is negligible;
and (3) the local loss model is assumed quadratic, so the higher-order components are discarded. The
saliency of parameter q is defined as:

sq = 1
2w

2
qHqq. (6)

A few years later, Hassibi et al. (Hassibi & Stork, 1992) revisited the approach with OBS. They
highlighted the importance of a more complete representation of second-order information that
includes off-diagonal elements and criticized the need to fine-tune the subnetwork. They redefined
equation 6 as a constrained optimization:

minq∈Q minδw∈Rd

{
1
2δw

⊤Hδw s.t. e⊤q δw + wq = 0
}
, (7)

where eq is a one-hot vector corresponding to wq. Forming a Lagrangian from equation 7, they
derived a general expression for saliency that includes equation 6 as a special case, and an expression
to recalculate the magnitude of all parameters after removing a parameter q:

sq =
w2

q

2[H−1]qq
, δw = −wqH

−1eq
[H−1]qq

. (8)

OBS introduced a process to efficiently compute the inverse of the Hessian matrix H−1 through the
outer product approximation and the identity of the Woodbury matrix in its Kailath variant. Their
main contributions rely on using a more accurate second-order estimation and δw as a rescaling factor
while pruning, making fine-tuning after pruning optional.

Theis et al. (Theis et al., 2018) proposed using empirical FIM to approximate Hessian in the PaT
setting for the first time. As in equation 6, the first term of the Taylor expansion vanishes, but the
FIM diagonal is used to approximate the Hessian diagonal. Their saliency metric is defined as:

sq = 1
2w

2
qFqq. (9)

Using a similar approach for structured pruning, Liu et al. (2021) employed Fisher information to
estimate the importance of channels identified by a layer grouping algorithm that exploits the network
computation graph. Layers in the same group have the same pruning mask computed using the
FIM diagonal. Inspired by OBS, Singh et al. (Singh & Alistarh, 2020) identified the challenges of
computing and storing the inverse of the Hessian for large models and proposed a blockwise method
to compute iteratively. The authors empirically showed the relationship between the empirical FIM
inverse F̂−1 and the Hessian inverse H−1, concluding that the first is a good approximation of the
second as long as the application is scale invariant.

PaI Methods. When referring to methods that prune at initialization time, it is necessary to mention
the Lottery Ticket Hypothesis introduced by Frankle et al. (Frankle & Carbin, 2018). Effective
training depends heavily on the parameter initialization, hence the comparison to a lottery. Specific
initializations enable the discovery of subnetworks that can be dramatically smaller than the dense
original network and reach or exceed its performance. The authors supported their hypothesis with
an iterative pruning approach that consistently found performant ResNet18 and VGG19 subnetworks
with compression rates of 80− 90% for a classification task (CIFAR-10). This work’s importance
lies in demonstrating the existence of the winning tickets. However, they required a computationally
expensive process, opening the question: If winning tickets exist, can we find them inexpensively?

Lee et al. (Lee et al., 2018) tried to answer that question with a single-shot network pruning method
called SNIP, which measures the connection sensitivity as pruning criteria. They offered a different
point of view on pruning, introducing an auxiliary vector of indicator variables c ∈ {0, 1}d that
defines whether a connection is active or not, turning the pruning into a Hadamard product between c
and the parameters w. From that point of view, the method focuses on the influence of a connection
on the loss function, named ∆Lq , approximating it as a directional derivative gq(w;D) that represents
the effect of perturbation cq .

∆Lq(w) = limϵ→0
L(c⊙w)−L((c−ϵeq)⊙w)

ϵ

∣∣∣
c=1

= wq
∂L(w)
∂cq

= gq(w). (10)
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The intuition behind their proposed approach is that in PaI, the magnitude of the gradients with
respect to the auxiliary vector c indicates how each connection affects the loss, regardless of the
direction. Allowing them to define their expression for the connection sensitivity as follows:

sq =
|gq(c⊙w)|∑m

k=1 |gk(c⊙w)| . (11)

Wang et al. (2020) claimed that effective training requires preserving gradient flow through the model.
They proposed a method heavily based on the neural tangent kernel (NTK) concept (Jacot et al.,
2018), which provides the idea of how updates to a specific parameter affect others throughout the
training process. By defining the gradient flow as the inner product ∇L(w)⊤∇L(w) they found
a link to the NTK through its eigendecomposition, claiming that their method Gradient Signal
Preservation (GraSP) helps to select the parameters that encourage the NTK to be large in the
direction corresponding to the gradients of the output space. Similarly, they proposed a sensitivity
metric that measures the response to a stimulus δ:

S(δ) = ∆L(w0 + δ)−∆L(w0) = 2δ⊤H∇L(w) +O(||δ||22). (12)

Tanaka et al. (2020) proposed a data-agnostic approach named SynFlow. Their pruning method
is designed to identify sparse and trainable subnetworks within NNs at their initialization without
training data. Previous methods require gradient information from the data and can inadvertently
induce layer collapse, rendering the network untrainable due to information flow interruption.
SynFlow addresses this by iteratively preserving the total “synaptic flow,” or the cumulative strength
of the connections, throughout the network during pruning. This approach ensures that essential
pathways remain intact, maintaining the network’s trainability.

3 METHODOLOGY

Sensitivity Score. Following OBD (LeCun et al., 1989), we start by approximating the objective
equation 1 using a Taylor series. The perturbation δw of the parameter vector will change L by

δL = L(w)− L(w + δw) = δwT∇L(w) + 1
2δw

THδw +O(||δw||3). (13)

Unlike OBD, the gradients are far from zero in the PaI setting, and neglecting the first-order term is not
viable. Still, we operate assuming that the local error is quadratic to discard higher-order components.
This approach assumes that individually deleting the parameters yields the same perturbation as
removing them simultaneously.

As stated previously, it is not feasible to directly evaluate the quadratic term in equation 13 for
large NNs. We aim to preserve linear complexity O(d) to make the sensitivity score practical and
minimize computational overhead. Therefore, we restrict the computation of the Hessian to diagonal
approximations that capture enough curvature information. The equation 13 becomes:

δL =
∑
q∈Q

δwq
∂L(w)
∂wq

+
1

2

∑
q∈Q

δw2
qHqq. (14)

Similar to Lee et al. (2018), we consider the term sensitivity more suitable than saliency in the PaI
context. Induced perturbations at initialization will cause L to increase, decrease, or remain the same.
Unlike inducing perturbations at convergence, where L only increases or stays the same. Consider the
magnitude of equation 14. High values mean that the parameters q significantly change the objective
function (positive or negative) and should be preserved for the pruned model to learn. We define the
sensitivity of the parameter wq as follows:

sq =
∣∣∣wq

∂L(w)
∂wq

+ 1
2w

2
qHqq

∣∣∣ . (15)

Scalable approximation of the Hessian. Firstly, we consider the Hutchinson approximation that
AdaHessian (Yao et al., 2021) utilizes. We sample a random Rademacher vector z ∈ {−1, 1}d and
compute the HVP Hz. In practice, computation of the HVP is performed via a single backpropagation
trick without ever forming the full Hessian, keeping the cost on the order of a gradient pass. The
elementwise product of Hz and z, averaged over random draws, yields an unbiased estimator of the
Hessian diagonal:

diag(Ĥ) = Ez

[
(Hz)⊙ z

]
. (16)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

With the incorporation of diag(Ĥ) into equation 15, we define Hutchinson-Taylor Sensitivity (HTS)
as our first parameter importance score:

sq =
∣∣∣wq

∂L(w)
∂wq

+ 1
2w

2
qĤqq

∣∣∣ . (17)

Secondly, the equivalence between FIM and Hessian described in equation 4 only holds in convergence
when the parameter vector w maximizes the likelihood E[∇ log p(y | x,w)] = 0. However, Karakida
et al. (2019) showed that even at initialization, the FIM captures essential geometric properties of the
parameter space. Some FIM eigenvalues are close to zero and indicate local flatness, while others are
significantly large and induce substantial distortions in specific directions. Based on these claims, we
test whether the signals from the empirical FIM diagonal are strong enough to identify important
parameters. In addition, the FIM has the desirable property of being PSD by construction, ensuring a
stable representation. With the incorporation of diag(F̂ ) into equation 15, we define Fisher-Taylor
Sensitivity (FTS) as our second parameter importance score:

sq =
∣∣∣wq

∂L(w)
∂wq

+ 1
2w

2
q F̂qq

∣∣∣ . (18)

