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Abstract

Speech is a fundamental form of human communication, and speech perception
constitutes the initial stage of language comprehension. Although brain-to-speech
interface technologies have made significant progress in recent years, most existing
studies focus on neural decoding during speech production. Such approaches
heavily rely on articulatory motor regions, rendering them unsuitable for indi-
viduals with speech motor impairments, such as those with aphasia or locked-in
syndrome. To address this limitation, we construct and release NeuroListen, the
first publicly available stereo-electroencephalography (sEEG) dataset specifically
designed for auditory reconstruction. It contains over 10 hours of neuralspeech
paired recordings from 5 clinical participants, covering a wide range of semantic
categories. Building on this dataset, we propose HyperSpeech, a multi-band neural
decoding framework that employs dynamic spatio-temporal hypergraph neural
networks to capture high-order dependencies across frequency, spatial, and tempo-
ral dimensions. Experimental results demonstrate that HyperSpeech significantly
outperforms existing methods across multiple objective speech quality metrics,
and achieves superior performance in human subjective evaluations, validating
its effectiveness and advancement. This study provides a dedicated dataset and
modeling framework for auditory speech decoding, offering foundations for neural
language processing and assistive communication systems.

1 Introduction

Recent advances in braincomputer interfaces (BCIs) have enabled direct speech synthesis from
neural signals, offering transformative communication capabilities for individuals with severe speech
impairments (1; 2; 3). These technologies promise to restore natural communication ability for
patients with conditions such as locked-in syndrome or aphasia (4).

While surface EEG is widely used due to its non-invasive nature, its limited spatial resolution restricts
access to deep neural circuits that are critical for speech processing (5; 6). Intracranial EEG (iEEG),
including electrocorticography (ECoG) and stereoelectroencephalography (sEEG), offers significantly
higher temporal and spatial resolution, making it a powerful tool for decoding neural correlates
of speech (6; 7; 8). ECoG-based speech synthesis has demonstrated promising results in recent
years (6; 7; 9). In contrast, sEEG provides several unique advantages: it requires only minimally
invasive procedures for electrode implantation (10), offers safer long-term monitoring (11; 12), and
enables access to both deep and distributed brain regions through spatially sparse but widespread
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sampling (13; 14; 15; 3). These properties are especially valuable for capturing speech-related
dynamics that span bilateral or anatomically distant areas of the brain (16; 17; 18).

Despite these advancements, most existing research has focused on decoding speech production,
such as overt or imagined articulation (19; 20; 21; 22). In contrast, auditory speech perception—the
neural process of recognizing and understanding speech—constitutes the first stage of language
comprehension and communication, yet remains significantly underexplored in neural decoding
research. This gap is critical: perception-based decoding not only offers broader clinical applicability
(e.g., for non-verbal or locked-in patients), but also provides unique insights into how the brain
encodes incoming language information, complementing production-focused approaches.

To address this gap, we introduce NeuroListen, the first publicly available sEEG dataset specifically
designed for auditory speech reconstruction. It contains over 10 hours of neuralspeech paired
recordings from five clinical participants, covering a diverse set of semantic categories.

Figure 1: Overview of auditory speech
reconstruction from sEEG signals using
a hypergraph-based neural decoder.

sEEG enables high-resolution access to both deep and
distributed brain regions involved in auditory process-
ing (5; 6). Building on this dataset, we propose Hy-
perSpeech, a novel multi-band decoding framework
based on dynamic spatio-temporal hypergraph neural
networks, which models complex interactions across
frequency, spatial, and temporal dimensions. As shown
in Figure 1, the system captures neural responses to
heard speech using sEEG and reconstructs intelligible
speech through a hypergraph-based decoding pipeline.

Experimental results on the NeuroListen dataset demonstrate that HyperSpeech achieves consistent
and significant improvements over multiple competitive baselines. Specifically, it outperforms strong
models—including CNN-LSTM (23), Braintalker (24), and FastSpeech (25)—across four objective
metrics (PCC: 0.9488, MCD: 1.993, RMSE: 0.2522, STOI: 0.8667) and two human evaluation scores
(SMOS: 3.93, CMOS: 4.55). These results highlight its ability to generate intelligible, high-quality
speech from sEEG recordings.

2 Related Work

Speech Decoding from Neural Activity: Production and Imagination. Martin et al. (26) decoded
spectro-temporal features of speech from brain activity using ECoG, and Mugler et al. (27) further
demonstrated that the full set of American English phonemes can be decoded from ECoG. In (9),
Moses et al. explored real-time decoding of perceived and produced speech from high-density ECoG
activity during a question-and-answer dialogue task. Angrick et al. (28) explored the use of deep
neural networks (3D convolutional neural networks) for reconstructing speech from ECoG recordings.
Moses et al. (4) investigated the long-term stability of ECoG recording and its performance in
decoding speech over an extensive 81-week recording period in a paralyzed patient with anarthria.

