
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING AND BENCHMARKING PLANNING CAPA-
BILITIES OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Classical and natural language planning tasks remain a difficult domain for modern
large language models (LLMs). In this work, we lay the foundations for improving
planning capabilities of LLMs. First, we construct a comprehensive benchmark
suite encompassing both classical planning benchmarks and natural language
scenarios. This suite includes algorithms to methodically generate instances of tasks
with varying levels of difficulty, allowing for rigorous and systematic evaluation of
LLM performance. Next, we investigate the use of many-shot in-context learning
to enhance LLM planning, exploring the relationship between increased context
length and improved planning performance. In addition, we demonstrate the
positive impact of fine-tuning LLMs on optimal planning paths. We also probe
the efficacy of chain-of-thought reasoning methods to improve LLM planning
performance. Moreover, we probe the performance of the proposed methods in
out-of-distribution scenarios, assessing the ability to generalize to novel and unseen
planning challenges. Finally, we investigate model’s failure modes and reveal
insights that hold true across different benchmarks.

1 INTRODUCTION

Intelligent agents require the ability to plan to proactively chart a course of action to achieve their
objectives. This capacity for strategic foresight is considered fundamental to intelligent behav-
ior (Russell & Norvig, 2016). While classical search algorithms have long been the cornerstone of
planning studies, machine learning techniques, particularly Monte-Carlo Tree Search (MCTS) and
reinforcement learning, have emerged as useful additions, significantly expanding the capabilities of
modern planning systems.

With the advent of powerful large language models (LLMs), there are new opportunities to both
revisit classical planning problems, and to further explore new problems through natural language
specification that reflects the ambiguity and uncertainty of real-world domains. Planning capability
is important for many tasks such as game playing, meeting scheduling and trip planning. Research
is already underway to leverage the commonsense knowledge of LLMs in real-world tasks (Huang
et al., 2022; Singh et al., 2023; Ding et al., 2023) and to generate sensible plans (Valmeekam et al.,
2023; Hao et al., 2023; Guan et al., 2024). This research has shed some light on LLMs’ struggle with
planning tasks. Even state-of-the-art LLMs may produce ineffective or even incorrect plans, even in
straightforward scenarios. Our paper focuses on analyzing and improving the planning capability of
LLM systems.

We provide a scalable benchmark suite in both PDDL and natural language to measure planning
capability of LLMs. Specifically, we explore two distinct planning representations: the formal
Planning Domain Definition Language (PDDL) (McDermott et al., 1998), which provides a stan-
dardized representation for classical planning problems and allows for rigorous plan validation; and
natural language, which offers a more flexible and intuitive representation better reflecting real-world
scenarios. For both scenarios, we provide a code for generating as many instances with a degree of
difficulty of choice. We also provide a mapping method for translating PDDL benchmarks to natural
language and measure the performance of the generated benchmarks. The generated planning tasks
are scalable and can grow to examine and assist stronger models. Figure 1 depicts a simple sample
of BlocksWorld benchmark with description both in PDDL and natural language. Each instance in
BlocksWorld consists of a set of blocks, a table and a robot hand, where the goal is to move from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

C B

A C

B

A

Initial-State Goal

PDDL
(define (problem BW) (:domain blocksworld-4ops)
(:objects A B C) (:init

(handempty)
(ontable C) (clear C)
(on A B) (clear A))

(:goal (and (on C B) (on A C))))

Planning: LLM generates PDDL.
(unstack A B) (put-down A)
(pick-up C) (stack C B)
(pick-up A) (stack A C)

Problem in Natural Language
The initial state:
The hand is empty.
C is on the table. C is clear.
A is on B. A is clear.
The goal is: C is on B. A is on C.

Planning: LLM generates NL plan
Unstack A from B. Putdown A on the table.
Pickup C from the table. Stack C on B.
Pickup A from the table. Stack A on C.

Figure 1: A simple instance of BlocksWorld planning benchmark: visual, PDDL and natural language
descriptions side by side. Problem definition includes list of objects, initial and goal states. We have
also included LLM’s output plan in the in-context learning scenario of Figure 2.

one block configuration to another. The problem definition includes list of objects, initial and goal
states. The figure also includes the LLM’s output plan from the in-context learning scenario, which
we extensively analyze using various LLM models and benchmarks in Figure 2.

We explore the planning capability of LLMs using both In Context Learning (ICL) through the
many-shot paradigm as well and through chain-of-thought (CoT) (Wei et al., 2022) inference time
techniques; we also explore fine-tuning strategies. We observe that carefully instructing the model
using ICL leads to a significant boost in planning performance, which can be further improved by
using a many-shot approach with long context. Moreover, CoT reasoning strategies (MCTS, Tree-of-
thought, debate-as-reasoning) allow smaller models to perform closer to SoTA frontier models in the
natural language task domain. Our results show that fine-tuning with the optimal plan can lead to
near-perfect accuracy, even when using relatively small models.

Next, we investigate both in-domain and out-of-domain generalization and note that the proposed
plans demonstrate excellent in-domain generalization: instances with similar complexity are solved
with similar levels of accuracy. For ICL, prompting with easier instances leads to better performance
on hard instances compared to prompting with hard instances. Fine-tuning leads to better performance
for both in-domain and out-of-domain scenarios, even with a much smaller model, compared to ICL
with long-context.

Lastly, we probe the failure modes of the model. We categorize the failure modes into three categories:
failure to satisfy environmental constraints, failure to meet the goal and failure to generate legal
actions in a given state. We note that not all of these failure modes are present across all benchmarks
and methods. Moreover, as the instance complexity increases the model success rate decreases.
Additionally, we pinpoint failure modes that are result of biases in training data emphasizing the
importance of data curation during training.

1.1 RELATED WORK

Prior works investigations the planning capabilities of LLMs, have found that these models struggle
to solve planning tasks (Hao et al., 2023; Valmeekam et al., 2023; 2024; Kambhampati et al., 2024),
In contrast, we show that LLMs can be capable of solving such tasks and one can reach near-perfect
accuracy for some scenarios, with certain methods. We run experiments on the same BlocksWorld
benchmark as these prior works, and generate additional difficult cases (i.e., adding more blocks).
Similar to these works, we also use PDDL verifiers to compute accuracy. See Section 3.4 for details.