Baselines comparison and Taylor Series Ablation. For comparison, we evaluate our proposed
criteria against the following pruning methods: random, parameter magnitude, gradient norm (GN),
SNIP Lee et al. (2018), and GraSP Wang et al. (2020). We also want to understand better the effect
and capabilities of the evaluated Hessian approximations as pruning criteria, so we decompose
the different elements of equation 15. The following methods employ the first-order component:
magnitude, GN, and SNIP. Being the last reformulated by (Wang et al., 2020), showing that SNIP is
equivalent to taking the magnitude of the first-order component:

sq =

∣∣∣∣wq
∂L(w)
∂wq

∣∣∣∣ .
From the second-order component, we evaluate two sensitivity criteria. First, we directly evaluate the
diagonal approximations of the Hessian, referring to them as Hutchinson Diagonal (HD) and Fisher
Diagonal (FD):

sq = Ĥqq, sq = F̂qq. (19)

Second, we evaluate the effect of using only the second-order term as in OBD (LeCun et al., 1989) or
Fisher Pruning (Theis et al., 2018), referring to them as Hutchinson Pruning (HP) and Fisher Pruning
(FP):

sq = w2
qĤqq, sq = w2

q F̂qq. (20)

Pruning Mask. Given a data set partition, we compute the vector s that contains the sensitivity score
sq for each parameter q. We generate the saliency scores throughout the training sets with a batch size
of 1 for an accurate comparison. To create the pruning mask m, we define a percentile p to narrow
the subset containing the parameter index to retain:

R = {q | sq is in the top (1− p) of scores}.

Using this subset R, the elements of the binary mask m are defined using the following rule: mq = 1
if q ∈ R and mq = 0 otherwise. We produce the pruned model f(x;m⊙ w0) with the Hadamard
product between the binary mask m and the vector of the initial parameters of the model w0, with the
sparsity ratio defined as:

sparsity = 1
d

∑
q mq,

where d is the total number of parameters of the dense model. This approach preserves only the
parameters that have the most significant impact on the Taylor series approximation. Once the mask is
applied, the pruned model is optimized utilizing stochastic gradient descent to minimize the objective
function equation 2. It is important to mention that our pruning process skips the parameters from
batch normalization and the output layers, as we consider them essential to enable learning and
performing the designed task. We also skip bias parameters, as they are initialized as zero and are not
informative in the PaI setting.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 1: Test accuracy across sparsity levels for ResNet18/50 on CIFAR-10/100, and TinyImageNet
under various PaI methods. The dashed gray line denotes the baseline accuracy without pruning.

4 RESULTS AND DISCUSSION

To evaluate the effectiveness of the different pruning criteria presented, we performed experiments
on benchmarks commonly used in the pruning literature (Frankle et al., 2020), specifically CIFAR-
10/100 (Krizhevsky et al., 2009) and TinyImageNet (Deng et al., 2009) datasets in ResNet (He et al.,
2016) and VGG (Simonyan, 2014) architectures. We report all metrics across three initialization
seeds, with training details in the Appendix A.

Base Reference Case. Given the low complexity of the task, we consider the CIFAR-10 classification
with ResNet18 as our base reference case. Random pruning is the first trivial baseline that methods
should surpass. As seen in Table A5 (Appendix E.1), random’s performance is comparable to the
91.78 baseline accuracy up to 70% sparsity. After that point, the Plot 1a in Figure 1 shows a rapid
performance degradation as we increase the sparsity. Although high sparsities require making trade-
offs between potential efficiency improvements of sparsity and severe drops in accuracy, we focus
our analysis on this regime, where the differences and limits of the methods are pronounced.

Magnitude pruning performs well up to 0.80 sparsity ratio, where it achieves the highest accuracy
(91.10%± 0.12). However, its performance decays rapidly in extreme sparsity, scoring lower than
random in the sparsity ratio 90%. All methods (except GraSP) outperform random and magnitude
pruning in sparsity ≥ 0.90, strengthening the argument that better-principled criteria are required
to train pruned models efficiently. However, in the extreme sparsity regime, the HP criterion
outperformed the rest of the methods, achieving 89.57%± 0.08, 87.88%± 0.27, and 85.86%± 0.21
at sparsity ratios 95%, 98%, and 99%, respectively. These results suggest that even coarse second
derivative information improves the trade-off between model complexity and performance.

Increasing Model Complexity. We evaluated the consistency of our results by switching the model in
our reference case to ResNet50, a deeper and wider architecture model commonly used in large-scale
vision tasks. Similarly, random’s performance is comparable to the 90.97 baseline accuracy up to
70% sparsity (Table A7, Appendix E.2). The Plot 1b in Figure 1 further moves the balance in favor
of principled criteria, as magnitude pruning suffers from layer collapse. Contrary to our reference
case, SNIP and FTS are the top-performers in the extreme sparsity regime, with HD and HTS criteria
constantly matching the top performer. Although there is a tendency for methods that incorporate
first-order information in this experiment, three criteria incorporate coarse second-order information,
suggesting robustness from the Hessian diagonal approximations.

Increasing Task Complexity. We also explore increasing the difficulty of the classification task
by evaluating the CIFAR-100 and TinyImageNet datasets with ResNet18. As seen in the Plot 1c
in Figure 1 (Table A10, Appendix F.1), the trend in CIFAR-100 is similar to that in the reference
case. HP outperforms in the extreme sparsity regime, while all methods are comparable in low
and moderate sparsities. The Plot 1d in Figure 1 (Table A13, Appendix G.1) shows the results for
TinyImageNet. We can observe a considerable performance distance from the HD and HP criteria
to the rest of the methods across the full sparsity range. These results suggest that second-order
information that better approximates the Hessian outperforms methods that depend on first-order
information as we increase the task complexity.

Our results, from the reference case to the high complexity ones, align with the observations of
Yvinec et al. (2022), who note that a basic magnitude-based approach may remove low-magnitude
parameters without considering their contribution to training. For a visual comparison and analysis
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Figure 2: Left: Effect of a warm-up phase on pruning stability in VGG19 with CIFAR-10/100 at
extreme sparsity ratios. Several methods exhibit systematic layer collapse without a warm-up (left),
leading to near-random performance. A warm-up phase (right) largely prevents collapse and preserves
accuracy across methods. Results for smaller sparsity ratios are reported in Appendix E.3. Right:
Importance of batch normalization layers’ statistics (BNS), preventing layer collapse. We studied the
case of VGG19 pruning at 95% sparsity, which is the level that started showing layer collapse.

of parameter selection by the proposed criteria, we refer the reader to the Appendix I. Frankle et al.
(2020) conclude that no single method is SOTA, since there is a network, a data set, and a sparsity
combination where each pruning method reached the highest accuracy. We agree with their claim for
low and moderate sparsity settings, where even random might be the top-performer. However, our
results demonstrate that even coarse approximations of the Hessian improve the trade-off between
sparsity and performance for extreme sparsities. Making scalable second-order approximations a
valuable component of the pruning toolkit.

Preventing Layer Collapse. Table A8 (Appendix E.3) and Table A11 (Appendix F.2) show the
performance of different pruning criteria evaluated in CIFAR-10 and CIFAR-100, respectively, with
VGG19. All data-dependent methods (even magnitude pruning) suffer a drastic performance drop
at higher sparsities. This behavior is consistent with the layer collapse phenomenon described by
Tanaka et al. (Tanaka et al., 2020), where pruning removes entire layers (or most of their parameters),
severely disrupting the flow of information and making the network untrainable. We propose a
warm-up phase before forming the pruning mask, consisting of two steps: freeze all the model
parameters and perform a complete pass over the dataset to update the batch-norm layers’ statistics.
This simple yet effective solution to mitigate layer collapse enables better gradient estimation at
initialization, which is essential for all data-dependent criteria. The left side of Figure 2 shows that
our proposed warm-up phase greatly alleviates layer collapse, with only a couple of criteria being
unable to overcome it at 99% sparsity. The right side of Figure 2 presents a visual representation of
the results in Table A4 (Appendix D). It is clearly observed that at the 0.95 sparsity ratio, the update
of the batch-norm statistics reduces to 0% the number of collapsed layers and greatly reduces the
percentage of bottlenecks, enabling the training of the pruned model.

PaI vs. PaT comparison. Frankle et al. (2020) strongly criticized PaI methodologies for consistently
underperforming compared to magnitude PaT. However, their analysis did not assess how the PaI-
designed criteria perform in the post-training setting. Table A14 in Appendix H.1 evaluates all criteria
in the reference case under the same retraining protocol as Frankle et al. (2020). Our results show that
all principled criteria outperform magnitude pruning in the PaT setting, with HP being the constant
top-performer in high sparsities.