Neural Reconstruction of Perceived Stimuli: Vision and Audition. Recent advances in neural
decoding have shown impressive progress in reconstructing visual stimuli from brain activity. Zeng et
al. (29) proposed CMVDM, which leverages attribute alignment to extract semantics and silhouettes
from fMRI, generating high-fidelity images aligned with perceived content. For dynamic visual
decoding, Gong et al. (30) introduced NeuroClips, which separates semantic and perceptual pathways
for smooth video reconstruction from fMRI. Li et al. (31) demonstrated that even EEG can guide
competitive image reconstruction by aligning neural signals with CLIP embeddings via a two-stage
diffusion model.

Recent studies have begun to explore auditory reconstruction from non-invasive brain signals. Park et
al. and LeBel et al. collected fMRI data when the particiants listened to different auditory stimulus
and proposed dataset of fMRI-speech pairs (32; 33). Liu et al. (34) proposed LDM, which used
Latent Diffusion Model to reconstruct auditory stimulus from fMRI.

While their work represents a significant advance in auditory reconstruction, the reliance on fMRI
comes with inherent limitations such as low temporal resolution and indirect measurement of neural
activity. In contrast, our work is the first to reconstruct auditory speech from sEEG, an intracranial
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modality with millisecond-level temporal precision and deep-brain access, complements existing
fMRI-based approaches.

3 NeuroListen Dataset Construction

Figure 2: Experimental procedure for sEEG data collection and processing. The workflow includes
electrode implantation, informed consent, recording setup, stimulus presentation, data acquisition,
and post-processing. Further details are provided in Sections 3 and 4.

3.1 Participants

Five patients with epilepsy undergoing neurosurgical treatment were enrolled as the listening subjects
in the data collection. They are referred to as the participants. All the subjects were native Mandarin
Chinese speaker with basic English conversation skills. The patients ranged in age from 25 to 40
years old, with an average age of 31 years old.

The study was conducted in accordance with the principles embodied in the Declaration of Helsinki.
All the patients gave written informed consent to participate in the study. Data collection was
conducted under the supervision of experienced doctors to ensure the comfort and safety of the partic-
ipants. During the recording process, patients were required not to enter any personal identification
information. Therefore, this dataset does not contain the identity information of actual users.

3.2 Neural Recordings

All the participants were implanted with sEEG electrode shafts to identify epileptogenic foci and all
the locations of sEEG electrodes were determined based on each patient’s specific epilepsy treatment
plan. 8-13 electrode shafts were implanted in each subject. Each shaft contains 8-16 electrode
contacts, resulting in a total of 118 - 186 electrode contacts for the subjects. To accurately determine
the positions of contacts, we used an open-source MATLAB package LeGUI (35), in which the
processing is performed based on Statistical Parametric Mapping toolbox (SPM12) (36). Figure 3
illustrates three views of the depth electrode locations for three participant, where dots of the same
color represent electrodes belonging to the same shaft.

3.3 Data Acquisition

The participants underwent the implantation of platinum-iridium sEEG electrode shafts (Sinovation
(Beijing) Medical Technology SDE-10/12/16, China), featuring a diameter of 0.8 mm and an inter-
contact distance of 3.5 mm. Each electrode shaft contained between 10 and 16 electrode contacts. In
particular, the placement of all electrodes was determined on the basis of the therapeutic requirements
of the patients. sEEG signals were recorded at a sampling rate of 1000 Hz (Nihon Kohden EEG 1200,
Tokyo, Japan).

As depicted in Figure 2, a computer was placed in front of the participants, serving as the control
center. It delivered the speech stimuli via a speaker. During recording, the computer screen shows a
blank screen so as not to distract the participants. All the participants’ sEEG signals were recorded.
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Figure 3: sEEG electrode shaft locations from Subjects 1 to 3. Each dot indicates an individual
electrode contact, with contacts of the same color belonging to the same electrode shaft. The
trajectories span various cortical and subcortical regions, determined according to each patient’s
clinical needs. Electrode coordinates were obtained by co-registering pre-implantation magnetic
resonance imaging (MRI) with post-implantation computed tomography (CT).

To ensure synchronization between the auditory stimuli and sEEG responses, we employed a Python-
scripted tool to play speech stimuli and simultaneously mark the corresponding sEEG responses.

3.4 Experiment Protocol

During our experiment, participants were presented with auditory stimuli across three different
categories: 44 categories of Mandarin Chinese words, 10 categories of Mandarin Chinese digits (0-9),
and 20 categories of English words in each round. The duration designated for listening was set to 2
seconds for each word. At the beginning of each round, each participant was given a 5-second interval
to get ready, where a prompt “Please listen to the speech attentively" is played, that is followed by a
“ding" sound to represent the start of the attended speech content.