Xie et al. (2024) proposed a TravelPlanner benchmark and showed GPT4-Turbo can solve some of
the benchmark tasks with a success rate of 0.6%. The TripPlanner benchmark used in our work has
two main differences: it is not an agent-based environment and rather a natural language benchmark,
and it has unique answers due to carefully designed constraints.

Stechly et al. (2024) suggests that LLMs are not capable of generalizing their plans on BlocksWorld
if one uses chain-of-thought (CoT) (Wei et al., 2022). In this work we show positive results in terms
of generalization performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

There is another line of work that uses a hybrid approach, meaning that they either use an external
tool to solve the planning tasks (Kambhampati et al., 2024; Hirsch et al., 2024), or reformulate the
problem as another task such as SMT (Hao et al., 2024) and use an external tool to solve it. Lehnert
et al. (2024) use A∗ as search mechanism and a specific transformer architecture to achieve planning
capability for that specific architecture. We differ from this line of work in that we focus on teaching
LLM itself to perform the planning task.

In addition to standard few-shot prompting, we also make use of inference time techniques that
construct a chain-of-thought (Wei et al., 2022), namely tree-of-thought (ToT) (Yao et al., 2023) and
Monte-Carlo Tree Search (MCTS) (Hao et al., 2023) and debate-as-reasoning (Du et al., 2023) We
demonstrate that these methods can considerably improve an LLMs planning capabilities such that
smaller open-source models that use these approaches can outperform larger foundational models.

2 BENCHMARK

To evaluate the planning capabilities of LLMs, we assemble a benchmark suite that appropriately
represents various classical and natural-language planning tasks. On these benchmarks, we assess
LLM performance using In-Context Learning (ICL), Supervised Fine-Tuning (SFT), and chain-of-
thought (CoT) methods for planning.

PDDL (Planning Domain Definition Language): PDDL McDermott et al. (1998) is a standardized
language used in artificial intelligence for representing planning problems. PDDL provides a formal
way to describe the initial state of an environment, a goals, the space of valid actions, and the state-
transition properties of actions in the environment. PDDL has two main components (1) Domain:
Describes the general characteristics of the planning problem, including the types of objects, actions,
and predicates (conditions that can be true or false). (2) Problem: Defines a specific instance of
the planning problem within the domain, including the initial state of the world and the goals to be
achieved.

We select three datasets that use PDDL, generated additional subsets of them, and additionally
map these datasets to natural language for an additional evaluation task. Additionally, we select two
native natural language datasets, containing Trip Planning and Calendar Scheduling tasks (Zheng
et al., 2024). For the PDDL-based datasets, we select BlocksWorld, Logistics, and Mini-Grid. We
then translated the PDDL problem descriptions from these datasets into natural language to compare
performance when using formal and informal representations.

2.1 PDDL BENCHMARKS

The creation of all PDDL datasets follows a three-step procedure. (1) Initially, the process involves
the creation of an initial state and a goal (target state). (2) Subsequently, the initial state and goal are
utilized to formulate a problem in PDDL. (3) Finally, the problem is solved using a classic planner
Fast-Downward1.

This procedure is repeated with increasingly difficult configurations for a select number of problems.
The result of this procedure are additional datasets that comprise a set of PDDL problems and solutions
of various difficulty. Importantly, this procedure enables us to create datasets with increasingly
difficult problems and any number of samples, which are appropriate for assessing the ability to plan
using different methods, such as in-context learning versus Supervised Fine-Tuning. Moreover, we
can scale the dataset generation and create as many instances as needed for different investigations.
We provide the details of our benchmark suite below.

We perform planning for BlocksWorld, Logistics and Minigrid both for PDDL and Natural Language.
For the mapping to natural language, we use a slot filling technique which maps each predicate of
the initialization and goal as well the action to sentences (Appendix B.2). For the verification of the
plans, we use regular expressions to map the plan in Natural Language back to PDDL.

BlocksWorld: BlocksWorld is a standard planning problem from International Planning Conference
(IPC)-2000 2. This domain consists of a set of blocks, a table and a robot hand, where the goal is to

1https://github.com/aibasel/downward
2https://github.com/potassco/pddl-instances/tree/master/ipc-2000

3

https://github.com/aibasel/downward
https://github.com/potassco/pddl-instances/tree/master/ipc-2000

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

move from one block configuration to another. We generate a dataset for 3 to 7 blocks. As detailed in
the Appendix B.1, we produced 28k unique BlocksWorld samples. From these, 25.5k were randomly
selected for the training set and 2,500 for the validation set.

Logistics: Logistics is an AI planning problem from IPC-1998 3 expressed in PDDL that involves
arranging the delivery of packages to their destinations using trucks within cities and airplanes
between cities. The aim is to optimize transportation modes under constraints such as vehicle
capacities and locations, showcasing model’s ability to manage multi-step logistics efficiently.

Mini-Grid: Mini-Grid is a task from Artificial Intelligence Planning Systems (AIPS)-1998 4, also
expressed in PDDL. We create various floorplans with rooms containing random configurations of
key shapes. The goal then is for a robot to navigate from an initial position to a designated goal cell.

2.2 NATIVE NATURAL LANGUAGE PLANNING BENCHMARKS

Trip Planning: Trip Planning is a task from NaturalPlan (Zheng et al., 2024) benchmark focusing
on planning a trip itinerary under given constraints. The goal of the task is to find an itinerary
satisfying constraints such as the order of visiting N cities. It includes enough constraints for each
instance such that there is only one solution to the task, which makes the evaluation of the predictions
straightforward.

Calendar Scheduling: Calendar Scheduling from the NaturalPlan (Zheng et al., 2024) benchmark
represents the task of scheduling a meeting of either 30 minutes or an hour among up to 7 attendees.
The attendees may have a busy schedule or a light schedule with less than half of the working hours
spent in meetings.

