
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REALIGN: REGULARIZED PROCEDURE ALIGNMENT
WITH MATCHING VIDEO EMBEDDINGS VIA PARTIAL
GROMOV-WASSERSTEIN OPTIMAL TRANSPORT

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from procedural videos remains a core challenge in self-supervised rep-
resentation learning, as real-world instructional data often contains background
segments, repeated actions, and steps presented out of order. Such variability
violates the strong monotonicity assumptions underlying many alignment meth-
ods. Prior state-of-the-art approaches, such as OPEL and RGWOT, leverage Kan-
torovich Optimal Transport (KOT) and Gromov–Wasserstein Optimal Transport
(GWOT) to build frame-to-frame correspondences, but operate only on local fea-
ture similarity and pairwise relational structure, without explicit temporal priors,
which limits their ability to capture the higher-order temporal structure of a task.
In this paper, we introduce REALIGN, an unsupervised framework for procedure
learning based on Regularized Fused Partial Gromov-Wasserstein Optimal Trans-
port (R-FPGWOT). In contrast to RGWOT, our formulation jointly models visual
correspondences and temporal relations under a partial alignment scheme, en-
abling robust handling of irrelevant frames, repeated actions, and non-monotonic
step orders common in instructional videos. To stabilize training, we integrate
FPGWOT distances with inter-sequence contrastive learning, avoiding the need
for multiple regularizers and preventing collapse to degenerate solutions. Across
egocentric (EgoProceL) and third-person (ProceL, CrossTask) benchmarks, RE-
ALIGN achieves up to 18.9% (7.62pp) average F1-score improvements and over
30%(7.74pp) temporal IoU gains, while producing more interpretable transport
maps that preserve key-step orderings and filter out noise.

1 INTRODUCTION

A central goal in modern AI applications-such as household robotics, augmented reality assistance,
and industrial automation-is to enable agents to reliably replicate multi-step human demonstrations.
Achieving this requires not only recognizing individual steps but also understanding how they form
coherent procedures, such as preparing a salad (Fig. 1) with steps like peeling, chopping, and mix-
ing. Unlike simple one-off actions, these procedures require models to reason about both sequence
and structure, making the problem far more complex. Early approaches tried to solve this problem
with hand-crafted rules that defined each step and its transitions. While intuitive, these rule-based
systems have struggled to generalize across different domains, often breaking down when faced with
visual variability, background noise, or steps appearing in unexpected orders. Real-world demon-
strations are simply too diverse and messy to capture with explicit rules (for example, there are
countless ways of cooking pasta or assembling furniture). This gap between rigid rules and messy
real-world data is what motivates the shift toward learning-based methods. To overcome these lim-
itations, the community has increasingly turned to procedure learning (PL)-the discovery of key
steps and their temporal arrangement directly from raw instructional videos, without dense human
supervision (Bansal et al. (2022; 2024); Elhamifar & Huynh (2020)). Large, uncurated repositories
(e.g., YouTube tutorials, egocentric recordings, assembly demos) provide rich but noisy supervision
(Alayrac et al. (2016); Kukleva et al. (2019)), offering both the scale and diversity needed to learn
procedures in realistic settings.

Unlike short-term action recognition which focuses on isolated clips (e.g., classifying ‘cutting’ vs.
‘stirring’) (Carreira & Zisserman (2017); Simonyan & Zisserman (2014); Piergiovanni et al. (2017);
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Figure 1: Key-step preparation of a salad bowl (De la Torre et al. (2009)) with alignment challenges:
(a) background frames (gray blocks), (b) non-monotonic frames (curved arrows), and (c) redundant
frames. Two videos are aligned via a transport matrix T, where the optimal path is obtained by
comparing embedding similarities. This alignment groups frames into steps, each represented by a
distinct color. While KOT relies solely on inter-domain costs, GWOT additionally enforces intra-
domain structural consistency, producing smoother temporal mappings. In contrast, the proposed
R-FPGWOT relaxes the balanced-mass constraint by introducing a virtual sink node (gray), which
absorbs background or redundant frames (darker shades) and preserves clean, step-wise correspon-
dences across videos.

Kumar et al. (2022)), procedure learning (PL) analyzes collections of demonstrations to infer both
the key-steps and their temporal sequencing. This is challenging because different demonstrations
of the same procedure may present steps in different orders (e.g., adding dressing before or after
chopping vegetables), repeat certain steps, or include irrelevant background segments of idle mo-
tion. Related directions in instructional video understanding have explored planning (Zhao et al.
(2022)), correctness verification (Qian et al. (2022)), and instructional summarization (Narasimhan
et al. (2022)). In contrast, PL uniquely focuses on aligning demonstrations into a coherent sequence
of key-steps. Prior research has approached PL in supervised and weakly supervised settings. Su-
pervised PL methods (Naing & Elhamifar (2020); Zhou et al. (2018); Zhukov et al. (2019)) depend
on costly frame-level annotations, while weakly supervised approaches (Li & Todorovic (2020);
Richard et al. (2018); Chang et al. (2019)) rely on predefined step lists, limiting scalability. Self-
supervised approaches (Bansal et al. (2022); Dwibedi et al. (2019)) exploit procedural structure
via monotonic alignment assumptions (Hadji et al. (2021)). Real-world instructional videos, how-
ever, often deviate from these assumptions and exhibit temporal irregularities (Fig. 1): (a) back-
ground frames with irrelevant content (e.g., waiting, idle motion, or showing ingredients), (b) non-
monotonic sequences where steps occur out of order (e.g., add sauce before chopping all vegetables),
and (c) redundant segments capturing repeated or unnecessary steps, complicating alignment.

Early self-supervised methods like TCC (Dwibedi et al. (2019)) and CnC (Bansal et al. (2022))
introduced cycle-consistency or contrastive learning but struggled with clutter. OT-based methods
reframed alignment of frames as an assignment problem. Methods such as VAVA (Shen et al. (2021))
combined OT with contrastive loss but failed at balancing multiple losses and handling repeated ac-
tions. OPEL (Chowdhury et al. (2024)) used Kantorovich OT (KOT) (Thorpe (2018)) with temporal
priors yet remained sensitive to irrelevant frames. Recent techniques such as ASOT (Xu & Gould
(2024)), VASOT (Ali et al. (2025)), and RGWOT (Mahmood et al. (2025)) leveraged Gromov-
Wasserstein OT (GWOT) (Peyré et al. (2016)) for relational matching and reordering. However,
their fully balanced formulations enforced strict one-to-one correspondences between frames, caus-
ing background segments (e.g., waiting, camera motion, idle actions) to be wrongly aligned with
actual key-steps, thereby hindering accurate discovery.

In this paper, we propose Regularized Fused Partial Gromov-Wasserstein Optimal Transport (R-
FPGWOT), a partial, regularized extension of Fused GWOT (FGWOT) that builds directly on RG-
WOT by relaxing the balanced marginal constraints and introducing a virtual sink node for un-
matched or redundant frames. Unlike KOT and GWOT, this unbalanced partial transport (Bai et al.
(2025)) allows irrelevant or background frames to be mapped to a single shared ”null” mass in-
stead of being forced into spurious correspondences. The formulation provides three main benefits:
(i) exclusion of background frames using virtual sink, (ii) robustness to temporal and structural
ordering variations via Laplace-shaped priors, and (iii) an adaptive fusion trade-off between seman-
tic similarity (KOT-style feature costs) and structural consistency (GWOT-style relational costs).
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To further improve stability, we integrate these temporal smoothness priors and the C-IDM reg-
ularizer into a unified loss, which prevents degenerate collapse of all frames into a single cluster
and sharpens the transport plan around a near-diagonal procedural ridge. Finally, for each video,
the key-steps are clustered using graphcut segmentation (Boykov et al. (2002)) in the embedding
space. REALIGN (Regularized Procedure Alignment with Matching Video Embeddings via Partial
Gromov-Wasserstein Optimal Transport) achieves 18.9% (7.62pp) higher F1 and 30% (7.74pp)
higher IoU on both egocentric (EgoProceL (Bansal et al. (2022))) and third-person (ProceL (Elham-
ifar & Huynh (2020)), CrossTask (Zhukov et al. (2019))) datasets, producing semantically faithful
alignments.

In summary, our main contributions are as follows:
• We introduce REALIGN, a new OT formulation for unsupervised PL that combines the se-
mantic matching ability of classical Kantorovich OT with the structural consistency of Gromov-
Wasserstein OT, while relaxing balanced constraints to better handle instructional videos.
• REALIGN supports flexible partial assignments, enabling robust alignment of demonstrations
that contain background clutter, step re-orderings, or redundant actions-cases where fully balanced
OT methods (e.g. OPEL, RGWOT) often fail.
• We design a unified alignment loss that integrates temporal smoothness, optimal regularization,
and a novel inter-video contrastive term, preventing degenerate matches and improving stability
in OT-based training.
• REALIGN achieves substantial performance gains over SOTA baselines, with an average im-
provement of 11.6% F1-score (4.45pp) and 19.6% IoU (4.73pp) on the EgoProceL benchmark.

2 RELATED WORKS
Self-Supervised Representation Learning for Videos. Self-supervised learning derives super-
visory signals directly from data. Early work focused on images with tasks such as colorization
(Larsson et al. (2016); Huang et al. (2016)), object counting (Liu et al. (2018)), jigsaw puzzle solv-
ing (Carlucci et al. (2019); Kim et al. (2018; 2019)), rotation prediction (Gidaris et al. (2018); Feng
et al. (2019)), image inpaintings (Jenni et al. (2020)) and image clustering (Caron et al. (2018;
2019)). More recently, video-based methods exploit spatial and temporal cues through tasks like
frame prediction (Ahsan et al. (2018); Diba et al. (2019); Han et al. (2019); Srivastava et al. (2015)),
maintaining temporal consistency (Goroshin et al. (2015); Mobahi et al. (2009); Zou et al. (2011)),
ordering frames (Fernando et al. (2017); Lee et al. (2017); Misra et al. (2016); Xu et al. (2019)),
detecting the flow of time (Pickup et al. (2014); Wei et al. (2018)), estimating action speed (Benaim
et al. (2020); Wang et al. (2020); Yao et al. (2020)), and clustering (Kumar et al. (2022); Tran et al.
(2024)). Unlike these methods that often derive signals from a subset of videos, PL aims to uncover
the key steps of a task and their order across multiple videos for broader generalization.
Representations for Procedure Learning (PL). PL emphasizes frame-level feature learning, using
relative frame timestamps (Kukleva et al. (2019)), temporal prediction (VidalMata et al. (2021)),
attention (Elhamifar & Huynh (2020)), or cross-video correspondences (Bansal et al. (2022)) to
derive robust embeddings. Graph-based methods (Bansal et al. (2024)) further cluster semantically
related frames but often require preprocessing (e.g., background removal) to mitigate noise and
redundancy. Beyond purely visual methods, multi-modal PL has incorporated narrated text (Alayrac
et al. (2016); Damen et al. (2014); Doughty et al. (2020); Fried et al. (2020); Malmaud et al. (2015);
Yu et al. (2014)), optical flow, depth, or gaze signals (Shah et al. (2023)). These modalities enrich
supervision but suffer from stream misalignment (Elhamifar & Huynh (2020); Elhamifar & Naing
(2019)), automatic speech recognition (ASR) errors requiring manual fixes, and high memory and
computation costs. Recent purely visual OT-based works (Chowdhury et al. (2024); Xu & Gould
(2024); Ali et al. (2025); Mahmood et al. (2025)) laid the foundation on which we build our novel
OT formulation for egocentric visual PL.
Video Alignment. Classical alignment methods like Canonical Correlation Analysis (CCA) (An-
drew et al. (2013)) and soft-Dynamic Time Warping (DTW) (Haresh et al. (2021)), assume syn-
chronization, while TCC (Dwibedi et al. (2019)) and GTCC (Donahue & Elhamifar (2024)) enforce
local cycle-consistency. For global alignment, LAV (Haresh et al. (2021)) leverages DTW assuming
monotonic sequences, whereas KOT-based methods (Liu et al. (2022); Chowdhury et al. (2024))
remain sensitive to repeated actions and loss balancing. Recent GWOT-based methods (Ali et al.
(2025); Mahmood et al. (2025); Xu & Gould (2024)) handle reordering and redundancy but risk
degenerate solutions. In this work, we propose a regularized fused partial OT formulation, incorpo-
rating Laplace priors and inter-video contrastive loss for more robust unsupervised PL.
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Figure 2: REALIGN framework. (a) An encoder generates frame-level embeddings from two video
sequences, which serve as inputs for alignment. (b) A fused partial Gromov-Wasserstein optimal
transport (FPGWOT) module, guided by structural priors, computes the transport map to establish
frame-to-frame correspondences. (c) A contrastive regularization term (C-IDM) pushes apart dis-
similar frames while pulling together temporally coherent ones. (d) An inter-sequence loss further
stabilizes training by penalizing degenerate alignments, encouraging both the best and worst dis-
tances to be respected. Forward and backward arrows represent computation and gradient flows,
while grey indicates temporal alignment and purple/green denote regularization components.