To avoid fatigue, the participants took a 5 to 10-minute break between two rounds. Additionally,
several familiarization trials were conducted to ensure that the subjects understood the experimental
procedures before recording. As a result, the NeuroListen dataset comprises more than 10 hours of
neuralspeech paired recordings in total.

3.5 sEEG Alignment and Annotation

In this study, sEEG and speech signals were aligned via a designed experimental setup and annotation
process. During data collection, the computer program sent a marker signal to the DC electrode and
played speech simultaneously as shown in Figure 2, ensuring the speech and sEEG onset were aligned.
For annotation, the speech segmentation start point was determined by considering participant task
performance variations and software recording lags. The starting point was selected with a precision
of 0.01 - 0.005 seconds, enabling accurate signal alignment for speech neural analysis.

4 Data Preprocessing

4.1 Data Loading

The NeuroListen dataset is publicly available for research use (https://zenodo.org/records/
17426506). To simplify the use of the data, we have preprocessed the sEEG signals and corresponding
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speech signals. Specifically, files with the extension _seeg.npy contain the processed sEEG data for
each participant, while files ending in _mel.npy contain the corresponding mel-spectrogram of the
speech.

4.2 Neural Signal Preprocessing

First, we excluded electrodes identified in epileptologists’ reports as showing abnormal epileptiform
discharges (37). Electrodes marked as epileptogenic or exhibiting frequent spikes, sharp-slow waves,
or high-frequency discharges (as documented in clinical reports) were excluded from analysis.
Specifically, 61, 27, 46, 22, 37 electrodes were removed from the patients respectively.

Subsequently, bipolar referencing was applied to the remaining sEEG signals (38). Previous stud-
ies have highlighted the critical role of high-gamma frequency (HGA) and low-frequency signal
(LFS) features in synthesizing speech from brain signals (8; 39; 6). Accordingly, we followed the
preprocessing methods used in previous research to extract the LFS and HGA frequency bands (6).
Additionally, we tested broadband signals (BBS), which combine both LFS and HGA sEEG features,
to provide a comprehensive perspective and evaluate their combined contributions to speech synthesis
performance. Specifically, to compute HGA, we first band-passed the signals in the high-gamma
frequency range (70 – 150 Hz), then calculated the analytic amplitude of these signals, and finally
downsampled them to 200 Hz. For LFS, we applied a low-pass anti-aliasing filter with a cutoff
frequency of 100 Hz before downsampling the signals to 200 Hz. Lastly, we normalized the extracted
HGA and LFS signals from each sEEG electrode within each 2-second window. The same neural
signal preprocessing pipeline was applied consistently across all baseline and proposed models to
ensure fair comparison.

4.3 Speech Signal Preprocessing

We used LibROSA, a commonly adopted Python library for speech processing (40), to downsample
the speech signals to 16 kHz and extract the mel-spectrograms. To capture the temporal dynamics of
the specch signal, a window length of 64 milliseconds and a hop length of 20 milliseconds were set.
Additionally, we set the number of bins in the mel-spectrogram to 80, aiming to capture sufficiently
detailed frequency information to describe the speech signals (41).

5 Methods

Hypergraphs generalize traditional graphs by enabling edges to connect multiple nodes, making them
well-suited for modeling high-order relationships. They have been successfully applied in diverse
domains such as action recognition, time-series analysis (42; 43; 44), demonstrating their effective-
ness in capturing complex spatial and temporal dependencies. Inspired by these advances, we adopt
HGNNs to model spatio-temporal dynamics in sEEG signals for improved auditory reconstruction.

Figure 4l presents the overall architecture of HyperSpeech, which performs spatio-temporal fea-
ture extraction on dual-band sEEG signals via dynamic hypergraphs. Raw signals are first fused
within each electrode shaft and passed through convolutional layers to extract spatial features, then
segmented into temporal windows. At each time step, a spatial hypergraph captures inter-regional
spatial dependencies, while a temporal hypergraph models temporal relations. After spatio-temporal
hypergraph convolutions, multi-band features are fused and processed by a Bi-LSTM to extract
fine-grained temporal dynamics. The model then predicts mel-spectrograms, which are converted
into high-quality speech using a HiFi-GAN decoder.

5.1 Spatial Hypergraph Construction

The raw sEEG signal is denoted as X ∈ RC×d, where C is the total number of channels and d is the
number of time steps. The data from each of the N electrode shafts is represented as xn ∈ RCn×d,
where Cn denotes the number of channels on shaft n, with n = 1, 2, . . . , N . To integrate information
across channels within each shaft, we apply a fully connected layer for intra-shaft channel fusion.

X1 = concat(FC1(x1), FC2(x2), ..., FCN (xN )). (1)

Here, FCn denotes the fully connected fusion layer for the n-th electrode shaft. We then apply 1D
convolution to extract spatio-temporal features from the fused sEEG signals.

