Under review as a conference paper at ICLR 2025

EXPLORING AND BENCHMARKING PLANNING CAPA-
BILITIES OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Classical and natural language planning tasks remain a difficult domain for modern
large language models (LLMs). In this work, we lay the foundations for improving
planning capabilities of LLMs. First, we construct a comprehensive benchmark
suite encompassing both classical planning benchmarks and natural language
scenarios. This suite includes algorithms to methodically generate instances of tasks
with varying levels of difficulty, allowing for rigorous and systematic evaluation of
LLM performance. Next, we investigate the use of many-shot in-context learning
to enhance LLM planning, exploring the relationship between increased context
length and improved planning performance. In addition, we demonstrate the
positive impact of fine-tuning LLMs on optimal planning paths. We also probe
the efficacy of chain-of-thought reasoning methods to improve LLM planning
performance. Moreover, we probe the performance of the proposed methods in
out-of-distribution scenarios, assessing the ability to generalize to novel and unseen
planning challenges. Finally, we investigate model’s failure modes and reveal
insights that hold true across different benchmarks.

1 INTRODUCTION

Intelligent agents require the ability to plan to proactively chart a course of action to achieve their
objectives. This capacity for strategic foresight is considered fundamental to intelligent behav-
ior (Russell & Norvig, 2016). While classical search algorithms have long been the cornerstone of
planning studies, machine learning techniques, particularly Monte-Carlo Tree Search (MCTS) and
reinforcement learning, have emerged as useful additions, significantly expanding the capabilities of
modern planning systems.

With the advent of powerful large language models (LLMs), there are new opportunities to both
revisit classical planning problems, and to further explore new problems through natural language
specification that reflects the ambiguity and uncertainty of real-world domains. Planning capability
is important for many tasks such as game playing, meeting scheduling and trip planning. Research
is already underway to leverage the commonsense knowledge of LLMs in real-world tasks (Huang
et al.,|2022; Singh et al.| 2023} Ding et al.,|2023) and to generate sensible plans (Valmeekam et al.,
2023 |Hao et al., 2023 |Guan et al.,|2024). This research has shed some light on LLMs’ struggle with
planning tasks. Even state-of-the-art LLMs may produce ineffective or even incorrect plans, even in
straightforward scenarios. Our paper focuses on analyzing and improving the planning capability of
LLM systems.

We provide a scalable benchmark suite in both PDDL and natural language to measure planning
capability of LLMs. Specifically, we explore two distinct planning representations: the formal
Planning Domain Definition Language (PDDL) (McDermott et al. [1998)), which provides a stan-
dardized representation for classical planning problems and allows for rigorous plan validation; and
natural language, which offers a more flexible and intuitive representation better reflecting real-world
scenarios. For both scenarios, we provide a code for generating as many instances with a degree of
difficulty of choice. We also provide a mapping method for translating PDDL benchmarks to natural
language and measure the performance of the generated benchmarks. The generated planning tasks
are scalable and can grow to examine and assist stronger models. Figure [I|depicts a simple sample
of BlocksWorld benchmark with description both in PDDL and natural language. Each instance in
BlocksWorld consists of a set of blocks, a table and a robot hand, where the goal is to move from

Under review as a conference paper at ICLR 2025

PDDL # Problem in Natural Language
(define (problem BW) (:domain H{The initial state:
(:objects A B C) (:init The hand is empty.
(handempty) C is on the table. C is clear.
(ontable C) (clear C) A is on B. A is clear.
(on A B) (clear A)) The goal is: C is on B. A is on C.

(:goal (and (on CB) (on A C))))

Planning: LLM generates PDDL ||# Planning: LLM generates NL plan
H E (unstack A B) (put-down A) Unstack A from B. Putdown A on the table.
(pick-up C) (stack C B) Pickup C from the table. Stack C on B.
Initial-State Goal (pick-up A) (stack A C) Pickup A from the table. Stack A on C.

Figure 1: A simple instance of BlocksWorld planning benchmark: visual, PDDL and natural language
descriptions side by side. Problem definition includes list of objects, initial and goal states. We have
also included LLM’s output plan in the in-context learning scenario of Figure E}

one block configuration to another. The problem definition includes list of objects, initial and goal
states. The figure also includes the LLM’s output plan from the in-context learning scenario, which
we extensively analyze using various LLM models and benchmarks in Figure 2}

We explore the planning capability of LLMs using both In Context Learning (ICL) through the
many-shot paradigm as well and through chain-of-thought (CoT) (Wei et al., 2022) inference time
techniques; we also explore fine-tuning strategies. We observe that carefully instructing the model
using ICL leads to a significant boost in planning performance, which can be further improved by
using a many-shot approach with long context. Moreover, CoT reasoning strategies (MCTS, Tree-of-
thought, debate-as-reasoning) allow smaller models to perform closer to SoTA frontier models in the
natural language task domain. Our results show that fine-tuning with the optimal plan can lead to
near-perfect accuracy, even when using relatively small models.

Next, we investigate both in-domain and out-of-domain generalization and note that the proposed
plans demonstrate excellent in-domain generalization: instances with similar complexity are solved
with similar levels of accuracy. For ICL, prompting with easier instances leads to better performance
on hard instances compared to prompting with hard instances. Fine-tuning leads to better performance
for both in-domain and out-of-domain scenarios, even with a much smaller model, compared to ICL
with long-context.

Lastly, we probe the failure modes of the model. We categorize the failure modes into three categories:
failure to satisfy environmental constraints, failure to meet the goal and failure to generate legal
actions in a given state. We note that not all of these failure modes are present across all benchmarks
and methods. Moreover, as the instance complexity increases the model success rate decreases.
Additionally, we pinpoint failure modes that are result of biases in training data emphasizing the
importance of data curation during training.

1.1 RELATED WORK

Prior works investigations the planning capabilities of LLMs, have found that these models struggle
to solve planning tasks (Hao et al., [2023} |Valmeekam et al., 2023} 2024; Kambhampati et al., 2024),
In contrast, we show that LLMs can be capable of solving such tasks and one can reach near-perfect
accuracy for some scenarios, with certain methods. We run experiments on the same BlocksWorld
benchmark as these prior works, and generate additional difficult cases (i.e., adding more blocks).
Similar to these works, we also use PDDL verifiers to compute accuracy. See Section [3.4]for details.

Xie et al.|(2024) proposed a TravelPlanner benchmark and showed GPT4-Turbo can solve some of
the benchmark tasks with a success rate of 0.6%. The TripPlanner benchmark used in our work has
two main differences: it is not an agent-based environment and rather a natural language benchmark,
and it has unique answers due to carefully designed constraints.

Stechly et al.|(2024) suggests that LLMs are not capable of generalizing their plans on BlocksWorld
if one uses chain-of-thought (CoT) (Wei et al., [2022). In this work we show positive results in terms
of generalization performance.

Under review as a conference paper at ICLR 2025

There is another line of work that uses a hybrid approach, meaning that they either use an external
tool to solve the planning tasks (Kambhampati et al., [2024; |Hirsch et al.,|2024), or reformulate the
problem as another task such as SMT (Hao et al.,|2024) and use an external tool to solve it. |Lehnert;
et al|(2024) use A* as search mechanism and a specific transformer architecture to achieve planning
capability for that specific architecture. We differ from this line of work in that we focus on teaching
LLM itself to perform the planning task.

In addition to standard few-shot prompting, we also make use of inference time techniques that
construct a chain-of-thought (Wei et al.} 2022), namely tree-of-thought (ToT) (Yao et al.,|2023)) and
Monte-Carlo Tree Search (MCTS) (Hao et al., 2023) and debate-as-reasoning (Du et al.| 2023) We
demonstrate that these methods can considerably improve an LLMs planning capabilities such that
smaller open-source models that use these approaches can outperform larger foundational models.

2 BENCHMARK

To evaluate the planning capabilities of LLMs, we assemble a benchmark suite that appropriately
represents various classical and natural-language planning tasks. On these benchmarks, we assess
LLM performance using In-Context Learning (ICL), Supervised Fine-Tuning (SFT), and chain-of-
thought (CoT) methods for planning.

