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Abstract

Graph pooling has gained attention for its ability to obtain effective node and graph represen-
tations for various downstream tasks. Despite the recent surge in graph pooling approaches,
there is a lack of standardized experimental settings and fair benchmarks to evaluate their
performance. To address this issue, we have constructed a comprehensive benchmark that
includes 17 graph pooling methods and 28 different graph datasets. This benchmark sys-
tematically assesses the performance of graph pooling methods in three dimensions, i.e.,
effectiveness, robustness, and generalizability. We first evaluate the performance of these
graph pooling approaches across different tasks including graph classification, graph regres-
sion and node classification. Then, we investigate their performance under potential noise
attacks and out-of-distribution shifts in real-world scenarios. We also involve detailed ef-
ficiency analysis, backbone analysis, parameter analysis and visualization to provide more
evidence. Extensive experiments validate the strong capability and applicability of graph
pooling approaches in various scenarios, which can provide valuable insights and guidance
for deep geometric learning research. The source code of our benchmark is available at
https://anonymous.4open.science/r/Graph_Pooling_Benchmark-8EDD.

1 Introduction

Recently, graph neural networks (GNNs) have garnered significant attention with extensive benchmarks (Tan
et al., 2023; Li et al., 2024; Hu et al., 2020a) due to their remarkable ability to process graph-structured data
across various domains including social networks (Wu et al., 2020a; Yang et al., 2021; Zhang et al., 2022),
rumor detection (Bian et al., 2020; Zhang et al., 2023), biological networks (Wu et al., 2018; Choi et al., 2020),
recommender systems (Ma et al., 2020a) and community detection (Alsentzer et al., 2020; Sun et al., 2022).
Graph pooling approaches play a crucial role in GNNs by enabling the hierarchical reduction of graph
representations, which is essential for capturing multi-scale structures and long-range dependencies (Liu
et al., 2022a; Wu et al., 2022b; Dwivedi et al., 2023). They can preserve crucial topological semantics and
relationships, which have shown effective for tasks including graph classification, node clustering, and graph
generation (Liu et al., 2022a; 2020; Grattarola et al., 2022a; Li et al., 2024). In addition, by aggregating
nodes and edges, graph pooling can also simplify large-scale graphs, facilitating the application of GNNs in
real-world problems (Defferrard et al., 2016; Ying et al., 2018b; Mesquita et al., 2020; Zhang et al., 2020b;
Tsitsulin et al., 2023b). Therefore, understanding and enhancing graph pooling approaches is the key to
increasing GNN performance, driving the progress of deep geometric learning.

In literature, existing graph pooling approaches can be roughly divided into two categories (Bianchi & Lachi,
2024; Liu et al., 2022a), i.e., node dropping pooling (Knyazev et al., 2019; Lee et al., 2019; Ranjan et al., 2020;
Ma et al., 2020b; Zhang et al., 2020a; Zhou et al., 2022; Pang et al., 2021; Bacciu et al., 2023; Zhang et al.,
2020a; 2019; Song et al., 2024) and node clustering pooling approaches (Ying et al., 2018a; Bianchi et al., 2020;
Duval & Malliaros, 2022; Wu et al., 2022a; Hansen & Bianchi, 2023; Tsitsulin et al., 2023a; Bianchi, 2022),
based on the strategies used to simplify the graph. Node dropping pooling utilizes a learnable scoring function
to guide the deletion of nodes with relatively low importance scores, resulting in lower computational costs,
while node clustering pooling approaches typically treat graph pooling as a node clustering problem, where
clusters are considered as new nodes for the coarsened graph (Liu et al., 2022b; Bianchi & Lachi, 2024). Even
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though graph pooling research is becoming increasingly popular, there is still no standardized benchmark
that allows for an impartial and consistent comparison of various graph pooling methods. Furthermore,
due to the diversity and complexity of graph datasets, numerous experimental settings have been used in
previous studies, such as varied proportions of training data and train/validation/test splits (Bian et al.,
2020; Hansen & Bianchi, 2023; Dwivedi et al., 2023; Xu et al., 2024b). As a result, a comprehensive and
publicly available benchmark of graph pooling approaches is highly expected that can facilitate the evaluation
and comparison of different approaches, ensuring the reproducibility of results and further advancing the
area of graph machine learning.

Towards this end, we present a comprehensive graph pooling benchmark, which includes 17 graph pooling
methods and 28 datasets across different graph machine learning problems. In particular, we extensively
investigate graph pooling approaches across three key perspectives, i.e., effectiveness, robustness, and gen-
eralizability. To begin, we provide a fair and thorough effectiveness comparison of existing graph pooling
approaches across graph classification, graph regression and node classification. Then, we evaluate the ro-
bustness of graph pooling approaches under both noise attacks on graph structures and node attributes. In
addition, we study the generalizability of different approaches under out-of-distribution shifts from both size
and density levels. Finally, we include efficiency comparison, parameter analysis and backbone analysis for
completeness.

Based on extensive experimental results, we have made the following observations: (1) Node clustering pool-
ing methods outperform node dropping pooling methods in terms of robustness, generalizability, and per-
formance on graph regression tasks. (2) Node clustering pooling methods incur higher computational costs,
and both approaches exhibit comparable performance on graph classification tasks. (3) AsymCheegerCut-
Pool and ParsPool demonstrate strong performance in graph classification tasks. (4) As the scale of graph
data decreases, the performance gap between different graph pooling methods in node classification tasks
increases, with KMISPool and ParsPool exhibiting outstanding performance. (5) Most graph pooling ap-
proaches experience significant performance degradation due to distribution shifts and are also challenged
by class imbalance issues, but the extent of this impact varies across different datasets. (6) Node clustering
pooling is relatively superior to node dropping pooling in terms of robustness and generalizability, while
KMISPool demonstrates relatively better robustness and generalizability in node dropping pooling methods.

The main contributions of this paper are as follows:

• Comprehensive Benchmark. We present a comprehensive graph pooling benchmark, which incorporates
17 state-of-the-art graph pooling approaches and 28 diverse datasets across graph classification, graph
regression, and node classification.

• Extensive Analysis. To investigate the pros and cons of graph pooling approaches, we thoroughly evaluate
current approaches from three perspectives, i.e., effectiveness, robustness, and generalizability, which can
serve as guidance for researchers in different applications.

• Open-source Material. We will make our benchmark of all these graph pooling approaches available and
reproducible, and we believe our benchmark can benefit researchers in both graph machine learning and
interdisciplinary fields.

2 Preliminaries

Notations. Consider a graph G characterized by a vertex set V and an edge set E. The features associated
with each vertex are represented by the matrix X ∈ R|V |×d, where |V | denotes the number of vertices, and
d signifies the dimensionality of the attribute vectors. The adjacency relationships within the graph are
encapsulated by the adjacency matrix A ∈ {0, 1}|V |×|V |, where an entry A[i, j] = 1 indicates the presence
of an edge between vertex vi and vertex vj ; otherwise, A[i, j] = 0.

Graph Pooling (Liu et al., 2022b; Grattarola et al., 2022b; Bianchi & Lachi, 2024). The aim of graph
pooling is to reduce the spatial size of feature maps while preserving essential semantics, which thereby
decreases computational complexity and memory usage. In this work, we focus on hierarchical pooling
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Figure 1: Overview of our hierarchical backbone for graph classification and graph regression.

approaches (Ying et al., 2018b). Let POOL denote a graph pooling function which maps G to a graph
G′ = (V ′, E′) with the reduced size:

G′ = POOL(G) , (1)
where |V ′| < |V |. Current graph pooling methods can be classified into two categories, i.e., node dropping
methods and node clustering methods (Bianchi & Lachi, 2024; Liu et al., 2022a). For node dropping methods,
they focus on simplifying the graph by removing less important nodes and edges. It consists of three
components, i.e., score generator SCORE() for computing the importance score for each node, node selector
Selectk() for selecting the top-k nodes with the highest importance scores, and coarsing operator COARSEN()
for generating a new coarsened graph based on SCORE() and Selectk() Liu et al. (2022a). The process can
be formulated as follows:

S(l) = SCORE(H(l), A(l)), idx(l+1) = Selectk(S(l)), H(l+1), A(l+1) = COARSEN(H(l), A(l), S(l), idx(l+1)),
(2)

where H(l) is the feature matrix and A(l) is the adjacency matrix for layer l, S(l) ∈ Rn×1 represents the
significance scores, SELECTk() ranks the scores and returns the indices of the top-k values in S(l), and idx(l+1)

denotes the indices of the reserved nodes.

For node clustering methods, they focus on grouping nodes in the graph into several clusters, where each
cluster represents a supernode. The graph is then simplified based on these supernodes. It consists of
three components, i.e., the cluster assignment operator CAM(), which defines how nodes in the original graph
are assigned to clusters in the pooled graph, mapping the nodes to the coarsened supernodes and coarsing
operator COARSEN() to generate a new coarsened graph based on CAM(). The process can be formulated as
follows:

C(l) = CAM(H(l), A(l)), H(l+1), A(l+1) = COARSEN(H(l), A(l), C(l)). (3)
where C(l) ∈ Rnl×nl+1 represents the learned cluster assignment matrix.

Graph Classification and Regression (Knyazev et al., 2019; Chen et al., 2019; Grattarola et al., 2022b).
The two primary graph-level tasks are graph regression and graph classification. Here, a graph dataset G is
provided as a set of graph-label pairs (Gi, yi), where yi denotes the label for graph Gi. The objective is to
train a powerful discriminative model f that predicts the correct label yi given an input graph Gi. In graph
classification, yi are categorical labels 1, · · · , K with K as the number of classes, while in graph regression,
yi are continuous values. A well-trained graph classification model should output labels that closely match
the true labels, and similarly, a graph regression model should predict values that are nearly identical to the
ground truth values. In these tasks, graph pooling always accompanies graph convolutional operators. In
formulation, the basic updating rule is written as follows:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l)) , (4)

where H(l) denotes the node feature matrix at layer l, W (l) denotes the weight matrix at the corresponding
layer, Ã = A + I is the adjacency matrix A plus the identity matrix I, D̃ is the degree matrix of Ã, and σ
is a nonlinear activation function (Kipf & Welling, 2016). The pooling layers can be formulated as:

H(pool) = POOL(H(L)) , (5)
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Figure 2: Overview of the graph U-Net framework for node classification.

where H(pool) is the node feature matrix after pooling We iteratively conduct graph convolution and graph
pooling operators and adopt a readout function to output the graph representation for downstream tasks.
The overview of the basic hierarchical backbone can be found in Figure 1.

Node Classification (Kipf & Welling, 2016; Veličković et al., 2018; Perozzi et al., 2014). The aim of node
classification is to assign semantic labels to nodes in a graph according to their attributes and relationships
with different nodes. Each dataset involves a graph G, consisting of nodes vi and their corresponding
labels yi. |V | is divided into a labeled set V l and a unlabeled set V u. We are required to train a graph
neural network model that can predict the missing labels of nodes in V u using the attributes of other
nodes. U-Net framework (Ronneberger et al., 2015) is widely used to incorporate pooling operations for
node classification (Wu et al., 2022a; Song et al., 2024; Zhang et al., 2021). Figure 2 shows the overview of
the U-Net framework. In the encoder part, U-Net progressively applies pooling and graph convolution to
downsample the graphs and extract multi-scale features. The decoder part of U-Net utilizes upsampling and
graph convolution to gradually upsample the low-resolution feature maps back to the original graph size.
Residual connections are employed to directly transfer the feature maps from the encoder to the decoder,
facilitating the preservation of fine-grained semantics during upsampling (Ronneberger et al., 2015; Ibtehaz
& Rahman, 2020; Leng et al., 2018). Pooling not only simplifies the graph’s complexity but also provides
the model with multi-scale feature representation capabilities.

