
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING AND BENCHMARKING PLANNING CAPA-
BILITIES OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Classical and natural language planning tasks remain a difficult domain for modern
large language models (LLMs). In this work, we lay the foundations for improving
planning capabilities of LLMs. First, we construct a comprehensive benchmark
suite encompassing both classical planning benchmarks and natural language
scenarios. This suite includes algorithms to methodically generate instances of tasks
with varying levels of difficulty, allowing for rigorous and systematic evaluation of
LLM performance. Next, we investigate the use of many-shot in-context learning
to enhance LLM planning, exploring the relationship between increased context
length and improved planning performance. In addition, we demonstrate the
positive impact of fine-tuning LLMs on optimal planning paths. We also probe
the efficacy of chain-of-thought reasoning methods to improve LLM planning
performance. Moreover, we probe the performance of the proposed methods in
out-of-distribution scenarios, assessing the ability to generalize to novel and unseen
planning challenges. Finally, we investigate model’s failure modes and reveal
insights that hold true across different benchmarks.

1 INTRODUCTION

Intelligent agents require the ability to plan to proactively chart a course of action to achieve their
objectives. This capacity for strategic foresight is considered fundamental to intelligent behav-
ior (Russell & Norvig, 2016). While classical search algorithms have long been the cornerstone of
planning studies, machine learning techniques, particularly Monte-Carlo Tree Search (MCTS) and
reinforcement learning, have emerged as useful additions, significantly expanding the capabilities of
modern planning systems.

With the advent of powerful large language models (LLMs), there are new opportunities to both
revisit classical planning problems, and to further explore new problems through natural language
specification that reflects the ambiguity and uncertainty of real-world domains. Planning capability
is important for many tasks such as game playing, meeting scheduling and trip planning. Research
is already underway to leverage the commonsense knowledge of LLMs in real-world tasks (Huang
et al., 2022; Singh et al., 2023; Ding et al., 2023) and to generate sensible plans (Valmeekam et al.,
2023; Hao et al., 2023; Guan et al., 2024). This research has shed some light on LLMs’ struggle with
planning tasks. Even state-of-the-art LLMs may produce ineffective or even incorrect plans, even in
straightforward scenarios. Our paper focuses on analyzing and improving the planning capability of
LLM systems.

We provide a scalable benchmark suite in both PDDL and natural language to measure planning
capability of LLMs. Specifically, we explore two distinct planning representations: the formal
Planning Domain Definition Language (PDDL) (McDermott et al., 1998), which provides a stan-
dardized representation for classical planning problems and allows for rigorous plan validation; and
natural language, which offers a more flexible and intuitive representation better reflecting real-world
scenarios. For both scenarios, we provide a code for generating as many instances with a degree of
difficulty of choice. We also provide a mapping method for translating PDDL benchmarks to natural
language and measure the performance of the generated benchmarks. The generated planning tasks
are scalable and can grow to examine and assist stronger models. Figure 1 depicts a simple sample
of BlocksWorld benchmark with description both in PDDL and natural language. Each instance in
BlocksWorld consists of a set of blocks, a table and a robot hand, where the goal is to move from
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C B
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Initial-State Goal 

# PDDL
(define (problem BW) (:domain blocksworld-4ops)
(:objects A B C) (:init

(handempty)
(ontable C) (clear C)
(on A B) (clear A))

(:goal (and (on C B) (on A C))))

# Planning: LLM generates PDDL.
(unstack A B) (put-down A)
(pick-up C) (stack C B)
(pick-up A) (stack A C)

# Problem in Natural Language
The initial state:
The hand is empty.
C is on the table. C is clear.
A is on B. A is clear.
The goal is: C is on B. A is on C.

# Planning: LLM generates NL plan
Unstack A from B. Putdown A on the table.
Pickup C from the table. Stack C on B.
Pickup A from the table. Stack A on C.

Figure 1: A simple instance of BlocksWorld planning benchmark: visual, PDDL and natural language
descriptions side by side. Problem definition includes list of objects, initial and goal states. We have
also included LLM’s output plan in the in-context learning scenario of Figure 2.

one block configuration to another. The problem definition includes list of objects, initial and goal
states. The figure also includes the LLM’s output plan from the in-context learning scenario, which
we extensively analyze using various LLM models and benchmarks in Figure 2.

We explore the planning capability of LLMs using both In Context Learning (ICL) through the
many-shot paradigm as well and through chain-of-thought (CoT) (Wei et al., 2022) inference time
techniques; we also explore fine-tuning strategies. We observe that carefully instructing the model
using ICL leads to a significant boost in planning performance, which can be further improved by
using a many-shot approach with long context. Moreover, CoT reasoning strategies (MCTS, Tree-of-
thought, debate-as-reasoning) allow smaller models to perform closer to SoTA frontier models in the
natural language task domain. Our results show that fine-tuning with the optimal plan can lead to
near-perfect accuracy, even when using relatively small models.

Next, we investigate both in-domain and out-of-domain generalization and note that the proposed
plans demonstrate excellent in-domain generalization: instances with similar complexity are solved
with similar levels of accuracy. For ICL, prompting with easier instances leads to better performance
on hard instances compared to prompting with hard instances. Fine-tuning leads to better performance
for both in-domain and out-of-domain scenarios, even with a much smaller model, compared to ICL
with long-context.

Lastly, we probe the failure modes of the model. We categorize the failure modes into three categories:
failure to satisfy environmental constraints, failure to meet the goal and failure to generate legal
actions in a given state. We note that not all of these failure modes are present across all benchmarks
and methods. Moreover, as the instance complexity increases the model success rate decreases.
Additionally, we pinpoint failure modes that are result of biases in training data emphasizing the
importance of data curation during training.

1.1 RELATED WORK

Prior works investigations the planning capabilities of LLMs, have found that these models struggle
to solve planning tasks (Hao et al., 2023; Valmeekam et al., 2023; 2024; Kambhampati et al., 2024),
In contrast, we show that LLMs can be capable of solving such tasks and one can reach near-perfect
accuracy for some scenarios, with certain methods. We run experiments on the same BlocksWorld
benchmark as these prior works, and generate additional difficult cases (i.e., adding more blocks).
Similar to these works, we also use PDDL verifiers to compute accuracy. See Section 3.4 for details.

Xie et al. (2024) proposed a TravelPlanner benchmark and showed GPT4-Turbo can solve some of
the benchmark tasks with a success rate of 0.6%. The TripPlanner benchmark used in our work has
two main differences: it is not an agent-based environment and rather a natural language benchmark,
and it has unique answers due to carefully designed constraints.

Stechly et al. (2024) suggests that LLMs are not capable of generalizing their plans on BlocksWorld
if one uses chain-of-thought (CoT) (Wei et al., 2022). In this work we show positive results in terms
of generalization performance.
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There is another line of work that uses a hybrid approach, meaning that they either use an external
tool to solve the planning tasks (Kambhampati et al., 2024; Hirsch et al., 2024), or reformulate the
problem as another task such as SMT (Hao et al., 2024) and use an external tool to solve it. Lehnert
et al. (2024) use A∗ as search mechanism and a specific transformer architecture to achieve planning
capability for that specific architecture. We differ from this line of work in that we focus on teaching
LLM itself to perform the planning task.

In addition to standard few-shot prompting, we also make use of inference time techniques that
construct a chain-of-thought (Wei et al., 2022), namely tree-of-thought (ToT) (Yao et al., 2023) and
Monte-Carlo Tree Search (MCTS) (Hao et al., 2023) and debate-as-reasoning (Du et al., 2023) We
demonstrate that these methods can considerably improve an LLMs planning capabilities such that
smaller open-source models that use these approaches can outperform larger foundational models.