PDDL (Planning Domain Definition Language): PDDL McDermott et al.|(1998)) is a standardized
language used in artificial intelligence for representing planning problems. PDDL provides a formal
way to describe the initial state of an environment, a goals, the space of valid actions, and the state-
transition properties of actions in the environment. PDDL has two main components (1) Domain:
Describes the general characteristics of the planning problem, including the types of objects, actions,
and predicates (conditions that can be true or false). (2) Problem: Defines a specific instance of
the planning problem within the domain, including the initial state of the world and the goals to be
achieved.

We select three datasets that use PDDL, generated additional subsets of them, and additionally
map these datasets to natural language for an additional evaluation task. Additionally, we select two
native natural language datasets, containing Trip Planning and Calendar Scheduling tasks (Zheng
et al.,|2024). For the PDDL-based datasets, we select BlocksWorld, Logistics, and Mini-Grid. We
then translated the PDDL problem descriptions from these datasets into natural language to compare
performance when using formal and informal representations.

2.1 PDDL BENCHMARKS

The creation of all PDDL datasets follows a three-step procedure. (1) Initially, the process involves
the creation of an initial state and a goal (target state). (2) Subsequently, the initial state and goal are
utilized to formulate a problem in PDDL. (3) Finally, the problem is solved using a classic planner
Fast-Downwar

This procedure is repeated with increasingly difficult configurations for a select number of problems.
The result of this procedure are additional datasets that comprise a set of PDDL problems and solutions
of various difficulty. Importantly, this procedure enables us to create datasets with increasingly
difficult problems and any number of samples, which are appropriate for assessing the ability to plan
using different methods, such as in-context learning versus Supervised Fine-Tuning. Moreover, we
can scale the dataset generation and create as many instances as needed for different investigations.
We provide the details of our benchmark suite below.

We perform planning for BlocksWorld, Logistics and Minigrid both for PDDL and Natural Language.
For the mapping to natural language, we use a slot filling technique which maps each predicate of
the initialization and goal as well the action to sentences (Appendix [B.2)). For the verification of the
plans, we use regular expressions to map the plan in Natural Language back to PDDL.

BlocksWorld: BlocksWorld is a standard planning problem from International Planning Conference
(IPC)-2000EI This domain consists of a set of blocks, a table and a robot hand, where the goal is to

1https://github.com/aibase[/downward
2https://github.com/potassco/pddl—instances/tree/master/ipc—2000

https://github.com/aibasel/downward
https://github.com/potassco/pddl-instances/tree/master/ipc-2000

Under review as a conference paper at ICLR 2025

move from one block configuration to another. We generate a dataset for 3 to 7 blocks. As detailed in
the Appendix [B.T} we produced 28k unique BlocksWorld samples. From these, 25.5k were randomly
selected for the training set and 2,500 for the validation set.

Logistics: Logistics is an Al planning problem from IPC-1998 E] expressed in PDDL that involves
arranging the delivery of packages to their destinations using trucks within cities and airplanes
between cities. The aim is to optimize transportation modes under constraints such as vehicle
capacities and locations, showcasing model’s ability to manage multi-step logistics efficiently.

Mini-Grid: Mini-Grid is a task from Artificial Intelligence Planning Systems (AIPS)-1998 ﬂ also
expressed in PDDL. We create various floorplans with rooms containing random configurations of
key shapes. The goal then is for a robot to navigate from an initial position to a designated goal cell.

2.2 NATIVE NATURAL LANGUAGE PLANNING BENCHMARKS

Trip Planning: Trip Planning is a task from NaturalPlan (Zheng et al., [2024) benchmark focusing
on planning a trip itinerary under given constraints. The goal of the task is to find an itinerary
satisfying constraints such as the order of visiting N cities. It includes enough constraints for each
instance such that there is only one solution to the task, which makes the evaluation of the predictions
straightforward.

Calendar Scheduling: Calendar Scheduling from the NaturalPlan (Zheng et al.,2024) benchmark
represents the task of scheduling a meeting of either 30 minutes or an hour among up to 7 attendees.
The attendees may have a busy schedule or a light schedule with less than half of the working hours
spent in meetings.

3 EXPERIMENTS

Previous works demonstrated that, without intervention, LLMs often struggle with even simple
planning tasks (Hao et al.,[2023}; |Valmeekam et al., [2023};|2024; Kambhampati et al., [2024)). LLMs
often lack the information on how to structure their plan constructively, and struggle to plan around
the enumerated constraints. In this section we present our experimental results for the interventions
we investigate, demonstrating that they lead to significant improvements to the LLMs planning
capability. We also investigate plan generalization (i.e., the ability to generalize to unseen instances)
in several scenarios.

For PDDL experiments, we measure accuracy of the generated plan with a verifier (Fox & Long).
For natural language experiments we rely on either recasting the task to PDDL and verifying with
a verifier, or extracting the answer and comparing it to expected results (Zheng et al., 2024)). In all
experiments, GPT-4 refers to GPT-4 Turbo and we may omit "Turbo" for space constraints, also if we
do not mention Pro or Flash Gemini 1.5 refers to Gemini 1.5 Pro.

3.1 IN-CONTEXT LEARNING

For in-context learning (Brown et al.,[2020), we adhere to the standard procedure, employing a prompt
containing several examples for the task. Each example comprises a planning problem statement and
its corresponding solution, referred to as a shot. Following the examples, the test problem is added
without the corresponding solution. Subsequently, an LL.M receives this prompt and is expected to
generate a plan following the format and logic of the examples in the prompt. See Appendix [A]for
examples of prompts.

3.1.1 MANY-SHOT IN-CONTEXT LEARNING

We evaluate the planning capability of the model as we add more examples (“shots") into the context,
inspired by the success of many-shot learning across a large number of tasks (Agarwal et al.| [2024).
The challenge of “in-context planning" involves understanding a specific task and problem through
a limited number of examples. Additionally, it requires the models to produce a solution without

3ht'cps: //github.com/potassco/pddl-instances/tree/master/ipc-1998
4https://github.com/AI—Planning/pddl—generators/tr‘ee/main/minigr‘id

https://github.com/potassco/pddl-instances/tree/master/ipc-1998
https://github.com/AI-Planning/pddl-generators/tree/main/minigrid

Under review as a conference paper at ICLR 2025

Planning: Blocksworld nl
Sentence pieces in 1000 (log scale)

Planning Accuracy (%)
Now s w @
S 8 &8 & 83

)

Planning: Logistics
Sentence pieces in 1000 (og scale)

Planning: Minigrid
Sentence pieces in 1000 (log scale)

NP AL A¢ oF & aF S ST N ISR\
LS QN LAY RN N X oA 2 PSS X o AN P R R
DA I G A . SRS A A I A A o A4
Gemini 1.5 Pro t Gemma227b 80 Gemini 1.5 Pro | Gemma227b { Geminil5Flash | Gemma227b
| Gemini 1.5 Flash GPT-4 Turbo 20240409 o | Gemini 1.5 Flash | GPT-4 Turbo 20240409 80 Gemini 1.5 Pro | GPT-4 Turbo 20240409
§ 60| §
oy 260,
£50 e
5 E
g g
< 40 <
° 240
2 2
£30 £
£ g
5 s
a20 =5
10
Error bars represent a 70% Cl Error bars represent a 70% Cl! Error bars represent a 70% CI
0
~ v ™ ,\Q ,.l/b N &Q ’\/QQ QQQ ~ Vv > ,\9 ,1/0 > QQ '190 DQQ ~ £V ™ NQ ,]/Q »© ’\QQ ’]9Q “QQ

Few-shot exemplars (log scale)

(a) BlocksWorld - Natural Language

Planning: Blocksworld
Sentence pieces in 1000 (log scale)
&

Few-shot exemplars (log scale)

(b) Logistics - Natural Language.

Planning: Logistics
Sentence pieces in 1000 (iog scale)

AN

Few-shot exemplars (log scale)

(c) Mini-Grid - Natural Language.