Learning Key-step Ordering. Most prior work in PL overlooks the variability in task execution,
often assuming a fixed sequential order of key-steps (Elhamifar & Naing (2019); Kukleva et al.
(2019); VidalMata et al. (2021)) or ignoring the ordering altogether (Elhamifar & Huynh (2020);
Shen et al. (2021)). As shown in Figure 1, a task can be completed in different valid ways, with
steps rearranged or substituted. Our method captures this variability by building a tailored key-step
sequence for each video, letting the model adapt to the specific ordering.

3 METHODOLOGY

Our goal in REALIGN is to align instructional videos in a way that preserves both semantic meaning
and temporal structure, while staying robust to background noise and redundancy. To achieve this,
we design a framework that extends optimal transport with partial matching, structural priors, and
contrastive regularization. The following subsections describe how each component contributes to
reliable procedural alignment and key-step discovery.

3.1 REGULARIZED PARTIAL GROMOV-WASSERSTEIN OPTIMAL TRANSPORT (R-FPGWOT)

Optimal Transport (OT) compares two probability distributions by moving mass from one to another
while minimizing transportation cost (Villani et al. (2009)). Let two instructional videos A and B
with N and M frames be encoded by fθ (Fig. 2(a)) into frame embeddings X = {xi}Ni=1 ∈ RN×D

and Y = {yj}Mj=1 ∈ RM×D. Each video is modeled as an empirical distribution: µ =
∑N

i=1 αiδxi

and ν =
∑M

j=1 βjδyj with uniform weights αi =
1
N , βj = 1

M . The transportation polytope (Cuturi
(2013)), U(α,β) := {T ∈ RN×M

+ : T1N = α,T⊤1M = β} leads to a feasible set of weight
matrices. Learning procedural alignment reduces to finding a coupling T between µ and ν that best
preserves semantic and temporal consistency.

Classical Kantorovich OT (KOT) aligns frames based on direct feature similarity, while Gromov-
Wasserstein OT (GWOT) aligns their structural relations. Their complementary strengths under the
common objective motivate Fused GWOT as shown in Fig. 2(b), which produces alignments that
are semantically faithful and temporally coherent as shown:

LFGWOT(T ) = arg min
T∈U(α,β)

(1− ρ)LKOT(C,T ) + ρLGWOT(C
x,Cy,T )

= arg min
T∈U(α,β)

(1− ρ)⟨C,T ⟩+ ρ

N∑
i,k=1

M∑
j,l=1

L(Cx
ik,C

y
jl)TijTkl,

(1)
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Figure 3: (a) Examples of pairwise alignment scenarios captured by the assignment matrix. (b)
Visualization of the OT map in 2D, along with a 1D illustration showing how i-th frame from Video
2 aligns with its best-matched j-th frame from Video 1.

where Cij = ∥xi − yj∥2 captures appearance cost, and Cx ∈ RN×N and Cy ∈ RM×M capture
intra-sequence distances in X and Y . Here Tij reflects how much mass of frame xi is transported
to frame yj . Setting ρ = 0 recovers KOT, and ρ = 1 recovers GWOT. However, real instructional
videos often contain background content, idle moments, or repeated segments. Enforcing strict
one-to-one matching between every frame of the two videos can push these irrelevant frames into
misleading correspondences. To address this, we extend FGWOT (Mahmood et al. (2025)) with
unbalanced OT penalties, leading to Partial FGWOT (FPGWOT):

min
T≥0

(1− ρ)⟨C,T ⟩+ ρ
∑
i,k

∑
j,l

L(Cx
ik,C

y
jl)TijTkl + τ

(
KL(T1∥α)+KL(T⊤1∥β)

)
− ϵh(T ), (2)

where τ > 0 controls how strict marginal constraints are enforced. This formulation allows un-
matched frames to be softly assigned to a ‘null’ sink instead of forced matches, improving ro-
bustness. To make optimization computationally feasible, entropy regularization −ϵh(T ) (Cuturi
(2013); Peyré et al. (2016)) is added, where h(T ) = −

∑N
i=1

∑M
j=1 tij log tij and ϵ > 0.

Regularization using Priors. Gromov-Wasserstein OT aligns sequences by matching their pair-
wise relational structure, but it is agnostic to absolute time and does not inherently prefer near-
diagonal (time-consistent) alignments. As a result, GW can assign semantically similar but tempo-
rally distant frames to each other, leading to off-diagonal, procedurally incoherent transport plans,
especially under repeated actions, camera motion, or clutter.In instructional videos, however, key
steps typically unfold in roughly the same order across demonstrations, so semantically similar
frames should also lie close along the time axis. We therefore introduce Temporal and Optimality
Laplace-shaped priors follow the formulation of (Liu et al. (2022); Chowdhury et al. (2024)) that
inject an explicit diagonal inductive bias: they softly encourage mass to concentrate near the main
diagonal (time-consistent matches) in transport matrix T , while still allowing deviations to account
for early starts, speed variations, and non-monotonic executions (Fig. 3(a)). Concretely, the prior Q
is defined as:

Q(i, j) = ϕ exp
(
− | dt(i, j) |

b

)
+ (1− ϕ) exp

(
− | do(i, j) |

b

)
, ϕ : 1→ 0.5 training.

dt(i, j) =
|i/N − j/M |√
1/N2 + 1/M2

; do(i, j) =
|i/N − io/N |+ |j/M − jo/M |

2
√

1/N2 + 1/M2

(3)

where dt(i, j) preserves global temporal order, and do(i, j) captures optimal alignment likelihood
to center (io, jo). The mixing factor ϕ is annealed from 1 to 0.5 during training as in VAVA (Liu
et al. (2022)), balancing temporal structure with non-monotonic flexibility.

Virtual frame for background. To handle background or redundant frames and avoid spuri-
ous matches, we append a virtual frame to both axes of the transport matrix, yielding T̂ ∈
R(N+1)×(M+1)

+ . If the matching probability of xi (i ≤ N ) with all yj (j ≤ M ) falls below a
threshold ζ, xi is assigned to the virtual frame yM+1, and symmetrically for yj . Virtual frames and
their assignments act as sinks and are excluded from supervision and loss computation as formulated
in (Liu et al. (2022); Chowdhury et al. (2024)).
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IDM-style structural regularization (with FPGWOT). To further stabilize training, we regular-
ize T using inverse-distance moments (IDM) (Albregtsen et al. (2008); Liu et al. (2022)):

M(T̂ ) = ϕ
∑
ij

tij

( i
N −

j
M )2 + 1

+(1−ϕ)
∑
ij

tij
1
2dm + 1

, dm =
( i− io
N + 1

)2
+
( j − jo
M + 1

)2
(4)

where the first term promotes diagonal concentration (temporal smoothness) and the second enforces
sharp ridges (alignment confidence).

Constrained feasible set. We embed these priors into the feasible set of the partial FGWOT for-
mulation. Unlike balanced OT, which enforces T1 = α and T⊤1 = β, our relaxation permits
mass imbalance while constraining the structure of T̂ . Specifically, we require (i) sufficiently high
structural score M(T̂ ) ≥ ξ1, and (ii) proximity to a prior matrix Q̂ measured by KL(T̂ ∥Q̂) ≤ ξ2:

Uξ1,ξ2(α,β) =
{
T̂ ≥0 : T̂1M+1 ≈ α, T̂⊤1N+1 ≈ β, M(T̂ )≥ξ1, KL(T̂ ∥Q̂)≤ξ2

}
. (5)

The approximate marginal constraints (Xu & Gould (2024); Bai et al. (2025)) allows unmatched or
redundant frames to be softly assigned to the null sink rather than forced into noisy matches. Intro-
ducing Lagrange multipliers λ1, λ2 > 0 for the IDM and KL penalties yields the dual-Regularized
Fused Partial GWOT (R-FPGWOT) program:

ℓR-FPGW
λ1,λ2,τ = min

T̂≥0

〈
T̂ , D̃(T̂ )

〉
−λ1M(T̂ )+λ2 KL(T̂ ∥Q̂)+τ

(
KL(T̂1M+1∥α)+KL(T̂⊤1N+1∥β)

)
.

(6)
where D̃(T̂ ) = (1 − ρ)C + ρG(T̂ ) is the fused cost matrix combining appearance cost C and
the linearized GW gradient G(T̂ ) = 2CxT̂Cy . Because D̃ depends on T̂ , We iteratively solve a
KL-regularized linearized OT subproblem for T̂ (s+1) at outer step s by freezing G(T̂ (s)). The inner
solution retains a Sinkhorn-like scaling form: T̂ (s+1) = Diag(u(s))K(s) Diag(v(s)).

K(s) =
[
qij exp

(
1
λ2

(
sλ1
ij − D̃

(s)
ij

))]
ij
, sλ1

ij = λ1

(
1

( i
N+1 −

j
M+1 )

2 + 1
+

1
1
2dm + 1

)
(7)

and (u(s), v(s)) updated using unbalanced Sinkhorn iterations to satisfy relaxed marginal constraints
under penalty τ . This procedure inherits FGWOT’s ability to couple semantic and structural cues,
while the partial relaxation and virtual frame allow irrelevant mass to be safely discarded.

Contrastive stabilization. To avoid trivial or collapsed mappings, the intra-sequence C-IDM loss
from (Haresh et al. (2021); Liu et al. (2022)) (Eq. 8) enforces temporal smoothness by pulling
adjacent frames together while pushing apart distant ones (Fig. 2(c));

I(X) =
∑
i,j

(
1−N (i, j)

)
γ(i, j)max{0, λ3 − d(i, j)}+N (i, j)

d(i, j)

γ(i, j)
, (8)

with N (i, j) = 1{|i− j| ≤ δ}, γ(i, j) = (i− j)2 + 1, d(i, j) = ∥xi − xj∥.

The inter-sequence CL (Chowdhury et al. (2024)) (Eq. 9) uses T̂ (s+1) to select best & worst matches
across videos, minimizing distances for best pairs while maximizing for worst (Fig 2(d)).