3 EXPERIMENTS

Previous works demonstrated that, without intervention, LLMs often struggle with even simple
planning tasks (Hao et al., 2023; Valmeekam et al., 2023; 2024; Kambhampati et al., 2024). LLMs
often lack the information on how to structure their plan constructively, and struggle to plan around
the enumerated constraints. In this section we present our experimental results for the interventions
we investigate, demonstrating that they lead to significant improvements to the LLMs planning
capability. We also investigate plan generalization (i.e., the ability to generalize to unseen instances)
in several scenarios.

For PDDL experiments, we measure accuracy of the generated plan with a verifier (Fox & Long).
For natural language experiments we rely on either recasting the task to PDDL and verifying with
a verifier, or extracting the answer and comparing it to expected results (Zheng et al., 2024). In all
experiments, GPT-4 refers to GPT-4 Turbo and we may omit "Turbo" for space constraints, also if we
do not mention Pro or Flash Gemini 1.5 refers to Gemini 1.5 Pro.

3.1 IN-CONTEXT LEARNING

For in-context learning (Brown et al., 2020), we adhere to the standard procedure, employing a prompt
containing several examples for the task. Each example comprises a planning problem statement and
its corresponding solution, referred to as a shot. Following the examples, the test problem is added
without the corresponding solution. Subsequently, an LLM receives this prompt and is expected to
generate a plan following the format and logic of the examples in the prompt. See Appendix A for
examples of prompts.

3.1.1 MANY-SHOT IN-CONTEXT LEARNING

We evaluate the planning capability of the model as we add more examples (“shots") into the context,
inspired by the success of many-shot learning across a large number of tasks (Agarwal et al., 2024).
The challenge of “in-context planning" involves understanding a specific task and problem through
a limited number of examples. Additionally, it requires the models to produce a solution without

3https://github.com/potassco/pddl-instances/tree/master/ipc-1998
4https://github.com/AI-Planning/pddl-generators/tree/main/minigrid

4

https://github.com/potassco/pddl-instances/tree/master/ipc-1998
https://github.com/AI-Planning/pddl-generators/tree/main/minigrid

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

60

70

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Planning: Blocksworld nl

Gemini 1.5 Pro
Gemini 1.5 Flash

Gemma 2 27b
GPT-4 Turbo 20240409

0.4
k

0.6
k

1.1
k

2.4
k

4.7
k

9.2
k

22
.9k

45
.6k

91
.1k

Sentence pieces in 1000 (log scale)

(a) BlocksWorld - Natural Language

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

60

70

80

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Planning: Logistics

Gemini 1.5 Pro
Gemini 1.5 Flash

Gemma 2 27b
GPT-4 Turbo 20240409

0.7
k

1.1
k

1.9
k

4.3
k

8.3
k

16
.3k

40
.2k

80
.1k

15
9.8

k
Sentence pieces in 1000 (log scale)

(b) Logistics - Natural Language.

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

20

40

60

80

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Planning: Minigrid

Gemini 1.5 Flash
Gemini 1.5 Pro

Gemma 2 27b
GPT-4 Turbo 20240409

2.6
k

3.8
k

6.5
k

14
.3k

27
.0k

53
.6k

13
2.0

k
26

2.5
k

52
3.7

k
Sentence pieces in 1000 (log scale)

(c) Mini-Grid - Natural Language.

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

60

70

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Planning: Blocksworld

Gemini 1.5 Pro
Gemini 1.5 Flash

Gemma 2 27b
GPT-4 Turbo 20240409

0.4
k

0.7
k

1.2
k

2.8
k

5.5
k

10
.8k

26
.8k

53
.5k

10
6.8

k
Sentence pieces in 1000 (log scale)

(d) BlocksWorld - PDDL.

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

60

70

80
Pl

an
ni

ng
 A

cc
ur

ac
y

(%
)

Error bars represent a 70% CI

Planning: Logistics

Gemini 1.5 Pro
Gemini 1.5 Flash

Gemma 2 27b
GPT-4 Turbo 20240409

0.9
k

1.3
k

2.3
k

5.1
k

9.7
k

19
.1k

47
.1k

93
.7k

18
7.1

k
Sentence pieces in 1000 (log scale)

(e) Logistics - PDDL.

1 2 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

20

40

60

80

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Planning: Minigrid

Gemini 1.5 Flash
Gemini 1.5 Pro

Gemma 2 27b
GPT-4 Turbo 20240409

2.6
k

3.9
k

6.4
k

13
.9k

27
.2k

53
.1k

13
3.5

k
26

5.5
k

52
9.6

k
Sentence pieces in 1000 (log scale)

(f) Mini-Grid - PDDL.

Figure 2: PDDL Planning and Natural Language Planning with few-shots for different LLMs. Natural
language text are generated from formal PDDL problem definitions.

checking each planning step to confirm if a proposed move is correct. The model has to create a plan
in a single inference step, keeping ‘in mind’ all the constraints the task imposes.

Figure 2 shows the in-context learning performance on classical planning and natural language
benchmarks as we vary the number of shots. We consider Gemini 1.5 Pro (GeminiTeam et al.,
2024b), GPT-4 Turbo (OpenAI et al., 2024), Gemini 1.5 Flash (GeminiTeam et al., 2024b) and
Gemma 2 27b (Team et al., 2024) models. Overall, we notice that for natural language and PDDL
scenarios, models have similar trends in terms of planning accuracy as we increase the number
of shots. Moreover, different models are impacted differently as we provide additional number of
shots, e.g., Gemini 1.5 Pro outperforms other models both in one shot scenario and as we increase
the number of shots; indicating that the model not only can plan better with a fewer number of
examples/shots, it can also make effective use of additional and longer context. Gemini 1.5 Flash -a
smaller, faster and more efficient model than Gemini 1.5 Pro is generally outperformed by Gemini
1.5 Pro but occasionally matches GPT-4 performance.