Planning: Mim%nd
Sentence pieces in 1000 (log scale)
o

Planning Accuracy (%)

~
3 & o * * S oAb ¢ LR
N S I T TG - I T T T R N S R A S SR
S A S A R A A s A R R N A e 4
80|
Gemini 1.5 Pro I Gemma227b Gemini 1.5 Pro I Gemma227b { Geminil5Flash | Gemma227b
60- } Gemini 1.5 Flash | GPT-4 Turbo 20240409 70 | Gemini 1.5 Flash | GPT-4 Turbo 20240409 80 Gemini 1.5 Pro { GPT-4 Turbo 20240409
50 260 g
3 3,
50) 60
40 £ £
3 3
240 <
30 o 240
£ £
£ £
20
& 20) z
20
10 10
Error bars represent a 70% Cl Error bars represent a 70% Cl Error bars represent a 70% CI
0 0 o
~ A » S O © S & ~ A - S © © S & ~ - S O © S &
SO OISR I S S § S OSSR

Few-shot exemplars (log scale)

(d) BlocksWorld - PDDL.

Few-shot exemplars (log scale)

(e) Logistics - PDDL.

Few-shot exemplars (log scale)

(f) Mini-Grid - PDDL.

Figure 2: PDDL Planning and Natural Language Planning with few-shots for different LLMs. Natural
language text are generated from formal PDDL problem definitions.

checking each planning step to confirm if a proposed move is correct. The model has to create a plan
in a single inference step, keeping ‘in mind’ all the constraints the task imposes.

Figure [2] shows the in-context learning performance on classical planning and natural language
benchmarks as we vary the number of shots. We consider Gemini 1.5 Pro (GeminiTeam et al.,
2024b), GPT-4 Turbo (OpenAl et al., [2024)), Gemini 1.5 Flash (GeminiTeam et al., 2024b)) and
Gemma 2 27b (Team et al.,2024) models. Overall, we notice that for natural language and PDDL
scenarios, models have similar trends in terms of planning accuracy as we increase the number
of shots. Moreover, different models are impacted differently as we provide additional number of
shots, e.g., Gemini 1.5 Pro outperforms other models both in one shot scenario and as we increase
the number of shots; indicating that the model not only can plan better with a fewer number of
examples/shots, it can also make effective use of additional and longer context. Gemini 1.5 Flash -a
smaller, faster and more efficient model than Gemini 1.5 Pro is generally outperformed by Gemini
1.5 Pro but occasionally matches GPT-4 performance.

BLOCKSWORLD: Figure [2a] [2d|show the performance of Gemini 1.5 models on this benchmark
as we increase the number of few-shot examples. We note that as we increase the number of shots
GPT-4 performance increases while Gemini 1.5 Pro’s performance saturates or degrades as we go
beyond 40 shots. The 1-shot planning capability of Gemini 1.5 Pro and Gemini 1.5 Flash reaches
reaches 35% and 26%, while GPT-4 performance is close to zero. Moreover the 40-shots planning
capability of Gemini 1.5 Pro reaches 48% range which performs better than the best (200-shots)
performance of GPT-4, which peaks at 43%.

LoaisTics: The planning capabilities of GPT-4 and Gemini 1.5 models on the Logistics benchmark
are shown in Figure [2¢] for PDDL and in Figure 2b] for Natural Language. The 1-shot planning
capability of Gemini 1.5 Pro reaches 43% for PDDL and for Natural Language 48%. Moreover for
Gemini 1.5 Pro increasing the context consistently lead to better results, indicating that the model can
make effective use of additional contexts. For Gemini 1.5 Flash and GPT-4, the performance drops
slight for PDDL and Natural Language.

MINI-GRID: Figure 2f] and Figure [2c] show the performance of GPT-4 and Gemini models as
we increase the number of few-shot examples for PDDL and Natural Language, respectively. The
Gemini models perform comparably for both PDDL and Natural Language, although GPT-4 appears

Under review as a conference paper at ICLR 2025

Sentence pieces in 1000 (log scale)

Sentence pieces in 1000 (log scale)

SR e
N Sl N\ > » N S g '
A N I S L I P, A & S S RS
o NP Y 2 QT P T P o ~ SRR S
{ Gemini 1.5 Flash { Gemini 1.5 Flash
50 Gemini 1.5 Pro 60 Gemini 1.5 Pro
| GPT-4 Turbo 20240409 | GPT-4 Turbo 20240409
40 £50)
oy oy
g g
5 540
§30 g
< <
o 30
£ £
£20 £
o 20
8 £
10 / 10
Error bars represent a 70% Cl! Error bars represent a 70% Cl!
0 [
~ » QS Q O O O O N ~ ™ QS QO Q O O O
Y Vv » N ’\9 O %Q ~ v » ,»Q ,.1/0 Dp
Few-shot exemplars (log scale) Few-shot exemplars (log scale)
(a) Trip Planning. (b) Calendar Scheduling.

Figure 3: Natural Language Planning with few-shots using native natural language datasets.

to perform slightly better with Natural Language. Increasing the number of few-shot examples leads
to better performance for all models. With 400 shots, Gemini 1.5 Pro reaches 77% accuracy.

TRIP PLANNING AND CALENDAR SCHEDULING: Figure [3a]shows the performance on the Trip
Planning and Calendar Scheduling natural language tasks as we increase the number of few-shot
examples, respectively. We observe that, in both benchmarks, for both GPT-4 and Gemini 1.5 Flash
the performance first increases with the number of shots and after a certain point, having more
shots leads to worse model performance. However, for Gemini 1.5 Pro performance improves as
the number of shot increases. Therefore, Gemini 1.5 Pro seems to be making more efficient use of
additional shots compared to the other two. On the other hand GPT-4 performs better in the 1-shot
scenario compared to the other two models for Trip Planning, while Gemini 1.5 Pro has a higher
accuracy in the 1-shot setting.

Overall, we observe that the trend of accuracy vs number of shots depends both on the model and on
the benchmark.

3.1.2 EFFECT OF INFERENCE TIME TECHNIQUES

In addition to standard ICL, we consider inference time ICL methods that are based on constructing
a chain-of-thought (Wei et al.| [2022)): Tree-of-Thought (ToT) (Yao et al., 2023, Monte Carlo Tree
Search (MCTS) (Hao et al.| [2023), and Debate-as-reasoning (Du et al., [2023). In Figure E] we provide
experimental evidence that methods such as Debate-as-reasoning, MCTS, and ToT can augment
Gemma?2 27B (considerably smaller than Gemini 1.5 and GPT-4 models), to be competitive with GPT-
4, Gemini 1.5 Pro and Gemini 1.5 Flash at smaller few-shot context lengths. Additional details and
parameters for these search methods are included in Appendix [B.3] These results demonstrate how
inference-time reasoning procedures using smaller open-source models can perform competitively
with larger foundational models in the natural language planning domain.

However, the ability of these methods to scale to few-shot examples seems to be less significant
than larger foundational models. Specifically, for the Travel Scheduling task, the larger models all

Planning: Calendar schedulin:
Sentence pieces in 1000 (log scale)
o

K

Planning: Trip 10
Sentence pieces in 1000 (log scale)
Kol &

Gemma2 278 Debate i Gemini
Gemma2 278 ToT Gemini 1.5
| Gemma2 278 MCTS

Gemmaz 278 Debate
Pro Gemmaz2 278 ToT
| GPT-4Turbo20240409 | Gemma2 278 MCTS

| GPTdo

| GPT4 Turbo 20240409

g

&

—

Error bars

—

g

Planning Accuracy (%)

8

e

o

o
~

s

represent a 70% CI

o

)
~

K

Few-shot exemplars (log scale)

Figure 4: Calendar Scheduling (left) and Travel Scheduling (right) tasks with reasoning procedures

(ToT, MCTS, and Debate). We use Gemma?2 27B to perform these procedures, and compare with
GPT-4 and Gemini 1.5 models.

Under review as a conference paper at ICLR 2025

outperform the CoT methods after 4 few-shot examples. It is unclear if this scaling trend is a result of
the underlying model (Gemma?2 27B) or the method itself.