Linter = CE

([
best dist

worst dist

]
,

[
0

1

])
, (best/worst) from arg max/min of T̂ R-FPGW

λ1,λ2
along rows/cols.

(9)
Intuitively, this objective ensures that embeddings connected by strong transport weights remain
close, while those with negligible alignment are pushed apart. Together with the intra-sequence
C-IDM term, it prevents degenerate clustering and yields robust, discriminative alignment across
videos. The overall objective of REALIGN combines the regularized OT loss (Eq. 6) with con-
trastive regularization terms, which together enable fused appearance-structure alignment with par-
tial mass handling, enforce IDM-style temporal shape, anchor plans to Laplace priors, and preserve
both diversity and cross-video separability.

LREALIGN = c1 LR-FPGWOT+c2LC-IDM+c3 Linter = c1 ℓ
R-FPGW
λ1,λ2,τ (X,Y )+c2

(
I(X)+I(Y )

)
+c3 Linter.

(10)
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Table 1: Results on EgoProceL comparing REALIGN with OT-based and prior baselines. Best
and second-best scores are in bold and underlined. STEPS (Shah et al. (2023)) (purple) uses extra
modalities (flow, gaze, depth), while our method relies only on visuals. OT-based SOTA methods
are shown in gray, and our work REALIGN is highlighted in blue.

EgoProceL
CMU-MMAC EGTEA-GAZE+ MECCANO EPIC-Tents PC Assembly PC Disassembly
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1
Uniform 18.4 6.1 20.1 6.6 16.2 6.7 16.2 7.9 17.4 8.9 18.1 9.1
CnC (Bansal et al. (2022)) 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8
GPL-2D (Bansal et al. (2024)) 21.8 11.7 23.6 14.3 18.0 8.4 17.4 8.5 24.0 12.6 27.4 15.9
UG-I3D (Bansal et al. (2024)) 28.4 15.6 25.3 14.7 18.3 8.0 16.8 8.2 22.0 11.7 24.2 13.8
GPL-w BG (Bansal et al. (2024)) 30.2 16.7 23.6 14.9 20.6 9.8 18.3 8.5 27.6 14.4 26.9 15.0
GPL-w/o BG (Bansal et al. (2024)) 31.7 17.9 27.1 16.0 20.7 10.0 19.8 9.1 27.5 15.2 26.7 15.2
STEPS (Shah et al. (2023)) 28.3 11.4 30.8 12.4 36.4 18.0 42.2 21.4 24.9 15.4 25.9 14.6
OPEL (Chowdhury et al. (2024)) 36.5 18.8 29.5 13.2 39.2 20.2 20.7 10.6 33.7 17.9 32.2 16.9
RGWOT (Mahmood et al. (2025)) 54.4 38.6 37.4 22.9 59.5 42.7 39.7 24.9 43.6 28.0 45.9 30.1
REALIGN (R-FGWOT) (Ours) 58.3 42.5 62.4 47.2 59.1 42.3 39.1 24.4 40.9 25.4 41.9 28.1
REALIGN (R-FPGWOT) (Ours) 59.7 43.7 64.2 49.3 59.6 42.7 39.8 25.0 41.4 26.3 42.5 28.6

Clustering and Key-Step Ordering. Using frame embeddings from our R-FPGWOT alignment
framework, we localize key steps and infer their order to capture procedural structure. As in prior
work, we frame key-step localization as a multi-label graph-cut segmentation problem (Greig et al.
(1989)), where terminal nodes represent K candidate steps and non-terminal nodes represent the
frame embeddings. T-links connect frames to steps, while n-links enforce temporal smoothness. We
solve the resulting energy with the α-Expansion algorithm (Boykov et al. (2002)), assigning each
frame to one of the K clusters. The underlying multi-label Potts energy with data (T-link) and tem-
poral smoothness (N-link) terms is defined in Eq. (A17). For ordering, we normalize timestamps
within each video and compute the mean time of frames in each cluster, following (Bansal et al.
(2022); Chowdhury et al. (2024)). Sorting these means gives the predicted sequence, which we
then aggregate across videos of the same task, selecting the most frequent sequence as the canonical
procedure. Importantly, this graph-cut stage is applied after the transport matrix T is fully learned
and does not influence the optimization of R-FPGWOT. The alignment itself is entirely determined
by the differentiable OT-based objective; graph-cut simply converts the learned transport map and
embeddings into contiguous temporal segments. As shown in Appendix A.8.1, and supported by ab-
lations in Table 4, alternative post-hoc segmenters such as K-Means and Subset-Selection underper-
form, indicating that graph-cut yields cleaner segment boundaries without altering the fundamental
behavior of the learned alignment model.

4 EXPERIMENTS AND RESULTS

Datasets. We evaluate REALIGN across both egocentric and third-person perspectives. For third-
person analysis, we use CrossTask (Zhukov et al. (2019)), which contains 213 hours of video span-
ning 18 primary tasks (2763 videos), and ProceL (Elhamifar & Huynh (2020)), with 720 videos
covering 12 tasks over 47.3 hours. For egocentric evaluation, we adopt the large-scale EgoProceL
benchmark (Bansal et al. (2022)), featuring 62 hours of head-mounted recordings from 130 users
performing 16 tasks. Dataset statistics are summarized in Appendix Table A2.

Evaluation. We follow the evaluation practices of current state-of-the-art (Chowdhury et al.
(2024); Mahmood et al. (2025)), reporting both F1-score and temporal Intersection-over-Union
(IoU). Framewise scores are computed per key step and averaged across steps. Precision measures
the proportion of correctly predicted key-step frames among all predicted, while recall measures
the proportion of ground-truth key-step frames correctly retrieved. Following (Bansal et al. (2022);
Elhamifar & Huynh (2020); Shen et al. (2021)), the Hungarian algorithm (Kuhn (1955)) is used to
establish a one-to-one mapping between predicted and ground-truth steps.

Experimental Setup. We use a ResNet-50 backbone (pretrained on ImageNet) for frame-level
feature extraction, following (Bansal et al. (2022); Chowdhury et al. (2024)). The encoder is trained
on pairs of videos, with random frame sampling and optimization of our proposed LREALIGN until
convergence. Features are taken from the Conv4c layer and stacked with a two-frame temporal con-
text. This representation is passed through two 3D convolutional layers, a global max pooling layer,
two fully connected layers, and a final linear projection producing 128-d embeddings. Implementa-
tion hyperparameters are given in Appendix Table A1. All reported numbers are averaged over three
independent runs to account for variance. Code will be released on acceptance.
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Results on Egocentric View. Table 1 provides comparative evaluation of REALIGN against SOTA
baselines on EgoProceL (Bansal et al. (2022)). This benchmark is designed for egocentric PL and
remains a challenging testbed. Our method surpasses previous works across nearly all tasks, achiev-
ing consistent gains of up to 11.6% F1 (4.45pp) and 19.6% IoU (4.73pp) over the SOTA base-
line (Mahmood et al. (2025)). As shown in Appendix Table A2, datasets with higher background
content (e.g., EGTEA-GAZE+ and CMU-MMAC) exhibit greater sink-mass fractions. Our partial
fusion leads to proportionally higher relative F1 gains (e.g., 71% or 26.8pp for EGTEA-GAZE+ and
9.8% or 5.3pp for CMU-MMAC), confirming the benefit of partial fusion in mitigating redundant
frames. Detailed task-wise results within CMU-MMAC and EGTEA-GAZE+ have been aggregated
in Appendix Table A4. These improvements highlight the effectiveness of Fused Partial GWOT in
handling redundant frames, order variations, and viewpoint-specific artifacts in egocentric video.

Table 2: PL results on third-person datasets. P
(Precision), R (Recall), and F1-score. The best
and second-best results are highlighted.

ProceL CrossTask
P R F1 P R F1

Uniform 12.4 9.4 10.3 8.7 9.8 9.0
Alayrac et al. (2016) 12.3 3.7 5.5 6.8 3.4 4.5
Kukleva et al. (2019) 11.7 30.2 16.4 9.8 35.9 15.3
Elhamifar & Huynh (2020) 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al. (2020) - - - - 28.8 -
Shen et al. (2021) 16.5 31.8 21.1 15.2 35.5 21.0
CnC 20.7 22.6 21.6 22.8 22.5 22.6
UG-I3D 21.3 23.0 22.1 23.4 23.0 23.2
GPL 22.4 24.5 23.4 24.9 24.1 24.5
STEPS 23.5 26.7 24.9 26.2 25.8 25.9
OPEL 33.6 36.3 34.9 35.6 34.8 35.1
RGWOT 42.2 46.7 44.3 40.4 40.7 40.4
REALIGN (R-FGWOT) 53.5 60.4 56.7 60.2 61.2 60.6
REALIGN (R-FPGWOT) 54.4 61.5 57.6 60.9 61.9 61.4

Results on Third-person View. We fur-
ther evaluate on ProceL (Elhamifar & Huynh
(2020)) and CrossTask (Zhukov et al. (2019))
(Table 2), following identical protocols from
prior self-supervised procedure learning mod-
els. Competing approaches (Kukleva et al.
(2019); Elhamifar & Huynh (2020)) often map
most frames to a single degenerate solution.
REALIGN consistently improves performance
and outperforms existing models like RGWOT
(Mahmood et al. (2025)) by 30.0% (13.3pp) on
ProceL and 51.9% (21pp) on CrossTask on F1-
score. Detailed breakdowns for CMU-MMAC,
ProceL, and CrossTask subtasks are reported in
Appendix Tables A3 and A5.

Comparison with Multimodal Methods.
We further compare REALIGN with multimodal Procedure learning approaches that leverage richer
input signals such as depth, gaze, or narration. Table 1 contrasts our RGB-only framework with
STEPs (Shah et al. (2023)) (purple), which incorporates depth and gaze in addition to RGB. Despite
relying solely on visual frames, REALIGN surpasses STEPs on most datasets, and while STEPs
achieves a slightly higher F1 score on EPIC-Tents (Jang et al. (2019)), our model still delivers
stronger IoU, indicating more consistent temporal alignment. In addition, REALIGN outperforms
narration-augmented approaches (Alayrac et al. (2016); Shen et al. (2021)) (yellow) in Table 2, un-
derscoring that carefully designed transport-based regularization can rival or exceed methods using
multimodal supervision.

Figure 4: (a) Qualitative outcomes on MECCANO and PC Assembly, where color highlights dis-
tinguish sub-tasks across key-steps. REALIGN achieves superior alignment compared to existing
SOTA methods by introducing a virtual frame to effectively manage unmatched frames. (b) Influ-
ence of training data volume on encoder performance.