In particular, in the downsampling path, the input feature matrix is first subjected to graph convolution,
where the product of the adjacency matrix and the feature matrix, along with the weighted sum of the weight
matrix and the bias term, yields the activated feature matrix H(l+1). Next, a pooling operation is applied,
reducing the number of nodes by selecting those with higher scores, thereby transforming the original feature
matrix H(l+1) and adjacency matrix A(l) into a smaller feature matrix H′(l+1) and a corresponding adjacency
matrix A′(l+1). In the upsampling path, the pooled feature matrix H′(l+1) is first upsampled to restore the
original number of nodes, generating a new feature matrix H′′(l+1). Then, the restored feature matrix is
concatenated with the corresponding feature matrix H(l) from the downsampling path, forming the merged
feature matrix H(l+1)

merged. Finally, the merged feature matrix undergoes another graph convolution, resulting
in the output feature matrix H(l+2).

3 Graph Pooling Benchmark

3.1 Graph Pooling Approaches

Graph pooling plays a significant role in graph mining learning. First, its primary function is to compress
node representations into a smaller graph or a single vector, which can reduce computational complexity.
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This is particularly important for processing large-scale graph data with scalability (Knyazev et al., 2019;
Ju et al., 2024). Second, graph pooling generates global graph representations by aggregating local node
information, enabling better capture of substructures and motifs (Song et al., 2024). Third, hierarchical
pooling methods, such as node clustering pooling and node drop pooling, coarsen the graph step-by-step,
extracting features at multiple levels. This helps capture complex structures and multi-level information,
thereby enhancing the model’s expressive power (Zhou et al., 2022; Bacciu et al., 2023). Finally, graph
pooling improves the model’s generalization ability to unseen graph data by reducing graph complexity and
noise, enhancing robustness, especially in out-of-distribution (OOD) scenarios (Duval & Malliaros, 2022;
Ju et al., 2024). Therefore, we introduce this benchmark for evaluating and understand graph pooling
approaches.

Our benchmark contains 17 state-of-the-art graph pooling approaches (detailed in Table 1): Top-
KPool (Knyazev et al., 2019), SAGPool (Lee et al., 2019), ASAPool (Ranjan et al., 2020), PANPool (Ma
et al., 2020b), COPool (Zhou et al., 2022), CGIPool (Pang et al., 2021), KMISPool (Bacciu et al., 2023),
GSAPool (Zhang et al., 2020a), HGPSLPool (Zhang et al., 2019), AsymCheegerCutPool (Hansen & Bianchi,
2023), DiffPool (Ying et al., 2018a), MincutPool (Bianchi et al., 2020), DMoNPool (Tsitsulin et al., 2023a),
HoscPool (Duval & Malliaros, 2022), JustBalancePool (Bianchi, 2022), SEPool (Wu et al., 2022a), and
ParsPool (Song et al., 2024). Then, we introduce the details of these graph pooling approaches:

• TopKPool (Knyazev et al., 2019). TopKPool utilizes the attention mechanism to learn the scores of
different nodes and then selects the nodes with top scores, which can learn important local portions from
original graphs.

• SAGPool (Lee et al., 2019). SAGPool utilizes a different graph neural network to learn importance
scores, which can guide the pooling process effectively.

• ASAPool (Ranjan et al., 2020). ASAPool considers the neighboring subgraphs to represent nodes
and then adopts the attention mechanism to generate subgraph representations. The importance nodes
are selected by a graph neural networks with local extremum information.

• PANPool (Ma et al., 2020b). PANPool constructs the maximal entropy transition (MET) matrix
based on graph Laplacian, which can generate importance scores for different nodes.

• COPool (Zhou et al., 2022). COPool learns pooled representations from the complimentary edge and
node views. The edge view comes from high-order semantics information while the node view stems from
importance scores from the cut proximity matrix.

• CGIPool (Pang et al., 2021). CGIPool incorporates mutual information optimization into graph
pooling, which can enhance the graph-level relationships between the original graph and the pooled
graph.

• KMISPool (Bacciu et al., 2023). KMISPool incorporates the Maximal k-Independent Sets (k-MIS)
into graph pooling, which can detect the important nodes in the graph with topological preserved.

• GSAPool (Zhang et al., 2020a). GSAPool integrates both structural and attribute information in
different components. These scores from different components are then fused to guide the graph pooling
process.

• HGPSLPool (Zhang et al., 2019). HGPSLPool not only utilizes graph pooling to determine important
nodes from the original graph, but also leverages graph structure learning to explore the topological
information in the pooled graph.

• AsymCheegerCutPool (Hansen & Bianchi, 2023). AsymCheegerCutPool conducts graph cluster-
ing to generate the assignment of each node according to graph total variation (GTV). Each cluster is
aggregated in a hierarchical manner during graph pooling.

• DiffPool (Ying et al., 2018a). DiffPool introduces a learnable soft assignment of each node during
graph clustering, and then maps each cluster into the coarsened nodes in the pooling graph.
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Table 1: Overview of experimental details of graph pooling research. These papers utilize different settings,
which validates the necessity of building a comprehensive and fair benchmark.

Methods Datasets Tasks
Node Dropping Pooling
TopKPool NIPS’19 MNIST, COLLAB, PROTEINS, D&D Graph Classification
SAGPool ICML’19 D&D, PROTEINS, NCI1, NCI109, FRANKENSTEIN Graph Classification
ASAPool AAAI’20 D&D, PROTEINS, NCI1, NCI109, FRANKENSTEIN Graph Classification
PANPool NIPS’20 PROTEINS, PROTEINS_FULL, NCI1, AIDS, MUTAGENCITY Graph Classification
COPool ECMLPKDD’22 BZR, AIDS, NCI1, NCI109, PROTEINS, QM7, IMDB-M Graph Classification, Graph Regression
CGIPool SIGIR’22 NCI1, NCI109, MUTAG, IMDB-B, IMDB-M, COLLAB, PROTEINS Graph Classification
KMISPool AAAI’23 D&D, REDDIT-B, REDDIT-5K, REDDIT-12K, Github Graph Classification, Node Classification
GSAPool WWW’20 D&D, NCI1, NCI109, MUTAG Graph Classification
HGPSLPool Arxiv’19 D&D, PROTEINS, NCI1, NCI109, ENZYMES, MUTAG Graph Classification
Node Clustering Pooling
AsymCheegerCutPool ICML’23 Cora, Citeseer, Pubmed, DBLP Node Classification
DiffPool NIPS’18 D&D, PROTEINS, COLLAB, ENZYMES, REDDIT-MULTI Graph Classification
MincutPool ICML’20 D&D, PROTEINS, COLLAB, REDDIT-B, MUTAG, QM9 Graph Classification, Graph Regression
DMoNPool JMLR’23 Cora, Citeseer Pubmed, Coauthor Node Classification
HoscPool CIKM’22 Cora, Citeseer Pubmed, Coauthor, DBLP, Email-EU Node Classification
JustBalancePool Arxiv’22 Cora, Citeseer, Pubmed, DBLP Node Classification
SEPool ICML’22 IMDB-B, IMDB-M, COLLAB, MUTAG, Cora, Citeseer, Pubmed Graph Classification, Node Classification
ParsPool ICLR’24 D&D, PROTEINS, NCI1, NCI109, Ogbg-molpcba, Cora, Citeseer, Pubmed Graph Classification, Node Classification

• MincutPool (Bianchi et al., 2020). MincutPool relaxes the classic normalized mincut problem into
a continuous fashion, and then optimizes a graph neural network to achieve this. The graph clustering
results are adopted to guide the graph pooling process.

• DMoNPool (Tsitsulin et al., 2023a). DMoNPool introduces an objective based on modularity for
graph clustering and then adds a regularization term to avoid trivial solutions during optimization. Sim-
ilarly, graph clustering results are leveraged for graph pooling.

• HoscPool (Duval & Malliaros, 2022). HoscPool combines higher-order relationships in the graph
with graph pooling based on motif conductance. It minimizes a relaxed motif spectral clustering objective
and involves multiple motifs to learn hierarchical semantics.

• JustBalancePool (Bianchi, 2022). JustBalancePool consists of two components. On the one hand,
it aims to reduce the local quadratic variation during graph clustering. On the other hand, it involves a
balanced term to reduce the risk of degenerate solutions.

• SEPool (Wu et al., 2022a). SEPool generates a clustering assignment matrix in one go through a
global optimization algorithm, avoiding the suboptimality associated with layer-by-layer pooling.

• ParsPool (Song et al., 2024). ParsPool is characterized by the introduction of a graph parsing
algorithm that adaptively learns a personalized pooling structure for each graph. ParsPool is inspired by
bottom-up grammar induction and can generate a flexible pooling tree structure for each graph.

3.2 Datasets

To systematically evaluate graph pooling methods, we integrate 28 datasets from different domains. For
graph classification, we select eleven publicly available datasets from TUDataset (Morris et al., 2020), includ-
ing seven molecules datasets, i.e., MUTAG (Debnath et al., 1991), NCI1 (Wale et al., 2008), NCI109 (Wale
et al., 2008), COX2 (Sutherland et al., 2003), AIDS (Riesen & Bunke, 2008), FRANKENSTEIN (Orsini
et al., 2015), and Mutagenicity (Debnath et al., 1991), four bioinformatics datasets, i.e. D&D (Shervashidze
et al., 2011), PROTEINS (Borgwardt et al., 2005), PROTEINS_FULL (Borgwardt et al., 2005), and EN-
ZYMES (Schomburg et al., 2004), three social network dataset, i.e., IMDB-BINARY (IMDB-B) (Cai &
Wang, 2018), IMDB-MULTI (IMDB-M) (Cai & Wang, 2018), and COLLAB (Cai & Wang, 2018). We
also include a large-scale graph classification dataset, Ogbg-molpcba, from the Open Graph Benchmark
(OGB) (Hu et al., 2020b). For graph regression, we choose six datasets from MoleculeNet (Wu et al., 2018)
including QM7, QM8, BACE, ESOL, FreeSolv, and Lipophilicity. For node classification, we utilize three
citation networks, i.e., Cora, Citeseer, and Pubmed (Yang et al., 2016), three website networks, i.e., Cornell,
Texas, and Wisconsin (Pei et al., 2020), and the GitHub dataset (Rozemberczki et al., 2021). We also obtain
a large-scale dataset, Ogbn-arxiv, from OGB (Hu et al., 2020b). More information about the summary
statistics and description of the datasets are detailed in the Appendix A.
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Table 2: Results of graph classification for different graph pooling methods. The mean and variance of
average precision (Ogbg-molpcba) and accuracy (remaining datasets) are reported. The best and 2nd best
are noted in bold font and underlined, respectively. OOM denotes out of GPU memory, and OOT denotes
cannot be computed within 24 hours.