BLOCKSWORLD: Figure 2a, 2d show the performance of Gemini 1.5 models on this benchmark
as we increase the number of few-shot examples. We note that as we increase the number of shots
GPT-4 performance increases while Gemini 1.5 Pro’s performance saturates or degrades as we go
beyond 40 shots. The 1-shot planning capability of Gemini 1.5 Pro and Gemini 1.5 Flash reaches
reaches 35% and 26%, while GPT-4 performance is close to zero. Moreover the 40-shots planning
capability of Gemini 1.5 Pro reaches 48% range which performs better than the best (200-shots)
performance of GPT-4, which peaks at 43%.

LOGISTICS: The planning capabilities of GPT-4 and Gemini 1.5 models on the Logistics benchmark
are shown in Figure 2e for PDDL and in Figure 2b for Natural Language. The 1-shot planning
capability of Gemini 1.5 Pro reaches 43% for PDDL and for Natural Language 48%. Moreover for
Gemini 1.5 Pro increasing the context consistently lead to better results, indicating that the model can
make effective use of additional contexts. For Gemini 1.5 Flash and GPT-4, the performance drops
slight for PDDL and Natural Language.

MINI-GRID: Figure 2f and Figure 2c show the performance of GPT-4 and Gemini models as
we increase the number of few-shot examples for PDDL and Natural Language, respectively. The
Gemini models perform comparably for both PDDL and Natural Language, although GPT-4 appears

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1 4 10 20 40 10
0

20
0

40
0

80
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)
Error bars represent a 70% CI

Gemini 1.5 Flash
Gemini 1.5 Pro
GPT-4 Turbo 20240409

0.7
k

1.5
k

3.8
k

8.5
k

17
.3k

45
.4k

89
.5k

17
8.3

k
35

5.4
k

Sentence pieces in 1000 (log scale)

(a) Trip Planning.

1 4 10 20 40 10
0

20
0

40
0

Few-shot exemplars (log scale)

0

10

20

30

40

50

60

Pl
an

ni
ng

 A
cc

ur
ac

y
(%

)

Error bars represent a 70% CI

Gemini 1.5 Flash
Gemini 1.5 Pro
GPT-4 Turbo 20240409

0.7
k

1.6
k

3.8
k

7.3
k

13
.6k

34
.6k

70
.6k

14
4.6

k
Sentence pieces in 1000 (log scale)

(b) Calendar Scheduling.

Figure 3: Natural Language Planning with few-shots using native natural language datasets.

to perform slightly better with Natural Language. Increasing the number of few-shot examples leads
to better performance for all models. With 400 shots, Gemini 1.5 Pro reaches 77% accuracy.

TRIP PLANNING AND CALENDAR SCHEDULING: Figure 3a shows the performance on the Trip
Planning and Calendar Scheduling natural language tasks as we increase the number of few-shot
examples, respectively. We observe that, in both benchmarks, for both GPT-4 and Gemini 1.5 Flash
the performance first increases with the number of shots and after a certain point, having more
shots leads to worse model performance. However, for Gemini 1.5 Pro performance improves as
the number of shot increases. Therefore, Gemini 1.5 Pro seems to be making more efficient use of
additional shots compared to the other two. On the other hand GPT-4 performs better in the 1-shot
scenario compared to the other two models for Trip Planning, while Gemini 1.5 Pro has a higher
accuracy in the 1-shot setting.

Overall, we observe that the trend of accuracy vs number of shots depends both on the model and on
the benchmark.

3.1.2 EFFECT OF INFERENCE TIME TECHNIQUES

In addition to standard ICL, we consider inference time ICL methods that are based on constructing
a chain-of-thought (Wei et al., 2022): Tree-of-Thought (ToT) (Yao et al., 2023), Monte Carlo Tree
Search (MCTS) (Hao et al., 2023), and Debate-as-reasoning (Du et al., 2023). In Figure 4 we provide
experimental evidence that methods such as Debate-as-reasoning, MCTS, and ToT can augment
Gemma2 27B (considerably smaller than Gemini 1.5 and GPT-4 models), to be competitive with GPT-
4, Gemini 1.5 Pro and Gemini 1.5 Flash at smaller few-shot context lengths. Additional details and
parameters for these search methods are included in Appendix B.3. These results demonstrate how
inference-time reasoning procedures using smaller open-source models can perform competitively
with larger foundational models in the natural language planning domain.

However, the ability of these methods to scale to few-shot examples seems to be less significant
than larger foundational models. Specifically, for the Travel Scheduling task, the larger models all

Figure 4: Calendar Scheduling (left) and Travel Scheduling (right) tasks with reasoning procedures
(ToT, MCTS, and Debate). We use Gemma2 27B to perform these procedures, and compare with
GPT-4 and Gemini 1.5 models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

outperform the CoT methods after 4 few-shot examples. It is unclear if this scaling trend is a result of
the underlying model (Gemma2 27B) or the method itself.

Most interesting to note is the performance of debate-as-reasoning, which, despite not being an
explicit search or planning strategy, works comparatively to MCTS in both tasks. This indicates
that, for some planning tasks, even unstructured CoT style inference methods are competitive with
explicit search-based CoT methods, and larger foundational models with ICL. This may indicate that,
for natural language planning tasks, allowing the model to construct a CoT and consider multiple
solutions may be more valuable then the specific method behind constructing the CoT.

3.2 SUPERVISED FINE TUNING (SFT)

Supervised fine tuning (SFT) (Ouyang et al., 2022) has proved to be an effective method for teaching
LLMs various capabilities. In this section, we investigate the effect of Supervised Fine Tuning (SFT)
with optimal plan on planning capability of LLMs. We use the Fast-Downward classical planner to
generate the optimal plan. We specifically ran experiments on Gemini 1.0 S (GeminiTeam et al.,
2024a) and investigate planning performance for two different benchmarks with different levels of
difficulty, namely, we look into 5 scenarios: BlocksWorld with 3-7 blocks, 8-9 blocks or 8-20 blocks,
and Logistics with 1-2 packets, or with 3-5 packets. The data size and splits are documented in
Appendix B.4.