2 BENCHMARK

To evaluate the planning capabilities of LLMs, we assemble a benchmark suite that appropriately
represents various classical and natural-language planning tasks. On these benchmarks, we assess
LLM performance using In-Context Learning (ICL), Supervised Fine-Tuning (SFT), and chain-of-
thought (CoT) methods for planning.

PDDL (Planning Domain Definition Language): PDDL McDermott et al. (1998) is a standardized
language used in artificial intelligence for representing planning problems. PDDL provides a formal
way to describe the initial state of an environment, a goals, the space of valid actions, and the state-
transition properties of actions in the environment. PDDL has two main components (1) Domain:
Describes the general characteristics of the planning problem, including the types of objects, actions,
and predicates (conditions that can be true or false). (2) Problem: Defines a specific instance of
the planning problem within the domain, including the initial state of the world and the goals to be
achieved.

We select three datasets that use PDDL, generated additional subsets of them, and additionally
map these datasets to natural language for an additional evaluation task. Additionally, we select two
native natural language datasets, containing Trip Planning and Calendar Scheduling tasks (Zheng
et al., 2024). For the PDDL-based datasets, we select BlocksWorld, Logistics, and Mini-Grid. We
then translated the PDDL problem descriptions from these datasets into natural language to compare
performance when using formal and informal representations.

2.1 PDDL BENCHMARKS

The creation of all PDDL datasets follows a three-step procedure. (1) Initially, the process involves
the creation of an initial state and a goal (target state). (2) Subsequently, the initial state and goal are
utilized to formulate a problem in PDDL. (3) Finally, the problem is solved using a classic planner
Fast-Downward1.

This procedure is repeated with increasingly difficult configurations for a select number of problems.
The result of this procedure are additional datasets that comprise a set of PDDL problems and solutions
of various difficulty. Importantly, this procedure enables us to create datasets with increasingly
difficult problems and any number of samples, which are appropriate for assessing the ability to plan
using different methods, such as in-context learning versus Supervised Fine-Tuning. Moreover, we
can scale the dataset generation and create as many instances as needed for different investigations.
We provide the details of our benchmark suite below.

We perform planning for BlocksWorld, Logistics and Minigrid both for PDDL and Natural Language.
For the mapping to natural language, we use a slot filling technique which maps each predicate of
the initialization and goal as well the action to sentences (Appendix B.2). For the verification of the
plans, we use regular expressions to map the plan in Natural Language back to PDDL.

BlocksWorld: BlocksWorld is a standard planning problem from International Planning Conference
(IPC)-2000 2. This domain consists of a set of blocks, a table and a robot hand, where the goal is to

1https://github.com/aibasel/downward
2https://github.com/potassco/pddl-instances/tree/master/ipc-2000
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move from one block configuration to another. We generate a dataset for 3 to 7 blocks. As detailed in
the Appendix B.1, we produced 28k unique BlocksWorld samples. From these, 25.5k were randomly
selected for the training set and 2,500 for the validation set.

Logistics: Logistics is an AI planning problem from IPC-1998 3 expressed in PDDL that involves
arranging the delivery of packages to their destinations using trucks within cities and airplanes
between cities. The aim is to optimize transportation modes under constraints such as vehicle
capacities and locations, showcasing model’s ability to manage multi-step logistics efficiently.

Mini-Grid: Mini-Grid is a task from Artificial Intelligence Planning Systems (AIPS)-1998 4, also
expressed in PDDL. We create various floorplans with rooms containing random configurations of
key shapes. The goal then is for a robot to navigate from an initial position to a designated goal cell.

2.2 NATIVE NATURAL LANGUAGE PLANNING BENCHMARKS

Trip Planning: Trip Planning is a task from NaturalPlan (Zheng et al., 2024) benchmark focusing
on planning a trip itinerary under given constraints. The goal of the task is to find an itinerary
satisfying constraints such as the order of visiting N cities. It includes enough constraints for each
instance such that there is only one solution to the task, which makes the evaluation of the predictions
straightforward.

Calendar Scheduling: Calendar Scheduling from the NaturalPlan (Zheng et al., 2024) benchmark
represents the task of scheduling a meeting of either 30 minutes or an hour among up to 7 attendees.
The attendees may have a busy schedule or a light schedule with less than half of the working hours
spent in meetings.

3 EXPERIMENTS

Previous works demonstrated that, without intervention, LLMs often struggle with even simple
planning tasks (Hao et al., 2023; Valmeekam et al., 2023; 2024; Kambhampati et al., 2024). LLMs
often lack the information on how to structure their plan constructively, and struggle to plan around
the enumerated constraints. In this section we present our experimental results for the interventions
we investigate, demonstrating that they lead to significant improvements to the LLMs planning
capability. We also investigate plan generalization (i.e., the ability to generalize to unseen instances)
in several scenarios.

For PDDL experiments, we measure accuracy of the generated plan with a verifier (Fox & Long).
For natural language experiments we rely on either recasting the task to PDDL and verifying with
a verifier, or extracting the answer and comparing it to expected results (Zheng et al., 2024). In all
experiments, GPT-4 refers to GPT-4 Turbo and we may omit "Turbo" for space constraints, also if we
do not mention Pro or Flash Gemini 1.5 refers to Gemini 1.5 Pro.

3.1 IN-CONTEXT LEARNING

For in-context learning (Brown et al., 2020), we adhere to the standard procedure, employing a prompt
containing several examples for the task. Each example comprises a planning problem statement and
its corresponding solution, referred to as a shot. Following the examples, the test problem is added
without the corresponding solution. Subsequently, an LLM receives this prompt and is expected to
generate a plan following the format and logic of the examples in the prompt. See Appendix A for
examples of prompts.

3.1.1 MANY-SHOT IN-CONTEXT LEARNING

We evaluate the planning capability of the model as we add more examples (“shots") into the context,
inspired by the success of many-shot learning across a large number of tasks (Agarwal et al., 2024).
The challenge of “in-context planning" involves understanding a specific task and problem through
a limited number of examples. Additionally, it requires the models to produce a solution without

3https://github.com/potassco/pddl-instances/tree/master/ipc-1998
4https://github.com/AI-Planning/pddl-generators/tree/main/minigrid
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(b) Logistics - Natural Language.
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(c) Mini-Grid - Natural Language.
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(d) BlocksWorld - PDDL.
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(e) Logistics - PDDL.
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(f) Mini-Grid - PDDL.

Figure 2: PDDL Planning and Natural Language Planning with few-shots for different LLMs. Natural
language text are generated from formal PDDL problem definitions.

checking each planning step to confirm if a proposed move is correct. The model has to create a plan
in a single inference step, keeping ‘in mind’ all the constraints the task imposes.

Figure 2 shows the in-context learning performance on classical planning and natural language
benchmarks as we vary the number of shots. We consider Gemini 1.5 Pro (GeminiTeam et al.,
2024b), GPT-4 Turbo (OpenAI et al., 2024), Gemini 1.5 Flash (GeminiTeam et al., 2024b) and
Gemma 2 27b (Team et al., 2024) models. Overall, we notice that for natural language and PDDL
scenarios, models have similar trends in terms of planning accuracy as we increase the number
of shots. Moreover, different models are impacted differently as we provide additional number of
shots, e.g., Gemini 1.5 Pro outperforms other models both in one shot scenario and as we increase
the number of shots; indicating that the model not only can plan better with a fewer number of
examples/shots, it can also make effective use of additional and longer context. Gemini 1.5 Flash -a
smaller, faster and more efficient model than Gemini 1.5 Pro is generally outperformed by Gemini
1.5 Pro but occasionally matches GPT-4 performance.