In Figure 3, we visualize the performance gain from the PaT setting over the PaI setting. Contrary
to expectations, not all methods perform better in the PaT setting. GN and FD exhibit substantial
performance drops in the PaT setting. At convergence, these methods might induce layer collapse. For
magnitude pruning, as we increase the sparsity, it is clear that its advantage over PaI methodologies
comes from training a fully dense model and retraining. In contrast, it is observed that HP is not only
the constant top-performer in both settings, but it has the closest gap between them (1.6%).

For high sparsities, we evaluated whether the proposed warm-up phase has an improving effect in the
PaI settings. Table A6 in Appendix E.1, shows that most methods increased their performance. Most
notably, HD performance increased by 1.57%, 2.39%, and 1.96% for sparsity ratios 95%, 98%, and
99%, respectively. It is the only method that surpasses magnitude pruning in extreme sparsity. These
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results solidify the value of scalable second-order information and provide insights to possibly break
the long-standing wall for PaI methods without the training of a fully dense model.
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Figure 3: Delta between PaT and PaI test accuracy at ex-
treme sparsities (0.90–0.99) for different pruning methods on
ResNet18 with CIFAR-10. Each panel shows the behavior of
one method across sparsity levels, with 0 marked by a dashed
line. Results for smaller sparsity ratios are provided in Table
A15, Appendix H.1.

Computational Complexity. Finally,
we compare the pruning criteria on
the basis of their complexity. Table
A2 (Appendix B) details the practi-
cal and theoretical time complexity,
space complexity, wall-clock runtime,
and the relative percentage of train-
ing time of each method. Since we
take the full training sets with a batch
size of 1 for computing the scores, the
wall-clock time reaches its limits for
comparison. The proposed FTS and
HTS effectively reduce the complex-
ity of the Hessian matrix to O(d), and
reduce the computational cost to just
O(Nd), the same as first-order meth-
ods such as SNIP or GN. While the
mask computation of FTS barely contributes to the total training times, HTS incurs an outstandingly
high wall-clock runtime given the requirement for k random vectors z from the Rademacher distribu-
tion. We defined k = 10 random vectors for each HVP pass for a better estimation, but the user can
adjust to fewer if the number of passes is large enough. Also, in practical applications, the user can
accelerate the wall-clock runtime with larger batch computations.

5 LIMITATIONS

Based on the findings of Gur-Ari et al. (2018) and Karakida et al. (2019), we operate under the
assumption that the FIM and Hutchinson diagonals are good enough approximations of second-order
information at initialization. The methods are designed to perform unstructured global pruning,
limiting their applicability to attention-based architectures, which suffer from such strategies as
pointed out in Cheng et al. (2024). The diagonal approximation assumes non-interaction between
parameters at the second-order level score, leading to an inexpensive way of incorporating second-
order information (see Appendix B). Additionally, we included an ablation to study the robustness of
all data-dependent methods to noisy data when creating the pruning mask, finding that the results are
consistent with our assumed noiseless setup in the reported results (see Appendix C).

6 CONCLUSION

This work presents scalable diagonal approximations of second-order information to perform one-shot
pruning at initialization. We demonstrate the effectiveness of approximations in both PaI and PaT
settings, especially in the extreme sparsity regime. The results show that HP and HD consistently
outperform or match the SOTA PaI methods for different models, complexities of tasks, and sparsities.
We demonstrated that a warm-up phase to update batch normalization statistics mitigates layer
collapse when using data-dependent methods and improves the Hutchinson estimator.
Our work contributes to advancing efficient deep learning and resource-aware model deployment.
We show that even coarse second-order methods reduce the performance gap between PaI and PaT,
offering a step toward more efficient and theoretically grounded model compression techniques.
Future work includes refining the approximations to capture off-diagonal interactions and extending
our approach to structured pruning in attention-based architectures, as well as exploring the integration
with other compression techniques, such as quantization.
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7 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with direct societal
risk. The methods proposed focus on understanding and finding ways to improve neural network
pruning efficiency at initialization, with the goal of reducing computational cost while maintaining
model performance. By lowering the hardware requirements for training and inference, our approach
contributes positively to the sustainability and accessibility of AI research. We do not anticipate
ethical concerns beyond standard responsible research practices.

8 REPRODUCIBILITY STATEMENT

We have made all code, instructions, and experimental details available in an open-source repository
(link provided in the abstract). The repository contains scripts for data preprocessing, model pruning
at initialization, training, and evaluation, along with configuration files to replicate all reported results.
Hyperparameters, experimental settings, and evaluation metrics are fully documented to ensure
transparency. This facilitates independent verification of our findings and enables researchers to
extend our work with minimal setup effort.
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APPENDIX

A TRAINING AND TESTING DETAILS

We perform an 80:20 stratified split on the training sets to obtain a validation set with the same class
distribution. Validation is performed after each training step, and the weights of the best-performing
validation step (based on the top-1 accuracy) are used for the final evaluation of the test set. Table A1
shows the training parameters.

Table A1: Training configurations for various networks and datasets.

Network Dataset Epochs Batch Opt. Mom. LR Weight Decay LR Drops Drop Factor

ResNet-18 CIFAR-10/100 160 512 SGD 0.9 0.01 1e-4 60, 120 0.2
ResNet-50 CIFAR-10 160 512 SGD 0.9 0.01 1e-4 60, 120 0.2
VGG-19 CIFAR-10/100 160 512 SGD 0.9 0.1 1e-4 60, 120 0.1
ResNet-18 TinyImageNet 160 512 SGD 0.9 0.01 1e-4 30, 60, 80 0.1

All CIFAR-10, CIFAR-100, and TinyImageNet experiments were conducted in single GPUs NVIDIA
RTX 5000.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B COMPUTATIONAL COMPLEXITY

For clarity, we will stick to the notation in the main body of the manuscript: d denotes the number of
parameters in the network, B is the number of batches, and N is the number of data samples. Some
precision about the columns:

• Practical Time Complexity corresponds to how we compute it in the empirical setup,
determined by the batch size used to create the mask and limited by available RAM/VRAM
constraints. To compute the most accurate estimation of the Fisher Information Matrix
(FIM), the batch size of the mask should be 1, which comes with the cost of more iterations
when creating the mask (B = N ).

• Theoretical Time Complexity indicates the worst-case scenario.
• Space Complexity indicates the storage requirements for estimating the metrics, considering

that some require keeping intermediate results that will iteratively accumulate until the best
metric estimation is obtained.

• Wall-Clock Runtime is the empirical time we measured for each method under similar
conditions: the same task (ResNet-18 with CIFAR-10), the same type of GPU, uninterrupted
computation, and a batch size of 1 (worst case).

• Percentage of Training Time refers to the portion of the training time the mask computation
represents for each method.

Table A2: Comparison of pruning methods in terms of computational complexity and runtime
characteristics.

METHOD
PRACTICAL

TIME
COMPLEXITY

THEORETICAL
TIME

COMPLEXITY

SPACE
COMPLEXITY

WALL-CLOCK
RUNTIME (S)

TRAINING
TIME %

DEPENDS ON
DATA?

USES
GRADIENTS?

HESSIAN
USE

RANDOM O(1) O(1) O(1) 0.46 0.0002 NO NO NONE
MAGNITUDE O(d) O(d) O(d) 0.07 0.000 03 NO NO NONE

GN O(Bd) O(Nd) O(d) 788.04 28.469 YES YES NONE
SNIP O(Bd) O(Nd) O(d) 620.86 23.871 YES YES NONE

GRASP O(Bd2) O(Nd2) O(d) 2880.69 59.265 YES YES HESSIAN-VECTOR
FD O(Bd) O(Nd) O(d) 754.82 27.600 YES YES DIAG. APPROX.∗
FP O(Bd) O(Nd) O(d) 909.07 31.465 YES YES DIAG. APPROX.∗

FTS O(Bd) O(Nd) O(d) 986.83 33.262 YES YES DIAG. APPROX.∗
HD O(Bd) O(Nd) O(d) 15 538.87 88.697 YES YES DIAG. APPROX.
HP O(Bd) O(Nd) O(d) 15 544.54 88.701 YES YES DIAG. APPROX.

HTS O(Bd) O(Nd) O(d) 16 469.52 89.268 YES YES DIAG. APPROX.
OBD O(Bd) O(Nd) O(d) – – YESa YESb DIAG.a

OBS O(Bd2) O(Nd2) O(d2) – – YESa YESc FULL INVERSEd

FULL HESSIAN O(Bd2) O(Nd2) O(d2) – – YES YES FULL

∗ FIM Approximation, a Post-Training, b For diagonal, c Outer products, d Kailath.

Notes:

1. F* methods use the empirical Fisher diagonal (computed from squared gradients on data
batches), not the true Hessian. Practical runtime scales with the number of batches used for
estimation.