Methods Ogbg-molpcba PROTEINS NCI1 NCI109 MUTAG D&D IMDB-B IMDB-M COLLAB Avg. Rank

Node Drop Pooling
TopKPool 15.79±0.42 70.83±1.25 70.34±1.80 69.65±1.61 82.76±4.88 69.07±5.52 74.44±3.71 48.44±3.46 75.38±1.13 70.11 12.44
SAGPool 21.08±2.19 74.64±1.53 73.10±1.21 71.29±0.82 81.61±5.86 73.27±1.12 75.33±3.31 48.74±3.09 77.91±2.22 71.99 8.06
ASAPool OOT 73.69±1.48 73.48±1.03 70.45±0.84 72.41±10.15 OOT 71.56±3.46 46.96±3.72 OOT 68.09 13.56
PANPool 21.81±0.99 70.60±1.67 73.29±1.07 70.84±1.23 78.16±8.60 73.27±4.05 73.33±3.57 47.70±3.58 78.40±2.80 70.70 11.00
COPool 25.50±2.46 75.24±2.46 74.10±1.06 71.35±1.05 83.91±3.25 73.57±0.42 74.44±4.40 48.89±3.82 81.33±1.15 72.85 5.28
CGIPool 23.78±6.71 73.57±1.49 75.72±1.65 73.81±0.42 86.21±4.88 72.07±1.47 74.22±3.62 46.22±2.02 80.40±1.71 72.78 8.22
KMISPool 26.85±0.28 70.63±1.01 73.15±2.19 73.17±1.10 80.46±4.30 70.57±1.70 72.89±3.62 46.96±2.47 80.71±0.49 71.07 9.83
GSAPool 26.95±1.36 72.14±1.09 71.12±1.33 70.65±1.45 87.36±1.63 72.97±1.27 74.67±3.93 46.37±4.13 76.84±2.11 71.52 9.28
HGPSLPool 22.78±0.51 72.02±1.73 72.22±0.42 70.35±1.31 71.26±12.70 73.27±2.78 72.89±4.37 46.81±2.19 79.24±0.80 69.76 12.17
Node Clustering Pooling
AsymCheegerCutPool 24.82±0.60 74.60±1.96 75.90±1.69 73.98±1.88 89.66±2.82 74.47±2.36 74.89±3.14 48.30±3.63 80.62±1.06 74.05 4.72
DiffPool 25.21±0.42 74.80±1.71 74.72±1.82 75.16±0.35 80.46±5.86 73.57±1.85 74.44±0.63 47.70±4.01 78.89±0.55 72.47 6.50
MincutPool 24.97±0.41 72.42±1.71 75.53±1.15 74.30±1.33 85.06±1.63 71.77±2.12 73.78±3.94 45.93±2.55 76.53±1.60 71.91 9.56
DMoNPool 24.75±0.67 68.45±4.79 72.45±0.15 71.18±1.66 75.86±5.63 75.38±0.42 73.33±3.81 47.26±1.68 77.07±0.44 70.12 11.17
HoscPool 24.63±0.37 72.42±0.74 76.88±0.61 76.13±1.97 85.06±1.63 71.77±2.12 74.67±1.96 45.93±2.77 78.18±1.69 72.63 8.06
JustBalancePool 25.19±0.42 68.85±2.97 76.34±0.46 76.34±1.51 81.61±1.63 71.77±2.12 74.89±4.09 45.93±5.08 77.87±1.26 71.70 8.67
SEPool OOT 62.25±4.57 62.77±2.25 63.74±2.30 67.22±8.41 80.26±3.04 77.00±4.05 54.13±3.71 75.64±2.04 67.88 11.39
ParsPool 26.63±0.30 75.02±0.64 77.07±0.23 76.20±0.44 79.31±5.63 76.10±0.80 75.11±2.20 49.48±0.91 83.60±0.50 73.99 3.11

3.3 Evaluation Protocols

Our benchmark evaluation encompasses three key aspects, i.e., effectiveness, robustness, and generalizabil-
ity. We perform a hyperparameter search for all pooling methods; detailed information can be found in
Appendix B. Firstly, we conduct a performance comparison of graph pooling approaches across three tasks
including graph classification, graph regression, and node classification. For graph and node classification
tasks, we employ average precision for Ogbg-molpcba, and accuracy for remaining datasets as the evaluation
metric. For graph regression, we use root mean square error (RMSE) for ESOL, FreeSolv, and Lipophilic-
ity (Wu et al., 2018). Following previous research (Xu et al., 2024b), we use the area under the receiver
operating characteristic (AUROC) curve to evaluate BACE, and mean absolute error (MAE) for QM7 and
QM8. Secondly, our benchmark evaluates the robustness of graph pooling approaches in both graph-level and
node-level tasks across two perspectives: structural robustness and feature robustness (Li & Wang, 2018).
In particular, we add and drop edges of graphs to study structural robustness and mask node features to
investigate feature robustness. Thirdly, we employ size-based and density-based distribution shifts to eval-
uate the generalizability of different pooling methods in graph-level tasks under real-world scenarios (Gui
et al., 2022). We also use degree-based and closeness-based distribution shifts to assess the generalizability
of different pooling methods in node-level tasks. In addition to these three views, we conduct a further
analysis of these graph pooling approaches including the comparison of efficiency, visualization, and different
backbone parameter choices.

4 Experiment

4.1 Experimental Settings

All graph pooling methods in our benchmark are implemented by PyTorch (Paszke et al., 2019). Graph
convolutional networks serve as the default encoders for all algorithms. The experimental setup includes a
Linux server equipped with NVIDIA A100 GPUs, with an Intel Xeon Gold 6354 CPU. The software stack
comprises PyTorch 1.11.0, PyTorch-geometric 2.1.0 (Fey & Lenssen, 2019), and Python 3.9.16. More details
about experimental settings can be found in Appendix B.

4.2 Effectiveness Analysis

Performance on Graph Classification. To begin, we investigate the performance of different graph
pooling approaches on graph classification. The results of compared approaches on seven popular datasets
are recorded in Table 2. Firstly, in general, ParsPool, AsymCheegerCutPool, and COPool are the three best-
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Table 3: Results of graph regression for different pooling methods. The mean and variance of MAE (QM7,
QM8), AUROC (BACE), RMSE (ESOL, FreeSolv, Lipophilicity) are reported. - denotes cannot converge.

Methods QM7 QM8 BACE ESOL FreeSolv Lipophilicity Rank
Node Drop Pooling
TopKPool 63.39±9.66 0.021±0.001 0.85±0.02 0.96±0.06 1.92±0.37 0.80±0.02 8.1
SAGPool 97.69±11.19 0.023±0.001 0.84±0.01 1.16±0.07 2.31±0.66 0.93±0.06 13.1
ASAPool 56.79±6.17 0.029±0.008 0.85±0.02 0.92±0.03 1.92±0.37 0.78±0.05 8.2
PANPool 53.04±1.20 0.015±0.000 0.83±0.02 1.01±0.03 1.80±0.10 0.84±0.01 9.7
COPool 84.22±3.28 0.020±0.001 0.85±0.01 0.98±0.07 1.85±0.24 0.85±0.02 8.5
CGIPool 97.41±16.25 0.020±0.001 0.84±0.03 1.59±0.62 2.49±0.97 0.83±0.07 11.7
KMISPool 80.51±21.34 0.017±0.001 0.85±0.02 0.95±0.04 1.29±0.18 0.81±0.03 5.9
GSAPool 106.72±22.90 0.021±0.001 0.85±0.02 0.96±0.08 1.95±0.26 0.82±0.03 8.8
HGPSLPool 47.88±0.83 0.015±0.000 0.84±0.01 1.02±0.06 1.62±0.09 0.76±0.01 7.8
Node Clustering Pooling
AsymCheegerCutPool 64.91±8.30 0.031 ± 0.005 0.84 ± 0.01 0.99 ± 0.12 2.00 ± 0.18 0.95 ± 0.11 12.9
DiffPool 54.98±3.44 0.037 ± 0.010 0.84 ± 0.02 0.81 ± 0.05 1.20 ± 0.09 0.73 ± 0.03 8.0
MincutPool - 0.020 ± 0.001 0.85 ± 0.02 0.76 ± 0.02 1.19 ± 0.18 0.73 ± 0.02 4.3
DMoNPool - 0.021 ± 0.001 0.85 ± 0.02 0.68 ± 0.02 1.16 ± 0.15 0.69 ± 0.02 3.5
HoscPool 59.44±21.48 0.019 ± 0.002 0.84 ± 0.01 0.76 ± 0.02 1.14 ± 0.13 0.72 ± 0.02 4.6
JustBalancePool - 0.022 ± 0.004 0.85 ± 0.02 0.74 ± 0.03 1.26 ± 0.16 0.70 ± 0.01 4.9

performing pooling models, and the performance of all 17 pooling methods varies significantly across different
datasets. No single pooling method consistently outperforms the others across all datasets. Secondly, it is
noteworthy that SEPool achieves significant advantages on D&D, IMDB-B, and IMDB-M. This is because
SEPool’s coding tree structure, and these datasets are characterized by high clustering coefficients (Watts &
Strogatz, 1998), which benefits the coding tree method because the hierarchical nature of the tree can better
capture and represent these localized, highly connected substructures (Wu et al., 2022a). However, SEPool
also implies greater computational resource overhead, which presents challenges when processing large-scale
graph data such as Ogbg-molpcba. Thirdly, the methods with the highest average accuracy are ParsPool
and AsymCheegerCutPool. ParsPool can capture a personalized pooling structure for each individual graph,
while AsymCheegerCutPool calculates cluster assignments based on a tighter relaxation in terms of Graph
Total Variation (GTV) (Song et al., 2024; Hansen & Bianchi, 2023). These methods are flexible, and the
datasets differ significantly in diameter, degree, and clustering coefficients. Fourthly, GSAPool demonstrates
superior performance on datasets with small-scale graphs, such as Ogbg-molpcba (Avg. nodes=26.0, Avg.
edges=27.5) and MUTAG (Avg. nodes=17.9, Avg. edges=39.6). GSAPool combines structural information
(SBTL) and node feature information (FBTL) to generate the final pooling topology. In terms of structural
information, SBTL employs GCNConv, while for feature information, FBTL directly processes node features
using MLP. GCNConv accurately identifies critical structural nodes (e.g., high-degree hub nodes) through
neighborhood aggregation. The limited number of nodes enhances the distinctiveness of individual node
features (e.g., atomic attributes in molecular graphs), enabling MLP to efficiently extract their importance.
Additionally, on small-scale graphs, structural information (e.g., node degree and adjacency relations) and
feature information (e.g., node attributes) are typically more pronounced and easier to capture, leading to
better performance. ParsPool excels on datasets with large-scale graphs, such as D&D (Avg. nodes=284.3,
Avg. edges=715.7) and COLLAB (Avg. nodes=74.5, Avg. edges=2457.2). The algorithm combines graph
topology with continuous feature values through a learnable edge score matrix, generating clusters via three
operations: DOM, EXP, and GEN. DOM selects key edges to anchor initial cluster centers, EXP dynamically
absorbs neighboring nodes through expansion, and GEN produces a soft assignment matrix. This process
adaptively partitions clusters based on local structures and global connectivity patterns without predefined
cluster numbers or pooling ratios. For large-scale graphs with dense edges (e.g., COLLAB), the learnable
edge scores enable gradient-based optimization to identify high-order semantic clusters while sparsifying
non-critical edges. For graphs with numerous nodes (e.g., D&D), the row-wise max-indexing in DOM and
neighborhood expansion in EXP efficiently aggregate nodes with linear complexity, avoiding the performance
bottlenecks of traditional global clustering methods.
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Table 4: Results of node classification for different pooling methods. No Pooling denotes without pooling
layers.