Qualitative Results. Fig. 4(a) compares REALIGN with prior baselines. CnC (Bansal et al.
(2022)) tends to over-segment, while OPEL (Chowdhury et al. (2024)) and RGWOT (Mahmood
et al. (2025)) still misalign steps and fail to manage redundant frames. In contrast, REALIGN
handles mass imbalance by routing background to the virtual sink, leading to faithful key-step lo-
calization and interpretable transport maps.
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5 ABLATION STUDY

Effectiveness of Model Components of LREALIGN. Table 3 reports the impact of different loss
components by systematically removing them from the REALIGN model. The complete configu-
ration, combining contrastive regularization, Laplace temporal and optimal priors, structural prior,
and virtual fusion frame, achieves the best results. Removing the partial penalty (τ ) leads to the
sharpest drop (∼4–5 F1 points), highlighting the importance of handling background frames and
mass imbalance allowing redundant frames to flow into a sink. Excluding Laplace-based temporal
or structural priors produces a consistent 1.5–3.0pp degradation in F1, underscoring their role in en-
forcing near-diagonal, structurally coherent alignments and preventing the off-diagonal drift typical
of unconstrained GW. The Contrastive IDM regularizer sharpens the transport plan by discourag-
ing overly diffuse, off-diagonal matches. Contrastive regularization yields smaller gains on some
datasets, but is crucial for enforcing a consistent embedding geometry across videos, thereby stabi-
lizing the OT kernel and avoiding degenerate mappings. The KL divergence contributes marginally
on its own (less than 1 point), since T̂ and Q̂ are already close by construction, but it further stabi-
lizes optimization when combined with other terms. Importantly, all components are differentiable
and computationally lightweight, and the ablations show that removing any one of them consistently
hurts performance. Overall, while individual factors vary in influence, their cumulative effect yields
up to ∼6 point gains in F1/IoU, justifying the inclusion of all components in the proposed, yet still
simple-to-optimize, REALIGN formulation.

Table 3: Ablation study of REALIGN loss components. We analyze the contribution of contrastive
regularizers (intra C-IDM and inter-sequence), regularizer priors (temporal (T) and optimal (O)
Laplace priors), structural prior (fused GWOT term), virtual frame and partial penalty (τ ).

Contrastive Regularizer KL- Virtual Structural Partial MECCANO CMU-MMAC
Regularizers Priors Divergence Frame Prior Penalty (τ ) F1 IoU F1 IoU

✓(T+O) ✓ ✓ 36.8 17.1 36.1 16.5
✓ ✓ ✓ 35.8 16.1 32.6 14.4
✓ ✓(T+O) ✓ 38.1 19.1 35.2 17.3
✓ ✓(T+O) ✓ 38.6 19.6 33.8 16.4
✓ ✓(T+O) ✓ ✓ 39.2† 20.2† 36.5† 18.8†

✓ ✓ ✓ ✓ 51.8 35.5 50.5 33.7
✓(T) ✓ ✓ ✓ 57.3 41.2 53.5 36.9

✓ ✓(T) ✓ ✓ ✓ 59.5∗ 42.7∗ 54.4∗ 38.6∗

✓ ✓(T+O) ✓ ✓ ✓ 59.1 42.3 58.3 42.5
✓ ✓(T+O) ✓ ✓ ✓ ✓ 59.6 42.3 59.7 43.7

† OPEL and ∗ RGWOT highlights the baslines.

Effect of Clustering Methods. We assess the impact of different clustering strategies by replacing
our approach with K-Means, Subset Selection (SS), and a random assignment baseline. As sum-
marized in Table 4, alternative clustering methods consistently underperform, while our proposed
OT-based graph cut segmentation achieves the highest scores across all datasets. These results un-
derscore the importance of jointly leveraging transport-based embeddings with structured clustering
for accurate key-step discovery.

Table 4: Analysis of clustering algorithm across various datasets.
CMU-MMAC EGTEA-GAZE+ MECCANO EPIC-Tents ProceL CrossTask
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 16.0 7.1 15.6 6.9 13.8 6.4 14.4 6.8 15.5 7.4 15.6 7.3
OT + K-means 38.2 22.1 32.4 21.9 32.5 20.4 26.1 15.4 34.1 20.9 36.7 21.6
OT + SS 46.0 32.7 49.1 38.6 46.2 31.1 29.2 18.1 45.0 31.7 46.6 34.2
REALIGN (R-FPGWOT) 59.7 43.7 64.2 49.3 59.6 42.7 39.8 25.0 57.6 42.6 61.4 46.7

Table 5: Results for key-steps k.

k PC Assembly PC Disassembly
R F1 IoU R F1 IoU

7 45.1 41.4 26.3 47.2 42.5 28.6
10 39.8 37.9 23.7 42.1 38.4 25.1
12 38.5 36.8 22.9 40.2 37.3 24.2
15 36.2 35.6 20.3 38.1 36.7 22.7

Number of key-steps. Table 5 quantifies the effect of
the number of clusters k on REALIGN, showing that per-
formance is stable over a broad range and peaks at k = 7,
while increasing k to 10 or higher leads to a sharp degra-
dation. This behavior is expected, since the choice of k
is task- and semantics-dependent: closely related actions
(e.g., pouring oil vs. pouring water) may reasonably be
represented by a single cluster, whereas setting k larger than the true number of distinct subtasks in-
duces cluster fragmentation into near-duplicate states, which in turn perturbs the segmentation and
lowers the overall scores (Appendix Fig. A2). Crucially, k is only used in the post-hoc segmentation
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stage and does not enter the OT alignment, so the learned transport geometry is unaffected by its
precise value. This decoupling, together with the empirical robustness in Table 5, indicates that ex-
plicit dynamic inference of k yields at most marginal gains and is not essential for the effectiveness
of REALIGN.
Impact of Training Data Quantity. Fig. 4(b) shows how performance on the MECCANO dataset
varies with the number of training videos. Across all data scales, our REALIGN model outperforms
previous state-of-the-art methods. Even with only 2-5 videos per task, it achieves higher F1-scores
than competing approaches. Performance continues to rise with more data, reaching 59.7 F1 at 17
videos. In contrast, prior methods improve more slowly and remain consistently behind, underscor-
ing the data efficiency, scalability, and robustness of our approach.

Table 6: Comparison with SOTA unsupervised AS
methods. Note ‘-’ denotes that the authors have not
provided any data on those metrics.

Action Segmentation (AS) ProceL CrossTask
benchmark P R F1 P R F1

Elhamifar & Naing (2019) - - 29.8 - - -
Elhamifar & Huynh (2020) 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al. (2020) - - - - 28.8 -
Shen et al. (2021) 16.5 31.8 21.1 15.2 35.5 21.0
Dvornik et al. (2022) - - - - - 25.3
StepFormer 18.3 28.1 21.9 22.1 42 28.3
OPEL 33.6 36.3 34.9 35.6 34.8 35.1
RGWOT 42.2 46.7 44.3 40.4 40.7 40.4
REALIGN (R-FGWOT) 53.5 60.4 56.7 60.2 61.2 60.6
REALIGN (R-FPGWOT) 54.4 61.5 57.6 60.9 61.9 61.4

Comparison with Action Segmenta-
tion Methods. While related, Procedure
learning (PL) differs from action segmen-
tation (AS). PL identifies a consistent set
of K key steps across multiple videos
of the same task, while AS only par-
titions a single video into actions with-
out cross-video reasoning. Table 6 re-
ports results of REALIGN compared with
leading unsupervised AS models (Dvornik
et al. (2023)) and OT-models (Chowdhury
et al. (2024); Mahmood et al. (2025)).
On ProceL (Elhamifar & Huynh (2020))
and CrossTask (Zhukov et al. (2019)), RE-
ALIGN achieves the highest precision (60.9), recall (61.9), and F1 score (61.4), significantly outper-
forming prior approaches. REALIGN strikes a good balance between precision and recall, showing
its strength in avoiding degenerate solutions.

Additional analyses and results. Several additional studies in Appendix include detailed hyper-
parameter settings (App. Sec. A.2), sensitivity analyses (e.g., loss weights and number of clusters
k) (App.Sec. A.8.5), runtime comparisons (App.Sec. A.3), the explicit graph-cut energy formula-
tion (App.Sec. A.8.1), diagnostics for avoiding degenerate solutions, and full quantitative results
(App.Sec. A.6)on all subtasks of EgoProceL (Bansal et al. (2022)), ProceL (Elhamifar & Huynh
(2020)), and CrossTask (Zhukov et al. (2019)).

6 CONCLUSION

In this work, we presented REALIGN, an unsupervised procedure learning based on Regularized
Fused Partial Gromov-Wasserstein Optimal Transport. By jointly modeling feature similarity and
temporal structure under relaxed marginal constraints, our method overcomes shortcomings of prior
OT-based approaches that relied on strictly balanced frame-to-frame mappings or monotonic as-
sumptions. Through the integration of Laplace priors, structural regularization, and contrastive sta-
bilization, REALIGN achieves robust alignment while discarding background or redundant frames.
Results across large-scale egocentric and third-person benchmarks demonstrate consistent improve-
ments, with up to 11.6% (4.45pp) gains in F1-score and 19.6% (4.73pp) in IoU on EgoProceL, and
an average 41% (17.15pp) F1 boost on ProceL and CrossTask compared to existing SOTA, while
producing interpretable transport maps that faithfully preserve key-step ordering. Beyond alignment
accuracy, our formulation proves to be data-efficient and scalable, achieving superior performance
with limited training data. Our proposed framework establishes a strong foundation for procedure
learning under real-world conditions, opening avenues for future extensions in multi-modal align-
ment and continual learning.
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A APPENDIX

A.1 DERIVATION OF THE R-FPGWOT’S OPTIMAL TRANSPORT MATRIX (T̂λ1,λ2
)

This appendix provides a complete derivation of our optimization scheme for Regularized-Fused
Partial Gromov-Wasserstein Optimal Transport (R-FPGWOT). We (i) fix notation, (ii) state the ob-
jective, (iii) derive a majorization-minimization (MM) inner problem with a Sinkhorn-like solution,
(iv) cover unbalanced (partial) transport, (v) treat the ‘virtual’ sink frame, and (vi) give convergence
statements for the inner loop (unbalanced Sinkhorn) and the outer MM iterations. We also clarify
the positive semidefiniteness (PSD) requirement for temporal structure matrices and provide two
safe choices.

Notation. Let X = {xi}Ni=1 and Y = {yj}Mj=1 denote frame embeddings for two videos, stacked

as X ∈ RN×d and Y ∈ RM×d. We optimize a nonnegative coupling T̂ ∈ R(N+1)×(M+1)
+ aug-

mented by an extra row/column (index N+1 and M+1) that represents a ‘virtual’ sink for unmatched
mass. Let 1k be the k-vector of ones.

Costs.

• Appearance (inter-sequence) cost C ∈ R(N+1)×(M+1)
+ , e.g., cosine/Euclidean distances between

frame embeddings (with a large finite cost to/from the virtual entry).

• Structure (intra-sequence) matrices Cx ∈ R(N+1)×(N+1) and Cy ∈ R(M+1)×(M+1) encoding
temporal proximity.

Priors and marginals. Let Q̂ ∈ R(N+1)×(M+1)
++ be a strictly positive prior (constructed from our

mixed Laplace priors plus a virtual row/column; see main text). Let α ∈ ∆N+1 and β ∈ ∆M+1 be
target row/column marginals (including virtual mass). We write KL(A∥B) =

∑
ij Aij log

Aij

Bij
−

Aij +Bij and extend KL to vectors entrywise.

I. R-FPGWOT OBJECTIVE.

From the duality theory, for each pair (ξ1, ξ2) there exists a corresponding pair (λ1, λ2) with λ1 >
0, λ2 > 0, such that

lRξ1,ξ2(X,Y ) = lRλ1,λ2
(X,Y ).

We minimize a fused cost that combines appearance (C) with a Gromov-Wasserstein style relational
term built from Cx,Cy under partial (unbalanced) marginal penalties and two regularizers: an
IDM-style structural reward and a prior KL tether. In the partial (unbalanced) setting, equality
constraints are replaced by marginal KL penalties with weight τ > 0 and the MM (majorization–
minimization) subproblem can be written in the constrained form:

lR−FPGW
ξ1,ξ2

(X,Y ) = min
T̂≥0

(1− ρ) ⟨C, T̂ ⟩ + ρ ⟨CxT̂Cy, T̂ ⟩︸ ︷︷ ︸
GW term

+ τ
[
KL(T̂1∥α) + KL(T̂⊤1∥β)

]
s.t. M(T̂ ) ≥ ξ1, KL(T̂ ∥Q̂) ≤ ξ2.