2. H* methods use Hutchinson’s stochastic diagonal approximation of the Hessian. Runtime
scales linearly with the number of probe vectors (fixed here to [insert value, e.g., 10]). These
require Hessian–vector products (second-order backprop), not just first-order gradients.

3. Depends on Data? indicates whether the method requires explicit forward/backward passes
on input data to estimate its metric, not just parameter values.

4. Space Complexity: Entries such as O(d2) (OBS, Full Hessian) are correct theoretically but
infeasible in practice for modern networks, since storing the full Hessian or its inverse is
memory-prohibitive.

5. Wall-clock times and training percentages for OBS and Full Hessian are omitted, as these
methods are impractical at scale.
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C NOISY MASK GENERATION

While pruning at initialization has shown promising results under standard conditions, real-world
scenarios often involve some degree of noise or perturbation in the data. In practice, the data used
to generate pruning masks may be affected by measurement errors, distributional shifts, or other
sources of corruption. To evaluate the sensitivity of different data-dependent pruning methods to
such perturbations, we conducted an experiment where Gaussian noise was added to the data loader
used during mask generation. This setup allows us to assess the robustness of each method and to
understand how performance is impacted when the pruning process is exposed to noisy inputs. This
experiment considered our reference case (ResNet18 on CIFAR-10) with the same three seeds we
used for our main results, using Gaussian noise with mean 0 and std. 0.1. We present the results in
the following table; we only considered the data-dependent methods.

Table A3: Accuracy after generating a pruning mask, adding Gaussian noise for high-extreme
sparsities for ResNet-18 and CIFAR-10 dataset.

SPARSITY (%) GN SNIP GRASP FD FP FTS HD HP HTS
95 88.84 ± 0.22 89.14 ± 0.32 86.13 ± 0.23 89.49 ± 0.09 88.77 ± 0.13 89.14 ± 0.36 90.09 ± 0.22 89.07 ± 0.27 89.61 ± 0.82
98 85.95 ± 0.23 87.11 ± 0.35 85.93 ± 0.11 87.23 ± 0.29 85.84 ± 0.18 86.83 ± 0.09 88.15 ± 0.34 87.07 ± 0.32 88.04 ± 1.33
99 82.84 ± 0.56 84.53 ± 0.30 84.93 ± 0.10 84.47 ± 0.03 82.89 ± 0.60 84.28 ± 0.54 85.75 ± 0.29 84.59 ± 0.45 85.88 ± 1.06

The results reinforce the relevance of metrics relying on second-order information when facing data
corruption. The HD criterion has the most consistent behavior across extreme sparsities, suggesting
robustness that could be attributed to the sampling in Hutchinson’s approximation process. It is
noticeable that it was the only metric that boosted its performance from the setting without noise, in
conjunction with GraSP, suggesting that there could be a benefit from building pruning masks with
noise.
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D STUDY ON BATCH-NORM STATISTICS

All models in our experiments use batch-norm (BN) layers; however, only VGG19 experiences layer
collapse. We presumed that better statistics yield better gradient estimations, which is paramount
when using data-based criteria in pruning. To validate this insight, we ran an experiment comparing
the resulting pruning masks before and after updating the BN statistics.

Table A4: Importance of batch normalization layers’ statistics (BNS) in preventing layer collapse.
We studied the case of VGG-19 pruning at 95% sparsity, which is the level that started showing
layer collapse. C indicates the percentage of layers that collapsed after pruning (100% of the layer is
pruned), and B indicates the percentage leading to a bottleneck (80% of the layer is pruned).

GN SNIP GRASP FD FP FTS HD HP HTS
BNS STATUS C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%) C (%) B (%)

WITHOUT WARM-UP 16.67 24.20 18.18 22.73 16.67 24.24 16.67 24.24 12.12 24.24 16.67 24.24 13.64 24.24 1.52 22.73 13.64 24.24
WITH WARM-UP 0 22.73 0 12.12 0 12.12 0 19.70 0 22.73 0 19.70 0 15.15 0 15.15 0 16.67

The Table A4 compares the percentage of collapsed layers in VGG19 resulting from the pruning
mask before and after updating only the BN statistics and leaving the initial parameters frozen using
one complete pass through the data. Note that %C indicates the percentage of layers that collapsed
after pruning (100% of the layer is pruned), and %B indicates the percentage leading to a bottleneck
(80% of the layer is pruned). This insight allowed us to propose the warmup process to mitigate layer
collapse.
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E RESULTS CIFAR10

E.1 RESNET18

Table A5: Performance of different pruning methods for CIFAR-10 on ResNet18 without warmup.
The right side of the table presents our proposed criteria. Bold values highlight the top performer’s
mean accuracy and methods with matching performance (mean lies within the standard deviation of
the best-performing method). Baseline, no pruning: 91.78± 0.09.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 91.71 ± 0.21 91.72 ± 0.07 91.57 ± 0.15 91.72 ± 0.07 89.16 ± 0.05 91.87 ± 0.13 91.63 ± 0.21 91.53 ± 0.12 91.43 ± 0.20 91.59 ± 0.15 91.51 ± 0.07
20 91.63 ± 0.11 91.42 ± 0.12 91.51 ± 0.09 91.64 ± 0.16 88.69 ± 0.34 91.50 ± 0.12 91.65 ± 0.14 91.53 ± 0.15 91.57 ± 0.14 91.41 ± 0.18 91.29 ± 0.16
30 91.45 ± 0.18 91.61 ± 0.13 91.68 ± 0.20 91.65 ± 0.08 88.67 ± 0.26 91.65 ± 0.18 91.44 ± 0.27 91.49 ± 0.05 91.21 ± 0.07 91.32 ± 0.27 91.34 ± 0.14
40 91.59 ± 0.18 91.06 ± 0.16 91.61 ± 0.09 91.55 ± 0.08 88.24 ± 0.33 91.51 ± 0.05 91.38 ± 0.13 91.56 ± 0.28 91.24 ± 0.23 91.50 ± 0.12 91.39 ± 0.06
50 91.60 ± 0.15 91.32 ± 0.13 91.44 ± 0.13 91.22 ± 0.07 87.69 ± 0.15 91.30 ± 0.18 91.58 ± 0.16 91.46 ± 0.19 91.41 ± 0.20 91.31 ± 0.09 91.19 ± 0.14
60 91.10 ± 0.16 91.18 ± 0.16 91.59 ± 0.13 91.24 ± 0.04 87.48 ± 0.55 91.34 ± 0.07 91.35 ± 0.16 91.40 ± 0.11 91.00 ± 0.16 91.29 ± 0.08 91.26 ± 0.04
70 91.17 ± 0.04 91.07 ± 0.07 91.19 ± 0.17 91.33 ± 0.18 87.26 ± 0.34 91.34 ± 0.23 91.42 ± 0.23 91.21 ± 0.18 91.02 ± 0.08 91.10 ± 0.16 91.06 ± 0.21
80 90.78 ± 0.08 91.10 ± 0.12 90.95 ± 0.35 90.74 ± 0.10 87.18 ± 0.51 90.95 ± 0.11 91.08 ± 0.06 90.94 ± 0.22 90.90 ± 0.25 90.78 ± 0.27 90.81 ± 0.10
90 89.35 ± 0.13 89.88 ± 0.28 90.39 ± 0.23 90.36 ± 0.34 86.60 ± 0.51 90.04 ± 0.21 90.20 ± 0.08 89.22 ± 0.30 90.15 ± 0.14 90.25 ± 0.21 90.17 ± 0.16
95 87.59 ± 0.11 89.23 ± 0.19 89.00 ± 0.05 89.31 ± 0.17 86.50 ± 0.05 88.61 ± 0.28 89.50 ± 0.18 89.47 ± 0.32 89.09 ± 0.23 89.57 ± 0.08 89.23 ± 0.45
98 83.47 ± 0.20 85.70 ± 0.33 86.43 ± 0.05 87.26 ± 0.28 85.99 ± 0.08 85.61 ± 0.20 86.97 ± 0.22 87.24 ± 0.32 87.06 ± 0.35 87.88 ± 0.27 87.07 ± 0.20
99 78.28 ± 0.45 71.99 ± 0.28 83.47 ± 0.15 84.54 ± 0.04 84.56 ± 0.46 82.13 ± 0.28 83.74 ± 0.48 84.85 ± 0.18 85.05 ± 0.26 85.86 ± 0.21 84.48 ± 0.47

Table A5 shows the complete sparsity spectrum for ResNet18 with CIFAR-10. We highlight the
model’s resilience given that random pruning has a negligible drop in performance up to 0.7 sparsity
compared to the baseline. After this point, we observe a significant degradation for naive methods
(random and magnitude). The proposed second-order-based criteria (in bold) demonstrate their
robustness by consistently ranking among the top performers across sparsity ratios.