BLOCKSWORLD: Figure 2a, 2d show the performance of Gemini 1.5 models on this benchmark
as we increase the number of few-shot examples. We note that as we increase the number of shots
GPT-4 performance increases while Gemini 1.5 Pro’s performance saturates or degrades as we go
beyond 40 shots. The 1-shot planning capability of Gemini 1.5 Pro and Gemini 1.5 Flash reaches
reaches 35% and 26%, while GPT-4 performance is close to zero. Moreover the 40-shots planning
capability of Gemini 1.5 Pro reaches 48% range which performs better than the best (200-shots)
performance of GPT-4, which peaks at 43%.

LOGISTICS: The planning capabilities of GPT-4 and Gemini 1.5 models on the Logistics benchmark
are shown in Figure 2e for PDDL and in Figure 2b for Natural Language. The 1-shot planning
capability of Gemini 1.5 Pro reaches 43% for PDDL and for Natural Language 48%. Moreover for
Gemini 1.5 Pro increasing the context consistently lead to better results, indicating that the model can
make effective use of additional contexts. For Gemini 1.5 Flash and GPT-4, the performance drops
slight for PDDL and Natural Language.

MINI-GRID: Figure 2f and Figure 2c show the performance of GPT-4 and Gemini models as
we increase the number of few-shot examples for PDDL and Natural Language, respectively. The
Gemini models perform comparably for both PDDL and Natural Language, although GPT-4 appears

5
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(b) Calendar Scheduling.

Figure 3: Natural Language Planning with few-shots using native natural language datasets.

to perform slightly better with Natural Language. Increasing the number of few-shot examples leads
to better performance for all models. With 400 shots, Gemini 1.5 Pro reaches 77% accuracy.

TRIP PLANNING AND CALENDAR SCHEDULING: Figure 3a shows the performance on the Trip
Planning and Calendar Scheduling natural language tasks as we increase the number of few-shot
examples, respectively. We observe that, in both benchmarks, for both GPT-4 and Gemini 1.5 Flash
the performance first increases with the number of shots and after a certain point, having more
shots leads to worse model performance. However, for Gemini 1.5 Pro performance improves as
the number of shot increases. Therefore, Gemini 1.5 Pro seems to be making more efficient use of
additional shots compared to the other two. On the other hand GPT-4 performs better in the 1-shot
scenario compared to the other two models for Trip Planning, while Gemini 1.5 Pro has a higher
accuracy in the 1-shot setting.

Overall, we observe that the trend of accuracy vs number of shots depends both on the model and on
the benchmark.

3.1.2 EFFECT OF INFERENCE TIME TECHNIQUES

In addition to standard ICL, we consider inference time ICL methods that are based on constructing
a chain-of-thought (Wei et al., 2022): Tree-of-Thought (ToT) (Yao et al., 2023), Monte Carlo Tree
Search (MCTS) (Hao et al., 2023), and Debate-as-reasoning (Du et al., 2023). In Figure 4 we provide
experimental evidence that methods such as Debate-as-reasoning, MCTS, and ToT can augment
Gemma2 27B (considerably smaller than Gemini 1.5 and GPT-4 models), to be competitive with GPT-
4, Gemini 1.5 Pro and Gemini 1.5 Flash at smaller few-shot context lengths. Additional details and
parameters for these search methods are included in Appendix B.3. These results demonstrate how
inference-time reasoning procedures using smaller open-source models can perform competitively
with larger foundational models in the natural language planning domain.

However, the ability of these methods to scale to few-shot examples seems to be less significant
than larger foundational models. Specifically, for the Travel Scheduling task, the larger models all

Figure 4: Calendar Scheduling (left) and Travel Scheduling (right) tasks with reasoning procedures
(ToT, MCTS, and Debate). We use Gemma2 27B to perform these procedures, and compare with
GPT-4 and Gemini 1.5 models.
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outperform the CoT methods after 4 few-shot examples. It is unclear if this scaling trend is a result of
the underlying model (Gemma2 27B) or the method itself.

Most interesting to note is the performance of debate-as-reasoning, which, despite not being an
explicit search or planning strategy, works comparatively to MCTS in both tasks. This indicates
that, for some planning tasks, even unstructured CoT style inference methods are competitive with
explicit search-based CoT methods, and larger foundational models with ICL. This may indicate that,
for natural language planning tasks, allowing the model to construct a CoT and consider multiple
solutions may be more valuable then the specific method behind constructing the CoT.

3.2 SUPERVISED FINE TUNING (SFT)

Supervised fine tuning (SFT) (Ouyang et al., 2022) has proved to be an effective method for teaching
LLMs various capabilities. In this section, we investigate the effect of Supervised Fine Tuning (SFT)
with optimal plan on planning capability of LLMs. We use the Fast-Downward classical planner to
generate the optimal plan. We specifically ran experiments on Gemini 1.0 S (GeminiTeam et al.,
2024a) and investigate planning performance for two different benchmarks with different levels of
difficulty, namely, we look into 5 scenarios: BlocksWorld with 3-7 blocks, 8-9 blocks or 8-20 blocks,
and Logistics with 1-2 packets, or with 3-5 packets. The data size and splits are documented in
Appendix B.4.

The results are shown in Table 1. We observe that SFT leads to high accuracy for some instances
of both datasets and outperforms many-shot ICL. The performance appears to drop as the planning
problem becomes more difficult.

Table 1: Impact of SFT on accuracy, for
BlocksWorld: instance of 3-7, 8-9 and 8-
20 blocks, and for Logistics: instances of
1-2 and 3-5 packets.

Model Gemini 1.0 S
BlocksWorld(3-7) 96.26
BlocksWorld(8-9) 92.6
BlocksWorld(8-20) 67.00
Logistics(1-2) 99.8
Logistics(3-5) 63.4

Table 2: Plan generalization analysis for in-
stances of BlocksWorld of different number
of blocks in SFT scenarios, for Gemini 1.0
S. Accuracy is in %. Accuracy is measured
by a verifier.

Finetune data Eval data Accuracy
BW(3-7) BW(3-7) 96.26
BW(3-7) BW(8-20) 34.20
BW(8-20) BW(3-7) 98.27
BW(8-20) BW(8-20) 67.00

3.3 PLAN GENERALIZATION

For any LLM application, the question of how well the method generalizes to out-of-training-
distribution (OOD) inputs is always present. Here, we investigate how LLM planning generalizes.
Plan generalization has three main categories: (1) Generalize to unseen instances of the same environ-
ment (2) Generalize to renaming of actions and objects (3) Generalize to unseen plan environments.
We focus on the first category which sits at the core of the desired capability.

For these generalization experiments, we consider BlocksWorld and Logistics benchmarks with
various difficulty levels (as described in Section 3.2). We look into performance of both SFT and
ICL approaches. Tables 2 shows generalization performance for BlocksWorld in SFT setting for
BlocksWorld 3-7, 8-20 split and Table 3 considers generalization between BlocksWorld 3-7 and 8-9
blocks split for both SFT and ICL with different models and number of shots. Table 4 depicts plan
generalization for Logistics benchmark for splits of 1-2 and 3-5 packets.

