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Abstract

Existing reasoning benchmarks for language models (LMs) frequently fail to ad-
equately assess spatial reasoning. In this work, we study spatial and topological
reasoning by introducing a text-first benchmark built from Slitherlink and Nurikabe,
two canonical constraint-satisfaction and grid-based connectivity puzzles. We gen-
erate this benchmark with a solver-aided framework that encodes constraints into
Boolean form and samples solutions from these constraints with near-uniformity
over a specified projection, yielding instance distributions that are diverse and
minimally biased by handcrafted heuristics. We represent puzzle instances in a
custom coordinate-based domain-specific language (DSL) and evaluate them with
a rigorous validation engine. Baseline experiments show substantially higher accu-
racy on Nurikabe than on Slitherlink, with single-cycle loop topology emerging
as the principal bottleneck; however, the results do not indicate any distinctive
advantage in either puzzle family, showing that spatial reasoning remains an open
challenge.

1 Introduction

Reasoning benchmarks for language models have primarily focused on mathematical word problems,
code synthesis, and symbolic puzzles that emphasize local constraint satisfaction. Comparatively
less attention has been paid to spatial and topological reasoning, particularly when such reasoning
must be performed from text alone. While frontier language models have demonstrated impressive
capabilities on many tasks, they often struggle with problems requiring long chains of deductive
reasoning or global consistency, even with search-based decoding [16].

Existing puzzle-style evaluations have made progress in related areas. Sudoku benchmarks test
logical deduction and local consistency [10], while logic-grid tasks probe entity-relation reasoning
[12]. Other work has explored search-based prompting for crosswords and arithmetic [16], and
neuro-symbolic approaches that translate natural-language rules into executable solver programs
[7]. However, these benchmarks do not directly evaluate the ability to reason about explicit global
connectivity constraints, such as ensuring that a configuration forms a single connected component or
a single closed loop. It remains an open question whether current language models can build and
maintain internal topological models from symbolic descriptions, enforce global structural properties
alongside local rules, and scale their reasoning as problem size increases.

To address this gap, we introduce a benchmark centered on two canonical connectivity puzzles:
Slitherlink and Nurikabe. These puzzles are particularly well-suited as reasoning testbeds because
they require models to simultaneously satisfy local arithmetic constraints and global topological
invariants, a combination that resists purely heuristic approaches. In Slitherlink, the solver must
identify a set of grid edges forming a single simple cycle, such that each numbered cell has exactly
the specified count of incident loop edges. In Nurikabe, the task is to partition a cell grid into black
and white regions, where black cells form one connected sea (with no 2× 2 all-black blocks), and
each white island is a connected component of a specified size anchored at a given seed. Both
puzzle families are computationally hard (with NP-complete variants [13, 6, 4]) and inherently test
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Figure 1: (a) Numbered cells indicate island sizes. The black cells represent the "sea" that connects
all the way through the grid, while white cells form "islands." The solution shows how the sea
separates different numbered islands. (b) Numbers indicate how many edges of that cell are part of
the loop. The blue line shows an example solution—a single closed loop that satisfies all the number
constraints.

reasoning about global topological structure, making them ideal stress tests for capabilities beyond
local pattern matching. Moreover, their text-first representation forces models to construct and
manipulate internal spatial models without relying on visual perception, isolating the reasoning
component from recognition.

Our contributions are threefold. First, we provide a text-first benchmark with standardized input/out-
put via a domain-specific language and deterministic validators that enforce all constraints exactly.
Second, we develop a distribution-aware generation pipeline that encodes puzzles as Boolean con-
straint systems and uses projection-based sampling methods to produce diverse instances without the
biases of heuristic generators [11, 8, 1]. Third, we report evaluation results on frontier models with
constraint-level diagnostics, complementing prior benchmarks that target non-topological reasoning
or rely on perceptual input [12, 10, 16, 3, 2].

2 Related Work

Abstraction and generalization benchmarks. The Abstraction and Reasoning Corpus (ARC-AGI)
evaluates abstraction with minimal priors using visual grid tasks [3, 2]. While ARC probes general
intelligence, its tasks are vision-centric and do not directly operationalize topological constraints like
a single closed cycle or a single connected component, which are central to our evaluation.