Table A6: Performance of different pruning methods for CIFAR-10 on ResNet18 after 1 warmup
epoch on high to extreme sparsity. The right side of the table presents our proposed criteria. Bold
values highlight the top performer’s mean accuracy and methods with matching performance (mean
lies within the standard deviation of the best-performing method). Baseline, no pruning: 91.78±0.09.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

80 90.73 ± 0.04 90.97 ± 0.24 91.38 ± 0.10 91.36 ± 0.03 83.82 ± 0.19 91.72 ± 0.13 91.32 ± 0.13 91.19 ± 0.09 91.28 ± 0.22 90.91 ± 0.24 90.85 ± 0.09
90 89.54 ± 0.10 90.10 ± 0.09 90.78 ± 0.08 90.58 ± 0.24 83.08 ± 1.14 91.06 ± 0.05 90.69 ± 0.08 90.79 ± 0.32 91.01 ± 0.16 90.52 ± 0.16 89.89 ± 0.03
95 87.43 ± 0.25 89.35 ± 0.13 89.77 ± 0.37 89.56 ± 0.22 84.18 ± 0.16 89.57 ± 0.62 89.62 ± 0.23 89.74 ± 0.10 90.66 ± 0.09 89.91 ± 0.15 88.90 ± 0.21
98 83.54 ± 0.03 86.69 ± 0.37 87.11 ± 0.09 87.47 ± 0.21 82.99 ± 0.54 86.30 ± 0.06 87.23 ± 0.28 87.85 ± 0.24 89.45 ± 0.11 88.07 ± 0.15 87.43 ± 0.10
99 78.22 ± 0.36 82.21 ± 0.35 83.82 ± 0.67 85.27 ± 0.31 82.58 ± 0.69 82.64 ± 0.26 84.85 ± 0.22 85.53 ± 0.26 87.01 ± 0.06 85.61 ± 0.14 84.72 ± 0.19
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E.2 RESNET50

Table A7: Performance of different pruning methods for CIFAR-10 on ResNet50 without warmup.
The right side of the table presents our proposed criteria. Bold values highlight the top performer’s
mean accuracy and methods with matching performance (mean lies within the standard deviation of
the best-performing method). Baseline, no pruning: 90.97± 0.15.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 91.15 ± 0.08 91.23 ± 0.17 91.26 ± 0.21 91.43 ± 0.14 90.03 ± 0.60 91.17 ± 0.08 91.12 ± 0.14 91.00 ± 0.07 90.08 ± 0.27 90.29 ± 0.31 90.80 ± 0.37
20 91.03 ± 0.24 91.03 ± 0.12 91.27 ± 0.08 91.29 ± 0.19 88.53 ± 1.45 91.31 ± 0.25 91.06 ± 0.09 91.14 ± 0.03 90.24 ± 0.25 90.32 ± 0.16 91.03 ± 0.19
30 91.10 ± 0.16 90.75 ± 0.26 91.30 ± 0.10 91.26 ± 0.15 86.60 ± 1.81 91.38 ± 0.15 91.37 ± 0.22 91.23 ± 0.16 89.81 ± 0.31 90.40 ± 0.33 90.74 ± 0.18
40 90.92 ± 0.15 90.72 ± 0.16 91.24 ± 0.18 91.17 ± 0.13 87.05 ± 1.15 91.46 ± 0.14 91.22 ± 0.22 91.09 ± 0.13 90.43 ± 0.22 90.40 ± 0.25 90.93 ± 0.30
50 91.03 ± 0.11 90.56 ± 0.21 91.19 ± 0.06 91.12 ± 0.22 85.34 ± 1.53 91.26 ± 0.12 91.06 ± 0.02 91.37 ± 0.18 90.53 ± 0.22 90.42 ± 0.33 90.94 ± 0.22
60 90.66 ± 0.08 90.56 ± 0.09 91.23 ± 0.15 90.91 ± 0.21 84.63 ± 0.34 90.81 ± 0.27 91.02 ± 0.12 91.20 ± 0.31 90.89 ± 0.07 90.54 ± 0.16 90.79 ± 0.36
70 90.42 ± 0.24 90.22 ± 0.15 91.17 ± 0.30 90.60 ± 0.09 78.64 ± 2.36 90.82 ± 0.35 91.01 ± 0.09 90.76 ± 0.17 90.68 ± 0.23 90.24 ± 0.13 90.36 ± 0.64
80 89.85 ± 0.14 86.80 ± 0.19 90.71 ± 0.21 90.55 ± 0.08 79.96 ± 1.30 90.56 ± 0.18 90.68 ± 0.17 90.76 ± 0.17 90.60 ± 0.09 90.02 ± 0.07 90.31 ± 0.24
90 88.57 ± 0.36 74.26 ± 0.25 89.67 ± 0.13 89.97 ± 0.21 79.30 ± 4.57 89.17 ± 0.17 89.80 ± 0.15 89.87 ± 0.25 89.96 ± 0.17 89.20 ± 0.39 89.26 ± 0.17
95 86.59 ± 0.21 10.00 ± 0.00 87.65 ± 0.20 88.52 ± 0.25 78.43 ± 1.38 85.16 ± 0.43 87.97 ± 0.29 88.58 ± 0.17 88.31 ± 0.36 87.90 ± 0.17 88.34 ± 0.11
98 81.67 ± 0.51 10.00 ± 0.00 77.74 ± 0.57 84.81 ± 0.25 80.03 ± 0.78 65.62 ± 3.45 79.26 ± 0.87 84.79 ± 0.33 84.67 ± 0.68 83.60 ± 0.79 84.76 ± 0.18
99 74.57 ± 0.76 10.00 ± 0.00 65.63 ± 1.09 76.37 ± 0.44 76.88 ± 1.54 49.12 ± 0.36 67.05 ± 1.43 76.76 ± 0.30 75.25 ± 1.91 75.38 ± 1.80 75.95 ± 0.37

Table A7 shows the complete sparsity spectrum for ResNet50 with CIFAR-10. Compared to the
smaller ResNet18 results, this deeper and wider architecture exhibits a faster performance drop as we
increase the sparsity. Notably, the FD criterion is performant for low to sparsities, the GN criterion
for moderate ones, and the SNIP criterion is for extreme ones. The proposed second-order criteria
(bold) remain top performers across all sparsity levels, reinforcing the idea that there is not a silver
bullet for PaI, and that criteria are complementary. However, we highlight that our proposed criteria
manage to cover a larger part of the spectrum.
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E.3 VGG19

Table A8: Performance of different pruning methods for CIFAR-10 on VGG19. The right side of the
table presents our proposed criteria. Bold values highlight the top performer’s mean accuracy and
methods with matching performance (mean lies within the standard deviation of the best-performing
method). Baseline, no pruning: 89.21± 0.22.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 88.40 ± 0.95 89.12 ± 0.55 90.14 ± 0.10 90.16 ± 0.18 87.81 ± 1.66 90.20 ± 0.29 90.21 ± 0.37 90.25 ± 0.38 89.50 ± 0.30 88.89 ± 0.74 90.04 ± 0.16
20 89.19 ± 0.22 89.65 ± 0.60 89.59 ± 0.69 90.06 ± 0.04 89.57 ± 0.34 89.91 ± 0.28 90.28 ± 0.55 89.80 ± 0.28 88.92 ± 0.11 88.30 ± 0.80 89.92 ± 0.39
30 88.93 ± 0.83 88.77 ± 1.07 90.23 ± 0.09 89.88 ± 0.59 89.14 ± 0.19 90.25 ± 0.09 89.97 ± 0.26 90.46 ± 0.41 89.97 ± 0.14 89.70 ± 0.26 89.82 ± 0.32
40 88.28 ± 1.08 89.38 ± 0.53 90.50 ± 0.23 89.79 ± 0.67 88.20 ± 0.31 90.51 ± 0.12 90.37 ± 0.24 90.23 ± 0.14 90.17 ± 0.15 90.09 ± 0.25 90.09 ± 0.23
50 88.96 ± 0.82 89.03 ± 0.59 90.46 ± 0.60 90.38 ± 0.25 88.67 ± 0.23 89.54 ± 0.86 90.47 ± 0.52 90.19 ± 0.31 90.05 ± 0.18 89.99 ± 0.11 89.97 ± 0.16
60 88.15 ± 0.68 89.47 ± 0.18 89.95 ± 0.30 90.32 ± 0.25 88.82 ± 0.32 90.02 ± 0.40 90.18 ± 0.33 90.14 ± 0.36 89.66 ± 0.79 89.51 ± 0.80 89.38 ± 1.12
70 88.02 ± 0.53 89.63 ± 0.44 89.69 ± 0.42 89.23 ± 0.19 89.62 ± 0.81 89.85 ± 0.08 90.01 ± 0.34 10.00 ± 0.00 89.85 ± 0.09 90.00 ± 0.07 89.61 ± 0.38
80 88.28 ± 0.34 89.62 ± 0.91 85.72 ± 0.63 89.39 ± 0.43 88.82 ± 0.14 10.00 ± 0.00 88.29 ± 0.11 10.00 ± 0.00 89.89 ± 0.54 89.51 ± 0.72 87.94 ± 0.09
90 85.82 ± 0.19 89.29 ± 0.79 10.00 ± 0.00 80.85 ± 0.62 24.28 ± 20.2 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 86.56 ± 0.53 10.00 ± 0.00
95 84.41 ± 0.05 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
98 80.04 ± 0.90 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00
99 76.89 ± 0.26 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00 10.00 ± 0.00