Our analysis reveals several key findings: (1) Superiority of SFT: SFT consistently outperforms ICL
across both benchmarks, even when utilizing a smaller model for SFT. This suggests that SFT’s
explicit training process, focused on the specific task, leads to more effective learning and better
generalization. (2) In most ICL scenarios, training the model on easier instances first results in
improved performance on harder examples, e.g., see Table 3, rows 1-4 and 6. (3) Limitations of hard
example training: Contrary to some expectations, training the model exclusively on hard examples
does not always translate to better performance on easier ones (for example, see Table 3 rows 2, 4-6).
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This suggests that a balanced approach, incorporating both easy and hard examples, might be optimal
for achieving well-rounded performance.

Table 3: OOD accuracy for BlocksWorld splits 3-7 and 8-9 blocks.

Model Name

Train data
3-7 8-9

Eval data
3-7 / 8-9 3-7 / 8-9

Gemini 1.5 Flash (1 Shot) 26.4 / 13.7 32.9 / 12.3
Gemini 1.5 Flash (70 Shot) 35.7 / 23.3 27.6 / 11.0
Gemini 1.5 Pro (1 Shot) 40.0 / 25.6 39.0 / 20.3
Gemini 1.5 Pro (70 Shot) 46.3 / 36.3 38.3 / 18.4
Gemini 1.0 S (1 Shot) 3.68 / 0.331 2.99 / 1.35
Gemini 1.0 S (70 Shot) 12.4 / 2.33 3.99 / 1.68
Gemini 1.0 S (SFT) 96.3 / 81.6 96.0 / 92.6

Table 4: OOD accuracy for Logistics tasks splits of 1-2, 3-5 packets.

Model Name

Train data
1-2 3-5

Eval data
1-2 / 3-5 1-2 / 3-5

Gemini 1.5 Flash (1 Shot) 18.3 / 1.35 26.7 / 1.00
Gemini 1.5 Flash (30 Shot) 12.7 / 1.67 19.7 / 1.33
Gemini 1.5 Pro (1 Shot) 35.3 / 9.03 57.6 / 7.01
Gemini 1.5 Pro (30 Shot) 56.4 / 11.3 62.7 / 8.04
Gemini 1.0 S (1 Shot) 7.0 / 0.0 5.33 / 0.0
Gemini 1.0 S (30 Shot) 9.99 / 0.336 8.00 / 0.662
Gemini 1.0 S (SFT) 99.8 / 10.8 98.0 / 63.4

3.4 COMPARISON WITH PLANBENCH

Valmeekam et al. (2023) proposed a benchmark for planning that maps domain definitions to
instructions and problem statements into natural language using zero-shot and one-shot techniques.
We utilize their dataset on BlocksWorld, as the problems are comparable. Unlike their approach, which
limits problems to configurations of 3, 4, and 5 blocks using only zero-shot and one-shot prompting,
our work extends this using for ICL up to 7 blocks and by employing many-shot prompting.

Table 5 compares results using the natural language prompts from Valmeekam et al. (2023)(their
dataset is referred to as Val-BW) and, novel to this work, presents results on PDDL for their datasets
using both 1-shot and 2-shot techniques.

We utilize the natural language prompts from (Valmeekam et al., 2023) test them on Gemini 1.5 Pro.
We observe that GPT-4 performs better with these prompts. For our dataset, no such difference is
observed. Manual inspection reveals that especially 1-shot prompts need to be crafted carefully while

Table 5: Accuracy (in %) comparing the state of the art for different datasets and systems. Val-BW
denotes BlocksWorld dataset as open-source by Valmeekam et al. (2023).

Dataset LLM Shots Type No. of Blocks
3 4 5

Val-BW GPT-4 Turbo 1 NL 49.0 32.4 23.2
Val-BW Gemini 1.5 Pro 1 NL 30.0 18.4 14.2
Val-BW Gemini 1.5 Pro 1 PDDL 60.0 36.4 23.6
Val-BW Gemini 1.5 Pro 2 PDDL 68.0 46.2 30.9
Our-BW Gemini 1.5 Pro 1 NL 66.0 38.5 32.4
Our-BW Gemini 1.5 Pro 2 NL 66.0 58.5 53.9
Our-BW Gemini 1.5 Pro 1 PDDL 100 44.6 32.0
Our-BW Gemini 1.5 Pro 2 PDDL 100 44.6 50.9
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(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 5: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for BlocksWorld 8-20 blocks. As the number of blocks increases the
number of successful cases decreases.

few-shot or many-shot prompts are more robust. For instance, results improve when the prompts are
more specific about the output format, changing from ’My plan is as follows’ to ’Your plan as plain
text without formatting’, which enhances results for Gemini 1.5 Pro. Further, our prompts do not
include explanations of the actions and we do not use color coding for the blocks but rather keep the
names (e.g., blue block vs block b3).

4 INVESTIGATING FAILURE CASES

In this section, we analyze the outcome of various approaches to improving LLM planning perfor-
mance, and dive into a more detailed categorization of failure modes.

The LLM planning failure modes we observed can be classified into the following three categories:

(1) Constraint Violation: The model fails to satisfy one of the explicitly declared environment
constraints. i.e., it ignores one of the conditions required to be able to do an action. Even if this
happen only for one instance of an action and not for all instances of the same action. For example
model wants to put block b1 on block b2 while block b2 is not empty.

(2) Failure to meet the goal: The model makes a plan that meets the environment constraints but does
not reach the goal state at the end of the trajectory.

(3) Out-of-vocabulary actions: The model proposes actions which are not in the environment’s action
space.

PDDL benchmarks Here we examine the failure modes for both the Blocksworld and Logistics
domains and SFT, ICL setting. Due to space constraints we report Blocksworld SFT settings here
and refer the reader to Appendix C for the rest of plots and analysis. First we look at the effect
of distribution of number of blocks in the planning instance. We compare Figure 5a that includes
successful eval cases of BlocksWorld 8-20 blocks to, to all its eval data in Figure 5b respectively.
We note that the model failure cases increases as the number of blocks in the problem increases.
We also separate the reasons of failure in BlocksWorld 8-20 instances as seen in Figure 5c and
Figure 5d respectively.Note that failure mode (3) does not happen for BlocksWorld benchmark in
SFT or ICL settings and for Logistics in ICL setting, but for Logistics benchmark in SFT settings all
three categories are present (see Appendix C for details).

Next, We study the distribution of number of blocks in out-of-domain cases focusing on BlocksWorld
3-7 to 8-20 blocks generalization. Comparing the successful cases in Figure 6a to all the eval samples
in Figure 5b, we observe that the generalization performance of the model that is trained on 3-7
blocks drops as the number of eval blocks increases from 8 to 20.

To probe the models even further, we look into the category where the generated plan fails to satisfy
one of the environment constraints. We study the step at which the plan fails to meet the constraint.
Considering Figure 6b and comparing it to Figure 6c, the model seems to have trouble generalizing
from the beginning, having the majority of its failures concentrated on earlier steps. This trend stays
true for Logistics benchmark as well and is due to the fact that models go deep before they go wide
when they want to produce the plan output. In other terms, this gives the intuition that the model
seems to get overwhelmed when encountering difficult unseen examples, leading to failure from the
beginning by not satisfying the constraints.

In addition, looking at the granular level of which actions that cause the failure in Figure 6b, we note
that the model has learned a correlation between the step number and the action it chooses, leading

9
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(a) Success. OOD generalization (b) Fail. OOD generalization (c) All cases

Figure 6: BlocksWorld 3-7 to 8-20 OOD scenario (a)Success per number of blocks (b) investigation
of failures in constraint violation per plan step, color coded by action where the constraint violation
happens (c) distribution of all cases per plan steps.