Most interesting to note is the performance of debate-as-reasoning, which, despite not being an
explicit search or planning strategy, works comparatively to MCTS in both tasks. This indicates
that, for some planning tasks, even unstructured CoT style inference methods are competitive with
explicit search-based CoT methods, and larger foundational models with ICL. This may indicate that,
for natural language planning tasks, allowing the model to construct a CoT and consider multiple
solutions may be more valuable then the specific method behind constructing the CoT.

3.2 SUPERVISED FINE TUNING (SFT)

Supervised fine tuning (SFT) (Ouyang et al.||2022) has proved to be an effective method for teaching
LLMs various capabilities. In this section, we investigate the effect of Supervised Fine Tuning (SFT)
with optimal plan on planning capability of LLMs. We use the Fast-Downward classical planner to
generate the optimal plan. We specifically ran experiments on Gemini 1.0 S (GeminiTeam et al.|
20244) and investigate planning performance for two different benchmarks with different levels of
difficulty, namely, we look into 5 scenarios: BlocksWorld with 3-7 blocks, 8-9 blocks or 8-20 blocks,
and Logistics with 1-2 packets, or with 3-5 packets. The data size and splits are documented in

Appendix

The results are shown in Table [T} We observe that SFT leads to high accuracy for some instances
of both datasets and outperforms many-shot ICL. The performance appears to drop as the planning
problem becomes more difficult.

Table 1: Impact of SFT on accuracy, for Table 2: Plan generalization analysis for in-
BlocksWorld: instance of 3-7, 8-9 and 8- stances of BlocksWorld of different number
20 blocks, and for Logistics: instances of of blocks in SFT scenarios, for Gemini 1.0
1-2 and 3-5 packets. S. Accuracy is in %. Accuracy is measured
— by a verifier.
Model Gemini 1.0 S
BlocksWorld(3-7) 96.26 Finetune data Eval data Accuracy
BlocksWorld(8-9) 92.6 BW(3-7) BW(3-7) 96.26
BlocksWorld(8-20) 67.00 BW(3-7) BW(8-20) 34.20
Logistics(1-2) 99.8 BW(8-20) BW(@3-7) 98.27
Logistics(3-5) 63.4 BW(8-20) BW(8-20) 67.00

3.3 PLAN GENERALIZATION

For any LLM application, the question of how well the method generalizes to out-of-training-
distribution (OOD) inputs is always present. Here, we investigate how LLM planning generalizes.
Plan generalization has three main categories: (1) Generalize to unseen instances of the same environ-
ment (2) Generalize to renaming of actions and objects (3) Generalize to unseen plan environments.
We focus on the first category which sits at the core of the desired capability.

For these generalization experiments, we consider BlocksWorld and Logistics benchmarks with
various difficulty levels (as described in Section [3.2)). We look into performance of both SFT and
ICL approaches. Tables [2] shows generalization performance for BlocksWorld in SFT setting for
BlocksWorld 3-7, 8-20 split and Table [3| considers generalization between BlocksWorld 3-7 and 8-9
blocks split for both SFT and ICL with different models and number of shots. Table] depicts plan
generalization for Logistics benchmark for splits of 1-2 and 3-5 packets.

Our analysis reveals several key findings: (1) Superiority of SFT: SFT consistently outperforms ICL
across both benchmarks, even when utilizing a smaller model for SFT. This suggests that SFT’s
explicit training process, focused on the specific task, leads to more effective learning and better
generalization. (2) In most ICL scenarios, training the model on easier instances first results in
improved performance on harder examples, e.g., see Table 3] rows 1-4 and 6. (3) Limitations of hard
example training: Contrary to some expectations, training the model exclusively on hard examples
does not always translate to better performance on easier ones (for example, see Table [3|rows 2, 4-6).

Under review as a conference paper at ICLR 2025

This suggests that a balanced approach, incorporating both easy and hard examples, might be optimal
for achieving well-rounded performance.

Table 3: OOD accuracy for BlocksWorld splits 3-7 and 8-9 blocks.

Train data
3.7 8-9

Eval data
3-7/8-9 3-7/8-9

Gemini 1.5 Flash (1 Shot) 264/137 329/12.3
Gemini 1.5 Flash (70 Shot) 35.7/233 27.6/11.0
Gemini 1.5 Pro (1 Shot) 40.0/25.6 39.0/20.3
Gemini 1.5 Pro (70 Shot) 46.3/36.3 38.3/184

Model Name

Gemini 1.0 S (1 Shot) 3.68/0.331 299/1.35
Gemini 1.0 S (70 Shot) 124/233 3.99/1.68
Gemini 1.0 S (SFT) 96.3/81.6 96.0/92.6

Table 4: OOD accuracy for Logistics tasks splits of 1-2, 3-5 packets.

Train data
1-2 3-5

Eval data
1-2/3-5 1-2/3-5

Gemini 1.5 Flash (1 Shot) 18.3/1.35 26.7/1.00
Gemini 1.5 Flash (30 Shot) 12.7/1.67 19.7/1.33
Gemini 1.5 Pro (1 Shot) 35.3/9.03 57.6/7.01
Gemini 1.5 Pro (30 Shot) 56.4/11.3 62.7/8.04

Model Name

Gemini 1.0 S (1 Shot) 7.0/0.0 5.33/0.0
Gemini 1.0 S (30 Shot) 9.99/0.336 8.00/0.662
Gemini 1.0 S (SFT) 99.8/10.8 98.0/63.4

3.4 COMPARISON WITH PLANBENCH

Valmeekam et al.| (2023) proposed a benchmark for planning that maps domain definitions to
instructions and problem statements into natural language using zero-shot and one-shot techniques.
We utilize their dataset on BlocksWorld, as the problems are comparable. Unlike their approach, which
limits problems to configurations of 3, 4, and 5 blocks using only zero-shot and one-shot prompting,
our work extends this using for ICL up to 7 blocks and by employing many-shot prompting.

Table [5] compares results using the natural language prompts from [Valmeekam et al.| (2023)(their
dataset is referred to as Val-BW) and, novel to this work, presents results on PDDL for their datasets
using both 1-shot and 2-shot techniques.

We utilize the natural language prompts from (Valmeekam et al.,|2023) test them on Gemini 1.5 Pro.
We observe that GPT-4 performs better with these prompts. For our dataset, no such difference is
observed. Manual inspection reveals that especially 1-shot prompts need to be crafted carefully while

Table 5: Accuracy (in %) comparing the state of the art for different datasets and systems. Val-BW
denotes BlocksWorld dataset as open-source by [Valmeekam et al.| (2023).

Dataset LLM Shots Type Noé of]ZIOCkSS
Val-BW GPT-4 Turbo 1 NL 49.0 32.4 232
Val-BW Gemini 1.5 Pro NL 30.0 184 14.2
Val-BW Gemini 1.5 Pro PDDL 60.0 36.4 23.6
Val-BW Gemini 1.5 Pro PDDL 68.0 46.2 30.9

1
1
2
Our-BW Gemini 1.5Pro 1 NL 66.0 38.5 32.4
Our-BW Gemini 1.5 Pro 2 NL 66.0 58.5 53.9
1
2

Our-BW Gemini 1.5 Pro PDDL 100 44.6 32.0
Our-BW Gemini 1.5 Pro PDDL 100 44.6 50.9

Under review as a conference paper at ICLR 2025

(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 5: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for BlocksWorld 8-20 blocks. As the number of blocks increases the
number of successful cases decreases.

few-shot or many-shot prompts are more robust. For instance, results improve when the prompts are
more specific about the output format, changing from *My plan is as follows’ to ’Your plan as plain
text without formatting’, which enhances results for Gemini 1.5 Pro. Further, our prompts do not
include explanations of the actions and we do not use color coding for the blocks but rather keep the
names (e.g., blue block vs block b3).

4 INVESTIGATING FAILURE CASES

In this section, we analyze the outcome of various approaches to improving LLM planning perfor-
mance, and dive into a more detailed categorization of failure modes.

The LLM planning failure modes we observed can be classified into the following three categories:

(1) Constraint Violation: The model fails to satisfy one of the explicitly declared environment
constraints. i.e., it ignores one of the conditions required to be able to do an action. Even if this
happen only for one instance of an action and not for all instances of the same action. For example
model wants to put block b1 on block b2 while block b2 is not empty.