(A1)

Taking the Lagrangian of Eq. A1 introduces multipliers λ1, λ2, yielding the equivalent penalized
R-FPGWOT objective:

min
T̂≥0

(1− ρ) ⟨C, T̂ ⟩ + ρ ⟨CxT̂ Cy, T̂ ⟩︸ ︷︷ ︸
GW-like fused term

− λ1 M(T̂ ) + λ2 KL(T̂ ∥Q̂)

+ τ
(
KL(T̂ 1M+1∥α) + KL(T̂⊤1N+1∥β)

)
, (A2)

where M(T̂ ) is the IDM mixture reward used in the main paper to promote near-diagonal concen-
tration and sharp ridges (we treat it as a linear reward in T̂ ).
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Remark (PSD requirement and two safe choices). The standard convex linearization that leads
to∇T ⟨CxT Cy,T ⟩ = CxT (Cy)⊤+(Cx)⊤T Cy simplifies to 2CxT Cy only when Cx,Cy are
symmetric. Moreover, classical global convexity arguments on the quadratic form t⊤(Cy⊗Cx)t
assume Cx,Cy ⪰ 0. Temporal distance matrices are generally not PSD. We therefore adopt one of
the following two remedies (both are acceptable in theory and practice):

(A) Kernelized structure (default). Define Cx =
[
k(|i− i′|)

]
i,i′

and Cy =
[
k(|j − j′|)

]
j,j′

using a PSD kernel k, e.g., Gaussian or Laplace. Then Cx,Cy are symmetric PSD, and all
convexity statements below hold globally.

(B) Surrogate MM majorizer (no PSD needed). Keep arbitrary bounded Cx,Cy (e.g., raw
temporal distances) and treat the fused quadratic term with a local quadratic upper bound
(majorization) based on the Lipschitz continuity of its gradient. The outer loop then mini-
mizes a convex surrogate each iteration; convergence is monotone in the surrogate objective
(standard MM).

We use (A) in all experiments and state theorems for (A). For completeness, we also include the (B)
version (Lemma 1) that requires only boundedness of Cx,Cy .

II. MM LINEARIZATION OF THE FUSED TERM

Let F (T ) = ⟨CxT Cy,T ⟩. At outer iterate T̂ (s) we build a first-order majorizer

F (T ) ≤ F
(
T̂ (s)

)
+
〈
G(s), T − T̂ (s)

〉
+

L

2

∥∥T − T̂ (s)
∥∥2
F
, G(s) := ∇F

(
T̂ (s)

)
, (A3)

where L is any Lipschitz constant of ∇F . Keeping the quadratic term with weight L/2 yields a
bona fide MM majorizer and theoretical monotonicity (Options A and B). In our implementation,
following common FGW practice, we set the prox weight implicitly small and absorb it into the
linearized cost (heuristic ”pure linearization”); this preserves monotonicity under Option A and
works robustly in Option B in practice, although the formal MM upper-bound is then approximate.

D̃(s) = (1− ρ)C + ρG(s).

When Cx,Cy are symmetric PSD (Option A). Then G(s) = 2CxT̂ (s)Cy and one can set L =
2 ∥Cx∥2 ∥Cy∥2. This recovers the widely used linearization in FGW.

When Cx,Cy are not PSD (Option B). We still have a valid local majorizer: the gradient of
F is Lipschitz with L ≤ ∥Cx∥2 ∥Cy∥2 + ∥(Cx)⊤∥2 ∥(Cy)⊤∥2, and G(s) = CxT̂ (s)(Cy)⊤ +

(Cx)⊤T̂ (s)Cy . Thus, Eq. A3 is a valid MM upper bound without any PSD assumption. We state
this explicitly in Lemma 1.

III. INNER (CONVEX) SUBPROBLEM AND GIBBS KERNEL FORMULATION

We start from the unconstrained KL-regularized formulation (ignoring additive constants). The
objective combines (i) linearized cost, (ii) IDM reward, (iii) prior-KL, and (iv) marginal KL penalties
(for the unbalanced case).

General inner problem. Fixing D̃(s) and treating the IDM reward−λ1M(T ) as a linear negative
cost (i.e., a positive “score” added to the kernel exponent), the inner subproblem at iteration s is

min
T̂≥0

〈
T̂ , D̃(s)

〉
− λ1 M(T̂ ) + λ2 KL(T̂ ∥Q̂) + τ

(
KL(T̂ 1M+1∥α) + KL(T̂⊤1N+1∥β)

)
.

(A4)

This is strictly convex in T̂ (for λ2 > 0). Thus, the MM subproblem admits two equivalent perspec-
tives: the constrained (ξ1, ξ2) formulation and the penalized (λ1, λ2) formulation, linked through
duality.

Lagrangian. Dropping constants, the inner optimization problem is:

L(T̂ ) =
∑
i,j

d̃
(s)
ij tij − λ1

∑
i,j

sij tij + λ2

∑
i,j

tij log
tij
qij

+ τ
(∑

i

[
ri log

ri
αi
− ri + αi

]
+
∑
j

[
cj log

cj
βj
− cj + βj

])
,

(A5)
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with row/column sums: ri = (T̂1)i and cj = (T̂⊤1)j .

tij is transport (i, j) entry and qij > 0 is prior (i, j) entry of T̂ and Q̂ respectively and λ2 > 0 is
the temperature. sij is the IDM score injection (a linear function of T̂ ):

sij = λ1

(
1(

i
N+1 −

j
M+1

)2
+ 1

+
1

1
2dm + 1

)
, dm =

(
i−io
N+1

)2
+
(

j−jo
M+1

)2
.

Stationarity (KKT).

Differentiating Eq. A5 and setting ∂L/∂tij = 0 yields:

∂L
∂tij

= d̃
(s)
ij − sij + λ2

(
log

tij
qij

+ 1
)

+ τ
(
log ri

αi
+ log

cj
βj

)
= 0. (A6)

Gibbs form.

Rearranging Eq. A6 and dropping additive constants that are absorbed in scaling, the KKT station-
arity yields a Gibbs form

tij = K
(s)
ij

(
αi

(T̂1)i

)κ (
βj

(T̂⊤1)j

)κ
, κ := τ

λ2
, (A7)

with strictly positive kernel

K
(s)
ij = qij exp

(
sλ1
ij − d̃

(s)
ij

λ2

)
, sλ1

ij is the IDM score for entry (i, j). (A8)

Unbalanced Sinkhorn Scaling (Partial OT).

By Sinkhorn’s theorem (Theorem A1, for any matrix with strictly positive entries, there exist unique
(up to a scalar) positive scaling vectors that enforce the marginal constraints. Specifically, since
qij > 0 and the exponent is finite, each Kij > 0. Therefore, there exist unique positive scaling
vectors u ∈ RN+1,v ∈ RM+1 such that:

T̂ = Diag(u)K(s) Diag(v), (T̂1)i = ui (K
(s)v)i, (T̂⊤1)j = vj ((K

(s))⊤u)j . (A9)

with the unbalanced Sinkhorn updates

u←
( α

K(s)v

)κ
, v ←

(
β

(K(s))⊤u

)κ

, κ =
τ

λ2
∈ (0,∞). (A10)

For τ → ∞ (κ → 1) this reduces to the balanced Sinkhorn updates; for finite τ it is a standard
unbalanced setting.

Virtual sink frame. The last row/column of T̂ (index N+1/M+1) correspond to the virtual mass.
They are handled identically by Eq. A10. In practice, we budget sufficient virtual mass in α,β and
assign large (but finite) appearance costs to discourage non-essential matches unless needed.

Convergence.

Assume K(s) has strictly positive entries bounded as 0 < m ≤ K
(s)
ij ≤ M < ∞ and α,β have

strictly positive components (including virtual mass). Then the unbalanced updates Eq. A10 are
contractive in the Hilbert projective metric and converge to the unique minimizer of Eq. A4. This
is a standard result for (un)balanced Sinkhorn with KL-penalized marginals. In practice, this paper
uses only 20 iterations, since earlier studies have shown that a small number of iterations is sufficient
for effective convergence (Cuturi (2013)).

1Balanced Sinkhorn existence (classical). For any positive matrix A, there exist positive diagonal scalings
that match prescribed positive marginals (up to a common factor) (Sinkhorn (1967); Borobia & Cantó (1998)).
In the unbalanced (KL-penalized) setting used here, the fixed-point equations Eq. A10 arise from KKT station-
arity and admit unique positive solutions under bounded positive kernels; see, e.g., unbalanced OT analyses
(Chizat et al. (2018)).
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Proposition 1 (Inner convergence). Under the bounded positive kernel condition above, the itera-
tions Eq. A10 converge to the unique optimizer of Eq. A4.

Proof Proposition. The updates are compositions of positive linear maps with entrywise powers
κ ∈ (0, 1]; the former are contractive in the Hilbert projective metric with diameter bounded by
log(M/m), and the latter are nonexpansive. Banach’s fixed-point theorem yields convergence to
the unique fixed point, which is the KKT solution of Eq. A4.

Balanced vs unbalanced cases.

• In the balanced setting (τ → ∞, hence κ → 1), the KL penalties enforce exact marginal
constraints, and the updates reduce to classical Sinkhorn scaling Eq. A10.

• In the unbalanced (partial) setting (0 < τ < ∞), the generalized exponent κ = τ/λ2 appears,
yielding the unbalanced Sinkhorn iterations Eq. A10.

IV. OUTER MM: MONOTONE DECREASE

Let J be the full objective Eq. A2 and T̂ (s) the current iterate. Define the surrogate at T̂ (s) by
replacing F (T ) with its majorizer Eq. A3 and solving the inner problem exactly to get T̂ (s+1).

Recall the fused quadratic form F (T̂ ) = ⟨CxT̂Cy, T̂ ⟩, and its linearization at T̂ (s):

F̃ (s)(T̂ ) := F (T̂ (s)) +
〈
G(s), T̂ − T̂ (s)

〉
, G(s) = 2CxT̂ (s)Cy.

Define the residual ∆(s)(T̂ ) := F (T̂ )− F̃ (s)(T̂ ).

PSD (Option A). If Cx,Cy are symmetric PSD, then

F (T )−
(
F (T̂ (s)) +

〈
2CxT̂ (s)Cy, T − T̂ (s)

〉)
≤ ∥Cx∥2 ∥Cy∥2 ∥T − T̂ (s)∥2F ,

so the surrogate is a global upper bound tight at T̂ (s), and J (T̂ (s+1)) ≤ J (T̂ (s)).

Non-PSD (Option B). Even without PSD, we have a local quadratic majorizer:
Lemma 1 (Local MM majorizer without PSD). Let Cx,Cy be arbitrary bounded matrices. Then
∇F is Lipschitz with some finite L and

F (T ) ≤ F (T̂ (s)) +
〈
G(s), T − T̂ (s)

〉
+

L

2
∥T − T̂ (s)∥2F ,

with G(s) = CxT̂ (s)(Cy)⊤+(Cx)⊤T̂ (s)Cy . Minimizing this surrogate yields a monotone decrease
in the surrogate objective; hence, the outer MM produces a non-increasing sequence of surrogate
values with standard MM convergence guarantees to a stationary point.

In both options, the exact solution of the strictly convex inner problem yields a unique T̂ (s+1).