(a) TravelPlan errors by length (b) CalendarPlan errors by length

Figure 7: Error Analysis for various CoT reasoning strategies in the TravelPlan and CalendarPlan
natural language tasks

to having stack and un-stack not having any mutual failure step. This is also observed in failure
modes of BlocksWorld 3-7 both for ICL and SFT scenarios (see Figure 11 in Appendix C). Further
investigation of training data confirms this observation.

Natural Language benchmarks Since TravelPlan and CalendarPlan benchmarks require plans that
do not involve sequential execution of actions, the only failure mode we consider is failure mode (2) -
failure to reach a goal state. All errors discussed in this subsection are in terms of whether or not
the method under study succeeded in reaching the goal. Figure 7 shows the average error by CoT
method as task complexity increases in the TravelPlan and CalendarPlan benchmarks. Figure 12 in
Appendix C histograms of how many examples belong to each task length. Both domains have a
higher distribution of "smaller" or shorter tasks, which impacts the distribution of error in Figure 7. It
is interesting to note how the error is disproportionate between debate-as-reasoning and MCTS, ToTs,
aligning with our findings in Section 3. As discussed in Section 3, methods such as MCTS and ToT
seem to perform inconsistently at less-structured planning tasks. We can see this in how they perform
relative to debate, as well as each other. Specifically, for the TravelPlan task, they fail at inconsistent
rates relative to one another.

5 CONCLUSION

We examined planning capabilities of LLMs through benchmark development, generalization assess-
ment and analysis of failure modes. Our observations for ICL setting has implications for the future
development and training of LLMs, potentially informing strategies to enhance their capacity to
process and leverage extended contextual information. It also points to the opportunity for followup
work investigating ways to further improve the inference time reasoning procedures, and their scaling
properties. Our investigation of plan generalization reveals three key findings: superiority of SFT,
curriculum learning effectiveness and limitations of hard example training; suggesting that a balanced
approach, incorporating both easy and hard examples, might be optimal for achieving well-rounded
performance. Our analysis of failure modes point to future work on dataset design and reasoning
procedures to directly address the discussed failure modes. These enhancements can unlock new
levels of versatility and robustness in LLM-based planning systems, paving the way for their broader
adoption in real-world applications.
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Appendix

A PROMPTS

Bellow is the 1-shot prompt for the BlocksWorld task.

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem BW−rand −4)
( : domain b l o c k s w o r l d−4ops )
( : o b j e c t s b4 b1 b3 b2 )
( : i n i t
( on b3 b1 )
( on b1 b4 )
( c l e a r b3 )
( handempty )
( o n t a b l e b2 )
( o n t a b l e b4 )
( c l e a r b2 )
)
( : g o a l ( and
( on b2 b4 )
( on b3 b1 )
) )
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
( u n s t a c k b3 b1 )
( put−down b3 )
( u n s t a c k b1 b4 )
( put−down b1 )
( p ick−up b2 )
( s t a c k b2 b4 )
( p ick−up b3 )
( s t a c k b3 b1 )
done .

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem BW−rand −6)
( : domain b l o c k s w o r l d−4ops )
( : o b j e c t s b5 b1 b4 b2 b3 b6 )
( : i n i t
( on b4 b1 )
( handempty )
( o n t a b l e b6 )
( on b2 b4 )
( c l e a r b3 )
( o n t a b l e b5 )
( on b3 b2 )
( c l e a r b6 )
( on b1 b5 )
)
( : g o a l ( and
( on b4 b2 )
( on b1 b4 )
( on b5 b1 )
( on b3 b5 )
) )
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
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Bellow is the 1-shot prompt for the Logistics task.

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem l o g i s t i c s −c4−s2−p3−a4 )
( : domain l o g i s t i c s −s t r i p s )
( : o b j e c t s
a0 a1 a2 a3
c0 c1 c2 c3
t 0 t 1 t 2 t 3
l0−0 l0−1 l1−0 l1−1 l2−0 l2−1 l3−0 l3−1
p0 p1 p2
)
( : i n i t

(AIRPLANE a0 ) (AIRPLANE a1 ) (AIRPLANE a2 ) (AIRPLANE a3 )
( CITY c0 ) ( CITY c1 ) ( CITY c2 ) ( CITY c3 )
(TRUCK t 0 ) (TRUCK t 1 ) (TRUCK t 2 ) (TRUCK t 3 )
(LOCATION l0 −0) ( in−c i t y l0−0 c0 )
(LOCATION l0 −1) ( in−c i t y l0−1 c0 )
(LOCATION l1 −0) ( in−c i t y l1−0 c1 )
(LOCATION l1 −1) ( in−c i t y l1−1 c1 )
(LOCATION l2 −0) ( in−c i t y l2−0 c2 )
(LOCATION l2 −1) ( in−c i t y l2−1 c2 )
(LOCATION l3 −0) ( in−c i t y l3−0 c3 )
(LOCATION l3 −1) ( in−c i t y l3−1 c3 )
(AIRPORT l0 −0) (AIRPORT l1 −0) (AIRPORT l2 −0) (AIRPORT l3 −0)
( OBJ p0 ) ( OBJ p1 ) ( OBJ p2 )
( a t t 0 l0 −0) ( a t t 1 l1 −1) ( a t t 2 l2 −0) ( a t t 3 l3 −0)
( a t p0 l1 −1) ( a t p1 l0 −1) ( a t p2 l0 −0)
( a t a0 l1 −0)
( a t a1 l1 −0)
( a t a2 l2 −0)
( a t a3 l3 −0)

)
( : g o a l

( and
( a t p0 l2 −0)
( a t p1 l2 −0)
( a t p2 l1 −1)

)
)
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
( load−t r u c k p0 t 1 l1 −1)
( d r i v e−t r u c k t 1 l1−1 l1−0 c1 )
( unload−t r u c k p0 t 1 l1 −0)
( load−a i r p l a n e p0 a1 l1 −0)
( f l y−a i r p l a n e a1 l1−0 l2 −0)
( unload−a i r p l a n e p0 a1 l2 −0)
( d r i v e−t r u c k t 0 l0−0 l0−1 c0 )
( load−t r u c k p1 t 0 l0 −1)
( d r i v e−t r u c k t 0 l0−1 l0−0 c0 )
( unload−t r u c k p1 t 0 l0 −0)
( f l y−a i r p l a n e a3 l3−0 l0 −0)
( load−a i r p l a n e p2 a3 l0 −0)
( f l y−a i r p l a n e a3 l0−0 l1 −0)
( unload−a i r p l a n e p2 a3 l1 −0)
( load−t r u c k p2 t 1 l1 −0)
( d r i v e−t r u c k t 1 l1−0 l1−1 c1 )
( unload−t r u c k p2 t 1 l1 −1)
( f l y−a i r p l a n e a1 l2−0 l0 −0)
( load−a i r p l a n e p1 a1 l0 −0)
( f l y−a i r p l a n e a1 l0−0 l2 −0)
( unload−a i r p l a n e p1 a1 l2 −0)
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done .