Table A9: Performance of different pruning methods after warm-up phase for CIFAR-10 on VGG19.
The right side of the table presents our proposed criteria. Bold values highlight the top performer’s
mean accuracy and methods with matching performance (mean lies within the standard deviation of
the best-performing method). Baseline, no pruning: 89.21± 0.22.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

80 88.73 ± 0.38 88.35 ± 0.54 86.76 ± 0.27 87.39 ± 0.66 87.24 ± 0.25 87.14 ± 0.45 87.00 ± 0.87 87.68 ± 0.33 88.72 ± 0.90 88.88 ± 0.95 88.95 ± 0.45
90 87.26 ± 0.42 88.62 ± 0.49 85.96 ± 0.75 86.75 ± 0.76 87.47 ± 0.33 86.69 ± 0.72 87.09 ± 0.31 87.42 ± 0.21 89.40 ± 0.46 88.99 ± 0.51 89.00 ± 0.24
95 85.47 ± 0.64 87.68 ± 0.49 86.66 ± 0.27 86.00 ± 1.10 86.71 ± 1.24 85.71 ± 1.35 86.73 ± 0.36 87.56 ± 0.62 89.43 ± 0.21 88.80 ± 0.80 88.71 ± 0.20
98 80.44 ± 0.30 86.61 ± 0.62 84.72 ± 1.69 87.22 ± 0.23 86.45 ± 0.64 80.34 ± 6.43 86.07 ± 0.39 86.36 ± 0.29 88.86 ± 0.54 88.68 ± 0.41 88.12 ± 0.75
99 77.24 ± 0.73 83.69 ± 1.36 80.28 ± 2.04 83.49 ± 1.77 85.39 ± 0.43 75.11 ± 7.80 84.40 ± 1.27 85.35 ± 1.05 10.00 ± 0.00 10.00 ± 0.00 60.67 ± 43.9

Table A8 shows the complete sparsity spectrum for VGG19 with CIFAR-10. We observe how
performance drastically degrades for data-dependent methods when the sparsity increases, ultimately
leading to layer collapse. As discussed in the Results section of the main body, we propose a warm-up
phase that updates the batch norm statistics to prevent collapse and stabilize pruning performance.
Table A9 demonstrates the effectiveness of this approach to mitigate layer collapse.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F RESULTS CIFAR100

F.1 RESNET18

Table A10: Performance of different compression methods evaluated using ResNet18 on the CIFAR-
100 dataset. Bold values highlight the top performer’s mean accuracy and methods with matching
performance (mean lies within the standard deviation of the best-performing method). The right side
of the table presents our proposed criteria. Baseline, no pruning: 69.57± 0.19.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 69.16 ± 0.11 69.37 ± 0.14 69.63 ± 0.34 69.42 ± 0.07 64.26 ± 0.27 69.66 ± 0.30 69.08 ± 0.21 69.16 ± 0.11 68.63 ± 0.53 69.03 ± 0.31 68.94 ± 0.56
20 69.16 ± 0.30 69.06 ± 0.24 69.19 ± 0.11 69.30 ± 0.08 63.28 ± 0.58 69.60 ± 0.30 69.35 ± 0.35 69.41 ± 0.43 68.39 ± 0.49 68.85 ± 0.26 68.60 ± 0.43
30 69.36 ± 0.18 68.58 ± 0.36 69.37 ± 0.13 68.82 ± 0.17 62.02 ± 0.43 69.24 ± 0.40 68.84 ± 0.13 68.80 ± 0.55 68.60 ± 0.46 69.20 ± 0.34 68.12 ± 0.42
40 69.41 ± 0.20 68.50 ± 0.29 69.16 ± 0.26 68.95 ± 0.19 61.18 ± 0.19 69.17 ± 0.16 68.88 ± 0.25 69.02 ± 0.21 68.01 ± 0.16 68.87 ± 0.13 68.15 ± 0.28
50 69.12 ± 0.46 68.17 ± 0.20 68.94 ± 0.20 68.63 ± 0.11 61.11 ± 0.40 69.13 ± 0.13 68.68 ± 0.12 68.71 ± 0.12 68.67 ± 0.53 68.37 ± 0.13 68.19 ± 0.27
60 68.66 ± 0.27 67.78 ± 0.35 68.77 ± 0.17 68.63 ± 0.42 61.40 ± 0.78 68.34 ± 0.43 67.98 ± 0.23 68.41 ± 0.14 68.10 ± 0.21 67.93 ± 0.25 67.71 ± 0.27
70 67.95 ± 0.43 67.51 ± 0.24 68.29 ± 0.39 68.08 ± 0.18 59.43 ± 0.76 68.03 ± 0.46 67.96 ± 0.15 68.29 ± 0.06 67.80 ± 0.40 67.21 ± 0.13 67.57 ± 0.35
80 67.26 ± 0.48 66.55 ± 0.19 67.20 ± 0.37 67.21 ± 0.38 59.08 ± 0.22 66.70 ± 0.05 67.05 ± 0.06 66.77 ± 0.65 67.32 ± 0.10 66.87 ± 0.04 66.42 ± 0.24
90 64.75 ± 0.16 64.48 ± 0.18 64.87 ± 0.27 65.70 ± 0.28 59.16 ± 0.91 64.74 ± 0.44 65.46 ± 0.30 65.41 ± 0.13 65.35 ± 0.47 64.89 ± 0.41 64.56 ± 0.33
95 61.01 ± 0.32 62.20 ± 0.06 62.20 ± 0.23 63.20 ± 0.20 57.91 ± 0.09 62.14 ± 0.42 63.22 ± 0.25 63.21 ± 0.47 62.87 ± 0.38 63.07 ± 0.41 62.36 ± 0.31
98 54.72 ± 0.22 55.44 ± 0.18 57.34 ± 0.31 58.83 ± 0.35 54.85 ± 0.35 55.57 ± 0.17 58.05 ± 0.18 58.59 ± 0.12 59.05 ± 0.51 60.05 ± 0.24 58.00 ± 0.49
99 45.62 ± 0.55 40.39 ± 0.36 50.46 ± 0.61 52.96 ± 0.12 49.13 ± 0.19 48.02 ± 0.32 49.98 ± 0.60 52.85 ± 0.24 54.73 ± 0.67 55.11 ± 0.46 51.86 ± 0.43

We tested the CIFAR-100 dataset to extend our evaluation with a higher-complexity task. Table A10
shows that although some of our proposed metrics remain top performers at high to extreme sparsities
(FTS, HD, HP). Also, HD and HP criteria take a significant distance from SNIP (a traditional
approach) in the extreme sparsity setting, suggesting that second-order information could capture
information that is relevant to push the boundaries of PaI forward.
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F.2 VGG19