(2) Failure to meet the goal: The model makes a plan that meets the environment constraints but does
not reach the goal state at the end of the trajectory.

(3) Out-of-vocabulary actions: The model proposes actions which are not in the environment’s action
space.

PDDL benchmarks Here we examine the failure modes for both the Blocksworld and Logistics
domains and SFT, ICL setting. Due to space constraints we report Blocksworld SFT settings here
and refer the reader to Appendix [C] for the rest of plots and analysis. First we look at the effect
of distribution of number of blocks in the planning instance. We compare Figure [5a that includes
successful eval cases of BlocksWorld 8-20 blocks to, to all its eval data in Figure [5b] respectively.
We note that the model failure cases increases as the number of blocks in the problem increases.
We also separate the reasons of failure in BlocksWorld 8-20 instances as seen in Figure [Sc| and
Figure [5d] respectively.Note that failure mode (3) does not happen for BlocksWorld benchmark in
SFT or ICL settings and for Logistics in ICL setting, but for Logistics benchmark in SFT settings all
three categories are present (see Appendix [C|for details).

Next, We study the distribution of number of blocks in out-of-domain cases focusing on BlocksWorld
3-7 to 8-20 blocks generalization. Comparing the successful cases in Figure [6a]to all the eval samples
in Figure [5b] we observe that the generalization performance of the model that is trained on 3-7
blocks drops as the number of eval blocks increases from 8 to 20.

To probe the models even further, we look into the category where the generated plan fails to satisfy
one of the environment constraints. We study the step at which the plan fails to meet the constraint.
Considering Figure [6bland comparing it to Figure[6c} the model seems to have trouble generalizing
from the beginning, having the majority of its failures concentrated on earlier steps. This trend stays
true for Logistics benchmark as well and is due to the fact that models go deep before they go wide
when they want to produce the plan output. In other terms, this gives the intuition that the model
seems to get overwhelmed when encountering difficult unseen examples, leading to failure from the
beginning by not satisfying the constraints.

In addition, looking at the granular level of which actions that cause the failure in Figure[6b] we note
that the model has learned a correlation between the step number and the action it chooses, leading

Under review as a conference paper at ICLR 2025

pick-u

Number of Pl

Distribution of Step that Plan Fails with Action when Constraints Not Met
- unstach
- stack
(N |
[

.
.
& 27
;
5
H 515 £
;
f1e §1 Su
2 9] o
8 6] 0
. [1 | M :
[| I | [t | I,
o s 10 12 16 18 20 0 6 12 o0 25 50 75 150

(a) Success. OOD generalization (b) Fail. OOD generalization (c) All cases

I I |.I I
B 28
Failure

(11T
00 36 4
e step

Figure 6: BlocksWorld 3-7 to 8-20 OOD scenario (a)Success per number of blocks (b) investigation
of failures in constraint violation per plan step, color coded by action where the constraint violation
happens (c) distribution of all cases per plan steps.

Travel Plan Errors Calendar Plan Errors

0.7 W Gemma 278 Debate 175 == Gemma 278 Debate
= Gemma 278 ToT) m= Gemma 278 ToT
= Gemma 278 MCTS 21'50 = Gemma 27B MCTS

125
o
2
©1.00
g
5 075
g
&
. 20.50
&
1
0.
m Bl
00773 4 5 6 7 8 9 10 000573 5 6 7 8 9 10

Length of Solution (Cities Travelled) Length of Solution (Participants in Scheduling)

0-2)
S o o

°
o

Average Error (ranging from
°©
&
o

°
°
N
5

(a) TravelPlan errors by length (b) CalendarPlan errors by length

Figure 7: Error Analysis for various CoT reasoning strategies in the TravelPlan and CalendarPlan
natural language tasks

to having stack and un-stack not having any mutual failure step. This is also observed in failure
modes of BlocksWorld 3-7 both for ICL and SFT scenarios (see Figure[T1]in Appendix [C). Further
investigation of training data confirms this observation.

Natural Language benchmarks Since TravelPlan and CalendarPlan benchmarks require plans that
do not involve sequential execution of actions, the only failure mode we consider is failure mode (2) -
failure to reach a goal state. All errors discussed in this subsection are in terms of whether or not
the method under study succeeded in reaching the goal. Figure[7]shows the average error by CoT
method as task complexity increases in the TravelPlan and CalendarPlan benchmarks. Figure[12]in
Appendix [C| histograms of how many examples belong to each task length. Both domains have a
higher distribution of "smaller" or shorter tasks, which impacts the distribution of error in Figure[7] It
is interesting to note how the error is disproportionate between debate-as-reasoning and MCTS, ToTs,
aligning with our findings in Section[3] As discussed in Section 3] methods such as MCTS and ToT
seem to perform inconsistently at less-structured planning tasks. We can see this in how they perform
relative to debate, as well as each other. Specifically, for the TravelPlan task, they fail at inconsistent
rates relative to one another.

5 CONCLUSION

We examined planning capabilities of LLMs through benchmark development, generalization assess-
ment and analysis of failure modes. Our observations for ICL setting has implications for the future
development and training of LLMs, potentially informing strategies to enhance their capacity to
process and leverage extended contextual information. It also points to the opportunity for followup
work investigating ways to further improve the inference time reasoning procedures, and their scaling
properties. Our investigation of plan generalization reveals three key findings: superiority of SFT,
curriculum learning effectiveness and limitations of hard example training; suggesting that a balanced
approach, incorporating both easy and hard examples, might be optimal for achieving well-rounded
performance. Our analysis of failure modes point to future work on dataset design and reasoning
procedures to directly address the discussed failure modes. These enhancements can unlock new
levels of versatility and robustness in LLM-based planning systems, paving the way for their broader
adoption in real-world applications.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer Abbas, Azade
Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv preprint arXiv:2404.11018,
2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with large language
models for object rearrangement. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2086-2092. IEEE, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality and
reasoning in language models through multiagent debate, 2023.

Maria Fox and Derek Long. Kcl-planning/val: The plan validation system. URL https://github.com/
KCL-Planning/VAL.

GeminiTeam, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson, Ioannis Antonoglou, Julian
Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, et.
al, Jeffrey Dean, and Oriol Vinyals. Gemini: A family of highly capable multimodal models, 2024a.

GeminiTeam, Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis Antonoglou,
Rohan Anil, Sebastian Borgeaud, Andrew Dai, Katie Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux,
Benjamin Lee, Fabio Viola, et al, Jeffrey Dean, and Oriol Vinyals. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context, 2024b.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-trained large
language models to construct and utilize world models for model-based task planning. Advances in Neural
Information Processing Systems, 36, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your travels
rigorously with formal verification tools. arXiv preprint arXiv:2404.11891, 2024.

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. What’s the plan? evaluating and developing planning-aware
techniques for llms. arXiv preprint arXiv:2402.11489, 2024.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with
language models. arXiv preprint arXiv:2207.05608, 2022.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant Bhambri, Lucas
Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in Ilm-modulo frameworks. arXiv preprint
arXiv:2402.01817, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian. Beyond a*: Better
planning with transformers via search dynamics bootstrapping. arXiv preprint arXiv:2402.14083, 2024.

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M. Veloso,
Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language. 1998.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, et al., , William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with

human feedback. Advances in neural information processing systems, 35:27730-27744, 2022.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

11

https://github.com/KCL-Planning/VAL
https://github.com/KCL-Planning/VAL

Under review as a conference paper at ICLR 2025

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523-11530. IEEE, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An analysis of cot
in planning. arXiv preprint arXiv:2405.04776, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton
Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor,
Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish,
Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen,
Anthony Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozifiska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica
Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Pluciniska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi,
Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong
Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen,
Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia
Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller,
Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk
Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan,
Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel,
Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain,
Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun
Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand
Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis,
Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin,
Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a
practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models-a critical investigation. Advances in Neural Information Processing Systems,
36:75993-76005, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Plan-
bench: An extensible benchmark for evaluating large language models on planning and reasoning about
change. Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824-24837, 2022.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint arXiv:2402.01622,
2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. Natural plan: Benchmarking llms on natural
language planning. arXiv preprint arXiv:2406.04520, 2024.