Proof of Lemma 1. Using ⟨CxTCy,T ⟩ = ⟨T , (Cx)⊤TCy⟩, the Frechet derivative is ∇F (T ) =

CxT (Cy)⊤ + (Cx)⊤TCy . For any T1,T2,

∥∇F (T1)−∇F (T2)∥F ≤ ∥Cx∥2∥(Cy)⊤∥2∥T1 − T2∥F + ∥(Cx)⊤∥2∥Cy∥2∥T1 − T2∥F ,

so one can take L = ∥Cx∥2∥(Cy)⊤∥2 + ∥(Cx)⊤∥2∥Cy∥2. The descent lemma then gives the
quadratic upper bound.

Combining either option with the strict convexity and coercivity of the inner program gives:
Theorem 1 (Outer monotonicity). If each inner subproblem Eq. A4 is solved exactly, then the se-
quence {T̂ (s)} generated by the MM procedure satisfies J (T̂ (s+1)) ≤ J (T̂ (s)) in Option (A), and
it monotonically decreases the MM surrogate in Option (B). Every limit point is a stationary point
of the respective (true or surrogate) objective.
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V. ALGORITHMIC SUMMARY (PRACTICAL IMPLEMENTATION)

Algorithm 1 R-FPGWOT with IDM Priors and Unbalanced Sinkhorn

1: Input: costs C,Cx,Cy , prior Q̂, weights ρ, λ1, λ2, τ , annealing schedule ϕ.
2: Initialize T̂ (0) (e.g., Q̂), set s← 0.
3: repeat ▷ Outer MM
4: Outer gradient (linearization):

G(s) ←

{
2CxT̂ (s)Cy, (Option A: symmetric PSD)

CxT̂ (s)(Cy)⊤ + (Cx)⊤T̂ (s)Cy, (Option B)

5: D̃(s) ← (1− ρ)C + ρG(s).

6: sλ1
ij ← λ1

([
( i
N+1 −

j
M+1 )

2 + 1
]−1

+
[
1
2dm + 1

]−1
)

7: Build kernel K(s)
ij ← qij exp

(
s
λ1
ij −D̃

(s)
ij

λ2

)
▷ cf. Eq. A8

8: Initialize u, v ← 1; κ← τ/λ2

9: repeat ▷ Unbalanced Sinkhorn (Eq. A10)
10: u←

(
α./(K(s)v)

)κ
, v ←

(
β./
(
(K(s))⊤u

))κ
11: until Inner converged
12: T̂ (s+1) ← Diag(u)K(s) Diag(v)
13: s← s+ 1; anneal ϕ
14: until Outer convergence
15: Return T̂ (s).

VI. COMPUTATIONAL COMPLEXITY

Each inner iteration costs two matrix-vector products with K(s) and (K(s))⊤, i.e., O((N+1)(M+

1)).Forming G(s) = CxT̂ (s)(Cy)⊤ + (Cx)⊤T̂ (s)Cy (or 2CxT̂ (s)Cy in Option A) costs O((N+
1)(M+1)) if Cx,Cy are banded (temporal kernels), since it reduces to two banded-dense multiplies;
otherwise it is O((N+1)2(M+1)) but we avoid explicit dense Kronecker constructions. We use
a small, fixed number of inner iterations (e.g., ≤ 25) and 4–7 outer steps in practice. We stop the
inner loop by relative marginal change (≤ 10−3) and the outer loop by relative objective decrease
(≤ 10−4).

VII. ADDITIONAL LEMMAS AND PROOFS

Practical construction of structure matrices. We provide two safe choices for the tempo-
ral/relational structure matrices Cx∈R(N+1)×(N+1)

+ and Cy∈R(M+1)×(M+1)
+ .

Option A (recommended; PSD kernels). Kernelize temporal proximity so that the resulting Toeplitz
matrices are symmetric positive semidefinite (PSD):

(Cx)ii′ = exp
(
− |i− i′|

bx

)
or exp

(
− (i− i′)2

2σ2
x

)
,

(Cy)jj′ = exp
(
− |j − j′|

by

)
or exp

(
− (j − j′)2

2σ2
y

)
.

(A11)

This guarantees symmetry and PSD, which validates the global convexity route used in the MM
derivation.

Option B (non-PSD distances; surrogate MM). If raw temporal distances must be used (which are
generally not PSD), keep them bounded and rely on the local quadratic majorizer in Lemma 2
(Option B case). The algorithm remains an MM scheme on a surrogate upper bound and enjoys a
monotone decrease of the surrogate.
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First-order majorization of the fused term. Let F (T̂ ) = ⟨CxT̂Cy, T̂ ⟩.
Lemma 2 (First-order majorization of F ). At an outer iterate T̂ (s), define

G(s) =

{
2CxT̂ (s)Cy, if Cx,Cy are symmetric PSD (Option A),

CxT̂ (s)(Cy)⊤ + (Cx)⊤T̂ (s)Cy, otherwise (Option B).

Then there exists L > 0 (a Lipschitz constant of ∇F ) such that for all T̂ ,

F (T̂ ) ≤ F (T̂ (s)) +
〈
G(s), T̂ − T̂ (s)

〉
+

L

2
∥T̂ − T̂ (s)∥2F . (A12)

In Option A, one can take L = 2 ∥Cx∥2∥Cy∥2, and the inequality is a global upper bound with
G(s) = 2CxT̂ (s)Cy .

Proof of Lemma 2. Option A. If Cx,Cy ⪰ 0 and symmetric, then F (T̂ ) = vec(T̂ )⊤(Cy ⊗
Cx) vec(T̂ ) with a PSD Kronecker factor; F is convex and ∇F (T̂ ) = 2CxT̂Cy . The descent
lemma for convex L-smooth functions gives Eq. A12 with L = 2 ∥Cx∥2∥Cy∥2.

Option B. Without PSD, F is still smooth with ∇F (T̂ ) = CxT̂ (Cy)⊤ + (Cx)⊤T̂Cy . For any
T1,T2,

∥∇F (T1)−∇F (T2)∥F ≤ ∥Cx∥2∥(Cy)⊤∥2∥T1 − T2∥F + ∥(Cx)⊤∥2∥Cy∥2∥T1 − T2∥F ,
so one can take L = ∥Cx∥2∥(Cy)⊤∥2 + ∥(Cx)⊤∥2∥Cy∥2. Applying the descent lemma yields
Eq. A12.

Unique inner minimizer and KKT structure. Fix D̃(s) = (1− ρ)C + ρG(s) and consider the
inner convex subproblem:

min
T̂≥0

〈
T̂ , D̃(s)

〉
− λ1 M(T̂ ) + λ2 KL(T̂ ∥Q̂) + τ

(
KL(T̂1M+1∥α) + KL((T̂ )⊤1N+1∥β)

)
,

(A13)
where Q̂ > 0 elementwise, λ2 > 0, and α,β > 0 (including virtual mass entries).

Lemma 3 (Unique inner minimizer). Problem Eq. A13 is strictly convex on {T̂ ≥ 0} and admits a
unique minimizer. It is characterized by the KKT system that yields the Gibbs kernel form:

T̂ = Diag(u)K(s) Diag(v), u =
(
α./(K(s)v)

)κ
, v =

(
β./((K(s))⊤u)

)κ
, κ = τ

λ2
,

with a positive kernel

K
(s)
ij = qij exp

(
s
λ1
ij −d̃

(s)
ij

λ2

)
,

where sλ1
ij denotes the IDM score (linear reward) and d̃

(s)
ij the linearized fused cost.

Proof of Lemma 3. The function X 7→ KL(X∥Q̂) =
∑

ij Xij log
Xij

qij
−Xij + qij is strictly convex

in X on {X ≥ 0} provided Q̂ > 0. The marginals map T̂ 7→ (T̂1, T̂⊤1) is linear, and x 7→
KL(x∥a) is strictly convex on Rn

+ for a > 0, hence T̂ 7→ KL(T̂1∥α) + KL(T̂⊤1∥β) is convex
in T̂ . Consequently, if λ2 > 0 then Ψ is a sum of a linear term and a strictly convex term, hence
strictly convex in T̂ . (Strict convexity is also ensured if λ2 = 0 but additional entropic regularization
is present directly on T̂ ; here we take λ2 > 0.)

The coercivity holds because KL(·∥Q̂) and the marginal KLs diverge when the masses grow un-
bounded or stray from α, β, while all other terms are linear. Therefore, Ψ admits a unique mini-
mizer.

The KKT stationarity yields the Gibbs form:

0 =
∂Ψ

∂tij
=
(
d̃
(s)
ij − sλ1

ij

)
+ λ2

(
log

tij
qij

)
+ τ
(
log (T̂1)i

αi
+ log

(T̂⊤1)j
βj

)
.
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Rearranging gives the fixed-point equations above with κ = τ/λ2

t̂ij = qij exp
(
− 1

λ2

(
d̃
(s)
ij − sλ1

ij

))(
αi

(T̂1)i

)κ(
βj

(T̂⊤1)j

)κ
, κ = τ

λ2
.

Define the positive kernel

K
(s)
ij = qij exp

(
− 1

λ2

(
d̃
(s)
ij − sλ1

ij

))
,

and scaling vectors ui =
(
αi/(T̂1)i

)κ
, vj =

(
βj/((T̂ )⊤1)j

)κ
. Then the stationarity condition is

equivalent to the multiplicative form

T̂ = Diag(u)K(s) Diag(v),

together with the self-consistency equations u = (α./(K(s)v))κ, v = (β./((K(s))⊤u))κ, which
are exactly the fixed-point relations stated in Eq. A10. By strict convexity, this solution is unique.

Lipschitz gap and data-term deviation.

Lemma 4 (Lipschitz gap for the fused term). Let F (T̂ ) = ⟨CxT̂Cy, T̂ ⟩. With G(s) as in Lemma 2,
there exists L > 0 such that for all T̂ ,

F (T̂ ) ≤ F (T̂ (s)) + ⟨G(s), T̂ − T̂ (s)⟩+ L

2
∥T̂ − T̂ (s)∥2F .

In Option A, one can take L = 2 ∥Cx∥2 ∥Cy∥2.

Corollary 1 (Deviation of the linearized data term). Let D̃(T̂ ) = (1 − ρ)C + ρG(T̂ ) with G(·)
from Lemma 2. Then for all T̂ ,〈

D̃(T̂ ), T̂
〉
−
〈
D̃(s), T̂

〉
≤ ρ

L

2
∥T̂ − T̂ (s)∥2F ,

with L as in Lemma 4. In Option A, L = 2 ∥Cx∥2∥Cy∥2.

Theorem 2 (Monotone decrease of the outer MM.). Let J denote the full objective (Eq. A2). At
outer step s, replace F by the quadratic majorizer of Lemma 2 with constant L, and solve the inner
problem exactly to obtain T̂ (s+1).

• Option A (PSD): J (T̂ (s+1)) ≤ J (T̂ (s)) (global upper bound; tight at T̂ (s)).

• Option B (non-PSD): the MM surrogate decreases monotonically; every limit point is a sta-
tionary point of the surrogate, and a first-order stationary point of the original objective under
standard MM conditions.

Proof of Theorem 2. By Lemma 4 and Corollary 1, the quadratic surrogate upper-bounds the fused
term (globally in Option A; locally with an L-smooth bound in Option B) and is tight at T̂ (s).
Minimizing this surrogate plus convex KL penalties and the linear IDM reward cannot increase the
(true or surrogate) objective. Coercivity of KL and nonnegativity of costs give existence of limit
points; standard MM arguments then yield stationarity.