Methods Ogbn-arxiv Cora Citeseer Pubmed Cornell Texas Wisconsin Github Avg. Rank
TopKPool 53.36±0.03 88.91±0.93 77.56±0.85 86.13±0.34 49.09±2.57 54.18±4.80 51.58±3.05 86.95±0.20 67.91 8.00
SAGPool 53.39±0.02 89.18±0.65 77.56±0.81 86.07±0.70 81.09±3.74 55.64±2.95 51.32±3.53 86.99±0.22 73.48 5.33
ASAPool OOM 89.10±0.86 77.76±1.01 85.74±0.18 79.64±2.91 54.55±4.74 50.79±3.49 OOM 72.93 6.83
PANPool OOM 89.05±0.96 77.20±0.98 85.88±0.11 78.91±2.47 56.36±5.14 50.53±3.18 OOM 72.99 8.00
COPool OOM 89.00±0.70 77.26±0.89 85.27±0.27 77.82±3.13 56.36±5.98 52.37±2.68 86.68±0.20 73.01 7.50
CGIPool 53.60±0.39 89.15±0.84 77.40±0.81 85.92±0.66 81.82±4.30 54.55±4.15 51.05±3.85 86.88±0.22 73.32 6.33
KMISPool 53.38±0.08 89.74±0.02 77.75±0.01 87.80±0.01 79.56±1.31 81.42±1.64 82.31±0.50 87.09±0.04 83.10 2.50
GSAPool 53.76±0.11 89.05±0.77 77.16±0.92 86.21±0.73 80.36±3.71 54.18±3.88 51.84±4.29 87.12±0.09 73.13 6.67
HGPSLPool OOM 89.08±0.83 77.84±0.67 OOM 58.55±3.71 55.27±3.37 51.58±1.75 OOM 69.71 6.33
SEPool OOT 83.17±0.00 70.47±0.00 79.33±0.80 51.35±0.00 66.66±6.50 57.51±0.85 OOT 68.08 8.67
ParsPool OOM 84.51±0.35 74.27±0.38 89.20±0.00 72.07±6.49 81.98±6.49 82.35±17.94 OOM 80.73 5.50
No Pooling 53.61±0.07 89.48±0.27 77.69±0.24 86.10±0.06 48.83±1.24 56.50±1.11 54.43±1.54 86.46±0.02 68.84 5.17

Performance on Graph Regression. We further explore the performance of different pooling methods
through graph-level regression tasks. As shown in Table 3, we can observe that: Firstly, overall, node
clustering pooling methods outperform node dropping pooling methods, with DMoNPool and MincutPool
showing the best performance. The possible reason is that in graph regression tasks, the model’s objective is
to predict a continuous numerical output. Such tasks typically require capturing global structural features
and continuity within the graph. Compared to node clustering pooling, node dropping pooling tends to
lose more global information (Tsitsulin et al., 2023a; Bianchi et al., 2020). DMoNPool and MincutPool are
more inclined to maintain the global characteristics of the graph rather than emphasizing the representation
of locally important structures, which may result in their performance being inferior to that of ParsPool,
AsymCheegerCutPool, and COPool in graph classification tasks. Secondly, in the BACE dataset, the perfor-
mance of most pooling methods tends to be consistent, whereas in other datasets, there is a greater variance
in performance. The possible reason is that although the graphs in the BACE dataset are relatively large,
the average diameter is relatively small, so different pooling methods face fewer challenges in summarizing
the global structural information of the graphs, which may lead to more consistent performance.

Performance on Node Classification. Table 4 presents the performance of various pooling methods
in node classification tasks. We observe the following: Firstly, KMISPool and ParsPool demonstrate the
best overall performance, significantly outperforming other methods on small-scale datasets such as Cornell,
Texas, and Wisconsin. Secondly, node classification models without pooling layers achieve comparable
results to most pooling methods across the majority of datasets. A potential reason for this is that pooling
operations tend to lose substantial node information, which consequently weakens performance in node
classification tasks. Thirdly, the scalability of ASAPool, PANPool, HGPSLPool, SEPool, and ParsPool
still requires improvement, as they face memory/runtime bottlenecks, making it cannot complete training on
larger datasets such as Ogbn-arxiv or GitHub. Fourthly, for datasets with strong connectivity between nodes,
such as Ogbn-arxiv (Avg. degree=13.7) and Github (Avg. degree=15.3), GSAPool performs exceptionally
well due to its emphasis on extracting structural information through GCNConv. Conversely, for datasets
with weaker connectivity, such as PubMed (Avg. degree=4.5), Texas (Avg. degree=3.2), and Wisconsin
(Avg. degree=3.7), KMISPool excels. KMISPool demonstrates superior performance on the Cora dataset,
which has the highest average clustering coefficient (Avg. CC=0.24). A high clustering coefficient indicates
strong community structure among nodes. The k-MIS algorithm selects nodes that are more than k hops
apart as centroids, ensuring their uniform distribution across the graph and preventing over-sampling or
omission in specific regions. This uniform node selection strategy is particularly crucial in graphs with
weaker connectivity, where traditional pooling methods may suffer from information loss or uneven sampling
due to insufficient local connections.

4.3 Robustness Analysis

The compared performance for three types of random noise on eight graph pooling methods on the PRO-
TEINS, NCI1, NCI109, and MUTAG datasets are shown in Table 5. With a probability of 50%, edges
of the graph are randomly removed or added, and node features are randomly masked. We can observe
that: Firstly, overall, node clustering pooling demonstrates better robustness against three types of attacks
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Figure 3: Performance of different approaches w.r.t. different rates of random noise.

Table 5: Results of graph classification under random noise attack for different pooling methods.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool KMISPool DiffPool MincutPool JustBalancePool

PROTEINS
ADD 73.58±5.77 72.76±3.87 74.59±3.74 39.63±42.27 71.14±0.57 73.78±2.59 72.36±2.92 75.00±1.49

DROP 71.95±2.28 73.58±2.55 72.76±1.88 38.62±42.97 71.34±1.32 71.34±1.80 71.75±2.07 73.37±1.25
MASK 72.56±3.11 73.78±3.45 71.14±2.55 72.88±4.71 72.97±2.24 72.97±0.29 72.36±3.24 70.12±2.28

NCI1
ADD 65.91±0.65 67.53±2.25 71.42±1.53 66.29±0.40 72.66±1.40 72.66±0.20 70.77±1.80 73.96±0.08

DROP 63.16±1.52 61.64±1.46 64.07±0.73 65.53±1.31 73.58±3.00 66.18±2.22 65.05±0.73 64.18±1.61
MASK 63.86±1.39 63.16±2.10 66.94±0.87 66.18±0.61 65.15±2.30 68.23±2.73 67.10±2.07 67.91±1.98

NCI109
ADD 66.18±0.73 68.55±1.13 69.62±2.11 64.84±2.74 75.32±0.99 73.33±0.97 71.34±2.89 71.29±2.79

DROP 63.59±1.40 64.61±1.49 64.24±1.86 65.64±1.26 73.85±2.95 66.18±2.22 65.05±0.73 64.18±1.61
MASK 65.22±1.97 66.61±0.92 65.65±1.08 66.29±0.91 66.34±1.85 66.99±2.71 68.23±0.47 66.61±3.43

MUTAG
ADD 86.21±5.63 79.31±2.82 75.86±10.15 68.97±4.88 80.46±4.30 72.41±9.75 78.16±4.30 68.97±4.88

DROP 87.36±4.30 63.22±13.9 72.41±14.90 68.97±2.82 80.46±4.30 78.16±1.63 74.71±9.89 75.86±11.26
MASK 78.16±16.26 64.37±9.05 60.92±7.09 71.26±3.25 83.91±8.13 78.16±4.30 77.01±3.25 70.11±4.30

compared to node dropping pooling. Secondly, among node dropping pooling methods, KMISPool generally
performs the best. However, for small datasets such as MUTAG, TopKPool achieves the highest performance
under noise attacks, because its node selection mechanism is less sensitive to local noise variations (Knyazev
et al., 2019). Thirdly, noise attacking increases the performance fluctuations of pooling methods, making
their prediction results more unstable. Fourthly, in larger datasets such as PROTEINS, NCI1, and NIC109,
dropping edges has a greater impact on performance, whereas for MUTAG, masking node features has a
more significant effect.

Table 6 presents the results of the robustness analysis for node-level tasks. From Table 6, we observe the
following: Firstly, random attacks on the graph lead to a decrease in performance on node classification
tasks, with different types of attacks causing varying degrees of performance degradation. Randomly adding
edges has the most negative impact on performance, while randomly deleting edges has the least impact.
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Table 6: Results of node classification under random noise attack for different pooling methods.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cora
ADD 73.90±0.24 74.41±0.12 OOM 75.75±0.14 69.52±0.58 70.01±0.24 75.64±0.03 74.29±0.15 75.58±0.14

DROP 85.01±0.09 85.45±0.36 85.40±0.19 85.11±0.20 85.06±0.13 85.04±0.23 85.83±0.21 85.30±0.33 85.60±0.19
MASK 87.70±0.16 87.75±0.18 87.94±0.12 87.48±0.24 86.88±0.26 87.42±0.03 87.81±0.17 87.83±0.37 87.59±0.24

Citeseer
ADD 62.64±0.19 62.47±0.41 63.43±0.14 63.38±0.37 62.62±0.21 61.94±0.29 63.52±0.20 62.69±0.23 63.42±0.21

DROP 75.31±0.26 75.50±0.19 75.81±0.04 75.52±0.10 75.18±0.46 75.34±0.12 76.54±0.32 75.32±0.29 76.00±0.21
MASK 73.29±0.27 73.41±0.25 73.57±0.17 73.42±0.20 73.54±0.44 73.28±0.49 73.63±0.10 73.45±0.20 73.30±0.24

Pubmed
ADD 71.06±0.25 70.75±0.41 OOM 70.62±0.12 68.21±0.11 67.92±0.45 71.59±0.01 70.83±0.17 OOM

DROP 85.46±0.09 86.03±0.12 OOM 85.55±0.04 85.68±0.04 85.59±0.13 85.30±0.06 85.59±0.06 OOM
MASK 84.24±0.04 84.34±0.06 OOM 83.75±0.06 83.31±0.07 83.78±0.17 83.83±0.02 84.36±0.11 OOM

Table 7: Results of graph classification under distribution shifts. Size and density denote two types
of shifts across training and test datasets. Micro-F1 and Macro-F1 metrics are provided for each shift type.

Method
D&D NCI1

Size Density Size Density
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Node Drop Pooling
TopKPool 68.08±1.60 63.69±1.13 31.98±15.37 29.43±15.16 25.89±0.46 24.98±0.43 53.48±2.11 51.02±3.14
SAGPool 81.36±2.49 74.47±1.48 55.37±0.89 50.14±0.97 25.08±2.39 23.90±2.95 47.00±3.60 45.86±3.49
ASAPool OOT OOT OOT OOT 26.29±3.66 25.29±4.42 53.17±1.85 51.34±1.18
PANPool 77.68±8.37 71.44±6.50 41.92±10.72 40.36±10.05 25.00±0.00 23.74±0.08 52.08±2.24 49.14±0.66
COPool 64.41±5.66 60.37±3.74 47.91±2.51 44.30±1.81 27.99±3.86 27.17±4.48 54.67±2.22 53.09±2.35
CGIPool 75.99±6.65 69.62±5.58 56.38±1.76 51.10±1.45 28.16±5.18 27.26±5.81 56.20±0.86 53.93±1.12
KMISPool 80.23±5.24 73.30±4.04 54.58±5.26 49.81±3.62 50.97±9.51 49.02±7.87 55.42±1.47 51.27±0.30
GSAPool 58.19±26.99 53.06±25.69 33.79±20.93 29.39±19.01 26.21±1.24 25.19±1.56 50.31±3.39 49.32±2.65
HGPSLPool 85.59±1.20 78.34±1.66 52.43±2.25 49.59±1.89 19.66±0.52 17.52±0.66 56.95±1.64 51.93±1.14
Node Clustering Pooling
AsymCheegerCutPool 74.47±0.06 73.60±0.06 86.13±0.00 50.86±0.01 48.87±3.06 45.42±1.65 70.01±0.00 46.95±0.00
DiffPool 73.87±0.02 73.35±0.02 86.49±0.02 47.44±0.01 19.50±0.00 16.63±0.01 69.53±0.00 50.87±0.15
MincutPool 69.97±0.17 67.95±0.17 87.39±0.00 46.63±0.00 19.58±0.00 16.69±0.00 68.64±0.00 50.31±0.09
DMoNPool 72.67±0.11 72.25±0.13 82.52±0.00 54.21±0.00 79.29±0.04 64.30±0.00 68.92±0.00 48.76±0.02
HoscPool 70.27±0.01 69.20±0.00 87.39±0.00 46.63±0.00 24.60±0.27 23.39±0.36 70.48±0.01 56.55±0.35
JustBalancePool 68.77±0.00 67.82±0.02 87.39±0.00 46.63±0.00 19.98±0.00 17.28±0.01 68.64±0.00 50.31±0.09
ParsPool 68.36±1.60 62.50±1.76 63.06±4.84 48.35±0.86 52.59±4.46 49.95±3.32 56.27±1.97 52.96±0.88

Secondly, for larger graphs such as Cora, Citeseer, and Pubmed, KMISPool performs the best, whereas for
smaller graphs such as Cornell, Texas, and Wisconsin, ASAPool performs better. Thirdly, for graphs with
a large diameter, such as PubMed (Diameter=18), SAGPool performs best when edges are deleted or node
features are masked. SAGPool leverages graph convolution to compute self-attention scores, enabling node
importance to depend on both its intrinsic features and its topological relationships with other nodes. This
mechanism allows SAGPool to effectively capture long-range dependencies in large-diameter graphs, as the
attention mechanism can focus on important nodes even when long connection paths exist. Appendix C.1
provides results for the robustness analysis of node-level tasks.