The results are shown in Table 1. We observe that SFT leads to high accuracy for some instances
of both datasets and outperforms many-shot ICL. The performance appears to drop as the planning
problem becomes more difficult.

Table 1: Impact of SFT on accuracy, for
BlocksWorld: instance of 3-7, 8-9 and 8-
20 blocks, and for Logistics: instances of
1-2 and 3-5 packets.

Model Gemini 1.0 S
BlocksWorld(3-7) 96.26
BlocksWorld(8-9) 92.6
BlocksWorld(8-20) 67.00
Logistics(1-2) 99.8
Logistics(3-5) 63.4

Table 2: Plan generalization analysis for in-
stances of BlocksWorld of different number
of blocks in SFT scenarios, for Gemini 1.0
S. Accuracy is in %. Accuracy is measured
by a verifier.

Finetune data Eval data Accuracy
BW(3-7) BW(3-7) 96.26
BW(3-7) BW(8-20) 34.20
BW(8-20) BW(3-7) 98.27
BW(8-20) BW(8-20) 67.00

3.3 PLAN GENERALIZATION

For any LLM application, the question of how well the method generalizes to out-of-training-
distribution (OOD) inputs is always present. Here, we investigate how LLM planning generalizes.
Plan generalization has three main categories: (1) Generalize to unseen instances of the same environ-
ment (2) Generalize to renaming of actions and objects (3) Generalize to unseen plan environments.
We focus on the first category which sits at the core of the desired capability.

For these generalization experiments, we consider BlocksWorld and Logistics benchmarks with
various difficulty levels (as described in Section 3.2). We look into performance of both SFT and
ICL approaches. Tables 2 shows generalization performance for BlocksWorld in SFT setting for
BlocksWorld 3-7, 8-20 split and Table 3 considers generalization between BlocksWorld 3-7 and 8-9
blocks split for both SFT and ICL with different models and number of shots. Table 4 depicts plan
generalization for Logistics benchmark for splits of 1-2 and 3-5 packets.

Our analysis reveals several key findings: (1) Superiority of SFT: SFT consistently outperforms ICL
across both benchmarks, even when utilizing a smaller model for SFT. This suggests that SFT’s
explicit training process, focused on the specific task, leads to more effective learning and better
generalization. (2) In most ICL scenarios, training the model on easier instances first results in
improved performance on harder examples, e.g., see Table 3, rows 1-4 and 6. (3) Limitations of hard
example training: Contrary to some expectations, training the model exclusively on hard examples
does not always translate to better performance on easier ones (for example, see Table 3 rows 2, 4-6).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This suggests that a balanced approach, incorporating both easy and hard examples, might be optimal
for achieving well-rounded performance.

Table 3: OOD accuracy for BlocksWorld splits 3-7 and 8-9 blocks.

Model Name

Train data
3-7 8-9

Eval data
3-7 / 8-9 3-7 / 8-9

Gemini 1.5 Flash (1 Shot) 26.4 / 13.7 32.9 / 12.3
Gemini 1.5 Flash (70 Shot) 35.7 / 23.3 27.6 / 11.0
Gemini 1.5 Pro (1 Shot) 40.0 / 25.6 39.0 / 20.3
Gemini 1.5 Pro (70 Shot) 46.3 / 36.3 38.3 / 18.4
Gemini 1.0 S (1 Shot) 3.68 / 0.331 2.99 / 1.35
Gemini 1.0 S (70 Shot) 12.4 / 2.33 3.99 / 1.68
Gemini 1.0 S (SFT) 96.3 / 81.6 96.0 / 92.6

Table 4: OOD accuracy for Logistics tasks splits of 1-2, 3-5 packets.

Model Name

Train data
1-2 3-5

Eval data
1-2 / 3-5 1-2 / 3-5

Gemini 1.5 Flash (1 Shot) 18.3 / 1.35 26.7 / 1.00
Gemini 1.5 Flash (30 Shot) 12.7 / 1.67 19.7 / 1.33
Gemini 1.5 Pro (1 Shot) 35.3 / 9.03 57.6 / 7.01
Gemini 1.5 Pro (30 Shot) 56.4 / 11.3 62.7 / 8.04
Gemini 1.0 S (1 Shot) 7.0 / 0.0 5.33 / 0.0
Gemini 1.0 S (30 Shot) 9.99 / 0.336 8.00 / 0.662
Gemini 1.0 S (SFT) 99.8 / 10.8 98.0 / 63.4

3.4 COMPARISON WITH PLANBENCH

Valmeekam et al. (2023) proposed a benchmark for planning that maps domain definitions to
instructions and problem statements into natural language using zero-shot and one-shot techniques.
We utilize their dataset on BlocksWorld, as the problems are comparable. Unlike their approach, which
limits problems to configurations of 3, 4, and 5 blocks using only zero-shot and one-shot prompting,
our work extends this using for ICL up to 7 blocks and by employing many-shot prompting.

Table 5 compares results using the natural language prompts from Valmeekam et al. (2023)(their
dataset is referred to as Val-BW) and, novel to this work, presents results on PDDL for their datasets
using both 1-shot and 2-shot techniques.

We utilize the natural language prompts from (Valmeekam et al., 2023) test them on Gemini 1.5 Pro.
We observe that GPT-4 performs better with these prompts. For our dataset, no such difference is
observed. Manual inspection reveals that especially 1-shot prompts need to be crafted carefully while

Table 5: Accuracy (in %) comparing the state of the art for different datasets and systems. Val-BW
denotes BlocksWorld dataset as open-source by Valmeekam et al. (2023).