Puzzle benchmarks and reasoning strategies. Recent benchmarks use constraint-based puzzles
to evaluate reasoning. Sudoku evaluations provide controlled difficulty and exact scoring for local
consistency [10], while logic-grid puzzles test entity-relation inference without spatial structure [12].
Various prompting strategies (Tree-of-Thought [16], self-consistency [14], ReAct [17]) and neuro-
symbolic approaches [7] have been proposed. While these establish valuable practices (standardized
representations, deterministic validation), they do not target global topological constraints in text-
first settings. Most rely on heuristic generators that may introduce systematic biases rather than
distribution-aware sampling.

Connectivity puzzles and formal encodings. The complexity literature documents NP-complete
puzzle families where connectivity is central [4]. Practical approaches use SAT, ILP, and flow
encodings to enforce single-loop and single-component constraints [13]. Our benchmark builds on
this by foregrounding explicit global connectivity with text-first representations, exact validators, and
distribution-aware generation.
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3 Benchmark

We construct our benchmark on two spatial puzzles, Slitherlink and Nurikabe, to evaluate language
models on topological reasoning. Each puzzle family is generated in size-tiered categories (small,
medium, and large) to enable systematic difficulty scaling. All instances are text-first: problems and
solutions are represented symbolically without images, which isolates reasoning from perceptual
confounds. Our design serves three core objectives. First, by eliminating visual input, we ensure that
performance reflects genuine topological reasoning rather than pattern recognition or reliance on
pretrained visual priors [3]. Second, we ground each puzzle in formal Boolean constraint systems
(detailed in Appendix B) that encode both local rules and global connectivity requirements, supporting
exact verification and uniqueness testing consistent with established complexity analyses [13, 4].
Third, we adopt a projection-aware sampling methodology (Section 3.1) to generate diverse instances
with minimal distributional bias [11, 8, 1].

Each instance is serialized in a custom coordinate-based DSL. The DSL grammar specifies explicit
grid dimensions, normalized listings of clues or island seeds in canonical order, and delimited solution
blocks for evaluation. This representation supports robust assessment: the same logical puzzle can
be presented with different surface orderings or symmetries, allowing us to probe sensitivity to
representation choices while maintaining semantic equivalence.

3.1 Projection-Aware Sampling

Generating diverse puzzle instances requires care: naively sampling solutions from a Boolean encod-
ing can introduce hidden biases. We encode puzzle constraints as Boolean formulas in Conjunctive
Normal Form (CNF), where a CNF formula is a conjunction of clauses, each a disjunction of literals
(variables or their negations). For example, the formula (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) is a CNF with two
clauses. For puzzle generation, we partition variables into two sets: task variables T that directly
represent puzzle elements visible to the model (edge indicators in Slitherlink, cell colors in Nurikabe),
and auxiliary variables A introduced by the encoding to enforce complex constraints efficiently
(such as flow variables for connectivity, as detailed in Appendix B). Let X = T ∪ A denote all
variables and F the CNF formula over X , with satisfying assignments S(F ) ⊆ {0, 1}X . A projection
π : {0, 1}X → {0, 1}T maps each full assignment to its task-variable portion.

The central challenge is projection bias. If we sample uniformly over S(F ), the distribution over
projected solutions π(S(F )) can be highly skewed: some puzzle configurations y ∈ {0, 1}T may
correspond to many auxiliary completions, making them overrepresented, while others with fewer
completions become rare. This bias can favor certain puzzle topologies (configurations requiring
simpler flow patterns) and undermine benchmark diversity. Our goal is instead to sample approxi-
mately uniformly over distinct puzzle solutions π(S(F )), ensuring each configuration has probability
(1± ε)/|π(S(F ))|. We achieve this via a three-step pipeline [11, 8, 1]: first, identify an independent
support I ⊆ X (variables that uniquely determine all others; typically I ≈ T in our encodings); sec-
ond, add m sparse random XOR constraints hj(I) = αj to partition π(S(F )) into near-equiprobable
cells; third, sample from one cell via UniGen-style enumeration, yielding (ε, δ) uniformity guaran-
tees. A worked example illustrating projection bias and how XOR hashing corrects it is provided in
Appendix A.

After sampling, we apply deterministic post-processing: uniqueness filtering (re-solving with the
known solution blocked to reject instances with multiple solutions) and dihedral canonicalization
(selecting a canonical orientation under the 8-element symmetry group). These operations act only
on T . While uniformity is guaranteed over the pre-filter sample, post-processing can introduce
bias if solution multiplicity or symmetry orbit sizes correlate with puzzle features. To mitigate this,
we implement symmetry-breaking constraints during SAT solving where feasible, and empirically
monitor distributional properties (topology statistics, orbit-size distributions) to detect systematic
skew. The resulting benchmark achieves distributional control largely independent of encoding
choices, coverage of diverse topologies, and reproducible comparisons across sizes and formats,
though we acknowledge that perfect uniformity after canonicalization would require orbit-weighted
sampling.
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Figure 2: Evaluation results of frontier models on Nurikabe (N = 7958) and Slitherlink (N = 6579).
Note the substantial accuracy disparity between puzzle types and the consistent ordering across
models.