X2 = Conv1d(X1). (2)
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Figure 4: An overview of our proposed HyperSpeech. The model utilizes spatiotemporal hypergraphs
to extract spatiotemporal features from two frequency bands of sEEG signals, effectively capturing
higher-order spatiotemporal dependencies to enable accurate sEEG signal decoding for speech.

Given the notable temporal evolution and structural variability of sEEG signals, we divide the
data into T temporal windows, represented as X3 ∈ RT×N×d1 . A spatial hypergraph Gtspatial =
{Vt

spatial, Etspatial} is constructed within each window to capture the dynamic topological patterns
over time. At each time step t, the spatial nodes Vt

spatial represent spatial features of different brain
regions, and the hyperedges Etspatial capture high-order inter-regional relationships. For each node, we
compute the Euclidean distances to all other nodes and select its k nearest neighbors. By connecting
each node to its k neighbors, a hyperedge is formed, effectively modeling spatial dependencies across
brain regions. The spatial hypergraph can be represented in the form of a neighborhood matrix.

(Ht
s)i,j =

{
1, node i is included in hyperedge j,

0, otherwise.
(3)

Based on the constructed neighborhood matrix (Ht
s)i,j , the model applies hypergraph convolution to

capture high-order relationships among spatial nodes. The spatial hypergraph convolution at time
step t can be formulated as:

(Xt
spatial)

(l+1) = σ((Dt
s)

− 1
2

v (Hs)
TW t

s(D
t
s)

− 1
2

e Ht
s(D

t
s)

− 1
2

v (Xt
spatial)

(l)(Θt
s)

(l)). (4)

Here, σ denotes the activation function, and (Xt
spatial)

(l) represents the node features at layer l,
with (Xt

spatial)
(1) = Xt

3. (Ds)v and (Dt
s)e denote the degree matrices of nodes and hyperedges,

respectively, while W t
s is the hyperedge weight matrix. (Θt

s)
(l) represents the learnable parameters

of the l-th layer. Subsequently, global average pooling is applied along the spatial dimension to
aggregate spatial features at each time step, yielding Xt

4. These temporal representations Xt
4 are then

fed into the temporal hypergraph to further extract high-order temporal dependencies.

5.2 Temporal Hypergraph Modeling

After extracting spatial features from sEEG signals using spatial hypergraphs, we construct a temporal
hypergraph to further capture high-order temporal dependencies. The temporal hypergraph is defined
as Gtemporal = (Vtemporal, Etemporal), where each node v ∈ Vtemporal represents the spatial feature at a
specific time step. The hyperedges Etemporal are constructed by computing the Euclidean distance
between each time frame and all others, connecting each time step to its k most similar neighbors. In
this way, the temporal hyperedges can capture high-order dependencies across time. The temporal
hypergraph convolution is formulated as:

X
(l+1)
temporal = σ

(
D

− 1
2

v HTWD
− 1

2
e HD

− 1
2

v X
(l)
temporalΘ

(l)
)
. (5)

Here, X(1)
temporal = X4. After two parallel spatio-temporal hypergraph convolutions, we obtain the

spatio-temporal representations for the two frequency bands, denoted as X(HGA)
5 and X

(LFS)
5 . A fully

connected layer is then applied as a fusion layer to integrate these multi-band features.

X6 = FC(X
(HGA)
5 , X

(LFS)
5 ). (6)
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This yields the multi-band spatio-temporal feature representation X6 ∈ RT×d5 . To further capture
fine-grained temporal dependencies, X6 is fed into a bidirectional long short-term memory network
(Bi-LSTM) for temporal modeling.

X7 = BiLSTM(X6). (7)

Finally, we obtain the spatio-temporally encoded sEEG representation X7, which is fed into the
speech decoder to predict mel-spectrograms and generate the corresponding speech waveform.

5.3 Mel-Spectrogram and Speech Synthesis

In the decoding stage, the spatio-temporal representation X7 is projected via a fully connected layer
to obtain the mel-spectrogram features Xmel. To convert the mel-spectrogram into high-quality audio,
we adopt HiFi-GAN (45), a vocoder based on a generative adversarial network (GAN) architecture.
It consists of a generator and two discriminators (multi-scale and multi-period), enabling efficient
and realistic waveform synthesis from mel-spectrograms through adversarial training. Finally, the
predicted Xmel is fed into the HiFi-GAN decoder to produce the corresponding speech waveform
Xwave. This decoding process ensures high-quality speech synthesis suitable for practical neural
speech reconstruction tasks.

The inference pipeline of HyperSpeech is presented in Algorithm 1, detailing the sequential compu-
tation from multi-band sEEG input to waveform reconstruction. Each stage corresponds to a core
functional block in the proposed framework and is aligned with the equations defined in our main
paper.