Dataset LLM Shots Type No. of Blocks
3 4 5

Val-BW GPT-4 Turbo 1 NL 49.0 32.4 23.2
Val-BW Gemini 1.5 Pro 1 NL 30.0 18.4 14.2
Val-BW Gemini 1.5 Pro 1 PDDL 60.0 36.4 23.6
Val-BW Gemini 1.5 Pro 2 PDDL 68.0 46.2 30.9
Our-BW Gemini 1.5 Pro 1 NL 66.0 38.5 32.4
Our-BW Gemini 1.5 Pro 2 NL 66.0 58.5 53.9
Our-BW Gemini 1.5 Pro 1 PDDL 100 44.6 32.0
Our-BW Gemini 1.5 Pro 2 PDDL 100 44.6 50.9

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 5: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for BlocksWorld 8-20 blocks. As the number of blocks increases the
number of successful cases decreases.

few-shot or many-shot prompts are more robust. For instance, results improve when the prompts are
more specific about the output format, changing from ’My plan is as follows’ to ’Your plan as plain
text without formatting’, which enhances results for Gemini 1.5 Pro. Further, our prompts do not
include explanations of the actions and we do not use color coding for the blocks but rather keep the
names (e.g., blue block vs block b3).

4 INVESTIGATING FAILURE CASES

In this section, we analyze the outcome of various approaches to improving LLM planning perfor-
mance, and dive into a more detailed categorization of failure modes.

The LLM planning failure modes we observed can be classified into the following three categories:

(1) Constraint Violation: The model fails to satisfy one of the explicitly declared environment
constraints. i.e., it ignores one of the conditions required to be able to do an action. Even if this
happen only for one instance of an action and not for all instances of the same action. For example
model wants to put block b1 on block b2 while block b2 is not empty.

(2) Failure to meet the goal: The model makes a plan that meets the environment constraints but does
not reach the goal state at the end of the trajectory.

(3) Out-of-vocabulary actions: The model proposes actions which are not in the environment’s action
space.

PDDL benchmarks Here we examine the failure modes for both the Blocksworld and Logistics
domains and SFT, ICL setting. Due to space constraints we report Blocksworld SFT settings here
and refer the reader to Appendix C for the rest of plots and analysis. First we look at the effect
of distribution of number of blocks in the planning instance. We compare Figure 5a that includes
successful eval cases of BlocksWorld 8-20 blocks to, to all its eval data in Figure 5b respectively.
We note that the model failure cases increases as the number of blocks in the problem increases.
We also separate the reasons of failure in BlocksWorld 8-20 instances as seen in Figure 5c and
Figure 5d respectively.Note that failure mode (3) does not happen for BlocksWorld benchmark in
SFT or ICL settings and for Logistics in ICL setting, but for Logistics benchmark in SFT settings all
three categories are present (see Appendix C for details).

Next, We study the distribution of number of blocks in out-of-domain cases focusing on BlocksWorld
3-7 to 8-20 blocks generalization. Comparing the successful cases in Figure 6a to all the eval samples
in Figure 5b, we observe that the generalization performance of the model that is trained on 3-7
blocks drops as the number of eval blocks increases from 8 to 20.

To probe the models even further, we look into the category where the generated plan fails to satisfy
one of the environment constraints. We study the step at which the plan fails to meet the constraint.
Considering Figure 6b and comparing it to Figure 6c, the model seems to have trouble generalizing
from the beginning, having the majority of its failures concentrated on earlier steps. This trend stays
true for Logistics benchmark as well and is due to the fact that models go deep before they go wide
when they want to produce the plan output. In other terms, this gives the intuition that the model
seems to get overwhelmed when encountering difficult unseen examples, leading to failure from the
beginning by not satisfying the constraints.

In addition, looking at the granular level of which actions that cause the failure in Figure 6b, we note
that the model has learned a correlation between the step number and the action it chooses, leading

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Success. OOD generalization (b) Fail. OOD generalization (c) All cases

Figure 6: BlocksWorld 3-7 to 8-20 OOD scenario (a)Success per number of blocks (b) investigation
of failures in constraint violation per plan step, color coded by action where the constraint violation
happens (c) distribution of all cases per plan steps.

(a) TravelPlan errors by length (b) CalendarPlan errors by length

Figure 7: Error Analysis for various CoT reasoning strategies in the TravelPlan and CalendarPlan
natural language tasks

to having stack and un-stack not having any mutual failure step. This is also observed in failure
modes of BlocksWorld 3-7 both for ICL and SFT scenarios (see Figure 11 in Appendix C). Further
investigation of training data confirms this observation.

Natural Language benchmarks Since TravelPlan and CalendarPlan benchmarks require plans that
do not involve sequential execution of actions, the only failure mode we consider is failure mode (2) -
failure to reach a goal state. All errors discussed in this subsection are in terms of whether or not
the method under study succeeded in reaching the goal. Figure 7 shows the average error by CoT
method as task complexity increases in the TravelPlan and CalendarPlan benchmarks. Figure 12 in
Appendix C histograms of how many examples belong to each task length. Both domains have a
higher distribution of "smaller" or shorter tasks, which impacts the distribution of error in Figure 7. It
is interesting to note how the error is disproportionate between debate-as-reasoning and MCTS, ToTs,
aligning with our findings in Section 3. As discussed in Section 3, methods such as MCTS and ToT
seem to perform inconsistently at less-structured planning tasks. We can see this in how they perform
relative to debate, as well as each other. Specifically, for the TravelPlan task, they fail at inconsistent
rates relative to one another.

5 CONCLUSION

We examined planning capabilities of LLMs through benchmark development, generalization assess-
ment and analysis of failure modes. Our observations for ICL setting has implications for the future
development and training of LLMs, potentially informing strategies to enhance their capacity to
process and leverage extended contextual information. It also points to the opportunity for followup
work investigating ways to further improve the inference time reasoning procedures, and their scaling
properties. Our investigation of plan generalization reveals three key findings: superiority of SFT,
curriculum learning effectiveness and limitations of hard example training; suggesting that a balanced
approach, incorporating both easy and hard examples, might be optimal for achieving well-rounded
performance. Our analysis of failure modes point to future work on dataset design and reasoning
procedures to directly address the discussed failure modes. These enhancements can unlock new
levels of versatility and robustness in LLM-based planning systems, paving the way for their broader
adoption in real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Stephanie Chan, Ankesh Anand, Zaheer Abbas, Azade
Nova, John D Co-Reyes, Eric Chu, et al. Many-shot in-context learning. arXiv preprint arXiv:2404.11018,
2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. Task and motion planning with large language
models for object rearrangement. In 2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 2086–2092. IEEE, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality and
reasoning in language models through multiagent debate, 2023.