4 Results

We evaluate several frontier language models on both puzzle families and observe a striking pattern:
all models achieve substantially higher accuracy on Nurikabe than on Slitherlink (Figure 2). This
ordering is stable across the model spectrum. On Slitherlink, even the strongest system achieves only
single-digit accuracy, while most models score near zero. This performance gap invites a principled
explanation grounded in the structural differences between the two puzzle types.

From a combinatorial perspective, Slitherlink poses a more constrained problem. The puzzle requires
a globally consistent edge set forming exactly one simple cycle; a single incorrect edge propagates
contradictions via degree and parity constraints. The space of locally valid configurations (degree
0 or 2 at each vertex) is exponential (2ab in an a × b grid), but only a tiny fraction forms a single
connected loop. One error cascades through the constraint network, making recovery difficult under
left-to-right generation. In contrast, Nurikabe enforces structure through sea connectivity and island
sizes. While the 2 × 2 exclusion rule permits many fragmented configurations, Nurikabe admits
incremental region-growth strategies where violations (overgrown islands, emerging 2× 2 blocks)
can often be repaired locally without global reconfiguration. The degree-{0, 2} regime in Slitherlink
tightly couples distant choices with weak gradient signals, whereas Nurikabe supports localized
reasoning. Output representation also matters: emitting a correct sparse edge list demands tight
global planning, while a binary cell mask aligns naturally with token generation.

Model responses reveal instructive failure modes. Meta Llama 3.1 405B [5] frequently rejects valid
puzzles as unsolvable, while Qwen 3 Max [15] produces outputs consistently but with high error rates.
GPT-5 [9] invests substantially more reasoning tokens (up to 45,000 versus hundreds for others),
suggesting overconfidence in weaker models or fundamental training differences. Table 1 provides a
constraint-level error breakdown. Strikingly, while global connectivity defines theoretical hardness,
dominant failures occur at simpler levels: degree violations (73% for Slitherlink) and island size
mismatches (66% for Nurikabe). Current models struggle with maintaining consistency across many
local constraints during generation, not primarily with abstract topological reasoning.

To probe scaling behavior, we analyze accuracy across size buckets: small (up to 6× 6 for Nurikabe,
10 × 10 for Slitherlink), medium (up to 8 × 8 and 12 × 12 respectively), and large (beyond these
thresholds). Figure 3 shows accuracy by size for both puzzles. Accuracy on Nurikabe shows
essentially no size dependence, except for a dip at the 8 × 8 size, whereas Slitherlink exhibits a
strong negative size effect. This suggests that Nurikabe’s challenge is not primarily computational
but structural, remaining consistently difficult regardless of grid dimensions, while Slitherlink’s
single-cycle constraint becomes exponentially harder as the search space grows. The flat scaling
profile for Nurikabe further supports the hypothesis that local constraint satisfaction, rather than raw
problem size, drives the difficulty gap between puzzle families.
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Figure 3: Accuracy versus grid size for Nurikabe and Slitherlink. Error bars show 95% Wilson
confidence intervals. Nurikabe exhibits size-invariant difficulty, except for a dip at 8 × 8 puzzles,
while Slitherlink accuracy degrades sharply with increasing grid dimensions.

Puzzle Constraint Error Rate (95% CI)

Nurikabe Island size mismatch 65.7% (63.9–67.4)
Incorrect row length 16.1% (14.8–17.6)
DSL: parse error 5.2% (4.4–6.0)
DSL: missing <solution> tags 4.8% (4.1–5.6)
Seed cell not white 3.5% (2.9–4.3)
Incorrect row count 3.2% (2.6–3.9)
Sea disconnected 0.8% (0.6–1.2)
Unexpected white cell 0.3% (0.1–0.6)
Sea contains a 2× 2 block 0.2% (0.1–0.5)
Overlapping islands 0.2% (0.1–0.4)

Slitherlink Dot degree violation 73.6% (71.0–76.0)
Edge out of bounds 6.9% (5.5–8.5)
No edges provided 6.7% (5.4–8.3)
Clue mismatch 5.0% (3.9–6.4)
DSL: parse error 2.7% (2.0–3.8)
DSL: missing <solution> tags 2.7% (1.9–3.7)
Duplicate edge 2.1% (1.5–3.1)
Loop is not a single cycle 0.3% (0.1–0.9)

Table 1: Constraint-wise diagnostics for Nurikabe and Slitherlink. Error rates are shown among
incorrect outputs with 95% Wilson confidence intervals.