Extensions and remarks.

1. Alternative L and gradients. If the loss is L(a, b) = (a − b)2 with symmetric Cx,Cy , one
obtains

∇TF (T ) = 2CxT11⊤ + 211⊤TCy − 4CxTCy,

and the same linearization/scaling applies after substituting D̃. The Lipschitz constant enters the
same bounds.
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2. Stability. The prior Q̂ (strictly positive) prevents numerical underflow at low temperature λ2,
and the IDM reward injects mass near plausible alignments directly in the kernel exponent, which
accelerates convergence.

3. Stopping criteria. We stop inner (unbalanced Sinkhorn) iterations when the relative marginal
change is≤ 10−3; the outer loop stops when the relative decrease in J is≤ 10−4 or after a small
maximum number of outer steps (e.g., 4-7).

4. Consistency checks. When τ →∞ (balanced) and ρ = 0, we recover entropically regularized
KOT with IDM and prior-KL; when τ→∞ and ρ> 0, we recover entropic FGWOT; if λ1 =0,
IDM is absent.

5. Temperature and priors. Smaller λ2 sharpens the kernel; the prior qij steers mass to the virtual
sink when matches are weak and keeps all K(s)

ij strictly positive.

6. Complexity. Each inner iteration performs two matrix-vector products with K(s) and (K(s))⊤,
costing O((N +1)(M +1)). Forming G(s) = 2CxT̂ (s)Cy (Option A) or CxT̂ (s)(Cy)⊤ +

(Cx)⊤T̂ (s)Cy (Option B) is O((N+1)(M+1)) when Cx,Cy are banded/sparse (typical for
temporal kernels), as it reduces to two banded-dense multiplies; otherwise one should avoid
explicit dense Kronecker constructions. Empirically, we use ≤ 25 inner iterations and 3-6 outer
steps.

A.2 HYPER-PARAMETER SETTINGS

Table A1 lists the hyperparameters used for REALIGN.

Table A1: Hyper-parameter settings for REALIGN.

Hyper-parameter Value
No. of key-steps (k) 7
No. of sampled frames (N,M ) 32
No. of epochs 10000
Batch Size 2
Learning Rate (θ) 10−4

Weight Decay 10−5

Window size (δ) 15
No. of context frames 2
Context stride 15
Embedding Dimension 128
Gromov-Wasserstein weight (α) 0.5
Entropy regularization weight (ϵ) 0.07
Laplace scale parameter (b) 3.0 (MECCANO, EPIC-Tents)
Laplace scale parameter (b) 2.0 (for all other datasets)
Temperature 0.5
λ1

1
N+M

λ2
0.1∗N∗M

4.0
Margin (λ3) 2.0
Threshold for virtual frame (ζ) 2∗5

N+M
Optimizer Adam (Adam et al. (2014)
c1

1
N∗M

c2 0.5
Coefficient for loss inter (c3) 0.0001
Maximum Sinkhorn Iterations 20

A.3 COMPUTE RESOURCES FOR EXPERIMENTS

For our experiments, appropriate computational resources were required to ensure efficient model
training. We employed a single Nvidia A40 GPU; however, its full memory capacity was not nec-
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essary. GPU memory usage was primarily determined by the batch size (bs). For instance, with
a bs of 2, approximately 16 GB of GPU memory was sufficient. Training time depended on both
the dataset size and the number of epochs (set to 10,000 in our case). Under this configuration,
a dataset consisting of 15-20 videos (e.g., within the PC assembly or MECCANO domain) could
be processed in approximately 12 hours. These resources enabled us to conduct the experiments
effectively, ensuring optimal performance and reliable outcomes.

A.4 DETAILED STATISTICS OF DATASET

Table A2 presents statistical analyses for each of the 16 (5+7+4) tasks in the EgoProceL dataset
(Bansal et al. (2022)). Here, N denotes the total number of videos, while K represents the number
of key-steps for each task. un indicates the number of unique key-steps, and gn denotes the number
of annotated key-steps for the nth video. Following the methodology in (Elhamifar & Naing (2019)),
we report the following metrics:

Foreground Ratio: This metric measures the proportion of the total video duration occupied by key-
steps. It reflects the prevalence of background actions in a task. A higher foreground ratio (closer to
1) corresponds to fewer background actions. It is defined as:

F =

∑N
n=1

tnk
tnv

N
(A14)

where tnk and tnv denote the durations of key-steps and the full video for the nth instance, respectively.

Table A2: Statistics of the EgoProceL dataset across different tasks.

Task Videos Key-steps Foreground Missing Repeated
Count Count Ratio Key-steps Key-steps

PC Assembly (Bansal et al. (2022)) 14 9 0.79 0.02 0.65
PC Disassembly (Bansal et al. (2022)) 15 9 0.72 0.00 0.60
MECCANO (Ragusa et al. (2021)) 20 17 0.50 0.06 0.32
Epic-Tents (Jang et al. (2019)) 29 12 0.63 0.14 0.73
CMU-MMAC (De la Torre et al. (2009))
Brownie 34 9 0.44 0.19 0.26
Eggs 33 8 0.26 0.05 0.26
Pepperoni Pizza 33 5 0.53 0.00 0.26
Salad 34 9 0.32 0.30 0.14
Sandwich 31 4 0.25 0.03 0.37
EGTEAGAZE+ (Li et al. (2018))
Bacon and Eggs 16 11 0.15 0.22 0.51
Cheese Burger 10 10 0.22 0.22 0.65
Continental Breakfast 12 10 0.23 0.20 0.36
Greek Salad 10 4 0.25 0.18 0.77
Pasta Salad 19 8 0.25 0.19 0.86
Hot Box Pizza 6 8 0.31 0.13 0.62
Turkey Sandwich 13 6 0.21 0.01 0.52

Missing Key-steps (M): This metric quantifies the proportion of omitted key-steps in each video.

M = 1−
∑N

n=1 un

KN
; (A15)

Values range from 0 to 1, with higher values indicating more missing steps. This measure helps
assess task feasibility when certain steps are skipped.
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Repeated Key-steps: This metric captures the frequency of key-step repetition across videos:

R = 1−
∑N

n=1 un∑N
n=1 gn

(A16)

A.5 THIRD-PERSON VIDEO PERSPECTIVE Table A3: Comparison of third-person perspec-
tives from CMU-MMAC (De la Torre et al.
(2009)) against egocentric recordings. Egocentric
view demonstrates markedly superior alignment
quality, underscoring the strength of OT in cap-
turing first-person task dynamics.

View P R F1 IoU
TP (Top) 41.5 46.3 43.8 28.2

TP (Back) 44.7 49.8 47.1 31.0
TP (LHS) 50.2 55.4 52.7 35.9
TP (RHS) 43.0 48.2 45.5 29.4
Egocentric 61.2 58.4 59.7 43.7

In this study, we evaluate the performance of
REALIGN across multiple third-person per-
spectives from CMU-MMAC (De la Torre et al.
(2009)). Table A3 reports the per-frame F1-
score and IoU for different exocentric views.
Our experiments on exocentric videos yielded
consistently strong results, confirming the ro-
bustness of the model when trained and tested
under this setting. These findings not only high-
light the effectiveness of our approach but also
emphasize its relevance for practical scenarios
involving both egocentric and exocentric video
data.

A.6 QUANTITATIVE RESULTS OF REALIGN ON DIFFERENT SUBTASKS ACROSS THE
DATASETS

We present results for individual subtasks from egocentric datasets, including CMU-MMAC (De la
Torre et al. (2009)) and EGTEA-GAZE+ (Li et al. (2018)), in Table A4, and for third-person exo-
centric datasets such as ProceL (Elhamifar & Huynh (2020)) and CrossTask (Zhukov et al. (2019))
in Table A5. This analysis provides a detailed evaluation across diverse settings, highlighting the
performance of our model under different perspectives and task domains. The results demonstrate
the versatility and effectiveness of our approach in handling a wide range of video types, thereby
advancing the state of research in procedure learning.

Table A4: Results on individual subtasks of egocentric datasets.

(a) EGTEA-GAZE+ (Li et al. (2018))

Method Bacon Eggs Cheeseburger Breakfast Greek Salad Pasta Salad Pizza Turkey
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 62.15 47.88 63.02 47.37 56.50 41.09 66.78 51.65 68.90 54.34 53.87 37.61 65.84 50.33
R-FPGWOT 66.74 53.62 66.98 51.95 57.95 42.50 66.79 51.65 70.99 56.78 53.97 37.67 66.23 50.68

(b) CMU-MMAC (De la Torre et al. (2009))

Method Brownie Eggs Pizza Salad Sandwich
F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 58.29 41.67 56.23 40.71 47.27 31.51 63.95 48.53 65.67 50.37
R-FPGWOT 58.52 41.92 56.72 41.11 48.00 32.22 69.23 52.27 66.16 50.89
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Table A5: Results on individual subtasks of Third-person exocentric datasets.

(a) ProceL (Elhamifar & Huynh (2020))

Methods Clarinet PB&J Sandwich Salmon Jump Car Toilet Tire Change

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 67.85 54.12 55.69 40.42 57.03 41.59 67.30 54.85 53.18 38.16 50.85 35.09

R-FPGWOT 68.48 54.82 56.46 40.97 58.57 43.25 67.99 55.65 55.27 40.10 51.69 36.13

Methods Tie-Tie Coffee iPhone Battery Repot Plant Chromescast CPR

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 55.79 40.37 63.10 48.91 49.47 33.90 60.34 45.40 48.74 32.64 50.87 35.64

R-FPGWOT 55.97 40.53 64.52 50.15 49.49 33.90 60.74 45.92 49.71 33.41 52.30 36.82

(b) CrossTask (Zhukov et al. (2019))

Methods 16815 23521 40567 44047 44789 53193

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 64.4 50.0 61.3 46.1 58.9 43.7 56.7 41.9 60.6 46.6 66.0 51.9

R-FPGWOT 65.1 50.4 61.5 46.3 59.6 44.5 57.7 42.7 61.9 48.1 66.5 52.3

Methods 59684 71781 76400 77721 87706 91515

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 55.0 40.0 62.6 49.5 63.0 48.4 64.4 49.9 55.3 39.7 58.5 43.2

R-FPGWOT 56.1 40.1 63.6 50.3 63.5 48.9 65.2 50.6 55.9 40.3 58.9 43.8

Methods 94276 95603 105222 105253 109972 113766

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

R-FGWOT 57.2 41.7 58.5 43.2 60.6 45.2 61.3 46.6 62.9 48.5 64.2 49.6

R-FPGWOT 57.6 42.0 58.6 43.3 61.6 46.0 62.5 47.8 63.9 49.7 65.1 50.5

A.7 ADDITIONAL FUTURE APPLICATIONS

Leveraging multiple videos of the same task enables several practical applications. In procedure
monitoring, the system can automatically verify whether each key step is performed correctly, flag-
ging errors or deviations. For assistive guidance, it can localize the current step in real time and
suggest the next, serving as an intelligent instruction system. In robotic automation, the framework
learns procedural knowledge directly from observation, allowing robots to replicate tasks without
explicit programming.

Beyond execution, the model also supports cross-modal transfer: annotations or cues (e.g., text or
audio) can be propagated across aligned videos. The embedding space further enables fine-grained
retrieval and anomaly detection. Nearest-neighbor search surfaces frames corresponding to specific
actions, while deviations from expected trajectories indicate abnormal behavior, ensuring correct
procedural order.