Maria Fox and Derek Long. Kcl-planning/val: The plan validation system. URL https://github.com/
KCL-Planning/VAL.

GeminiTeam, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson, Ioannis Antonoglou, Julian
Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, et.
al, Jeffrey Dean, and Oriol Vinyals. Gemini: A family of highly capable multimodal models, 2024a.

GeminiTeam, Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis Antonoglou,
Rohan Anil, Sebastian Borgeaud, Andrew Dai, Katie Millican, Ethan Dyer, Mia Glaese, Thibault Sottiaux,
Benjamin Lee, Fabio Viola, et al, Jeffrey Dean, and Oriol Vinyals. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context, 2024b.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-trained large
language models to construct and utilize world models for model-based task planning. Advances in Neural
Information Processing Systems, 36, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your travels
rigorously with formal verification tools. arXiv preprint arXiv:2404.11891, 2024.

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. What’s the plan? evaluating and developing planning-aware
techniques for llms. arXiv preprint arXiv:2402.11489, 2024.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with
language models. arXiv preprint arXiv:2207.05608, 2022.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant Bhambri, Lucas
Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv preprint
arXiv:2402.01817, 2024.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian. Beyond a*: Better
planning with transformers via search dynamics bootstrapping. arXiv preprint arXiv:2402.14083, 2024.

Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin Ram, Manuela M. Veloso,
Daniel S. Weld, and David E. Wilkins. Pddl-the planning domain definition language. 1998.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, et al., , William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

11

https://github.com/KCL-Planning/VAL
https://github.com/KCL-Planning/VAL

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530. IEEE, 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An analysis of cot
in planning. arXiv preprint arXiv:2405.04776, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton
Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor,
Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish,
Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen,
Anthony Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu
Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger,
Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica
Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda
Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi,
Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong
Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen,
Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia
Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid,
Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller,
Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk
Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan,
Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel,
Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin,
Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan
Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain,
Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun
Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand
Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis,
Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin,
Kathleen Kenealy, Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a
practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models-a critical investigation. Advances in Neural Information Processing Systems,
36:75993–76005, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Plan-
bench: An extensible benchmark for evaluating large language models on planning and reasoning about
change. Advances in Neural Information Processing Systems, 36, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint arXiv:2402.01622,
2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and Denny Zhou. Natural plan: Benchmarking llms on natural
language planning. arXiv preprint arXiv:2406.04520, 2024.

12

https://arxiv.org/abs/2408.00118

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Appendix

A PROMPTS

Bellow is the 1-shot prompt for the BlocksWorld task.

P l e a s e s o l v e t h e problem :
(d e f i n e (problem BW−rand −4)
(: domain b l o c k s w o r l d−4ops)
(: o b j e c t s b4 b1 b3 b2)
(: i n i t
(on b3 b1)
(on b1 b4)
(c l e a r b3)
(handempty)
(o n t a b l e b2)
(o n t a b l e b4)
(c l e a r b2)
)
(: g o a l (and
(on b2 b4)
(on b3 b1)
))
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
(u n s t a c k b3 b1)
(put−down b3)
(u n s t a c k b1 b4)
(put−down b1)
(p ick−up b2)
(s t a c k b2 b4)
(p ick−up b3)
(s t a c k b3 b1)
done .

P l e a s e s o l v e t h e problem :
(d e f i n e (problem BW−rand −6)
(: domain b l o c k s w o r l d−4ops)
(: o b j e c t s b5 b1 b4 b2 b3 b6)
(: i n i t
(on b4 b1)
(handempty)
(o n t a b l e b6)
(on b2 b4)
(c l e a r b3)
(o n t a b l e b5)
(on b3 b2)
(c l e a r b6)
(on b1 b5)
)
(: g o a l (and
(on b4 b2)
(on b1 b4)
(on b5 b1)
(on b3 b5)
))
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bellow is the 1-shot prompt for the Logistics task.

P l e a s e s o l v e t h e problem :
(d e f i n e (problem l o g i s t i c s −c4−s2−p3−a4)
(: domain l o g i s t i c s −s t r i p s)
(: o b j e c t s
a0 a1 a2 a3
c0 c1 c2 c3
t 0 t 1 t 2 t 3
l0−0 l0−1 l1−0 l1−1 l2−0 l2−1 l3−0 l3−1
p0 p1 p2
)
(: i n i t

(AIRPLANE a0) (AIRPLANE a1) (AIRPLANE a2) (AIRPLANE a3)
(CITY c0) (CITY c1) (CITY c2) (CITY c3)
(TRUCK t 0) (TRUCK t 1) (TRUCK t 2) (TRUCK t 3)
(LOCATION l0 −0) (in−c i t y l0−0 c0)
(LOCATION l0 −1) (in−c i t y l0−1 c0)
(LOCATION l1 −0) (in−c i t y l1−0 c1)
(LOCATION l1 −1) (in−c i t y l1−1 c1)
(LOCATION l2 −0) (in−c i t y l2−0 c2)
(LOCATION l2 −1) (in−c i t y l2−1 c2)
(LOCATION l3 −0) (in−c i t y l3−0 c3)
(LOCATION l3 −1) (in−c i t y l3−1 c3)
(AIRPORT l0 −0) (AIRPORT l1 −0) (AIRPORT l2 −0) (AIRPORT l3 −0)
(OBJ p0) (OBJ p1) (OBJ p2)
(a t t 0 l0 −0) (a t t 1 l1 −1) (a t t 2 l2 −0) (a t t 3 l3 −0)
(a t p0 l1 −1) (a t p1 l0 −1) (a t p2 l0 −0)
(a t a0 l1 −0)
(a t a1 l1 −0)
(a t a2 l2 −0)
(a t a3 l3 −0)