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem l o g i s t i c s −c2−s2−p3−a2 )
( : domain l o g i s t i c s −s t r i p s )
( : o b j e c t s
a0 a1
c0 c1
t 0 t 1
l0−0 l0−1 l1−0 l1−1
p0 p1 p2
)
( : i n i t

(AIRPLANE a0 ) (AIRPLANE a1 )
( CITY c0 ) ( CITY c1 )
(TRUCK t 0 ) (TRUCK t 1 )
(LOCATION l0 −0) ( in−c i t y l0−0 c0 )
(LOCATION l0 −1) ( in−c i t y l0−1 c0 )
(LOCATION l1 −0) ( in−c i t y l1−0 c1 )
(LOCATION l1 −1) ( in−c i t y l1−1 c1 )
(AIRPORT l0 −0) (AIRPORT l1 −0)
( OBJ p0 ) ( OBJ p1 ) ( OBJ p2 )
( a t t 0 l0 −1) ( a t t 1 l1 −0)
( a t p0 l0 −1) ( a t p1 l1 −0) ( a t p2 l1 −1)
( a t a0 l0 −0) ( a t a1 l0 −0)

)
( : g o a l

( and
( a t p0 l0 −1)
( a t p1 l1 −0)
( a t p2 l0 −0)

)
)
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :

Bellow is the 1-shot prompt for the Mini-Grid task.

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem grid_2Vroom2 )

( : domain g r i d )
( : o b j e c t s

p0 p1 p2 p3 p4 p5 p6 p7 p8
shape0
key0

)
( : i n i t

; O b j e c t t y p e s
( p l a c e p0 ) ( p l a c e p1 ) ( p l a c e p2 ) ( p l a c e p3 ) ( p l a c e p4 ) ( p l a c e p5 ) (

p l a c e p6 ) ( p l a c e p7 ) ( p l a c e p8 )
( shape shape0 )
( key key0 )
; Open / l o c k e d c e l l s
( open p0 ) ( open p1 ) ( open p2 ) ( open p3 ) ( open p5 ) ( open p6 ) ( open p7 )

( open p8 )
( l o c k e d p4 )
; Connec ted c e l l s
( conn p0 p1 )
( conn p0 p2 )
( conn p1 p0 )
( conn p1 p3 )
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( conn p2 p0 )
( conn p2 p3 )
( conn p2 p4 )
( conn p3 p2 )
( conn p3 p1 )
( conn p4 p2 )
( conn p4 p5 )
( conn p5 p4 )
( conn p5 p6 )
( conn p5 p7 )
( conn p6 p5 )
( conn p6 p8 )
( conn p7 p5 )
( conn p7 p8 )
( conn p8 p7 )
( conn p8 p6 )
; Lock and key s h a p e s
( lock−shape p4 shape0 )
( key−shape key0 shape0 )
; Key p l a c e m e n t
( a t key0 p0 )
; Robot p l a c e m e n t
( a t−r o b o t p3 )
( arm−empty )

)
( : g o a l ( a t−r o b o t p7 ) )

)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
( move p3 p2 )
( move p2 p0 )
( p i ck up p0 key0 )
( move p0 p2 )
( un lo ck p2 p4 key0 shape0 )
( move p2 p4 )
( move p4 p5 )
( move p5 p7 )
done .

P l e a s e s o l v e t h e problem :
( d e f i n e ( problem grid_3Vroom3 )

( : domain g r i d )
( : o b j e c t s

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19
p20 p21 p22 p23 p24 p25 p26 p27 p28

shape0
key0

)
( : i n i t

; O b j e c t t y p e s
( p l a c e p0 ) ( p l a c e p1 ) ( p l a c e p2 ) ( p l a c e p3 ) ( p l a c e p4 ) ( p l a c e p5 ) (

p l a c e p6 ) ( p l a c e p7 ) ( p l a c e p8 ) ( p l a c e p9 ) ( p l a c e p10 ) ( p l a c e p11
) ( p l a c e p12 ) ( p l a c e p13 ) ( p l a c e p14 ) ( p l a c e p15 ) ( p l a c e p16 ) (
p l a c e p17 ) ( p l a c e p18 ) ( p l a c e p19 ) ( p l a c e p20 ) ( p l a c e p21 ) ( p l a c e

p22 ) ( p l a c e p23 ) ( p l a c e p24 ) ( p l a c e p25 ) ( p l a c e p26 ) ( p l a c e p27 )
( p l a c e p28 )

( shape shape0 )
( key key0 )
; Open / l o c k e d c e l l s
( open p0 ) ( open p1 ) ( open p2 ) ( open p3 ) ( open p4 ) ( open p5 ) ( open p6 )

( open p7 ) ( open p8 ) ( open p10 ) ( open p11 ) ( open p12 ) ( open p13 )
( open p14 ) ( open p15 ) ( open p16 ) ( open p17 ) ( open p18 ) ( open p20 )

( open p21 ) ( open p22 ) ( open p23 ) ( open p24 ) ( open p25 ) ( open p26
) ( open p27 ) ( open p28 )

( l o c k e d p9 ) ( l o c k e d p19 )
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; Connec ted c e l l s
( conn p0 p1 )
( conn p0 p3 )
( conn p1 p0 )
( conn p1 p2 )
( conn p1 p4 )
( conn p2 p1 )
( conn p2 p5 )
( conn p3 p0 )
( conn p3 p4 )
( conn p3 p6 )
( conn p4 p3 )
( conn p4 p1 )
( conn p4 p5 )
( conn p4 p7 )
( conn p5 p4 )
( conn p5 p2 )
( conn p5 p8 )
( conn p6 p3 )
( conn p6 p7 )
( conn p6 p9 )
( conn p7 p6 )
( conn p7 p4 )
( conn p7 p8 )
( conn p8 p7 )
( conn p8 p5 )
( conn p9 p6 )
( conn p9 p10 )
( conn p10 p9 )
( conn p10 p11 )
( conn p10 p13 )
( conn p11 p10 )
( conn p11 p12 )
( conn p11 p14 )
( conn p12 p11 )
( conn p12 p15 )
( conn p13 p10 )
( conn p13 p14 )
( conn p13 p16 )
( conn p14 p13 )
( conn p14 p11 )
( conn p14 p15 )
( conn p14 p17 )
( conn p15 p14 )
( conn p15 p12 )
( conn p15 p18 )
( conn p16 p13 )
( conn p16 p17 )
( conn p17 p16 )
( conn p17 p14 )
( conn p17 p18 )
( conn p18 p17 )
( conn p18 p15 )
( conn p18 p19 )
( conn p19 p18 )
( conn p19 p22 )
( conn p20 p21 )
( conn p20 p23 )
( conn p21 p20 )
( conn p21 p22 )
( conn p21 p24 )
( conn p22 p21 )
( conn p22 p19 )
( conn p22 p25 )
( conn p23 p20 )
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( conn p23 p24 )
( conn p23 p26 )
( conn p24 p23 )
( conn p24 p21 )
( conn p24 p25 )
( conn p24 p27 )
( conn p25 p24 )
( conn p25 p22 )
( conn p25 p28 )
( conn p26 p23 )
( conn p26 p27 )
( conn p27 p26 )
( conn p27 p24 )
( conn p27 p28 )
( conn p28 p27 )
( conn p28 p25 )
; Lock and key s h a p e s
( lock−shape p9 shape0 )
( lock−shape p19 shape0 )
( key−shape key0 shape0 )
; Key p l a c e m e n t
( a t key0 p12 )
; Robot p l a c e m e n t
( a t−r o b o t p16 )
( arm−empty )

)
( : g o a l ( a t−r o b o t p4 ) )

)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :

Bellow is the 1-shot prompt for the Trip Planning task.