Algorithm 1 HyperSpeech Inference Pipeline

Require: Raw sEEG signals X(f) ∈ RC×d for frequency band f ∈ {HGA,LFS}, number of
electrode shafts N , number of time windows T , number of neighbors K, number of convolution
layers L

1: for f ∈ {HGA,LFS} do
2: X

(f)
1 ← intra-shaft channel fusion via Main Eq. (1)

3: X
(f)
2 ← spatio-temporal feature extraction via Main Eq. (2)

4: X
(f)
3 ← windowed representation

5: for t = 1 to T do
6: Gtspatial ← spatial hypergraph construction via Main Eq. (3)

7: X
t(l)
spatial ← spatial hypergraph convolution via Main Eq. (4)

8: end for
9: Gtemporal ← temporal hypergraph construction

10: X
(f)
5 ← temporal hypergraph convolution via Main Eq. (5)

11: end for
12: X6 ← multi-band feature fusion via Main Eq. (6)
13: X7 ← Bi-LSTM modeling via Main Eq. (7)
14: Xmel ← mel-spectrogram projection
15: Xwave ← waveform generation (HiFi-GAN)
Ensure: Reconstructed speech waveform Xwave

6 Experiments and Results

6.1 Implement Details

Our method was implemented using PyTorch 1.11.0 with CUDA 11.3. All models were trained for
100 epochs using the Adam optimizer with a batch size of 16. The initial learning rate was set to
3 × 10−4 and decayed to 5 × 10−6 following a cosine annealing schedule. For each subject, we
performed 5-fold cross-validation, using an 80% and 20% split for training and testing in each fold.

All experiments were conducted on an NVIDIA RTX 4090 GPU. Our objective evaluation metrics
include PCC (24; 46; 47), MCD (24; 47), RMSE (24), and STOI (47), covering aspects such as
correlation, spectral distortion, and speech intelligibility. In addition, the Mean Opinion Score (MOS)
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(25) is employed as the primary evaluation metric to assess the performance of the generated audio in
terms of similarity (SMOS) and clarity (CMOS) (25), with comprehensive definitions provided in the
appendix. The subjective evaluations (SMOS and CMOS) were collected from 30 independent raters
to ensure unbiased assessment of the reconstructed speech quality.

6.2 Baseline Methods

In this study, we compare our method against three representative baseline models: CNN-LSTM (23),
Braintalker (24), and FastSpeech (25). The CNN-LSTM model combines convolutional neural
networks (CNNs) for spatial feature extraction with long short-term memory (LSTM) networks for
modeling temporal dependencies, and is widely used for EEG sequence modeling. Braintalker adopts
an end-to-end neural architecture and leverages self-supervised learning for EEG feature represen-
tation. FastSpeech, a widely adopted baseline in speech synthesis, is built upon the Transformer
architecture and is known for its robustness and synthesis quality.

6.3 Main Results

Table 1: Comparison of HyperSpeech with other state-of-the-art methods across different subjects.

Subjects Methods PCC↑ MCD↓ RMSE↓ STOI↑ SMOS↑ CMOS↑

Subject1

CNN-LSTM (23) 0.9147 2.469 0.3346 0.8209 3.50 ±0.26 4.03 ±0.13
Braintalker (24) 0.8927 2.508 0.3661 0.8280 3.23 ±0.17 3.80 ±0.16
FastSpeech (25) 0.8806 2.391 0.3713 0.8118 3.27 ±0.25 4.13 ±0.11
Ours 0.9368 2.286 0.3285 0.8454 3.63 ±0.19 4.33 ±0.13

Subject2

CNN-LSTM (23) 0.9086 2.450 0.3528 0.7887 3.60 ±0.22 4.13 ±0.24
Braintalker (24) 0.9024 2.474 0.3590 0.8342 3.27 ±0.24 3.87 ±0.26
FastSpeech (25) 0.9192 2.530 0.3230 0.8099 3.40 ±0.28 4.23 ±0.19
Ours 0.9125 2.506 0.3005 0.8439 3.83 ±0.14 4.43 ±0.12

Subject3

CNN-LSTM (23) 0.9421 1.688 0.2453 0.8758 3.63 ±0.32 4.53 ±0.26
Braintalker (24) 0.9461 1.805 0.2480 0.8659 3.53 ±0.36 4.63 ±0.21
FastSpeech (25) 0.9402 1.877 0.2551 0.8739 3.77 ±0.21 4.73 ±0.26
Ours 0.9523 1.716 0.2463 0.8550 3.90 ±0.18 4.60 ±0.27

Subject4

CNN-LSTM (23) 0.9767 1.860 0.1821 0.8851 4.03 ±0.12 4.63 ±0.17
Braintalker (24) 0.9660 1.688 0.2080 0.8643 3.80 ±0.32 4.47 ±0.12
FastSpeech (25) 0.9508 1.704 0.2301 0.8842 3.53 ±0.29 4.43 ±0.33
Ours 0.9781 1.706 0.1787 0.8955 4.13 ±0.24 4.73 ±0.11