As shown in Figure 3, the model’s performance generally declines as the noise intensity increases. It is
observed that, at the same level of noise, the impact on accuracy is more pronounced on smaller datasets
Cora and CiteSeer, while it is relatively minor on larger dataset Pubmed. Among the three types of noise,
although the accuracy of nearly all methods decreases amidst fluctuations, KMISPool and PANPool exhibit
the strongest robustness, while COPool performs relatively poorly, despite the fact that most pooling methods
show very similar performance.

4.4 Generalizability Analysis

Table 7 and Table 8 presents the performance of different graph pooling methods under out-of-distribution
shifts. For the graph-level datasets D&D and NCI1, we implement two types of distribution shifts. The
first type is based on the number of nodes, where the smallest 50% of graphs by node count are used as the
training set, and the largest 20% as the test set, with the remainder serving as the validation set (Bevilacqua
et al., 2021; Chen et al., 2022). Following the same criteria, the second type of out-of-distribution shifts are
generated based on graph density (Chen et al., 2022). For the node-level datasets Cora and Citeseer, the
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Table 8: Results of node classification under distribution shifts. Degree and closeness denote two
types of shifts across training and test datasets.

Method
Cora Citeseer

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 83.65±0.50 82.29±0.47 83.21±0.18 81.98±0.31 67.27±0.35 63.60±0.26 72.28±0.67 65.64±1.00
SAGPool 84.19±0.12 82.73±0.27 81.68±1.54 80.34±1.55 65.46±0.61 62.22±0.49 72.28±1.10 66.35±1.87
ASAPool 83.16±0.00 82.24±0.13 84.10±0.37 82.97±0.32 67.47±0.23 63.94±0.31 72.84±0.49 65.27±1.74
PANPool 84.00±0.37 82.83±0.37 84.44±0.30 83.44±0.36 67.63±0.26 63.85±0.28 73.45±0.86 67.48±1.75
COPool 83.90±0.12 82.62±0.13 81.14±1.72 80.00±1.01 66.43±0.59 62.93±0.42 72.80±0.00 67.14±0.42
CGIPool 83.21±0.77 82.24±0.82 82.27±0.55 80.91±0.80 65.66±1.34 62.14±1.46 72.36±0.46 66.80±0.91
KMISPool 84.00±0.18 82.57±0.15 83.55±0.39 82.36±0.41 67.35±0.15 63.69±0.14 72.72±0.30 66.51±0.39
GSAPool 83.70±0.07 82.19±0.27 83.16±0.32 81.89±0.37 67.07±0.49 63.56±0.42 72.84±0.44 66.33±0.37
HGPSLPool 84.19±0.00 82.83±0.04 83.46±0.79 82.32±0.89 67.67±0.15 64.13±0.16 73.20±0.46 67.95±0.40

Figure 4: Comparison of performance, training time, and memory usage across different approaches.

first type of out-of-distribution shift is the top 50% of nodes with the highest degrees as the training set,
the bottom 25% with the lowest degrees as the test set, and the remaining nodes as the validation set. The
second type is based on closeness centrality (the reciprocal of the sum of the shortest path lengths from a
node to all other nodes). We use the 50% of nodes with the lowest closeness as the training set, the 25%
with the highest closeness as the test set, and the remaining nodes as the validation set. For further details
and more experiments for the generalizability analysis, please refer to the Appendix A.4 and Appendix C.2.

From Tables 7 and 8, we have the following observations. Firstly, node-level out-of-distribution shifts also
reduce the performance of pooling models, but the extent of this reduction is smaller compared to out-
of-distribution shifts in graph classification tasks. The potential reason is that, in node-level tasks, the
propagation of information are usually confined to the local neighborhood of nodes, whereas graph-level
tasks require handling information spread over a larger scope. Secondly, Macro-F1 is generally lower than
Micro-F1, which indicates that the model has weaker recognition capabilities for minority classes. Thirdly,
node clustering pooling exhibits better generalizability than node dropping pooling in graph classification
tasks. Fourthly, HGPSLPool and PANPool exhibit the best performance, potentially due to the fact that
HGPSLPool combines graph convolution with spectral clustering, enabling it to better capture higher-order
relationships and local topological structures, which is advantageous in node-level tasks. Meanwhile, PAN-
Pool utilizes an adaptive pooling strategy that adjusts the pooling method to suit different node feature
distributions, enhancing the model’s robustness and generalization capability under out-of-distribution con-
ditions.
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TopKPool (Ratio: 0.1) TopKPool (Ratio: 0.9) SAGPool (Ratio: 0.1) SAGPool (Ratio: 0.9)

Figure 5: The t-SNE visualization w.r.t. different pooling ratios of TopKPool and SAGPool.

Figure 6: Performance w.r.t. graph convolution backbones for different pooling methods.

Figure 7: Performance w.r.t. different pooling ratios for four pooling methods.

4.5 Further Analysis

Efficiency Comparison. In this part, we conduct an efficiency analysis of graph pooling methods on the
MUTAG, IMDB-MULTI, and COLLAB datasets. We calculate the time of the algorithms by measuring the
duration needed to complete 200 epochs of training with the 512 batch size. For space efficiency, we compute
the GPU memory utilization during the training process. From Figure 4, it can be observed that ASAPool,
DiffPool, MincutPool, and JustBalancePool exhibit significantly higher time and space costs. In contrast,
node dropping pooling methods such as TopKPool, SAGPool, and KMISPool demonstrate lower time and
space costs. The underlying reason is that node clustering pooling methods require converting graph data
into an adjacency matrix form and simplifying the graph through clustering rather than directly removing
nodes.

Visualization. Figure 5 shows the t-SNE visualization for TopKPool and SAGPool under different pooling
ratios. From the results, we observe that as the pooling ratio increases from 0.1 to 0.9, the different classes
form more distinct clusters in the t-SNE plot when the pooling ratio is low. As the pooling ratio increases,
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the model retains more nodes, leading to a greater overlap between nodes of different classes and a reduction
in inter-class separability. Moreover, when the pooling ratio is 0.9, SAGPool shows a higher degree of class
separability compared to TopKPool.

Backbone Analysis. Figure 6 presents the performance of four pooling methods based on GCNConv (Kipf
& Welling, 2016), GATConv (Veličković et al., 2017), SAGEConv (Hamilton et al., 2017), and Graph-
Conv (Morris et al., 2019) on four datasets, NCI1, NCI109, PROTEINS, and PROTEINS_FULL. On av-
erage, as the backbone models change, most pooling methods exhibit significant performance fluctuations,
and no single backbone model consistently maintains a leading position. Except for the PROTEINS_FULL,
the performance of GraphConv is relatively better.

Parameter Analysis. Figure 7 shows the performance of four pooling methods on the COX2, AIDS,
FRANKENSTEIN, and Mutagenicity datasets. From the results, we observe that as the pooling rate in-
creases from 0.1 to 0.9, the performance increases before reaching saturation in most cases. The performance
variation among different pooling methods is significant as the pooling ratio changes, it is necessary to adjust
the pooling ratio when employing pooling methods.

5 Related Work

5.1 Graph Classification and Graph Regression

Graphs provide an effective tool to represent interaction among different objects (Wu et al., 2020b). Graph
classification (Baek et al., 2021) is a fundamental graph machine learning problem, which aims to classify each
graph into its corresponding category. The majority of current works adopt message passing mechanisms (Wu
et al., 2020b), where each node receives information from its neighbors in a recursive manner. Then, a
graph readout function is adopted to summarize all node representations into a graph-level representation
for downstream classification. Graph classification has extensive applications in various domains such as
molecular property prediction (Wieder et al., 2020) and protein function analysis (Mills et al., 2018). Graph
regression (Qin et al., 2023) is close to graph classification which maps graph-level data into continuous
vectors. Researchers usually utilize graph regression to formulate molecular property predictions (Mqawass
& Popov, 2024). Graph pooling has been an important topic in graph-level tasks (Knyazev et al., 2019; Lee
et al., 2019; Ranjan et al., 2020; Ma et al., 2020b; Zhou et al., 2022; Pang et al., 2021; Bacciu et al., 2023;
Zhang et al., 2020a; 2019; Hansen & Bianchi, 2023; Ying et al., 2018a; Bianchi et al., 2020; Tsitsulin et al.,
2023a; Duval & Malliaros, 2022; Bianchi, 2022), which generally utilize a hierarchical way to refine the graph
structures (Bianchi & Lachi, 2024; Liu et al., 2022b). In this work, we generally study the performance of
graph pooling on graph-level tasks and validate the effectiveness of graph pooling approaches in most cases.

5.2 Node Classification

Node classification aims to classify each node in a graph based on its attributes and relationship with the
other nodes (Xiao et al., 2022; Ju et al., 2024; Zhong et al., 2022; Prieto et al., 2023). Node classification has
various applications in the real world, including social network analysis (Camacho et al., 2020), knowledge
graphs (Ye et al., 2022), bioinformatics (Bhagat et al., 2011) and online commerce services (Yu et al., 2023).
Graph neural networks have been widely utilized to solve the problem by learning semantics information
across nodes by neighborhood propagation. Since graph pooling would reduce the number of nodes, recent
works utilize a U-Net architecture (Gao & Ji, 2019), which involves down-sampling and up-sampling with
residue connections. In this work, we systematically evaluate the performance of graph pooling on node
classification and observe that graph pooling has limited improvement compared with basic graph neural
network architectures.

5.3 Previous Benchmark Research

Previous studies have built benchmarks for graph-related tasks (Errica et al., 2019; Hu et al., 2020b; Tönshoff
et al., 2023). In particular, Errica et al. (2019) is a benchmark including six different GNN models across
nine commonly used TUDataset datasets. Open Graph Benchmark (OGB) (Hu et al., 2020b) evaluates
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different graph neural network approaches experiments on graph classification, graph regression, and node
classification. Errica et al. (2019) only involve one graph pooling method and Hu et al. (2020b) does
not involve any graph pooling methods. In comparison, our method focuses on graph pooling techniques
rather than graph neural networks. Moreover, our benchmark explores the robustness of these methods by
introducing noise attacks in both graph classification and node classification tasks and investigating their
generalizability through out-of-distribution shifts.