Table A11: Performance of different compression methods evaluated using VGG19 on the CIFAR-
100 dataset. Bold values highlight the top performer’s mean accuracy and methods with matching
performance (mean lies within the standard deviation of the best-performing method). The right side
of the table presents our proposed criteria. The right side of the table presents our proposed criteria.
Baseline, no pruning: 58.96± 2.30.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 60.31 ± 0.40 59.13 ± 1.29 61.93 ± 0.48 61.98 ± 0.29 59.32 ± 0.63 62.13 ± 0.61 60.45 ± 3.47 61.56 ± 1.04 57.14 ± 2.16 58.82 ± 1.48 60.71 ± 1.47
20 60.43 ± 1.14 59.27 ± 0.34 62.64 ± 0.21 62.68 ± 0.24 61.21 ± 0.41 63.04 ± 0.43 62.71 ± 1.02 62.24 ± 0.44 58.83 ± 1.37 58.62 ± 1.16 61.34 ± 0.62
30 58.32 ± 0.60 59.35 ± 1.43 62.61 ± 0.23 63.11 ± 0.35 59.30 ± 0.43 62.85 ± 0.42 61.43 ± 0.61 62.65 ± 0.54 61.27 ± 0.16 61.04 ± 0.50 61.90 ± 0.29
40 56.50 ± 3.20 60.04 ± 1.02 62.36 ± 0.02 62.39 ± 0.55 56.34 ± 1.49 62.38 ± 0.75 61.56 ± 1.25 62.67 ± 0.06 61.19 ± 0.50 60.59 ± 1.47 62.40 ± 0.19
50 58.47 ± 1.49 61.49 ± 1.22 62.02 ± 0.64 62.76 ± 0.50 54.43 ± 0.84 62.84 ± 0.33 62.25 ± 0.33 62.47 ± 0.42 61.00 ± 0.69 60.96 ± 0.83 59.76 ± 1.18
60 57.54 ± 0.74 61.50 ± 0.30 62.55 ± 0.13 63.08 ± 0.55 56.76 ± 0.69 62.40 ± 0.57 62.70 ± 0.63 62.17 ± 0.23 61.40 ± 0.59 61.45 ± 0.42 59.99 ± 3.42
70 57.63 ± 0.80 61.71 ± 0.25 60.85 ± 0.79 60.58 ± 0.39 57.76 ± 0.84 60.44 ± 0.34 60.92 ± 0.41 60.51 ± 1.67 61.45 ± 1.42 61.28 ± 0.18 60.42 ± 0.29
80 57.84 ± 0.57 61.89 ± 1.02 55.09 ± 0.49 59.84 ± 0.29 58.39 ± 0.74 1.00 ± 0.00 43.16 ± 1.02 58.66 ± 2.28 60.72 ± 0.38 59.14 ± 2.57 57.08 ± 0.50
90 58.41 ± 0.41 62.60 ± 0.91 1.00 ± 0.00 8.35 ± 10.39 42.88 ± 1.64 1.00 ± 0.00 1.00 ± 0.00 8.87 ± 11.13 1.00 ± 0.00 56.08 ± 0.72 1.00 ± 0.00
95 54.84 ± 1.08 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
98 50.21 ± 0.72 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
99 46.69 ± 0.45 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table A12: Performance of different compression methods evaluated after warm-up phase using
VGG19 on the CIFAR-100 dataset. Bold values highlight the top performer’s mean accuracy and
methods with matching performance (mean lies within the standard deviation of the best-performing
method). The right side of the table presents our proposed criteria. The right side of the table presents
our proposed criteria. Baseline, no pruning: 58.96± 2.30.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

80 EXTBF60.39 ± 1.16 58.91 ± 0.41 52.81 ± 1.32 55.62 ± 2.27 55.15 ± 2.25 56.71 ± 0.31 58.03 ± 0.93 52.41 ± 3.07 60.11 ± 1.22 59.31 ± 2.79 59.30 ± 1.69
90 58.90 ± 0.98 60.95 ± 0.81 50.56 ± 4.59 55.89 ± 2.05 56.01 ± 1.58 52.07 ± 3.24 53.65 ± 0.57 52.45 ± 3.75 59.65 ± 2.16 59.98 ± 0.27 59.69 ± 1.32
95 56.10 ± 0.85 57.64 ± 2.63 50.34 ± 1.00 53.70 ± 3.60 56.16 ± 0.41 54.44 ± 1.38 53.24 ± 3.54 53.56 ± 1.26 59.20 ± 2.53 59.09 ± 3.86 60.22 ± 0.38
98 50.97 ± 0.40 54.66 ± 2.56 43.43 ± 5.32 50.19 ± 1.59 54.64 ± 1.50 42.75 ± 1.91 50.59 ± 3.39 48.56 ± 5.25 60.14 ± 0.28 58.36 ± 0.45 58.91 ± 0.14
99 EXTBF46.52 ± 0.45 43.33 ± 5.83 33.90 ± 5.35 42.65 ± 5.32 45.98 ± 4.48 29.67 ± 8.49 49.11 ± 3.46 48.70 ± 2.59 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

The results in VGG19 with CIFAR-100 exhibit a similar trend to those observed in CIFAR-10.
Table A11 shows the occurrence of layer collapse in extreme sparsities when no warm-up is applied,
leading to a significant drop in accuracy. Introducing a simple warm-up phase effectively resolves
this issue as seen in Table A12, restoring the pruning performance in all evaluated criteria.
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G RESULTS TINYIMAGENET

G.1 RESNET18

Table A13: Performance of different pruning methods for TinyImageNet on ResNet18. Bold values
highlight the top performer’s mean accuracy and methods with matching performance (mean lies
within the standard deviation of the best-performing method). The right side of the table presents our
proposed criteria. The right side of the table presents our proposed criteria. Baseline, no pruning:
57.00± 0.11.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 56.65 ± 0.16 56.88 ± 0.22 56.48 ± 0.19 56.56 ± 0.29 53.94 ± 0.34 56.36 ± 0.17 56.84 ± 0.09 56.77 ± 0.29 56.68 ± 0.19 57.25 ± 0.23 56.73 ± 0.14
20 56.43 ± 0.25 56.52 ± 0.19 56.56 ± 0.18 56.31 ± 0.09 52.30 ± 0.16 56.50 ± 0.34 56.35 ± 0.14 56.49 ± 0.12 56.58 ± 0.40 57.06 ± 0.60 56.38 ± 0.10
30 56.68 ± 0.28 55.93 ± 0.24 56.31 ± 0.14 56.10 ± 0.36 50.97 ± 0.53 55.94 ± 0.07 56.18 ± 0.29 56.58 ± 0.22 56.63 ± 0.17 57.12 ± 0.55 56.34 ± 0.22
40 56.44 ± 0.36 55.79 ± 0.22 56.22 ± 0.15 56.06 ± 0.27 50.05 ± 0.27 56.33 ± 0.12 55.96 ± 0.05 55.94 ± 0.04 56.63 ± 0.30 56.62 ± 0.21 55.94 ± 0.27
50 56.57 ± 0.09 55.24 ± 0.09 56.21 ± 0.30 55.86 ± 0.27 48.27 ± 1.11 55.98 ± 0.04 55.85 ± 0.31 55.95 ± 0.21 56.53 ± 0.45 56.78 ± 0.56 56.02 ± 0.40
60 56.07 ± 0.11 54.94 ± 0.50 55.19 ± 0.30 55.53 ± 0.27 47.15 ± 0.46 55.41 ± 0.18 55.25 ± 0.18 55.52 ± 0.11 56.24 ± 0.29 56.06 ± 0.45 55.16 ± 0.47
70 55.92 ± 0.14 54.33 ± 0.12 54.99 ± 0.29 55.17 ± 0.39 45.71 ± 0.30 54.06 ± 0.40 54.76 ± 0.40 54.91 ± 0.18 55.91 ± 0.51 55.55 ± 0.25 54.68 ± 0.22
80 45.39 ± 0.18 54.05 ± 0.21 53.42 ± 0.32 53.36 ± 0.30 43.79 ± 0.39 53.04 ± 0.51 53.30 ± 0.34 53.52 ± 0.17 55.20 ± 0.30 54.92 ± 0.17 53.70 ± 0.30
90 43.27 ± 0.28 46.28 ± 0.25 50.34 ± 0.26 51.21 ± 0.19 42.03 ± 1.08 49.83 ± 0.29 50.37 ± 0.33 51.35 ± 0.36 52.98 ± 0.38 53.39 ± 0.21 51.41 ± 0.16
95 39.96 ± 0.34 42.66 ± 0.21 45.48 ± 0.16 46.91 ± 0.21 39.94 ± 0.86 44.24 ± 0.60 46.41 ± 0.13 47.54 ± 0.12 50.55 ± 0.18 50.52 ± 0.19 47.13 ± 0.20
98 31.69 ± 0.22 33.34 ± 0.10 37.63 ± 0.45 39.43 ± 0.28 35.51 ± 0.75 34.53 ± 0.67 38.16 ± 0.34 39.33 ± 0.07 44.30 ± 0.35 44.75 ± 0.07 39.71 ± 0.62
99 24.11 ± 0.13 24.41 ± 0.14 30.56 ± 0.73 32.71 ± 0.52 28.41 ± 0.85 28.94 ± 0.36 31.05 ± 0.14 32.86 ± 0.36 38.55 ± 0.27 37.77 ± 0.47 32.75 ± 0.26