Subject5

CNN-LSTM (23) 0.9548 1.895 0.2226 0.8806 4.03 ±0.26 4.33 ±0.16
Braintalker (24) 0.9551 1.820 0.2270 0.8758 4.10 ±0.20 4.47 ±0.19
FastSpeech (25) 0.9573 1.922 0.2190 0.8811 3.83 ±0.31 4.63 ±0.22
Ours 0.9645 1.750 0.2067 0.8936 4.13 ±0.17 4.67 ±0.10

Average

CNN-LSTM (23) 0.9393 2.072 0.2675 0.8502 3.76 ±0.24 4.33 ±0.19
Braintalker (24) 0.9325 2.059 0.2816 0.8536 3.59 ±0.26 4.25 ±0.19
FastSpeech (25) 0.9296 2.085 0.2797 0.8521 3.56 ±0.27 4.43 ±0.22
Ours 0.9488 1.993 0.2522 0.8667 3.92 ±0.18 4.55 ±0.15

Through cross-subject evaluation, the results demonstrate that HyperSpeech consistently outperforms
baseline models across all four objective metrics, validating its effectiveness in modeling spatio-
temporal features from sEEG signals.

Specifically, HyperSpeech achieved strong performance in PCC across all participants, with a notable
value of 0.9368 on Subject 1—substantially higher than baseline methods. In terms of spectral fidelity,
the model obtained an MCD of 2.286, indicating reduced spectral distortion. Furthermore, it also
achieved competitive results in RMSE and STOI, reaching 0.3285 and 0.8454 respectively, reflecting
superior error control and intelligibility preservation.

Further subject-wise analysis reveals that HyperSpeech consistently achieved top performance across
individuals. On Subject 4 and Subject 5, the model yielded PCC scores of 0.9781 and 0.9645,
and STOI scores of 0.8955 and 0.8936, respectively—all substantially outperforming competing
baselines. These results highlight the model’s capability to capture complex neural spatio-temporal
dependencies while maintaining strong generalization across subjects.

Moreover, HyperSpeech demonstrated superior subjective quality with an average SMOS of 3.92
and CMOS of 4.55 across all subjects, outperforming all baseline models. Similarity MOS (SMOS)
measures the perceived similarity between the reconstructed and reference speech, while Clarity
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MOS (CMOS) evaluates the clarity and intelligibility of the speech. Both metrics are rated on a scale
from 1 to 5, with higher scores indicating better quality.

6.4 Ablation Study

Effectiveness of Time and Space Hypergraphs in Our Model. We evaluated the contribution
of the spatial and temporal hypergraph modules to the overall model performance, as summarized
in Tables 2. When the spatial hypergraph module was removed, the PCC dropped by 0.0136 and
the STOI decreased by 0.0129. Removing the temporal hypergraph module resulted in a larger
performance degradation, with a 0.0246 drop in PCC and a 0.0187 drop in STOI. These results
indicate that both spatial and temporal hypergraphs play critical roles in modeling high-order spatio-
temporal dependencies and inter-regional relationships in sEEG signals. In particular, the spatial
hypergraph significantly enhances the model’s ability to capture complex spatial structures, while the
temporal hypergraph effectively improves the modeling of temporal dependencies.

Table 2: Effectiveness of each part of our HyperSpeech.

Model PCC MCD RMSE STOI
w/o SHG 0.9352 2.055 0.2664 0.8538
w/o THG 0.9242 2.068 0.2732 0.8480

Ours 0.9488 1.993 0.2522 0.8667

Effectiveness of Different Frequency Bands on Model Performance. We further investigated the
impact of different frequency bands on spatio-temporal hypergraph modeling, as shown in Tables 3.
When using only the LFS band, the model achieved a PCC of 0.9312 and a STOI of 0.8546. With
only the HGA band, performance improved to a PCC of 0.9376 and a STOI of 0.8523. In comparison,
the proposed model achieved the best performance when both frequency bands were fused, reaching
a PCC of 0.9488 and a STOI of 0.8667.

These results indicate that the LFS and HGA bands contribute differently to model performance,
and their complementary properties play a vital role in auditory decoding. The integration of both
frequency bands enables the model to capture a broader range of spatio-temporal dynamics in the
sEEG signals, thereby significantly enhancing decoding accuracy.