6 Summary of Observations and Guidance

Overall, we summarize the main insights basde on our experimental results. Firstly, for graph classification
and regression tasks on small-scale graphs with fewer nodes and edges, we recommend using feature extractors
that aggregate information from neighboring nodes, such as GCNConv, along with MLPs, to capture both
the topological semantics of the graph and the feature semantics of the nodes (e.g., GSAPool and CGIPool).
This is because, in small-scale graphs, the topological information of the nodes is relatively easy to obtain.
Conversely, for graph classification and regression tasks on large-scale graphs with a substantial number
of nodes and edges, we suggest focusing on both local structures and global connectivity patterns (e.g.,
ParsPool and SEPool), paying attention not only to the topological information of the nodes but also to the
link structures of the edges.

Secondly, for node classification tasks on graphs with strong connectivity, we recommend designing pooling
structures that aggregate feature information from nodes and their neighbors during the pooling process (e.g.,
GSAPool and SAGPool). The reason is that in such graphs, nodes are closely connected, and the information
between neighboring nodes is richer and easier to extract. On the other hand, for node classification tasks
on graphs with weak connectivity, we suggest designing adaptive pooling algorithms that focus more on
global information and select nodes more uniformly across the graph (e.g., KMISPool). This is because
weaker connectivity implies a more dispersed graph topology, and pooling methods that focus solely on local
information may lose representativeness in node selection.

Thirdly, for node classification tasks on graphs with a large diameter, we recommend combining attention
mechanisms with algorithms that uniformly select nodes (e.g., SAGPool and KMISPool). The attention
mechanism can capture important nodes in graphs with long-range topological dependencies, while uniform
node selection allows for the capture of long-distance dependencies and enhances the representativeness of
the selected nodes.

Fourthly, when facing graph structural noise attacks, for node classification tasks, we recommend designing
pooling algorithms that uniformly sample nodes from the graph. This approach is less sensitive to graph edges
and node features compared to algorithms that aggregate local information (e.g., KMISPool). For graph
classification tasks, we suggest aggregating neighbor features when designing node dropping pooling methods
(e.g., DiffPool, MincutPool, and JustBalancePool). This dilutes the outliers of individual nodes, making the
representations of higher-level supernodes more dependent on the overall neighborhood information. When
designing node clustering pooling, multiple rounds of neighbor message passing should be performed, as
noise features are averaged or weighted multiple times during propagation, enhancing noise suppression.
Additionally, when designing the loss function, attention should be paid to balancing the size of each cluster
to prevent noise nodes or edges from causing the model to collapse into extreme allocations.

Fifthly, on large-scale graphs, graph pooling can improve computational efficiency and allow graph neural
networks to capture more important nodes. Although node clustering pooling shows strong performance (e.g.,
AsymCheegerCutPool, DiffPool, MincutPool, ParsPool), its computational and spatial costs are higher than
those of node dropping pooling (e.g., TopKPool, SAGPool). The reasoning is that the pooling structure
requires a soft assignment matrix to determine the clustering relationships of all nodes. Future research
could focus on how to efficiently compute this soft assignment matrix.
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7 Conclusion

In this paper, we construct the first graph pooling benchmark that includes 17 state-of-the-art approaches
and 28 different graph datasets across graph classification, graph regression, and node classification. We find
that node clustering pooling methods outperform node dropping pooling methods in terms of robustness and
generalizability, but at the cost of higher computational expenses. This benchmark systematically analyzes
the effectiveness, robustness, and generalizability of graph pooling methods. We also make our benchmark
publically available to advance the fields of graph machine learning and applications. One limitation of our
benchmark is the lack of more complicated settings under label scarcity. In future works, we would extend our
graph pooling benchmark to more realistic settings such as semi-supervised learning and few-shot learning.
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Appendix

A Detailed Description of Datasets

A.1 Graph Classification

Table A.1 provides descriptive statistics of the selected datasets, revealing that our chosen datasets encompass
graph data of varying scales and features. This diversity establishes a robust foundation for benchmarking.
The following are detailed descriptions of these datasets:

Ogbg-molpcba comprises a collection of 437,929 molecules, each represented as a graph where nodes are
atoms and edges indicate chemical bonds between atoms. Each node is associated with features such as atom
type, valence, and charge. The dataset involves 128 biological activity labels, each representing a binary
classification task that indicates whether a molecule exhibits a specific biological activity (Hu et al., 2020b).

PROTEINS represents protein structures; nodes denote secondary structure elements (SSEs) and the edges
indicate the relationships between these SSEs that are in close proximity. The primary goal of this dataset is
to assist in the classification of proteins into different structural classes based on their amino acid sequences
and structure— structural characteristics. Each graph’s label is the protein class, so the dataset covers
diverse protein structures (Borgwardt et al., 2005).

PROTEINS_FULL is an extended version of PROTEINS. Each graph directly represents a protein struc-
ture: nodes correspond to SSEs like alpha helices and beta sheets (Borgwardt et al., 2005).

NCI1 is a collection of chemical compound graphs. Originating from the National Cancer Institute (NCI)
database, each graph sample is a compound in which nodes represent atoms and edges represent the bonds
between them. The dataset is binary-class labeled, indicating biological activity via compounds’ anti-cancer
activity against specific cell lines (Wale et al., 2008).

NCI109 is also a collection of chemical compound graphs derived from NCI. Similarly, each node in the
graph denotes an atom and each edge denotes a bond. The two classes in NCI109 are about compounds’
ability to inhibit or interact with the specified cancer cell line (Wale et al., 2008).

MUTAG consists of 188 chemical molecule graphs, where each node represents an atom. The nodes have
different atomic types, such as carbon, nitrogen, oxygen, etc. Edges represent chemical bonds between atoms,
such as single or double bonds, indicating their connections in the molecule. The objective is to predict
whether each molecule is mutagenic, with positive labels indicating mutagenic molecules and negative labels
indicating non-mutagenic molecules (Morris et al., 2020).

D&D is a dataset of protein structure graphs for graph classification. Each graph in this dataset represents
a protein, with nodes corresponding to amino acids and edges corresponding to the spatial or sequential
proximity between these amino acids. The primary objective of the D&D dataset is to classify proteins into
one of two categories: enzymes or non-enzymes (Shervashidze et al., 2011).

IMDB-B is a collection of social network graphs derived from the Internet Movie Database (IMDB). Each
graph is about a collaboration network from movies whereby nodes stand for actors or actresses and edges
indicate that the two actors appeared in the same movie — this dataset comprises two classes reflecting the
movie genres (Cai & Wang, 2018).

IMDB-M, similar to IMDB-B, represents each movie as a graph where the nodes represent actors and the
edges represent co-appearances of actors in the same movie. However, the nodes in IMDB-M are categorized
into three classes, and it includes a larger number of actors (Cai & Wang, 2018).

COLLAB consists of 5,000 graphs, each representing a collaboration network of a group of authors in
different research fields. In each graph, nodes represent authors, and edges represent collaborations between
authors, indicating that the connected authors have co-authored at least one paper. The graphs have three
classes, each corresponding to an academic research field. (Morris et al., 2020).
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Table A.1: Summary statistics of datasets for graph classification. CC denotes the clustering coefficient,
and Diameter representing the maximum value of the shortest path between any two nodes in the graph.

Datasets Graphs Classes Avg. Nodes Avg. Edges Node Attr. Avg. Diameter Avg. Degree Avg. CC

Ogbg-molpcba 437,929 2*128 26.00 27.50 - 12.00 2.20 0.00
PROTEINS 1,113 2 39.06 72.82 + (1) 11.14 3.73 0.51
PROTEINS_full 1,113 2 39.06 72.82 + (29) 11.14 3.73 0.51
NCI1 4,110 2 29.87 32.30 - 11.45 2.16 0.00
NCI109 4,127 2 29.68 32.13 - 11.21 2.16 0.00
MUTAG 188 2 17.90 39.60 + (7) 8.22 2.19 0.00
D&D 1,178 2 284.32 715.66 - 16.45 4.92 0.48
IMDB-B 1,000 2 19.77 96.53 - 1.86 8.89 0.95
IMDB-M 1,500 3 13.00 65.94 - 1.47 8.10 0.97
COLLAB 5,000 3 74.49 2457.22 - 1.86 37.36 0.89
COX2 467 2 41.22 43.45 + (3) 13.79 2.11 0.00
AIDS 2,000 2 15.69 16.20 + (4) 6.56 2.01 0.01
FRANKENSTEIN 4,337 2 16.90 17.88 + (780) 7.86 2.06 0.01
Mutagenicity 4,337 2 30.32 30.77 - 9.10 2.04 0.00

COX2 consists of 467 graphs, where each graph corresponds to a molecule. The nodes represent atoms,
and the edges represent chemical bonds, and the graph label indicates whether the molecule is a COX-2
inhibitor (Sutherland et al., 2003).

AIDS consists of 2,000 graphs. Each graph corresponds to a molecule, where the nodes represent individual
atoms and the edges represent chemical bonds between these atoms. Here, we want to predict the inhibitory
effect of molecules on HIV based on their structure. (Riesen & Bunke, 2008).

FRANKENSTEIN consists of 4,337 graphs. Each graph in this dataset represents a chemical compound,
where the nodes correspond to atoms, and the edges represent the bonds between them. The graph labels
indicate whether the molecule is considered an active compound (Orsini et al., 2015).

Mutagenicity contains 4,337 molecular graphs. In Mutagenicity, each graph represents a molecule, where
the nodes are atoms and the edges denote chemical bonds between the nodes. The classification goal is to
predict whether a molecule graph is mutagenic or not (Debnath et al., 1991).

A.2 Graph Regression

Table A.2 provides an overview of the selected datasets. A more detailed description is provided below.

QM7 and QM8 are benchmark datasets in computational chemistry, designed to facilitate the development
and evaluation of machine learning approaches for quantum mechanical property prediction. It contains
approximately 7,165 (QM7) and 21,786 (QM8) molecular structures, each characterized by their calculated
properties using quantum chemistry methods, specifically focusing on electronic spectra (Wu et al., 2018;
Montavon et al., 2013).

BACE is a collection of biochemical data used to evaluate computational methods for drug discovery. The
dataset includes a total of 1,522 compounds, each annotated with their binding affinities, as well as molecular
descriptors and fingerprints to facilitate the development and assessment of machine learning modelsa (Wu
et al., 2018; Ciordia et al., 2016).

ESOL is a prominent resource in cheminformatics, designed for evaluating machine learning models on the
prediction of aqueous solubility of small molecules. The dataset, derived from the work of Delaney, encom-
passes a diverse range of chemical compounds with experimentally determined solubility values expressed in
logS, where S is the solubility in mols per liter. It includes 1128 compounds, serving as a benchmark for
solubility prediction tasks (Delaney, 2004; Wu et al., 2018).

FreeSolv is a dataset containing hydration-free energies for small molecules in an aqueous solution. It
comprises data for a wide range of organic molecules, providing both experimental values and calculated
predictions based on molecular simulations (Mobley & Guthrie, 2014; Wu et al., 2018).
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Table A.2: Details of datasets for graph regression.
Datasets Tasks Compounds Split Avg. Nodes Avg. Edges Avg. Diameter Avg. Degree Avg. CC

QM7 1 7,165 Scaffold 6.79 6.44 4.21 1.89 0.06
QM8 12 21,786 Random 7.77 8.09 4.35 2.08 0.09
BACE 1 1,522 Scaffold 34.09 36.86 4.35 2.08 0.01
ESOL 1 1,128 Random 13.30 13.69 7.02 1.98 0.00
FreeSolv 1 643 Random 8.76 8.43 5.06 1.84 0.00
Lipophilicity 1 4,200 Random 27.04 29.50 13.85 2.18 0.00

Table A.3: Summary statistics of datasets for node classification.
Datasets Number of Nodes Number of Edges Number of Features Number of Classes Diameter Avg. Degree Avg. CC

Ogbn-arxiv 169,343 1,166,243 128 40 23 13.72 0.23
Cora 2,708 10,556 1,433 7 NA 3.90 0.24
CiteSeer 3,327 9,104 3,703 6 NA 2.74 0.14
PubMed 19,717 88,648 500 3 18 4.50 0.06
Cornell 183 298 1,703 5 8 3.06 0.17
Texas 183 325 1,703 5 8 3.22 0.20
Wisconsin 251 515 1,703 5 8 3.71 0.21
Github 37,700 578,006 0 2 7 15.33 0.01

Lipophilicity is primarily utilized for studying and evaluating molecular lipophilicity. This dataset com-
prises 4,200 compounds sourced from the ChEMBL database, with experimentally measured partition coeffi-
cient (logD) values that reflect the distribution behavior of compounds in a water-octanol system (Lukashina
et al., 2020; Wu et al., 2018).