P l e a s e s o l v e t h e problem :
You p l a n t o v i s i t 6 European c i t i e s f o r 13 days i n t o t a l . You on ly t a k e

d i r e c t f l i g h t s t o commute between c i t i e s . You want t o spend 3 days i n
Dubl in . You would l i k e t o meet your f r i e n d s a t Dubl in between day 7

and day 9 t o t o u r t o g e t h e r . You would l i k e t o v i s i t Madrid f o r 2 days
. You p l a n t o v i s i t r e l a t i v e s i n Madrid between day 2 and day 3 . You
p l a n t o s t a y i n Oslo f o r 3 days . You would l i k e t o v i s i t London f o r 2

days . You want t o spend 3 days i n V i l n i u s . You p l a n t o s t a y i n
B e r l i n f o r 5 days . You a r e go ing t o a t t e n d a wedding i n B e r l i n
between day 3 and day 7 .

Here a r e t h e c i t i e s t h a t have d i r e c t f l i g h t s :
London and Madrid , Oslo and V i l n i u s , B e r l i n and V i l n i u s , Madrid and Oslo ,

Madrid and Dubl in , London and Oslo , Madrid and B e r l i n , B e r l i n and
Oslo , Dub l in and Oslo , London and Dubl in , London and B e r l i n , B e r l i n
and Dubl in .

F ind a t r i p p l a n o f v i s i t i n g t h e c i t i e s f o r 13 days by t a k i n g d i r e c t
f l i g h t s t o commute between them .

Here i s t h e t r i p p l a n f o r v i s i t i n g t h e 6 European c i t i e s f o r 13 days :

**Day 1−2:** A r r i v i n g i n London and v i s i t London f o r 2 days .
**Day 2 :** Fly from London t o Madrid .
**Day 2−3:** V i s i t Madrid f o r 2 days .
**Day 3 :** Fly from Madrid t o B e r l i n .
**Day 3−7:** V i s i t B e r l i n f o r 5 days .
**Day 7 :** Fly from B e r l i n t o Dubl in .
**Day 7−9:** V i s i t Dubl in f o r 3 days .
**Day 9 :** Fly from Dubl in t o Oslo .

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

**Day 9−11:** V i s i t Oslo f o r 3 days .
**Day 11 :** Fly from Oslo t o V i l n i u s .
**Day 11−13:** V i s i t V i l n i u s f o r 3 days .
done .

P l e a s e s o l v e t h e problem :
You p l a n t o v i s i t 6 European c i t i e s f o r 17 days i n t o t a l . You on ly t a k e

d i r e c t f l i g h t s t o commute between c i t i e s . You want t o spend 4 days i n
Manches t e r . You p l a n t o s t a y i n F l o r e n c e f o r 5 days . You want t o

spend 3 days i n Geneva . You a r e go ing t o a t t e n d a wedding i n Geneva
between day 1 and day 3 . You want t o spend 3 days i n S e v i l l e . Dur ing
day 7 and day 9 , you have t o a t t e n d a c o n f e r e n c e i n S e v i l l e . You
would l i k e t o v i s i t P rague f o r 2 days . You p l a n t o s t a y i n V a l e n c i a
f o r 5 days . From day 3 t o day 7 , t h e r e i s a a n n u a l show you want t o
a t t e n d i n V a l e n c i a .

Here a r e t h e c i t i e s t h a t have d i r e c t f l i g h t s :
Manches t e r and Prague , S e v i l l e and Manches te r , Geneva and Manches te r ,

V a l e n c i a and S e v i l l e , Geneva and Va lenc i a , V a l e n c i a and Prague ,
Prague and F l o r e n c e , Geneva and Prague .

F ind a t r i p p l a n o f v i s i t i n g t h e c i t i e s f o r 17 days by t a k i n g d i r e c t
f l i g h t s t o commute between them .

Bellow is the 1-shot prompt for the Calendar Scheduling task.

P l e a s e s o l v e t h e problem :
You need t o s c h e d u l e a mee t ing f o r Samuel , Evelyn , Ruth and Amanda f o r

h a l f an hour between t h e work h o u r s o f 9 :00 t o 17 :00 on Monday .

Here a r e t h e e x i s t i n g s c h e d u l e s f o r e v e r y o n e d u r i n g t h e day :
Samuel i s f r e e t h e e n t i r e day .
Evelyn has m e e t i n g s on Monday d u r i n g 9 :00 t o 1 0 : 0 0 , 11 :00 t o 1 2 : 0 0 , 12 :30

t o 1 3 : 0 0 , 15 :30 t o 1 6 : 0 0 ;
Ruth has m e e t i n g s on Monday d u r i n g 9 :30 t o 1 1 : 0 0 , 11 :30 t o 1 2 : 3 0 , 13 :00

t o 1 3 : 3 0 , 14 :00 t o 1 4 : 3 0 , 15 :00 t o 1 6 : 0 0 , 16 :30 t o 1 7 : 0 0 ;
Amanda has m e e t i n g s on Monday d u r i n g 10 :00 t o 1 0 : 3 0 , 11 :00 t o 1 2 : 3 0 ,

13 :00 t o 1 3 : 3 0 , 14 :00 t o 1 5 : 0 0 , 15 :30 t o 1 6 : 0 0 ;

Amanda can n o t meet on Monday b e f o r e 1 6 : 0 0 . F ind a t ime t h a t works f o r
everyone ' s s c h e d u l e and c o n s t r a i n t s .

Here i s t h e p r o p o s e d t ime : Monday , 16 :00 − 16 :30
done .

P l e a s e s o l v e t h e problem :
You need t o s c h e d u l e a mee t ing f o r Wal te r , Jacob , J e n n i f e r and Joan f o r

one hour between t h e work h o u r s o f 9 :00 t o 17 :00 on Monday .

Here a r e t h e e x i s t i n g s c h e d u l e s f o r e v e r y o n e d u r i n g t h e day :
W a l t e r i s busy on Monday d u r i n g 9 :30 t o 1 0 : 0 0 , 13 :00 t o 1 3 : 3 0 ;
Jacob has m e e t i n g s on Monday d u r i n g 11 :00 t o 1 1 : 3 0 , 13 :00 t o 1 3 : 3 0 ;
J e n n i f e r i s busy on Monday d u r i n g 9 :30 t o 1 0 : 3 0 , 11 :30 t o 1 2 : 0 0 , 12 :30 t o

1 5 : 0 0 ;
Joan has b l o c k e d t h e i r c a l e n d a r on Monday d u r i n g 9 :30 t o 1 0 : 0 0 , 10 :30 t o

1 1 : 3 0 , 12 :00 t o 1 2 : 3 0 , 13 :00 t o 1 4 : 0 0 , 14 :30 t o 1 5 : 3 0 ;

F ind a t ime t h a t works f o r everyone ' s s c h e d u l e and c o n s t r a i n t s .
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B EXPERIMENTAL DETAILS

B.1 DATASET CREATION

In these experiments BlocksWorld dataset for 3 to 7 blocks consists of 40000 samples.

In the creation of the BlocksWorld dataset as outlined in Algorithm 1, the key parameters include the maximum
number of blocks num_blocks and the quantity of examples n to be generated for each block count. Here, the
maximum number of blocks is a number greater than 3. As we use uniform sampling, this results in a linear
increase in the number of more complex examples. However, it’s important to note that as the number of blocks
increases, the simpler combinations are exhausted since all possible combinations might be included. The
methods CreateStacks generates random stacks of blocks, iteratively sampling from the available blocks to
determine stack heights until all blocks are utilized. The method CreatePro denotes a simple method to translate
the block configuration into PDDL which is python reimplementation of functionality in 4ops-Blockworld
code}5.