5 Conclusion

We presented a text-first benchmark for spatial and topological reasoning built around Slitherlink and
Nurikabe. Our methodology combines formal Boolean encodings, projection-aware sampling for
diverse unbiased generation, a standardized DSL, and deterministic validators.

Empirical results show substantially higher accuracy on Nurikabe than Slitherlink, aligning with struc-
tural differences: Slitherlink requires globally consistent cycles where errors cascade through tight
degree constraints, while Nurikabe admits localized reasoning with incremental repair. Constraint
diagnostics show models predominantly fail on local combinatorial constraints rather than abstract
topological properties, suggesting challenges in maintaining consistency across coupled decisions.

Despite this disparity, overall accuracy remains modest on both families, indicating spatial reasoning
remains an open challenge. This benchmark provides a controlled testbed for future work on
inference-time search, neuro-symbolic integration, or training for long-range constraint propagation.
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A Projection Sampling Example

We illustrate projection bias and how XOR hashing corrects it with a toy 2 × 2 Nurikabe puzzle.
The task variables are T = {B0,0, B0,1, B1,0, B1,1} indicating which cells are black. Suppose the
seed is at (0, 0) with size 2, requiring two white cells forming a connected island including (0, 0),
with remaining cells black forming a connected sea. The encoding introduces auxiliary variables
A for flow (enforcing sea connectivity) and island membership. The CNF F over X = T ∪ A
has clauses ensuring that B0,0 = 0 (seed cell is white), that no 2 × 2 all-black block exists (via
¬B0,0 ∨ ¬B0,1 ∨ ¬B1,0 ∨ ¬B1,1), and that sea connectivity holds via flow balances with auxiliary
flow variables.

Suppose two valid puzzle solutions exist: (a) cells (0, 0) and (0, 1) white, (1, 0) and (1, 1) black; (b)
cells (0, 0) and (1, 0) white, (0, 1) and (1, 1) black. Due to flow encoding details, solution (a) might
admit three distinct auxiliary completions while solution (b) admits only one. Naive uniform sampling
over S(F ) would select (a) with probability 3/4 and (b) with probability 1/4, introducing bias. By
identifying I = T as an independent support, we add one XOR constraint, say B0,1 ⊕ B1,0 = α,
with random α. Each choice of α selects a subset of π(S(F )): α = 0 might isolate solution (a) while
α = 1 isolates solution (b). Sampling uniformly over α and then within the resulting cell yields
near-uniform coverage over the two puzzle configurations, independent of auxiliary variable counts.
Note that both solutions are symmetric under 90-degree rotation, so canonicalization would map
them to the same representative, requiring careful handling to maintain distributional properties.

B Formal Constraint Encodings

We formalize the Boolean encodings that support distribution-aware generation and exact validation
for both puzzle families. All grids are R × C with 4-neighborhood adjacency; cell indices are
(i, j) ∈ {0, . . . , R − 1} × {0, . . . , C − 1}. The encodings translate each puzzle’s rules into CNF
clauses over task and auxiliary variables, enabling SAT-based solving and sampling.

Slitherlink. Let the dot set be V = {0, . . . , R} × {0, . . . , C}. For each horizontal pair (r, c) ↔
(r, c+ 1) define Hr,c ∈ {0, 1} (0 ≤ r ≤ R, 0 ≤ c < C); for each vertical pair (r, c) ↔ (r + 1, c)
define Vr,c ∈ {0, 1} (0 ≤ r < R, 0 ≤ c ≤ C). A clued cell (i, j) with κi,j ∈ {0, 1, 2, 3, 4} satisfies

Hi,j +Hi+1,j + Vi,j + Vi,j+1 = κi,j .