A.3 Node Classification

Table A.3 presents descriptive statistics of the seven datasets used for node classification. It is evident that
there is a significant variance in the scale of the selected datasets, each possessing distinct characteristics.
Further background information and details about these datasets are provided below.

Ogbn-arxiv comprises a collection of 169,343 scientific publications classified into 40 distinct categories.
Each paper is represented by a node with a 128-dimensional feature, which comes from the average of word
embeddings in the corresponding title and abstract. Edges indicate citation relationships between papers (Hu
et al., 2020b).

Cora comprises a collection of 2,708 scientific publications classified into seven distinct categories. Each
publication in the dataset is represented as a node in a citation network, where edges indicate citation
relationships between papers (Yang et al., 2016).

CiteSeer is a widely used citation network dataset. It comprises scientific publications categorized into six
classes, with each publication represented by a 3,327-dimensional binary vector recording the presence or
absence of specific words (Yang et al., 2016).

PubMed consists of scientific publications from the PubMed database, categorized into three classes based
on their Medical Subject Headings (MeSH) terms. Each node has a sparse bag-of-words vector derived from
the content of the corresponding publication (Yang et al., 2016).

Cornell, Texas, and Wisconsin are made up of nodes that represent web pages and edges which denote
hyperlinks between these pages. Each node has a class which denotes the topic of the web page; this allows
tasks including node classification and link prediction to be performed. The datasets differ in size: Cornell
and Texas each have 183 nodes while Wisconsin has 251 nodes (Pei et al., 2020).

Github includes node attributes representing the features of developers, such as their interests, skills, and
contributions to various repositories. The edges within the network capture the interactions and collabora-
tions of developers, creating a multi-faceted graph structure (Rozemberczki et al., 2021).
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A.4 Out-of-distribution shifts

Size shifts. For the selected datasets, including NCI1, D&D, NCI109, and IMDB-B, we utilized the data
provided by the authors of size-invariant-GNNs (Bevilacqua et al., 2021). In this setup, the graphs with the
smallest 50% of nodes are used as the training set, those with the largest 20% of nodes are used as the test
set, and the remaining graphs were used as the validation set.

Density shifts. For the selected datasets, we divide the datasets based on graph density: the 50% of graphs
with the lowest density are used as the training set, the 20% with the highest density are used as the test
set, and the remaining graphs are used as the validation set. After applying density shifts, the following
densities are observed: for D&D, the training set density is 0.0274, the validation set density is 0.0536, the
test set density is 0.1142; for NCI1, the training set density is 0.1229, the validation set density is 0.1920, the
test set density is 0.2786; for NCI109, the training set density is 0.1248, the validation set density is 0.1943,
the test set density is 0.2770; for IMDB-B, the training set density is 0.6574, the validation set density is
1.1074, the test set density is 1.7427.

Degree shifts. For the selected datasets, we divide the datasets based on node degree: the 50% of nodes
with the highest degree are used as the training set, the 25% with the lowest degree are used as the test
set, and the remaining nodes are used as the validation set. After applying degree shifts, we can observe
that: for Cora, the training set average degree is 5.9431, the validation set average degree is 2.4225, and
the test set average degree is 1.2836; for Citeseer, the training set average degree is 4.3313, the validation
set average degree is 1.3430, and the test set average degree is 0.9424; for Pubmed, the training set average
degree is 7.9148, the validation set average degree is 1.1552, and the test set average degree is 1.0000; for
Cornell, the training set average degree is 3.2198, the validation set average degree is 0.1111, and the test
set average degree is 0.0000; for Texas, the training set average degree is 3.3626, the validation set average
degree is 0.4222, and the test set average degree is 0.0000; for Wisconsin, the training set average degree is
3.7600, the validation set average degree is 0.7258, and the test set average degree is 0.0000.

Closeness shifts. For the selected datasets, we divide the datasets based on node closeness: the 50% of
nodes with the lowest closeness are used as the training set, the 25% with the highest closeness are used as
the test set, the remaining nodes used as the validation set. After applying closeness shifts, we can observe
that: for Cora, the training set average closeness is 0.1076, the validation set average closeness is 0.1560, the
test set average closeness is 0.1786; for Citeseer, the training set average closeness is 0.0150, the validation
set average closeness is 0.0679, the test set average closeness is 0.0832; for Pubmed, the training set average
closeness is 0.1448, the validation set average closeness is 0.1669, the test set average closeness is 0.1850;
for Cornell, the training set average closeness is 0.2690, the validation set average closeness is 0.3754, the
test set average closeness is 0.3896; for Texas, the training set average closeness is 0.2899, the validation set
average closeness is 0.3887, the test set average closeness is 0.4047; for Wisconsin, the training set average
closeness is 0.2630, the validation set average closeness is 0.3686, the test set average closeness is 0.3855.

B Additional Experimental Details

B.1 Graph Classification

The classification model comprises three primary components: GCNConv layers, pooling methods, and a
global average pooling layer. The hidden and output channels for this model are both set to 64. Initially, the
data passes through three GCNConv layers with ReLU activation functions, followed by two pooling layers,
before arriving at a global average pooling layer. The embedding output from this global layer undergoes
further processing through a linear layer with ReLU activation, having dimensions (64, 32), followed by
another linear layer without any activation function but with dimensions (32, number of classes). The final
output can be available after applying softmax to the embedding output. All models use the Adam optimizer
with a learning rate of 0.001 and are trained for 200 epochs by minimizing the negative log-likelihood loss
function. For Ogbg-molpcba, the data is divided into training, validation, and test sets with an 80%, 10%,
and 10% split, respectively. The remaining datasets are divided into training, validation, and test sets with
a 70%, 15%, and 15% split. Each trial is repeated multiple times with different random seeds.
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Table A.4: Details of hyperparameter tuning for different pooling methods
Methods Hyperparameter space

Node Dropping Pooling
TopKPool NIPS’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
SAGPool ICML’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
ASAPool AAAI’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
PANPool NIPS’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
COPool ECMLPKDD’22 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9; K: 1, 2, 3
CGIPool SIGIR’22 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
KMISPool AAAI’23 The independent sets K: 1, 2, 3, 4, 5
GSAPool WWW’20 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9; Alpha: 0.2, 0.4, 0.6, 0.8
HGPSLPool Arxiv’19 Pooling ratio: 0.1, 0.3, 0.5, 0.7, 0.9
ParsPool ICLR’24 Parsingnet layers: 1, 2, 3; Deepsets layers: 1, 2, 3
Node Clustering Pooling
AsymCheegerCutPool ICML’23 MLP layers: 1, 2; MLP hidden channels: 64, 128, 256
DiffPool NIPS’18 Not applicable
MincutPool ICML’20 Temperature: 1, 1.5, 1.8, 2.0
DMoNPool JMLR’23 Clusters: 2, 4, 6, 8, 10, 12
HoscPool CIKM’22 Mu: 0.2, 0.5, 0.8; Alpha: 0.2, 0.5, 0.8
JustBalancePool Arxiv’22 Not applicable
SEPool ICML’22 Tree depth: 1, 2, 3; Number of blocks: 1, 2, 3, 4

B.2 Graph Regression

We use a backbone network inspired by MESPool (Xu et al., 2024a) for graph regression. The model mainly
consists of three GINConv layers with ReLU activation functions and BatchNorm, along with two pooling
layers, followed by a global average pooling layer. All channels (both hidden and output) are set to 64.
The embedding output from the global average pooling layer passes through another linear layer with ReLU
activation, having dimensions (64, 32). All models use the Adam optimizer with a learning rate of 0.001 and
are trained for 200 epochs by minimizing the negative log-likelihood loss function. All data are processed
using a 5-fold cross-validation and are run on multiple different seeds.

B.3 Node Classification

For node classification, we utilize a U-Net architecture, which we divide into a downsampling convolutional
part and an upsampling convolutional part (Siddique et al., 2021). The downsampling convolutional section
includes two GCNConv layers with ReLU activation functions, with pooling applied between these layers.
In the upsampling convolutional section, we use the indices saved during pooling for upsampling, restoring
features to their pre-pooling size. The upsampled features are then fused with the corresponding residual
features from the downsampling path, either through summation or concatenation. Finally, the fused features
are processed and activated through a GCNConv layer. All models employ the Adam optimizer with a
learning rate set to 0.001 and are trained for 200 epochs using cross-entropy loss. All data are processed
using a 5-fold cross-validation and are run on multiple different seeds.

B.4 Hyperparameter Tuning

Details of hyperparameter tuning for different pooling methods can be found in Table A.4. We performed
hyperparameter searches for each dataset in each task.
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Table A.5: Results of node classification under real-world noise.
Dataset TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cora 74.16±0.29 74.00±0.59 74.52±0.08 74.09±0.32 73.10±0.22 73.67±0.05 74.59±0.27 74.24±0.25 74.73±0.23
CiteSeer 72.31±0.07 72.48±0.10 72.68±0.19 72.67±0.17 72.49±0.16 72.31±0.21 72.74±0.28 72.49±0.09 72.61±0.21
PubMed 78.65±0.11 78.57±0.06 OOM 77.71±0.05 78.43±0.17 78.35±0.04 78.84±0.09 78.68±0.09 OOM

Table A.6: Results of node classification under label noise attack.
Dataset TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cora 61.16±0.11 61.16±0.23 61.60±0.08 61.56±0.27 60.65±0.14 60.86±0.28 61.62±0.16 61.21±0.15 61.64±0.17
CiteSeer 58.63±0.67 53.25±0.30 53.54±0.23 53.49±0.13 52.76±0.18 52.60±0.33 53.71±0.22 53.37±0.06 53.72±0.10
PubMed 62.42±0.09 62.37±0.08 62.50±0.11 62.22±0.04 62.14±0.08 62.02±0.16 62.28±0.07 62.47±0.08 62.16±0.07

C Additional Experiments

C.1 Robustness Analysis

Table A.7 shows the additional robustness analysis on more node-level datasets. From Table A.7, we observe
the following: Firstly, for smaller node classification datasets such as Cornell, Texas, and Wisconsin, masking
node features results in the greatest performance loss, while edge deletion leads to the smallest performance
loss. The potential reason is that these smaller datasets inherently possess higher local characteristics
and structural sparsity, making node features more critical for the model’s classification tasks. Secondly,
consistent with the robustness analysis on Cora, Citeseer, and Pubmed, ASAPool and KMISPool demonstrate
superior performance, indicating that these pooling methods exhibit stronger robustness in node classification
tasks.

To generate real-world noise due to spurious or missing links, we follow current works (Xia et al., 2023; Zhao
et al., 2024) to build a kNN graph instead of randomly adding noise. The performance can be found as in
Table A.5. From the results, we can find that the differences among various pooling methods are relatively
small, which aligns with the observations from noise attacks involving random addition/removal of edges
and random masking of node features. Basically, KMISPool, GSAPool, and HGPSLPool demonstrate the
best overall performance. We have also introduced the label noise by randomly modifying the class labels of
30% of the nodes. From the results in Table A.6, we can observe a similar observation.