12

https://arxiv.org/abs/2408.00118

Under review as a conference paper at ICLR 2025

Appendix

A PROMPTS
Bellow is the 1-shot prompt for the BlocksWorld task.

Please solve the problem:
(define (problem BW-rand —4)
(:domain blocksworld —4ops)
(:objects b4 bl b3 b2)
(:init

(on b3 bl)

(on bl b4)

(clear b3)

(handempty)

(ontable b2)

(ontable b4)

(clear b2)

)

(:goal (and

(on b2 b4)

(on b3 bl)

))
)

Your plan as plain text without formatting:
(unstack b3 bl)

(put—down b3)

(unstack bl b4)

(put—down bl)

(pick—up b2)

(stack b2 b4)

(pick—up b3)

(stack b3 bl)

done .

Please solve the problem:
(define (problem BW-rand —6)
(:domain blocksworld —4ops)
(:objects b5 bl b4 b2 b3 bb)
(:init

(on b4 bl)

(handempty)

(ontable b6)

(on b2 b4)

(clear b3)

(ontable b5)

(on b3 b2)

(clear b6)

(on bl b5)

)

(:goal (and

(on b4 b2)

(on bl b4)

(on b5 bl)

(on b3 b5)

)

)

Your plan as plain text without formatting:

13

Under review as a conference paper at ICLR 2025

Bellow is the 1-shot prompt for the Logistics task.

Please solve the problem:
(define (problem logistics —c4—s2—p3—a4)
(:domain logistics —strips)

(:objects

a0 al a2 a3

cO cl c2 c3

t0 tl1 t2 t3

10-0 10—-1 11-0 11—-1 12—0 12—1 13-0 13-1
p0 pl p2

)

(:init

(AIRPLANE a0) (AIRPLANE al)(AIRPLANE a2)(AIRPLANE a3)
(CITY ¢0) (CITY c1)(CITY c2)(CITY ¢3)

(TRUCK t0) (TRUCK t1)(TRUCK t2)(TRUCK t3)

(LOCATION 10 —0)(in—city 10—0 c0)

(LOCATION 10 —1)(in—city 10—1 c0)

(LOCATION 11 —0)(in—city 11-0 c1)

(LOCATION 11 —1)(in—city 11—1 cl)

(LOCATION 12 —0)(in—city 12-0 c2)

(LOCATION 12 —1)(in—city 12-1 ¢2)

(LOCATION 13 —0)(in—city 13—0 c3)

(LOCATION 13 —1)(in—city 13—1 ¢3)

(AIRPORT 10 —0) (AIRPORT 11 —0)(AIRPORT 12 —0)(AIRPORT 13 —0)
(OBJ p0) (OBJ pl)(OBJ p2)

(at t0 10—0)(at tI 11—1)(at t2 12-0)(at t3 13—0)

(at p0 11 —1)(at pl 10—1)(at p2 10—0)

(at a0 11 -0)
(at al 11 -0)
(at a2 12 -0)
(at a3 13 -0)
)
(:goal
(and
(at p0 12 -0)
(at pl 12 -0)
(at p2 11 -1)
)
)
)

Your plan as plain text without formatting:
(load—truck p0O t1 11 —1)
(drive—truck tl1 11—-1 11-0 cl)
(unload—truck p0 t1 11 -0)
(load—airplane p0 al 11 —0)
(fly —airplane al 11-0 12 —-0)
(unload—airplane p0 al 12 —-0)
(drive—truck t0O 10—0 10—1 c0)
(load—truck pl t0O 10—1)
(drive—truck tO 10—1 10—0 c0)
(unload—truck pl t0 10-0)
(fly —airplane a3 13—0 10-0)
(load—airplane p2 a3 10-0)
(fly —airplane a3 10—0 11 —-0)
(unload—airplane p2 a3 11 —-0)
(load—truck p2 tl 11 -0)
(drive—truck t1 11-0 11—-1 c1)
(unload—truck p2 tl1 11-1)
(fly —airplane al 12-0 10-0)
(load—airplane pl al 10-0)
(fly —airplane al 10-0 12 -0)
(unload—airplane pl al 12-0)

14

Under review as a conference paper at ICLR 2025

done .

Please solve the problem:

(define (problem logistics —c2—s2—p3—a2)

(:domain logistics —strips)

(:objects

a0 al

cO cl

t0 tl

10-0 10—-1 11-0 11—1

p0 pl p2

)

(:init
(AIRPLANE a0) (AIRPLANE al)
(CITY c0) (CITY cl)
(TRUCK t0) (TRUCK tl)
(LOCATION 10 —0)(in—city 10—0 c0)
(LOCATION 10 —1)(in—city 10—1 c0)
(LOCATION 11 —0)(in—city 11—-0 cl)
(LOCATION 11 —1)(in—city 11—1 cl)
(AIRPORT 10 —0) (AIRPORT 11 —0)
(OBJ p0)(OBJ pl)(OBJ p2)
(at t0 10—-1)(at t1 11-0)
(at p0O 10—1)(at pl 11 —-0)(at p2 11 —1)
(at a0 10-0)(at al 10-0)

(:goal
(and
(at p0 10-1)
(at pl 11 -0)
(at p2 10-0)
)
)
)

Your plan as plain text without formatting:

Bellow is the 1-shot prompt for the Mini-Grid task.

Please solve the problem:
(define (problem grid_2Vroom?2)
(:domain grid)
(: objects
pO pl p2 p3 p4 p5 p6 p7 p8
shapeO
keyO

(:init
; Object types
(place p0) (place pl) (place p2) (place p3) (place p4) (place p5) (
place p6) (place p7) (place p8)

(shape shape0)

(key keyO0)

; Open/locked cells

(open p0) (open pl) (open p2) (open p3) (open pS5S) (open p6) (open p7)
(open p8)

(locked p4)

; Connected cells

(conn pO0 pl)

(conn p0 p2)

(conn pl pO0)

(conn pl p3)

15

Under review as a conference paper at ICLR 2025

)

)

(conn p2 p0)

(conn p2 p3)

(conn p2 p4)

(conn p3 p2)

(conn p3 pl)

(conn p4 p2)

(conn p4 pS)

(conn p5 p4)

(conn p5 pb6b)

(conn p5 p7)

(conn p6 pS)

(conn p6 p8)

(conn p7 pS)

(conn p7 p8)

(conn p8 p7)

(conn p8 pb)

; Lock and key shapes
(lock—shape p4 shapeO)
(key—shape keyO shapeO)
; Key placement

(at keyO pO0)

; Robot placement
(at—robot p3)
(arm—empty)

(:goal (at—robot p7))

Your plan as plain text without formatting:
(move p3 p2)

(move p2 p0)

(pickup pO keyO)

(move pO p2)

(unlock p2 p4 keyO shapeO)

(move p2 p4)

(move p4 pS)

(move p5 p7)

done .