At each dot u ∈ V , let deg(u) be the sum of incident edge variables; enforce deg(u) = 2au with
au ∈ {0, 1}. To rule out multiple cycles, enforce connectivity by a single-commodity flow on
oriented chosen edges. Let Eu,v denote the indicator of the undirected grid edge {u, v} (equal to
the appropriate H or V ). Pick a root s ∈ V and require as = 1. Introduce flows fu→v ≥ 0 with
capacities 0 ≤ fu→v ≤ M Eu,v for M = |V|, and node balances∑

y

fu→y −
∑
x

fx→u = { au , u ̸= s,−
(∑
w∈V

aw − 1
)
, u = s,

which, together with deg(u) ∈ {0, 2}, enforces exactly one simple cycle [13]. The single-cycle
property follows from a standard graph-theoretic argument: the degree constraint restricts the chosen
edges to a union of disjoint cycles, and the flow connectivity requirement forces all chosen vertices
into one component, hence exactly one cycle. At validation time, any vertex on the proposed loop
can serve as root s.
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Nurikabe. Let Bi,j ∈ {0, 1} indicate black (sea) at cell (i, j). For every 2× 2 block {(i, j), (i+
1, j), (i, j + 1), (i+ 1, j + 1)},

Bi,j +Bi+1,j +Bi,j+1 +Bi+1,j+1 ≤ 3.

Sea connectivity is enforced by a commodity flow on the cell graph. Pick a root cell s and require
Bs = 1. Let Yu,v ∈ {0, 1} gate adjacency with Yu,v ≤ Bu, Yu,v ≤ Bv , and Yu,v = Yv,u (symmetric
flow edges), and introduce flows gu→v ≥ 0 with 0 ≤ gu→v ≤ M ′Yu,v for M ′ = RC. Impose
balances ∑

y

gu→y −
∑
x

gx→u = {B u , u ̸= s,−
(∑

w

Bw − 1
)
, u = s,

which ensures that all black cells form a single 4-connected component [13].

For each numbered seed s at location ℓ(s) with target size ts, introduce island membership indicators
Xs,i,j ∈ {0, 1} satisfying:

Bℓ(s) = 0, Xs,ℓ(s) = 1, Xs,i,j ≤ 1−Bi,j ,
∑
i,j

Xs,i,j = ts.

To ensure every white cell belongs to exactly one island:∑
s

Xs,i,j = 1−Bi,j .

To prevent distinct islands from touching orthogonally, for each pair of orthogonally adjacent cells
u ∼ v and all seed pairs s ̸= t:

Xs,u +Xt,v ≤ 1.

Finally, add a connectivity constraint on {(i, j) : Xs,i,j = 1} to ensure each island forms a single
4-connected component. These constraints capture the standard Nurikabe rules [4], including the
requirement that islands do not touch orthogonally (diagonal contact is permitted). The validator
independently verifies all properties to ensure robustness to encoding choices.

Encoding Complexity and Variable Counts. The encodings introduce different numbers of
variables and constraints depending on puzzle type and size. For Slitherlink on an R×C grid, the task
variables number |T | = R(C+1)+C(R+1) (horizontal and vertical edge indicators), while auxiliary
variables include (R+ 1)(C + 1) vertex activation indicators and O(RC) flow variables, yielding
|X| = O(RC) total variables. The clue constraints produce O(RC) clauses, degree constraints
contribute O(RC) clauses, and the flow encoding adds O(RC) additional clauses, for a total of
O(RC) clauses overall. For Nurikabe on an R×C grid, task variables number |T | = RC (cell color
indicators). Auxiliary variables include O(RC) flow variables for sea connectivity and, when island
membership is encoded explicitly, O(kRC) indicator variables for k island seeds. The 2×2 exclusion
constraints contribute O(RC) clauses, sea connectivity flow constraints add O(RC) clauses, and
island-size constraints introduce O(kRC) clauses, yielding O(kRC) clauses overall where k is
typically small (under 10 in our benchmark). This disparity in auxiliary complexity, particularly the
ratio of auxiliary to task variables, motivates the projection-aware sampling methodology: the number
of auxiliary completions per task assignment can vary substantially, and naive uniform sampling over
the full space S(F ) would systematically bias the distribution over puzzle solutions.

C Textual Puzzle Representation

Below we show an example of the textual representation of a Nurikabe puzzle. The exact grammar
file can be found in our code, but this snippet shows the general problem description, which is
supplemented with a prompt that describes rules and expected outputs, as well as output formats.

puzzle N;
grid {

rows: 10;
cols: 10;

}
rules {

no_2x2: true;
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single_sea: true;
}
id "37";
givens {

source(0, 0, 58);
source(6, 7, 1);
source(7, 2, 1);
source(7, 4, 2);
source(7, 9, 14);

}
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