Table 3: Quantitative Evaluation of Model Performance Across Different Frequency Bands.

sEEG feature PCC MCD RMSE STOI
LFS 0.9312 2.072 0.2694 0.8546
HGA 0.9376 2.037 0.2611 0.8523

BBS(Ours) 0.9488 1.993 0.2522 0.8667

Comparison between HyperSpeech and GNN Models. To further validate the effectiveness
of hypergraph structures in spatio-temporal feature extraction, we compared HyperSpeech with
traditional graph neural networks (GNNs). As shown in Tables 4, HyperSpeech achieved consistent
improvements across all four evaluation metrics: PCC increased by 0.0103, STOI improved by
0.0133, while MCD and RMSE decreased by 0.076 and 0.0121, respectively.

These results highlight the advantage of hypergraph-based modeling in capturing high-order spatio-
temporal dependencies from sEEG signals. Unlike conventional GNNs that rely on pairwise con-
nections, hypergraphs can represent multi-way relationships among nodes, which is particularly
beneficial for modeling coordinated neural activity across multiple brain regions. This ability to en-
code higher-order interactions allows HyperSpeech to more effectively capture the intrinsic structure
of brain dynamics, leading to superior performance in neural speech decoding tasks.

Table 4: Performance Comparison between HyperSpeech model and GNN model

Model PCC MCD RMSE STOI
GNN 0.9385 2.069 0.2643 0.8534

HyperSpeech(Ours) 0.9488 1.993 0.2522 0.8667

9



Lo
g 

M
el 

Sp
ec

tro
gr

am
 B

in

0

Lo
g 

M
el 

Sp
ec

tro
gr

am
 B

in

10
20
30
40
50
60
70
80

0
10
20
30
40
50
60
70
80

Am
pl

itu
de

Am
pl

itu
de

Ground Truth

Reconstruction

Figure 5: Qualitative Comparison Between Reconstructed and Ground-Truth Speech

Case Study: Visualization of Reconstruction Quality. To qualitatively assess the performance of
our proposed model, we present a case-wise comparison between reconstructed speech and ground-
truth audio in both the mel-spectrogram and waveform domains, as shown in Figure 5. The top
row shows the outputs generated by HyperSpeech, while the bottom row presents the corresponding
ground-truth references.

As observed in the mel-spectrograms, the reconstructed samples exhibit clear harmonic structures
and formant contours that closely resemble those in the ground-truth signals. Key speech dynamics,
such as formant transitions and energy distributions, are well preserved, indicating the model’s ability
to capture fine-grained acoustic features from neural inputs.

In the waveform comparison, the generated speech signals demonstrate smooth amplitude contours
and natural prosodic patterns, with high perceptual similarity to the ground-truth audio. These visual
results further support our quantitative findings, confirming that HyperSpeech can generate intelligible
and high-fidelity speech from sEEG recordings.

7 Conclusion

In this work, we introduced NeuroListen, the first publicly available sEEG dataset tailored for auditory
speech reconstruction, addressing a long-standing gap in auditory perception-based neural decoding.
Leveraging this dataset, we proposed HyperSpeech, a novel multi-band decoding framework based
on dynamic spatio-temporal hypergraph neural networks. By capturing high-order dependencies
across spatial, temporal, and frequency dimensions, our model enables accurate and intelligible
reconstruction of perceived speech from intracranial neural recordings. Comprehensive experiments
across five clinical participants demonstrate that HyperSpeech consistently outperforms strong
baselines—including CNN-LSTM, Braintalker, and FastSpeech—on both objective metrics and
subjective evaluations. These contributions advance the frontier of neural speech decoding and lay a
solid foundation for future research into neural language processing and assistive communication
technologies.

8 Limitations & Future Work

A major limitation is the variability in electrode placement across subjects, which limits cross-subject
generalization. Future work will develop transferable decoding frameworks and investigate hierar-
chical speech representations across cortical regions, as well as the neural mechanisms underlying
multilingual speech processing and cross-language generalization.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper clearly states and consistently supports its primary contributions in
both the abstract and introduction. Specifically:

• It introduces NeuroListen, the first publicly available sEEG dataset for auditory speech
reconstruction, addressing a key gap in auditory perception-based neural decoding.

• It proposes HyperSpeech, a novel multi-band decoding framework based on spatio-
temporal hypergraph neural networks (HGNNs), capable of modeling high-order
dependencies in sEEG signals.

• It claims significant improvements over strong baselines (CNN-LSTM, Braintalker,
FastSpeech), supported by both objective metrics (PCC, MCD, RMSE, STOI) and
human evaluations (CMOS, SMOS).

• These claims are empirically validated across five clinical subjects, demonstrating
both the effectiveness and generalizability of the proposed method.