C.2 Generalizability Analysis

Table A.8 presents the results of size-based and density-based distribution shifts on NCI109 and IMDB-B,
respectively. From Table A.8, we obtain conclusions similar to those in the main text: for the NCI109
dataset, node dropping pooling methods perform worse than node clustering pooling methods, whereas on
the IMDB-B dataset, node dropping pooling methods outperform node clustering pooling methods. Overall,
AsymCheegerCutPool, MinCutPool, and DMoNPool outperform other pooling methods.

Table A.9 presents the results of degree-based and closeness-based distribution shifts on node classification
tasks across four datasets: Pubmed, Cornell, Texas, and Wisconsin. We observe the following: Firstly,
KMISPool and GSAPool generally perform the best, yet no single pooling method consistently leads across
all datasets. Secondly, the issue of class imbalance persists, and it is more pronounced in smaller datasets
such as Cornell, Texas, and Wisconsin. Thirdly, smaller datasets like Cornell, Texas, and Wisconsin are
more sensitive to distribution shifts compared to the larger dataset Pubmed, resulting in more significant
performance degradation.
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Table A.7: Results of node classification under random noise attack.
Dataset Ptb Method TopKPool SAGPool ASAPool PANPool COPool CGIPool KMISPool GSAPool HGPSLPool

Cornell
ADD 46.64±0.25 46.45±0.77 47.18±1.03 47.00±1.18 46.63±0.25 46.63±0.92 46.81±0.67 46.81±1.12 46.45±0.45

DROP 61.73±1.17 62.09±1.84 62.29±1.15 61.93±0.95 62.25±0.44 61.36±2.00 63.19±1.79 63.01±0.54 62.46±1.33
MASK 46.99±0.90 47.36±1.56 47.91±2.46 47.00±0.45 48.11±1.17 46.63±1.03 47.74±1.13 47.01±1.35 47.55±1.19

Texas
ADD 58.63±0.67 61.37±0.94 60.48±0.62 59.92±0.92 59.01±0.44 58.99±1.14 58.83±0.49 59.37±1.39 58.63±0.23

DROP 64.47±2.02 64.47±0.42 63.92±2.38 64.30±0.89 63.92±1.96 63.57±1.40 65.57±1.59 65.57±1.33 63.57±2.06
MASK 57.56±0.92 57.93±1.55 58.85±1.44 57.19±0.91 57.37±1.33 57.56±0.93 58.10±1.09 57.93±0.92 57.92±0.43

Wisconsin
ADD 54.46±0.99 53.66±0.98 56.18±1.49 55.52±0.21 55.78±0.98 55.78±1.30 54.99±0.34 54.73±0.48 53.65±0.37

DROP 61.23±1.23 60.55±1.15 60.29±1.68 59.76±1.72 60.43±1.79 59.36±0.87 60.16±0.66 60.43±0.95 61.36±1.17
MASK 47.02±0.55 47.94±0.18 49.80±0.86 48.60±1.14 52.59±0.01 48.35±0.49 49.53±1.15 48.20±1.11 48.08±0.96

Table A.8: Results of graph classification under distribution shifts.

Method
NCI109 IMDB-B

Size Density Size Density
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Node Dropping Pooling
TopKPool 25.10±0,81 22.90±1.01 55.92±2.57 54.88±1.42 56.00±1.22 53.34±2.26 72.00±5.94 68.13±5.78
SAGPool 24.07±1.29 21.64±1.58 53.31±1.74 51.46±0.98 67.67±5.10 67.44±4.97 74.27±3.92 67.13±5.78
ASAPool 22.57±0.70 19.42±1.04 58.42±2.73 57.09±2.02 73.83±12.43 73.70±12.36 80.80±4.94 78.70±4.15
PANPool 25.73±0.11 23.80±0.12 56.25±1.63 54.34±1.93 66.50±9.34 65.73±10.38 76.27±4.21 71.65±4.67
COPool 24.94±1.72 22.77±2.31 57.10±2.20 55.39±1.21 65.33±2.72 65.13±2.94 72.40±9.91 69.52±8.26
CGIPool 24.54±1.19 22.39±1.46 61.36±0.84 57.98±3.78 72.83±8.00 72.69±7.87 71.60±5.44 63.60±7.27
KMISPool 43.78±5.82 43.24±5.33 58.08±3.45 50.03±6.64 75.33±4.78 75.16±4.61 78.80±0.86 73.74±0.63
GSAPool 25.97±3.11 24.00±4.03 53.04±1.30 52.64±1.16 70.17±3.70 69.17±4.45 78.80±0.86 73.11±0.99
HGPSLPool 21.54±0.22 18.17±0.43 58.18±2.26 55.06±3.02 69.33±4.71 69.25±4.76 75.07±1.86 70.37±1.81
ParsPool 42.68±0.81 41.97±0.74 59.91±1.13 56.13±2.70 75.00±3.63 74.92±3.57 76.00±2.99 71.63±3.00
Node Clustering Pooling
AsymCheegerCutPool 79.18±0.00 49.92±0.12 68.53±0.00 44.29±0.00 71.50±0.60 71.45±0.60 78.80±0.00 73.75±0.00
DiffPool 21.38±0.00 17.61±0.00 69.47±0.00 48.65±0.02 69.17±0.70 67.31±0.83 65.20±1.10 62.72±0.76
MinCutPool 31.83±0.77 30.50±0.90 70.76±0.00 56.27±0.02 70.17±0.01 68.28±0.03 78.40±0.01 73.91±0.02
DMoNPool 79.41±0.01 55.84±0.01 67.44±0.05 55.80±0.13 74.33±1.59 73.85±1.61 77.33±0.13 72.56±0.20
HoscPool 33.73±2.35 30.58±2.13 69.54±0.05 54.41±0.03 72.83±0.09 72.37±0.10 77.20±0.04 73.43±0.05
JustBalancePool 58.43±4.14 44.15±1.17 71.26±0.00 58.08±0.01 76.17±0.17 74.69±0.35 78.40±0.01 73.91±0.02

C.3 Hyperparameter Sensitivity Analysis

Figure A.1 presents the results of a hyperparameter sensitivity analysis conducted on several pooling meth-
ods, evaluated on MUTAG and IMDB-MULTI. In particular, we conduct experiments on MUTAG and
IMDB-MULTI by varying the number of hidden channels in {32, 64, 128, 256, 512} and learning rates in
{0.001, 0.005, 0.01, 0.05, 0.1} for the pooling methods. From the results, we can find that the performance of
pooling methods fluctuates with changes in hidden channels and learning rates. For smaller datasets such as
MUTAG, hidden channels of 32 and 64 combined with smaller learning rates yielded better performance. For
larger datasets such as IMDB-MULTI, hidden channels of 256 and slightly larger learning rates demonstrated
superior performance.

C.4 Visualization

Figure A.2 visualizes the first and second pooling steps of GSAPool, TopKPool, and SAGPool, as well as
the original unpooled graph, on the third graph of the MUTAG dataset. For small-scale graphs such as
MUTAG (Avg. nodes=17.9, Avg. edges=39.6), GSAPool partitions the graph into distinct "communities"
during pooling, while TopKPool and SAGPool maintain graph connectivity. This demonstrates the superior
performance of GSAPool, as it retains nodes from different semantic units (e.g., functional groups), whereas
TopKPool and SAGPool tend to select nodes from a single dense region (e.g., the molecular backbone),
potentially losing critical functional group information. This further validates the advantage of GSAPool, as
its dual-modal filtering of structural information (SBTL) and node feature information (FBTL) accurately
identifies community cores, enabling the classifier to directly capture chemical patterns. Figure A.3 and
Figure A.4 illustrate the first and second pooling steps of KMISPool, TopKPool, and SAGPool, along with
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Table A.9: Results of node classification under distribution shifts.

Method
Pubmed Cornell

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 81.66±0.32 81.11±0.38 85.66±0.09 82.36±0.24 34.07±2.10 22.35±2.92 57.78±4.80 25.56±8.37
SAGPool 83.07±1.02 82.57±1.07 85.96±0.34 82.73±0.38 36.30±4.19 24.39±4.03 61.48±4.57 31.54±8.24
ASAPool 82.11±0.12 81.94±0.55 85.02±0.54 82.12±0.77 34.07±1.05 20.94±3.40 60.74±2.77 26.33±2.21
PANPool 81.65±0.12 81.15±0.11 85.55±0.03 82.16±0.20 35.56±0.00 23.55±0.90 54.07±2.10 18.58±3.28
COPool 80.42±0.14 79.82±0.20 84.99±0.35 81.81±0.29 35.56±1.81 22.64±3.21 49.63±6.87 21.09±3.44
CGIPool 80.35±1.33 79.69±1.32 84.97±0.75 81.74±0.90 36.30±4.19 25.34±4.15 60.00±1.81 27.48±3.60
KMISPool 83.41±0.02 82.92±0.03 85.66±0.07 82.50±0.12 34.81±1.05 22.99±2.00 58.52±5.54 24.70±8.45
GSAPool 83.15±0.81 82.61±0.83 85.83±0.32 82.70±0.50 35.56±1.81 23.23±1.21 62.22±1.81 30.06±4.20
HGPSLPool OOM OOM OOM OOM 34.07±1.05 21.39±1.41 57.78±1.81 23.63±1.61

Method
Texas Wisconsin

Degree Closeness Degree Closeness
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TopKPool 40.74±2.10 27.06±2.71 61.48±1.05 19.39±0.07 26.88±1.52 19.88±1.97 17.74±2.28 15.34±1.55
SAGPool 39.26±1.05 23.52±0.35 62.22±1.81 19.44±0.35 27.42±1.32 25.32±0.98 18.28±0.76 14.85±0.25
ASAPool 40.74±2.77 23.87±0.67 62.96±1.05 19.58±0.20 29.03±3.48 20.17±1.42 15.59±2.74 11.63±4.27
PANPool 40.00±3.63 23.64±1.13 63.70±1.05 19.72±0.20 30.11±3.31 22.99±1.60 23.66±10.56 15.42±5.61
COPool 39.26±1.05 23.44±0.32 63.70±2.10 19.72±0.39 28.49±1.52 19.94±1.50 16.13±3.95 16.68±3.84
CGIPool 40.00±1.81 23.85±0.52 60.74±1.05 19.25±0.18 25.27±2.74 20.01±2.23 27.96±19.01 20.37±11.58
KMISPool 38.52±1.05 23.19±0.10 63.70±1.05 19.72±0.20 31.72±4.23 22.58±2.76 16.67±0.76 14.20±0.97
GSAPool 40.74±2.10 26.90±2.72 62.22±0.00 19.44±0.00 26.88±3.31 18.51±1.18 15.59±1.52 12.75±1.41
HGPSLPool 40.74±2.77 25.69±3.19 62.96±1.05 19.58±0.20 30.65±1.32 20.76±1.23 16.13±2.63 12.67±1.80

Figure A.1: Performance of different approaches under different number of hidden channels and learning
rates.

the original unpooled graph, on the Texas and Cora datasets. For datasets with weaker connectivity, such
as Texas (Avg. degree=3.2), and those with higher clustering coefficients, such as Cora (Avg. CC=0.24),
KMISPool retains more central nodes and preserves connectivity more effectively. In contrast, SAGPool and
TopKPool retain fewer nodes and often fail to preserve high-degree nodes. SAGPool and TopKPool rely
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Figure A.2: Visualization of different approaches for one graph of MUTAG.

Figure A.3: Visualization of different approaches for Texas.
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Figure A.4: Visualization of different approaches for Cora.

heavily on local features, such as node degrees or attention scores, for node selection. In weakly connected
graphs, this local strategy may lead to the omission of high-degree nodes, as they may be concentrated
in specific regions, while other regions are oversampled. In comparison, KMISPool achieves more uniform
sampling by leveraging its global node selection strategy.
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