We tested the TinyImageNet dataset to extend our evaluation with a higher-complexity task. Table A13
shows that the metrics based on Hutchinson approximation show a clear dominance in a more complex
task, being HD and HP the sole best performing metrics at the most extreme sparsities we tried.
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H PRUNE AFTER TRAINING CIFAR-10

H.1 RESNET18

Table A14: Pruning After Training performance of different methods evaluated using ResNet18 on
CIFAR10 after retraining. Bold values highlight the top performer’s mean accuracy and methods
with matching performance (mean lies within the standard deviation of the best-performing method).
The right side of the table presents our proposed criteria. The right side of the table presents our
proposed criteria. Baseline, no pruning: 91.83± 0.15.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 92.47 ± 0.18 92.38 ± 0.09 92.29 ± 0.17 92.29 ± 0.11 88.89 ± 0.15 92.37 ± 0.12 92.36 ± 0.11 92.34 ± 0.04 92.27 ± 0.20 92.36 ± 0.14 92.34 ± 0.09
20 92.44 ± 0.25 92.26 ± 0.16 92.43 ± 0.02 92.50 ± 0.05 86.90 ± 0.54 92.41 ± 0.17 92.37 ± 0.07 92.51 ± 0.07 92.30 ± 0.11 92.31 ± 0.07 92.46 ± 0.13
30 92.43 ± 0.09 92.05 ± 0.17 92.47 ± 0.12 92.37 ± 0.06 86.19 ± 0.98 92.51 ± 0.07 92.33 ± 0.15 92.33 ± 0.08 92.31 ± 0.08 92.35 ± 0.18 92.37 ± 0.15
40 92.51 ± 0.10 92.20 ± 0.16 92.39 ± 0.19 92.17 ± 0.07 85.31 ± 0.92 92.35 ± 0.13 92.22 ± 0.07 92.46 ± 0.10 92.22 ± 0.17 92.21 ± 0.16 92.44 ± 0.16
50 92.35 ± 0.13 92.10 ± 0.12 92.44 ± 0.10 92.23 ± 0.10 85.99 ± 0.30 92.23 ± 0.09 92.34 ± 0.11 92.40 ± 0.17 92.11 ± 0.08 92.32 ± 0.22 92.23 ± 0.20
60 92.06 ± 0.24 92.06 ± 0.03 92.46 ± 0.07 92.13 ± 0.12 85.89 ± 0.28 92.15 ± 0.09 92.19 ± 0.02 92.17 ± 0.16 92.15 ± 0.10 92.37 ± 0.26 92.29 ± 0.08
70 91.74 ± 0.01 92.05 ± 0.05 92.32 ± 0.20 92.29 ± 0.20 84.96 ± 0.29 92.27 ± 0.14 92.15 ± 0.11 92.35 ± 0.05 92.13 ± 0.10 92.28 ± 0.21 92.22 ± 0.17
80 90.66 ± 0.11 91.96 ± 0.07 92.36 ± 0.07 92.02 ± 0.08 84.47 ± 0.56 92.32 ± 0.10 91.93 ± 0.04 92.02 ± 0.10 91.85 ± 0.10 92.22 ± 0.11 92.13 ± 0.01
90 89.29 ± 0.35 91.65 ± 0.21 91.74 ± 0.16 91.77 ± 0.24 84.75 ± 0.09 91.78 ± 0.13 91.65 ± 0.12 91.66 ± 0.07 91.73 ± 0.17 92.18 ± 0.17 91.80 ± 0.13
95 87.58 ± 0.20 91.09 ± 0.17 90.34 ± 0.65 91.00 ± 0.08 84.14 ± 0.56 90.89 ± 0.09 91.09 ± 0.16 91.14 ± 0.21 91.35 ± 0.12 91.42 ± 0.16 91.34 ± 0.20
98 83.32 ± 0.30 88.90 ± 0.18 86.88 ± 1.01 89.18 ± 0.19 83.24 ± 0.32 60.28 ± 35.56 88.91 ± 0.18 89.03 ± 0.03 89.39 ± 0.19 89.44 ± 0.14 89.46 ± 0.43
99 79.22 ± 0.02 85.38 ± 0.26 46.55 ± 27.39 87.18 ± 0.22 82.27 ± 0.57 10.00 ± 0.00 86.56 ± 0.19 87.29 ± 0.34 87.31 ± 0.25 87.46 ± 0.21 87.43 ± 0.07

Table A15: Delta between PaT and PaI test accuracy utilizing different pruning methods on ResNet18
with CIFAR-10. We mark with bold our proposed criteria.

SPARSITY (%) RANDOM MAGNITUDE GN SNIP GRASP FD FP FTS HD HP HTS

10 0.76 0.66 0.72 0.57 -0.27 0.50 0.73 0.81 0.84 0.77 0.83
20 0.81 0.84 0.92 0.86 -1.79 0.91 0.72 0.98 0.73 0.90 1.17
30 0.98 0.44 0.79 0.72 -2.48 0.86 0.89 0.84 1.10 1.03 1.03
40 0.92 1.14 0.78 0.62 -2.93 0.84 0.84 0.90 0.98 0.71 1.05
50 0.75 0.78 1.00 1.01 -1.70 0.93 0.76 0.94 0.70 1.01 1.04
60 0.96 0.88 0.87 0.89 -1.59 0.81 0.84 0.77 1.15 1.08 1.03
70 0.57 0.98 1.13 0.96 -2.30 0.93 0.73 1.17 1.11 1.18 1.16
80 -0.12 0.86 1.41 1.28 -2.71 1.37 0.85 1.08 0.95 1.44 1.32
90 -0.06 1.77 1.35 1.41 -1.85 1.74 1.45 1.08 1.58 1.93 1.63
95 -0.01 1.86 1.34 1.69 -2.36 2.28 1.59 1.67 2.26 1.85 2.11
98 -0.15 3.20 0.45 1.92 -2.75 -25.33 1.94 1.79 2.33 1.56 2.39
99 0.94 13.39 -36.92 2.64 -2.29 -72.13 2.82 2.44 2.26 1.60 2.95

Frankle et al. (Frankle et al., 2020) previously criticized PaI methods for consistently underperforming
compared to magnitude PaT. However, their analysis did not assess how the PaI-designed criteria
perform in the PaT setting. Table A14 shows that second-order-based criteria remain top performers
across sparsities in the PaT setting. Table A15 presents the test accuracy delta between PaI and PaT
settings. As we increase the sparsity, it is clear that the advantage of magnitude PaT comes at the
expense of training a fully dense model and the required retraining. In the case of the HP metric, it
gained only 1.6%, showing a close gap between the settings.
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I COMPARISON OF OUR CRITERIA WITH MAGNITUDE-BASED PRUNING

Figure A1: Proposed criteria vs. Magnitude parameter selection for 99% sparsity (ResNet18, CIFAR-
10, Seed 0)

Figure A1 illustrates the relationship between parameter magnitude and different sensitivity-based
pruning metrics. Each point represents a model parameter, with red points indicating the top-ranked
parameters selected for retention by each criterion. The green dashed line marks the 99th percentile
of parameter magnitudes. A key observation is that the success of data-based methods relies on the
ability to consider small-magnitude parameters that would be discarded by magnitude-based pruning.
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J EMPIRICAL COMPARISON OF HESSIAN VERSUS FIM

We conducted simple experiments to evaluate the structural similarity between the Hessian matrix
and the FIM. With a very small model (3 layers), we computed the two matrices per layer using
two datasets: MNIST and CIFAR-10. We obtained the full Hessian using automatic differentiation
and the FIM by accumulating the gradient’s outer products. To compare them, we first normalized
the matrices, which differ only in scale, as pointed out by a similar experiment in Singh & Alistarh
(2020), and then compared the absolute difference between parameters: |Hessian − FIM|. We can
identify that the majority of the structure is consistent between both estimations. The similarity
becomes more noticeable after one training epoch, and it is consistent with the initial structure at
initialization.
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(a) Layer 1 at initialization. (b) Layer 1 after 1 epoch.

(c) Layer 2 at initialization. (d) Layer 2 after 1 epoch.

(e) Layer 3 at initialization. (f) Layer 3 after 1 epoch.

Figure A2: Difference between normalized Hessian vs. FIM for MNIST dataset.
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(a) Layer 1 at initialization. (b) Layer 1 after 1 epoch.

(c) Layer 2 at initialization. (d) Layer 2 after 1 epoch.

(e) Layer 3 at initialization. (f) Layer 3 after 1 epoch.

Figure A3: Difference between normalized Hessian vs. FIM for CIFAR-10 dataset.
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