Please solve the problem:
(define (problem grid_3Vroom3)

(:
(:

domain grid)

objects

pO pl p2 p3 p4 pS p6 p7 p8 p9 plO pll pl2 pl3 pl4 pl5 pl6 pl7 pl8 pl9
p20 p21 p22 p23 p24 p25 p26 p27 p28

shapeO

keyO

cinit

; Object types
(place p0) (place pl) (place p2) (place p3) (place p4) (place p5) (
place p6) (place p7) (place p8) (place p9) (place pl0) (place pll
) (place pl2) (place pl3) (place pl4) (place pl5) (place pl6) (
place pl7) (place pl8) (place pl9) (place p20) (place p21) (place
p22) (place p23) (place p24) (place p25) (place p26) (place p27)
(place p28)
(shape shape0)
(key keyO0)
; Open/locked cells
(open p0) (open pl) (open p2) (open p3) (open p4) (open p5) (open pb6)
(open p7) (open p8) (open pl0O) (open pll) (open pl2) (open pl3)
(open pl4) (open pl5) (open pl6) (open pl7) (open pl8) (open p20)
(open p21) (open p22) (open p23) (open p24) (open p25) (open p26
) (open p27) (open p28)
(locked p9) (locked pl9)

16

Under review as a conference paper at ICLR 2025

; Connected cells

(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn
(conn

pl)
p3)
p0)
p2)
p4)
pl)
p5)
p0)
p4)
p6)
p3)
pl)
p5)
p7)
p4)
p2)
p8)
p3)
p7)
p9)
po6)
p4)
p8)
p7)
p5)
p6)
pl0)
p9)
pll)
pl3)
pl0)
pl2)
pl4)
pll)
pls)
pl0)
pl4)
pl6)
pl3)
pll)
pl5)
pl7)
pl4)
pl2)
pl8)
pl3)
pl7)
pl6)
pl4)
pl8)
pl7)
pl5)
pl9)
pl8)
p22)
p21)
p23)
p20)
p22)
p24)
p2l)
pl9)
p25)
p20)

17

Under review as a conference paper at ICLR 2025

(conn p23 p24)
(conn p23 p26)
(conn p24 p23)
(conn p24 p2l)
(conn p24 p25)
(conn p24 p27)
(conn p25 p24)
(conn p25 p22)
(conn p25 p28)
(conn p26 p23)
(conn p26 p27)
(conn p27 p26)
(conn p27 p24)
(conn p27 p28)
(conn p28 p27)
(conn p28 p25)
; Lock and key shapes
(lock—shape p9 shapeO)
(lock—shape pl19 shape0)
(key—shape keyO shape0)
; Key placement
(at keyO pl2)
; Robot placement
(at—robot pl6)
(arm—empty)

)

(:goal (at—robot p4))

)

Your plan as plain text without formatting:

Bellow is the 1-shot prompt for the Trip Planning task.

Please solve the problem:

You plan to visit 6 European cities for 13 days in total. You only take
direct flights to commute between cities. You want to spend 3 days in
Dublin. You would like to meet your friends at Dublin between day 7
and day 9 to tour together. You would like to visit Madrid for 2 days

You plan to visit relatives in Madrid between day 2 and day 3. You
plan to stay in Oslo for 3 days. You would like to visit London for 2
days. You want to spend 3 days in Vilnius. You plan to stay in
Berlin for 5 days. You are going to attend a wedding in Berlin
between day 3 and day 7.

Here are the cities that have direct flights:

London and Madrid, Oslo and Vilnius, Berlin and Vilnius, Madrid and Oslo,
Madrid and Dublin, London and Oslo, Madrid and Berlin, Berlin and
Oslo, Dublin and Oslo, London and Dublin, London and Berlin, Berlin
and Dublin.

Find a trip plan of visiting the cities for 13 days by taking direct
flights to commute between them.

Here is the trip plan for visiting the 6 European cities for 13 days:

#xDay 1—2:#% Arriving in London and visit London for 2 days.
#xDay 2:%% Fly from London to Madrid.

#xDay 2—3:%% Visit Madrid for 2 days.

#xDay 3:%% Fly from Madrid to Berlin.

#xDay 3—7:+%% Visit Berlin for 5 days.

#xDay 7:%% Fly from Berlin to Dublin.

#=xDay 7—9:%% Visit Dublin for 3 days.

#xDay 9:%x Fly from Dublin to Oslo.

18

Under review as a conference paper at ICLR 2025

#xDay 9—11:xx Visit Oslo for 3 days.
*x¥Day 11:#% Fly from Oslo to Vilnius.
#x¥Day 11—13:%% Visit Vilnius for 3 days.
done .

Please solve the problem:

You plan to visit 6 European cities for 17 days in total. You only take
direct flights to commute between cities. You want to spend 4 days in
Manchester. You plan to stay in Florence for 5 days. You want to
spend 3 days in Geneva. You are going to attend a wedding in Geneva
between day 1 and day 3. You want to spend 3 days in Seville. During
day 7 and day 9, you have to attend a conference in Seville. You
would like to visit Prague for 2 days. You plan to stay in Valencia
for 5 days. From day 3 to day 7, there is a annual show you want to
attend in Valencia.

Here are the cities that have direct flights:

Manchester and Prague, Seville and Manchester, Geneva and Manchester,
Valencia and Seville , Geneva and Valencia, Valencia and Prague,
Prague and Florence, Geneva and Prague.

Find a trip plan of visiting the cities for 17 days by taking direct
flights to commute between them.

Bellow is the 1-shot prompt for the Calendar Scheduling task.

Please solve the problem:
You need to schedule a meeting for Samuel, Evelyn, Ruth and Amanda for
half an hour between the work hours of 9:00 to 17:00 on Monday.

Here are the existing schedules for everyone during the day:

Samuel is free the entire day.

Evelyn has meetings on Monday during 9:00 to 10:00, 11:00 to 12:00, 12:30
to 13:00, 15:30 to 16:00;

Ruth has meetings on Monday during 9:30 to 11:00, 11:30 to 12:30, 13:00
to 13:30, 14:00 to 14:30, 15:00 to 16:00, 16:30 to 17:00;

Amanda has meetings on Monday during 10:00 to 10:30, 11:00 to 12:30,
13:00 to 13:30, 14:00 to 15:00, 15:30 to 16:00;

Amanda can not meet on Monday before 16:00. Find a time that works for
everyone 's schedule and constraints.

Here is the proposed time: Monday, 16:00 — 16:30
done.

Please solve the problem:
You need to schedule a meeting for Walter, Jacob, Jennifer and Joan for
one hour between the work hours of 9:00 to 17:00 on Monday.

Here are the existing schedules for everyone during the day:

Walter is busy on Monday during 9:30 to 10:00, 13:00 to 13:30;

Jacob has meetings on Monday during 11:00 to 11:30, 13:00 to 13:30;

Jennifer is busy on Monday during 9:30 to 10:30, 11:30 to 12:00, 12:30 to
15:00;

Joan has blocked their calendar on Monday during 9:30 to 10:00, 10:30 to
11:30, 12:00 to 12:30, 13:00 to 14:00, 14:30 to 15:30;

Find a time that works for everyone's schedule and constraints.

19

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 DATASET CREATION

In these experiments BlocksWorld dataset for 3 to 7 blocks consists of 40000 samples.

In the creation of the BlocksWorld dataset as outlined in Algorithm|[I] the key parameters include the maximum
number of blocks num_blocks and the quantity of examples 7 to be generated for each block count. Here, the
maximum number of blocks is a number greater than 3. As we use uniform sampling, this results in a linear
increase in the number of more complex examples. However, it’s important to note that as the number of blocks
increases, the simpler combinations are exhausted since all possible combinations might be included. The
methods CreateStacks generates random stacks of blocks, iteratively sampling from the available blocks to
determine stack heights until all blocks are utilized. The method CreatePro denotes a simple method to translate
the block configuration into PDDL which is python reimplementation of functionality in 4ops-Blockworld
code

Algorithm 1 Create BlocksWorld Dataset

function CREATEDATASETBW (num_blocks, n)
dataset < || > Initialize an empty list
for problem_id < 1 ton do
b < RANDOMUNIFORM(3, num_blocks)
initStacks < CREATESTACKS(b)
goalStacks < CREATESTACKS(b)
if initStacks == goalStacks then
continue > Skip equal stacks.
end if
problem <—CREATEPRO(initStacks, goal Stacks)
plan <~ FASTDOWNWARD(problem, domain,)
dataset < dataset + [(problem, plan)]
end for
return dataset
end function

Algorithm[I] we generate 28k unique samples. From these, we randomly select 25500 of the for training set and
2500 for validation set. This procedure yields a problem distribution as shown in Figure§]

B.2 MAPPINGS PDDL TO NATURAL LANGUAGE

Here we present the templates to map PDDL problems to Natural Language. Details are shown in Table[§]

B.3 SEARCH PROCEDURE PARAMETERS

The two search procedures deployed and compared alongside ICL and SFT methods, (ToT) (Yao et al.,|2023)
and monte-carlo tree search (MCTS) (Hao et al.|2023)), were implemented as specified in their original papers.
The only deviations are listed below.

The biggest deviation from the reference papers are the LLM’s prompts, which had to be edited to make the
search procedures more aligned with the planning task.