Thus, the abstract and introduction faithfully reflect the scope and contributions substantiated
by the theoretical framework and experimental results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We explicitly discuss the limitations in the“Limitations and Future Work”
section of the paper. A key limitation lies in the variability of electrode shaft configurations
across participants, which introduces challenges in cross-subject generalization. While
our model demonstrates strong within-subject performance, extending it to robust, subject-
independent decoding remains non-trivial due to differences in electrode placement and
signal distribution. Addressing these challenges—particularly through transferable model
design, broader validation, and scalable computation—will be the focus of our future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide a theoretical justification of the proposed spatio-temporal hy-
pergraph modeling in the Appendix. Specifically, we analyze the representation capacity
of dynamic hypergraphs for modeling high-order spatio-temporal dependencies in sEEG
signals. The assumptions and mathematical formulations underlying the hypergraph con-
struction and convolution are clearly stated, and a formal proof sketch is included to support
the design of our HyperSpeech framework.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of all aspects necessary to reproduce our
experimental results. This includes the structure of our proposed HyperSpeech model, the
training configuration , and the evaluation metrics. We also report all key hyperparameters
(e.g., optimizer, learning rate, batch size, epoch number) and describe the data preprocessing
and alignment pipeline used on the NeuroListen dataset. All experiments were conducted
on a standardized hardware platform (NVIDIA RTX 4090), and training/testing splits were
consistent across all compared methods. Further implementation details and dataset usage
instructions are included in the supplementary material to facilitate reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the download links and access instructions in the main paper
(Section 4.1). And main paper include detailed guidance, covering data preprocessing,
model training, and evaluation procedures.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive experimental settings necessary to re-
produce and understand the results. We describe all key hyperparameters, including the
optimizer (Adam), learning rate schedule (cosine annealing from 3×10−4 to 5×10−6), batch
size (16), and number of training epochs (100). Training and evaluation were conducted
on an NVIDIA RTX 4090 GPU. Details regarding data splits, signal preprocessing, and
model architecture are included in Section 3-5, with additional implementation information
provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the standard deviation for both CMOS and SMOS scores in the main
results table (Section 6), reflecting the consistency of human evaluations across participants.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: Justification: We specify the compute resources used for all experiments in
Section 6 of the main paper. All models were trained and evaluated using a single NVIDIA
RTX 4090 GPU with 24 GB memory. Each experiment was run for 100 epochs with a batch
size of 16.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research fully conforms to the NeurIPS Code of Ethics and complies with
the ethical principles of the Declaration of Helsinki. All data involving human participants
were collected under the approval of the institutional Ethics Review Board (ERB) at the
affiliated medical center. Written informed consent was obtained from each participant
prior to any surgical or recording procedures. The research protocol was reviewed and
approved to ensure participant safety, data privacy, and ethical integrity. All sEEG data were
anonymized prior to analysis to safeguard confidentiality.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work has potential positive societal impact in the development of neural
speech prostheses for individuals with speech impairments, such as patients with aphasia or
locked-in syndrome. By enabling speech reconstruction from passive auditory perception,
our method may contribute to assistive communication technologies that do not rely on overt
articulation or motor function.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our study does not involve any publicly scraped datasets or generative models
with a high risk of misuse. The sEEG data were collected from clinical participants who
underwent electrode implantation based on their medical needs, as determined by licensed
physicians. The entire data collection procedure was reviewed and approved by both the
hospital and the institutional ethics review board. All shared data are fully anonymized and
used solely for academic research purposes.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data used in our paper were collected by the authors from clinical par-
ticipants under informed consent and ethical approval. Participants signed a data usage
agreement specifying that the data may be used for academic research purposes. The re-
leased dataset, NeuroListen, is made publicly available under the CC BY 4.0 license. We do
not rely on any third-party datasets that require separate licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset, NeuroListen, consisting of sEEG-audio paired
recordings from five clinical participants. The dataset was collected under clinical super-
vision with full ethical approval and written informed consent from all participants. All
data are anonymized prior to release and accompanied by detailed documentation, including
data structure, collection protocol, preprocessing pipeline, license (CC BY 4.0), and usage
instructions. At submission time, the dataset is made available through an anonymized
repository link.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We introduce a new dataset, NeuroListen, consisting of sEEG-audio paired
recordings. Prior to data collection, all potential participants were provided with detailed
explanations of the experimental procedures, risks, and intended research purposes. Those
who agreed to participate signed a formal written informed consent approved by the hos-
pital’s ethics committee. The released dataset is fully anonymized and accompanied by
comprehensive documentation, including data format, acquisition protocol, preprocessing
steps, and licensing (CC BY 4.0). An anonymized access link is included for review.
All participants received appropriate financial compensation for their time and contribution
to the study (200RMB each hour).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
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Justification: This study involved human participants undergoing clinical stereo-
electroencephalography (sEEG) procedures. All participants were recruited from a certified
hospital and were provided with detailed explanations of the experimental procedures,
potential risks, and data usage plans. Written informed consent was obtained from each
participant prior to data collection. The entire study protocol was reviewed and approved
by the Institutional Review Board (IRB) and the affiliated hospital ethics committee, in full
compliance with national and institutional ethical regulations.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: Large language models (LLMs) were not used in the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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