Figure A1 illustrates these capabilities: retrieving filled-container frames in water-filling (Row 1),
distinguishing pre- vs. post-assembly in tent assembly (Row 2), identifying hard disk insertion in
PC assembly (Row 3), and detecting chopping actions across different vegetables (Row 4).
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Figure A1: Nearest-neighbor retrieval in the embedding space enables precise frame-level alignment
across tasks.

A.8 ADDITIONAL ABLATION STUDIES

A.8.1 KEY-STEP LOCALIZATION AND ORDERING USING GRAPHCUT SEGMENTATION

After obtaining frame embeddings through our R-FPGWOT alignment framework, we localize key
steps and infer their temporal order to capture procedural structure. Following prior works, we model
key-step localization as a multi-label graph cut segmentation problem (Greig et al. (1989)), where
the node set includes K terminal nodes representing key steps and non-terminal nodes corresponding
to frame embeddings.

Formally, given frame embeddings {zi}Ti=1 and K key-step prototypes {ck}Kk=1, we construct a
graph G = (V, E) with V = {1, . . . , T} and label set L = {1, . . . ,K}. The multi-label segmenta-
tion y ∈ LT is obtained by minimizing a standard Potts-model graph cut energy:

E(y) =

T∑
i=1

Di(yi)︸ ︷︷ ︸
T-links: data term

+ β
∑

(i,j)∈Et

wij I[yi ̸= yj ]︸ ︷︷ ︸
N-links: temporal smoothness

. (A17)

Here, the T-links implement the data term

Di(k) = ∥zi − ck∥22, (A18)

which encourages frame i to attach to the key-step prototype with the most similar embedding,
enforcing structural consistency between clusters and the learned embedding geometry.

The N-links connect temporally adjacent frames (i, j) ∈ Et (typically j = i+ 1) with weights

wij = exp
(
− ∥zi−zj∥2

2

2σ2

)
, (A19)

so that label changes between nearby frames with similar embeddings incur a higher penalty. This
term encourages contiguous, temporally smooth segments while still allowing boundaries where the
embeddings change significantly. The resulting submodular Potts energy E(y) is approximately
minimized via α-Expansion (Boykov et al. (2002)), yielding piecewise-constant key-step segments
that are consistent with both the embedding structure and the temporal ordering. To determine
the sequential order, we normalize frame timestamps within each video and compute the mean
normalized time of frames in each cluster, following Chowdhury et al. (2024). Clusters are then
sorted in ascending order of their average time, yielding the predicted key-step sequence for that
video. Finally, across all videos of the same task, we aggregate the discovered orders and rank
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them by frequency of occurrence, outputting the most consistent order as the canonical procedural
sequence. This pipeline not only identifies salient steps but also resolves their temporal ordering in
a robust, data-driven manner.

Algorithm 2 Temporal Ordering of Key Steps

Require: R: predicted key-step assignment for each frame, k: number of key steps
Ensure: indices: sequential order of tasks

1: M ← len(R) ▷ Number of frames
2: T ← {1,2,...,M}

M ▷ Normalized timestamps
3: Initialize cluster time← 0k

4: for i = 1 to k do
5: cluster time[i]← mean(T [R == i])

6: , indices← sort(cluster time)
7: return indices

Example.
Sample Input (R): [6, 2, 1, 3, 5, 1, 1, 0, 0, 6, 4, 4, 6, 1, 2, 3,
0, 4, 0, 4, 5, 5, 3, 1, 3, 2, 0, 4, 3, 6, 0, 1, 2, 4, 2, 3, 5, 4,
6, 2, 5, 1, 2, 4, 3, 2, 2, 3, 4, 1]

Sample Output (indices): [6, 1, 0, 5, 3, 2, 4]

A.8.2 CHOICE OF KEY-STEP K

Figure A2: Ablation study on the choice of K. With
K = 7, the model achieves the best balance between
capturing essential task boundaries and avoiding over-
segmentation. Increasing K leads to more fragmented
and jittery segmentations.

We performed an ablation study to exam-
ine the effect of the hyperparameter K
on the alignment results. When K was
set to small values, the model tended to
under-segment the sequence, merging dis-
tinct task boundaries and failing to capture
fine-grained transitions. In contrast, larger
values of K (e.g., 10 or 15) caused over-
segmentation, breaking continuous actions
into many short intervals as shown in
Fig. A2. This excessive fragmentation in-
troduced temporal jitter and decreased the
interpretability of the resulting timelines.
Selecting K = 7 provided the most favor-
able trade-off: it preserved the major task
boundaries while avoiding spurious splits.
Empirically, this choice yielded timelines
that were both faithful to the ground truth
and more robust for downstream analysis.

A.8.3 PRIOR DISTRIBUTIONS AND SENSITIVITY TO THE LAPLACE SCALE PARAMETER

Laplace vs. Gaussian vs. Uniform priors. In R-FPGWOT, the temporal and optimality struc-
ture matrices are instantiated via a parametric prior distribution over pairwise distances, which we
implement as a symmetric kernel. We compare three choices of prior: Uniform, Gaussian, and
Laplace as shown in Fig. A3. All three induce time-local structure, but with different trade-offs
between concentration around the mode and tolerance to deviations. The Uniform prior (Eq. A20)
assigns equal mass within a fixed window and zero outside, enforcing a hard locality constraint
while failing to differentiate more and less plausible alignments within that window. The Gaussian
prior (Eq. A21) yields a strongly peaked kernel that decays rapidly in the tails, encouraging strictly
local, near-diagonal alignments but heavily penalizing moderate temporal shifts or non-monotonic
correspondences. By contrast, the Laplace prior (Eq. A22) combines a sharp mode with heavier
tails, preserving a strong diagonal bias while still assigning non-negligible probability to moder-
ately misaligned frames. This makes it better suited to realistic egocentric videos, where small local
jitter and occasional non-monotonic jumps are common.
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Q(i, j) = N (x;µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
(A20)

Q(i, j) = f(x; a, b) =

{
1

b−a if a ≤ x ≤ b,

0 otherwise.
(A21)

Q(i, j) = f(x;µ, b) =


1

2b
exp

(
−|x− µ|

b

)
if −∞ < x <∞,

0 otherwise.
(A22)

Figure A3: Importance of choosing Laplace distribution as
a prior over Gaussian and Uniform distribution.

Table A6 reports F1/IoU on all Ego-
ProceL datasets for the three pri-
ors. The Laplace prior (our default
R-FPGWOT configuration) achieves
the best or tied-best performance
across datasets, consistently outper-
forming both Uniform and Gaussian
variants. These results, together with
the convergence analysis in the main
text, support our choice of Laplace
as the default prior: it satisfies the
PSD requirements of Option A (like
the Gaussian kernel) while providing
a more favorable balance between di-
agonal sharpness and robustness to
temporal variability.

Table A6: Ablation on the choice of prior distribution (Uniform, Gaussian, Laplace) for the temporal
and optimality kernels in R-FPGWOT on EgoProceL. We report F1/IoU (%) for each dataset.

EgoProceL
CMU-MMAC EGTEA-GAZE+ MECCANO EPIC-Tents
F1 IoU F1 IoU F1 IoU F1 IoU

Uniform 53.0 37.0 57.5 42.5 53.0 36.0 33.0 18.5
Gaussian 57.0 41.0 61.5 46.5 57.0 40.0 37.0 22.5
Laplace 59.7 43.7 64.2 49.3 59.6 42.7 39.8 25.0

Sensitivity to the Laplace scale parameter b. Since the Laplace prior is parameterized by a scale
b, which controls the decay rate around the mode, we further analyze the robustness of R-FPGWOT
to this hyperparameter. Intuitively, very small b produces an overly peaked kernel that restricts
alignments to a narrow local neighborhood, while very large b flattens the kernel and weakens the
temporal guidance, approaching a weakly informative prior. We vary b ∈ {1, 1.5, 2, 2.5, 3, 3.5}
and report F1/IoU on CMU-MMAC, EGTEA-GAZE+, and MECCANO in Table A7. As seen
in Fig. A4 performance consistently peaks at b = 2 across CMU-MMAC and EGTEA-GAZE+
datasets and b = 3 across MECCANO, but the changes in F1/IoU across the tested range remain
relatively modest, indicating that the method is not overly sensitive to the precise choice of b. b =
2 or 3 provides a good trade-off between temporal concentration around the alignment diagonal and
tolerance to realistic temporal jitter and non-monotonicity.

A.8.4 SEQUENCE ALIGNMENT ROBUSTNESS

To further assess the robustness of our approach, we evaluate the alignment of pairs of sequences
that exhibit temporal variations. As shown in Fig. A5, our framework successfully aligns corre-
sponding action frames even when their execution speeds differ across videos. The correct matches
demonstrate that the model consistently identifies shared key actions, while redundant or stretched
portions of the sequence are effectively handled. This result affirms the reliability of our model in
maintaining coherent procedural alignment across temporally diverse sequences.
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Table A7: Ablation on the Laplace scale parameter
b for the temporal and optimality priors. We report
F1/IoU (%) on CMU-MMAC, EGTEA-GAZE+, and
MECCANO.

bLaplace
CMU-MMAC EGTEA-GAZE+ MECCANO

F1 IoU F1 IoU F1 IoU
1.0 57.64 42.18 63.04 47.95 57.71 40.94
1.5 58.23 42.98 63.23 48.57 57.96 41.36
2.0 59.73 43.68 64.23 49.26 58.52 41.57
2.5 58.10 42.72 62.10 48.31 58.61 42.18
3.0 57.98 42.12 61.98 47.75 59.61 42.67
3.5 57.83 41.95 61.84 47.23 58.28 41.71

Figure A4: Sensitivity of R-FPGWOT to the
Laplace scale parameter b.

Figure A5: Illustration of sequence alignment of two ‘salad making’ videos with different temporal
dynamics using our framework “REALIGN”. Despite variations in execution speed, corresponding
action frames are matched accurately, thereby managing redundancy and robustness of our method.

A.8.5 SENSITIVITY ANALYSES OF OTHER HYPERPARAMETERS

We further investigate the sensitivity of REALIGN to several key hyperparameters. Fig. A6 reports
F1/IoU on the three EgoProceL datasets (CMU-MMAC, EGTEA-GAZE+, MECCANO) as we vary
the Gromov–Wasserstein weight α, the marginal constraint penalty τ , the regulariser prior weight
λ1 and λ2, the contrastive margin λ3, the contrastive regularization weight c2, the inter-sequence
contrastive weight c3, the entropy regularization weight ϵ, the graph-cut smoothness weight β, and
the number of key-steps K. Each subplot shows how F1 (solid curves) and IoU (dashed curves)
evolve when adjusting a single hyperparameter while keeping the others fixed.

Overall, R-FPGWOT exhibits stable behaviour across the explored ranges. The performance curves
are typically smooth and unimodal, with peaks around α ≈ 0.5 (balancing KOT and GWOT),
τ ≈ 0.8, λ1 ≈ 1.0, λ2 ≈ 0.1, λ3 ≈ 2.0, c2 ≈ 0.5, c3 ≈ 10−4, ϵ ≈ 0.07, and β ≈ 0.2. For the
number of key-steps, performance is best around K = 7 and degrades only gradually for larger K.
Importantly, even when each hyperparameter is perturbed substantially away from its default setting,
the change in F1/IoU remains moderate, indicating that R-FPGWOT is robust to the precise choice
of these hyperparameters. Consequently, we fix the above values as our default configuration in all
reported experiments.
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Figure A6: Sensitivity analysis of the various hyperparameters used in REALIGN.
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