Algorithm 1 Create BlocksWorld Dataset
function CREATEDATASETBW(num_blocks, n)

dataset← [] . Initialize an empty list
for problem_id← 1 to n do

b← RANDOMUNIFORM(3, num_blocks)
initStacks← CREATESTACKS(b)
goalStacks← CREATESTACKS(b)
if initStacks == goalStacks then

continue . Skip equal stacks.
end if
problem←CREATEPRO(initStacks, goalStacks)
plan←FASTDOWNWARD(problem, domain)
dataset← dataset+ [(problem, plan)]

end for
return dataset

end function

Algorithm 1, we generate 28k unique samples. From these, we randomly select 25500 of the for training set and
2500 for validation set. This procedure yields a problem distribution as shown in Figure 8.

B.2 MAPPINGS PDDL TO NATURAL LANGUAGE

Here we present the templates to map PDDL problems to Natural Language. Details are shown in Table 6.

B.3 SEARCH PROCEDURE PARAMETERS

.

The two search procedures deployed and compared alongside ICL and SFT methods, (ToT) (Yao et al., 2023)
and monte-carlo tree search (MCTS) (Hao et al., 2023), were implemented as specified in their original papers.
The only deviations are listed below.

The biggest deviation from the reference papers are the LLM’s prompts, which had to be edited to make the
search procedures more aligned with the planning task.

Additionally, for the MCTS procedure, the action log-probs were weighted by a factor of 1.5. All other weights
specified in the Reasoning as Planning MCTS procedure are the same (state log-probs, UCT, and exploration
lambda factor are all 1.0).

The same weights are used to compute the value of the nodes in the tree-of-thought search procedure.

5https://github.com/AI-Planning/pddl-generators/tree/main/blocksworld/4ops
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Figure 8: Distribution with number of blocks and average plan length.
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Term (with arguments) Mapping to Natural Language
AIRPLANE object2 object2 is an AIRPLANE.
CITY object2 object2 is a CITY.
TRUCK object2 object2 is a TRUCK.
at object2 object3 object2 is at object3.
in-city object2 object3 object2 is in the city object3.
drive-truck param2 param3 param4 param5 Drive truck param2 from param3 to param4 in param5.
load-truck param2 param3 param4 Load param2 into truck param3 at param4.
unload-truck param2 param3 param4 Unload param2 from truck param3 in param4.
fly-airplane param2 param3 param4 Fly airplane param2 from param3 to param4.
load-airplane param2 param3 param4 Load param2 into airplane param3 at param4.
unload-airplane param2 param3 param4 Unload param2 from airplane param3 at param4.
on object2 object3 object2 is on object3.
handempty The hand is empty.
ontable object2 object2 is on the table.
clear object2 object2 is clear.
unstack param2 param3 Unstack param2 from param3.
put-down param2 Put down param2.
pick-up param2 Pick up param2.
stack param2 param3 Stack param2 on param3.
conn object2 object3 object2 and object3 are connected.
lock-shape object2 object3 The lock object2 is object3 shaped.
key-shape object2 object3 The key object2 is object3 shaped.
arm-empty The arm is empty.
open object2 object2 is OPEN.
move param2 param3 Move from param2 to param3.
pickup param2 param3 Pickup param2 at param3.
unlock param2 param3 param4 param5 Unlock param2 at param3 using param4, which has param5.
pickup-and-loose param2 param3 At param2, pick up param3 and lose param2.
at-robot object2 Robot is at object2.

Table 6: Semantic mappings used in the system, showing terms and their arguments.
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Hyperparameter Value Description
LLM Model Gemini 1.0M The language model

used for text
generation.

LLM Temperature 1.0 Controls the
randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples 1 The number of
different outputs
generated by the
LLM for each input.

Max Depth 5 The maximum number
of steps in the
search tree.

Max Branching Factor 3 The maximum number
of actions to
consider at each
node.

Num Simulations 3 The number of times
to simulate the
game from each
node.

Table 7: Monte Carlo Tree Search (MCTS) Hyperparameters
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Hyperparameter Value Description
LLM Model Gemini 1.0M The language model

used for text
generation.

LLM Temperature 1.0 Controls the
randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples 1 The number of
different outputs
generated by the
LLM for each input.

Max Depth 5 The maximum number
of steps in the
thought process.

Max Branching Factor 3 The maximum number
of alternative
thoughts to
explore at each
step.

Num Simulations 3 The number of
rollouts for each
thought to
simulate.

Table 8: Tree of Thought (ToT) Hyperparameters
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Prompt Name Prompt Content

MCTS_STATE_PROMPT

Given the provided state and
action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]
blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]
[STATE]

MCTS_ACTION_PROMPT

[CONTEXT] {state} [END
CONTEXT] Given the
preceding task, and action,
what action should be taken
next? Only take a SINGLE STEP
at a time. Any composite
actions will be penalized.
[ACTION]

Table 9: MCTS Agent Prompts

B.4 FINETUNE EXPERIMENTS

For the fine tuning of the Gemini 1.0 S, we use learning rate of 0.0001 with drop out rate of 0.1. We train the
model for 5k step and choose the checkpoint with highest accuracy on the validation set. We then run the verifier
on the inference results of that checkpoint and report the results.

C ERROR ANALYSIS: ADDITIONAL PLOTS

As mentioned in Section 4, for Logistics SFT experiments the three categories of the error are all present, for
example, in the Id setting for 3-5 packets, number of correct instances are 317/500 and the distribution of failure
modes are 57/500, 125/500, 1/500 for categories (1), (2), (3) respectively. and in the OOD setting of 1-2 packet
to 3-5 packet case, number of correct instances are 54/500 and the distribution of failure modes are 180/500,
237/500, 29/500 for categories (1), (2), (3) respectively.
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Figure 9: Side by side portray of Failure cases where constraints are not met for BlocksWorld 3-7
blocks cases in ICL and SFT scenarios per step number color coded by action name.

(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 10: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for Logistics 3-5 packets. As the number of blocks increases the number
of successful cases decreases.
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Prompt Name Prompt Content

MCTS_STATE_PROMPT

Given the provided state and
action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]
blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]
[STATE]

MCTS_ACTION_PROMPT

[CONTEXT] {state} [END
CONTEXT] Given the
preceding task, and action,
what action should be taken
next? Only take a SINGLE STEP
at a time. Any composite
actions will be penalized.
[ACTION]

Table 10: Tree-of-Thought Prompts

Table 11: CalendarPlan Performance with search procedures (ToT, MCTS) per number of few-shot examples
provided to the procedure. We observe that for contexts fitting within Gemini 1.0M, it competes with significantly
more powerful models. Without these methods, the model fails outright.

N
G1.0M

ToT
G1.0M
MCTS

G1.5
Flash

GPT4
Turbo

1 29 28 39 19
4 33 39 50 64
10 31 36 58 71

Dataset Train Size Test Size
BW(3-7) 28,386 500
BW(8-9) 3,995 500
BW(8-20) 4,160 500

Logistics(1-2) 13,483 500
Logistics(3-5) 13,483 500

Table 12: Details of the dataset size
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Figure 11: Side by side portray of Failure cases where constraints are not met for Logistics 3-5
packets cases in ICL and SFT scenarios per step number color coded by action name.
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(a) (b)

Figure 12: Histogram of # of tasks by task-length in the Travel Plan and Calendar Plan natural
language tasks.
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