Additionally, for the MCTS procedure, the action log-probs were weighted by a factor of 1.5. All other weights
specified in the Reasoning as Planning MCTS procedure are the same (state log-probs, UCT, and exploration
lambda factor are all 1.0).

The same weights are used to compute the value of the nodes in the tree-of-thought search procedure.

5ht'cps://github.com/AI—Planning/pddl—generators/tree/main/blocksworld/4ops

20

https://github.com/AI-Planning/pddl-generators/tree/main/blocksworld/4ops

Under review as a conference paper at ICLR 2025

50
- 14
i e
§40 _124?
Q 9
© 30- I
S 10%
S o
£ 20- '8 &
Y ©
hl Q
£ 10+ L6
0 - -4

3 4 5 6 7
Average block count per problem

Figure 8: Distribution with number of blocks and average plan length.

21

Under review as a conference paper at ICLR 2025

Term (with arguments)

Mapping to Natural Language

AIRPLANE object,

CITY objects

TRUCK objects

at objecty objects

in-city objects objects

drive-truck params paramgs paramy params
load-truck paramy paramg paramy
unload-truck params params paramy
fly-airplane params paramgs paramy
load-airplane paramy params paramy
unload-airplane paramg paramg paramy
on object, objects

handempty

ontable object,

clear objects

unstack paramgy params

put-down params

pick-up paramy

stack paramg paramg

conn objects objects

lock-shape objecty objects

key-shape objecty objects

arm-empty

open objects

move paramsg paramgs

pickup params params

unlock params, params param, params
pickup-and-loose params params
at-robot objects

object, is an AIRPLANE.

objects is a CITY.

object, is a TRUCK.

object, is at objects.

objects is in the city objects.

Drive truck params, from paramg to paramy in params.
Load params into truck paramg at paramy.
Unload paramy from truck paramg in paramy.
Fly airplane paramy from paramg to paramy.
Load params into airplane params at paramy.
Unload paramy, from airplane paramg at paramy.
object, is on objects.

The hand is empty.

objects is on the table.

object, is clear.

Unstack paramy from params.

Put down params.

Pick up params.

Stack paramy on params.

objects and objects are connected.

The lock objects is objects shaped.

The key objects is objects shaped.

The arm is empty.

object, is OPEN.

Move from params to params.

Pickup param, at params.

Unlock params at paramg using param,, which has params.
At paramg, pick up paramg and lose params.
Robot is at objects.

Table 6: Semantic mappings used in the system, showing terms and their arguments.

22

Under review as a conference paper at ICLR 2025

Hyperparameter Value Description

LLM Model Gemini 1.0M The language model
used for text
generation.

LLM Temperature 1.0 Controls the

randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples 1 The number of
different outputs
generated by the
LLM for each input.

Max Depth 5 The maximum number
of steps in the
search tree.

Max Branching Factor 3 The maximum number
of actions to
consider at each
node.

Num Simulations 3 The number of times
to simulate the
game from each
node.

Table 7: Monte Carlo Tree Search (MCTS) Hyperparameters

23

Under review as a conference paper at ICLR 2025

Hyperparameter

Value

Description

LLM Model

Gemini 1.0M

The language model
used for text
generation.

LLM Temperature

1.0

Controls the
randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples

The number of
different outputs
generated by the
LLM for each input.

Max Depth

The maximum number
of steps in the
thought process.

Max Branching Factor

The maximum number
of alternative

thoughts to

explore at each

step.

Num Simulations

The number of
rollouts for each
thought to
simulate.

Table 8: Tree of Thought (ToT) Hyperparameters

24

Under review as a conference paper at ICLR 2025

Prompt Name Prompt Content

Given the provided state and

action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]
MCTS_STATE_PROMPT blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]

[STATE]
[CONTEXT] {state} [END
CONTEXT] Given the

preceding task, and action,
what action should be taken
next? Only take a SINGLE STEP

MCTS_ACTION_PROMPT

at a time. Any composite
actions will be penalized.
[ACTION]

Table 9: MCTS Agent Prompts

B.4 FINETUNE EXPERIMENTS

For the fine tuning of the Gemini 1.0 S, we use learning rate of 0.0001 with drop out rate of 0.1. We train the
model for 5k step and choose the checkpoint with highest accuracy on the validation set. We then run the verifier

on the inference results of that checkpoint and report the results.

C ERROR ANALYSIS: ADDITIONAL PLOTS

As mentioned in Section[d] for Logistics SFT experiments the three categories of the error are all present, for
example, in the Id setting for 3-5 packets, number of correct instances are 317/500 and the distribution of failure
modes are 57/500, 125/500, 1/500 for categories (1), (2), (3) respectively. and in the OOD setting of 1-2 packet
to 3-5 packet case, number of correct instances are 54/500 and the distribution of failure modes are 180/500,

237/500, 29/500 for categories (1), (2), (3) respectively.

Number of Plans.

3
2
: I
1
3
3 3 g 15] D s
% 4 8 12 16 24 28

2
Failure Step.

Distribution of Step that Plan Fails with Action when Constraints Not Met

pick-up
m— unstack
- stack

2
Failure Step

(a) Failure Cases 3-7 ICL (b) Failure Cases 3-7 SFT

Figure 9: Side by side portray of Failure cases where constraints are not met for BlocksWorld 3-7
blocks cases in ICL and SFT scenarios per step number color coded by action name.

(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 10: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for Logistics 3-5 packets. As the number of blocks increases the number

of successful cases decreases.

25

Under review as a conference paper at ICLR 2025

Prompt Name Prompt Content

Given the provided state and
action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]

MCTS_STATE_PROMPT blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]
[STATE

[CONTE%T] {state} [END
CONTEXT] Given the
preceding task, and action,
what action should be taken
MCTS_ACTION_PROMFPT next? Only take a SINGLE STEP
at a time. Any composite
actions will be penalized.
[ACTION]

Table 10: Tree-of-Thought Prompts

Table 11: CalendarPlan Performance with search procedures (ToT, MCTS) per number of few-shot examples
provided to the procedure. We observe that for contexts fitting within Gemini 1.0M, it competes with significantly
more powerful models. Without these methods, the model fails outright.

Gl.OM GI1.OM Gl1.5 GPT4
N ToT MCTS Flash Turbo

1 29 28 39 19
4 33 39 50 64
10 31 36 58 71
Dataset Train Size Test Size
BW(3-7) 28,386 500
BW(8-9) 3,995 500
BW(8-20) 4,160 500
Logistics(1-2) 13,483 500
Logistics(3-5) 13,483 500

Table 12: Details of the dataset size

Distribution of Step that Plan Fails with Action when Constraints Not Met
-

= load-airplane

Number of Plans

3

B
Failure Step.

2

9

6

3 |
| 1] 1 i
5 3 7 o HE EEm
o 3 3 9 12 15 18 2 2
Failure Step

(a) Failure Cases Logistics ICL (b) Failure Cases Logistics SFT

Figure 11: Side by side portray of Failure cases where constraints are not met for Logistics 3-5
packets cases in ICL and SFT scenarios per step number color coded by action name.

26

Under review as a conference paper at ICLR 2025

Travel Plan Task Lengths Calendar Plan Task Lengths
10000 120000

100000
8000
80000

60000
40000
3 4 5 6 7 8 9 10

0

6000

of Tasks
of Tasks

4000

2000

[

5 6 7 8
Length of Solution (Cities Travelled) Length of Solution (Participants in Scheduling)

(@) (b)

Figure 12: Histogram of # of tasks by task-length in the Travel Plan and Calendar Plan natural
language tasks.

27

	Introduction
	Related Work

	Benchmark
	PDDL Benchmarks
	Native Natural Language Planning Benchmarks

	Experiments
	In-context learning
	Many-shot in-context learning
	Effect of inference time techniques

	Supervised Fine Tuning (SFT)
	Plan generalization
	Comparison with PlanBench

	Investigating Failure Cases
	Conclusion
	Prompts
	Experimental Details
	Dataset Creation
	Mappings PDDL to Natural Language
	Search Procedure Parameters
	Finetune experiments

	Error Analysis: additional plots