)
(: g o a l

(and
(a t p0 l2 −0)
(a t p1 l2 −0)
(a t p2 l1 −1)

)
)
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
(load−t r u c k p0 t 1 l1 −1)
(d r i v e−t r u c k t 1 l1−1 l1−0 c1)
(unload−t r u c k p0 t 1 l1 −0)
(load−a i r p l a n e p0 a1 l1 −0)
(f l y−a i r p l a n e a1 l1−0 l2 −0)
(unload−a i r p l a n e p0 a1 l2 −0)
(d r i v e−t r u c k t 0 l0−0 l0−1 c0)
(load−t r u c k p1 t 0 l0 −1)
(d r i v e−t r u c k t 0 l0−1 l0−0 c0)
(unload−t r u c k p1 t 0 l0 −0)
(f l y−a i r p l a n e a3 l3−0 l0 −0)
(load−a i r p l a n e p2 a3 l0 −0)
(f l y−a i r p l a n e a3 l0−0 l1 −0)
(unload−a i r p l a n e p2 a3 l1 −0)
(load−t r u c k p2 t 1 l1 −0)
(d r i v e−t r u c k t 1 l1−0 l1−1 c1)
(unload−t r u c k p2 t 1 l1 −1)
(f l y−a i r p l a n e a1 l2−0 l0 −0)
(load−a i r p l a n e p1 a1 l0 −0)
(f l y−a i r p l a n e a1 l0−0 l2 −0)
(unload−a i r p l a n e p1 a1 l2 −0)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

done .

P l e a s e s o l v e t h e problem :
(d e f i n e (problem l o g i s t i c s −c2−s2−p3−a2)
(: domain l o g i s t i c s −s t r i p s)
(: o b j e c t s
a0 a1
c0 c1
t 0 t 1
l0−0 l0−1 l1−0 l1−1
p0 p1 p2
)
(: i n i t

(AIRPLANE a0) (AIRPLANE a1)
(CITY c0) (CITY c1)
(TRUCK t 0) (TRUCK t 1)
(LOCATION l0 −0) (in−c i t y l0−0 c0)
(LOCATION l0 −1) (in−c i t y l0−1 c0)
(LOCATION l1 −0) (in−c i t y l1−0 c1)
(LOCATION l1 −1) (in−c i t y l1−1 c1)
(AIRPORT l0 −0) (AIRPORT l1 −0)
(OBJ p0) (OBJ p1) (OBJ p2)
(a t t 0 l0 −1) (a t t 1 l1 −0)
(a t p0 l0 −1) (a t p1 l1 −0) (a t p2 l1 −1)
(a t a0 l0 −0) (a t a1 l0 −0)

)
(: g o a l

(and
(a t p0 l0 −1)
(a t p1 l1 −0)
(a t p2 l0 −0)

)
)
)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :

Bellow is the 1-shot prompt for the Mini-Grid task.

P l e a s e s o l v e t h e problem :
(d e f i n e (problem grid_2Vroom2)

(: domain g r i d)
(: o b j e c t s

p0 p1 p2 p3 p4 p5 p6 p7 p8
shape0
key0

)
(: i n i t

; O b j e c t t y p e s
(p l a c e p0) (p l a c e p1) (p l a c e p2) (p l a c e p3) (p l a c e p4) (p l a c e p5) (

p l a c e p6) (p l a c e p7) (p l a c e p8)
(shape shape0)
(key key0)
; Open / l o c k e d c e l l s
(open p0) (open p1) (open p2) (open p3) (open p5) (open p6) (open p7)

(open p8)
(l o c k e d p4)
; Connec ted c e l l s
(conn p0 p1)
(conn p0 p2)
(conn p1 p0)
(conn p1 p3)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(conn p2 p0)
(conn p2 p3)
(conn p2 p4)
(conn p3 p2)
(conn p3 p1)
(conn p4 p2)
(conn p4 p5)
(conn p5 p4)
(conn p5 p6)
(conn p5 p7)
(conn p6 p5)
(conn p6 p8)
(conn p7 p5)
(conn p7 p8)
(conn p8 p7)
(conn p8 p6)
; Lock and key s h a p e s
(lock−shape p4 shape0)
(key−shape key0 shape0)
; Key p l a c e m e n t
(a t key0 p0)
; Robot p l a c e m e n t
(a t−r o b o t p3)
(arm−empty)

)
(: g o a l (a t−r o b o t p7))

)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :
(move p3 p2)
(move p2 p0)
(p i ck up p0 key0)
(move p0 p2)
(un lo ck p2 p4 key0 shape0)
(move p2 p4)
(move p4 p5)
(move p5 p7)
done .

P l e a s e s o l v e t h e problem :
(d e f i n e (problem grid_3Vroom3)

(: domain g r i d)
(: o b j e c t s

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19
p20 p21 p22 p23 p24 p25 p26 p27 p28

shape0
key0

)
(: i n i t

; O b j e c t t y p e s
(p l a c e p0) (p l a c e p1) (p l a c e p2) (p l a c e p3) (p l a c e p4) (p l a c e p5) (

p l a c e p6) (p l a c e p7) (p l a c e p8) (p l a c e p9) (p l a c e p10) (p l a c e p11
) (p l a c e p12) (p l a c e p13) (p l a c e p14) (p l a c e p15) (p l a c e p16) (
p l a c e p17) (p l a c e p18) (p l a c e p19) (p l a c e p20) (p l a c e p21) (p l a c e

p22) (p l a c e p23) (p l a c e p24) (p l a c e p25) (p l a c e p26) (p l a c e p27)
(p l a c e p28)

(shape shape0)
(key key0)
; Open / l o c k e d c e l l s
(open p0) (open p1) (open p2) (open p3) (open p4) (open p5) (open p6)

(open p7) (open p8) (open p10) (open p11) (open p12) (open p13)
(open p14) (open p15) (open p16) (open p17) (open p18) (open p20)

(open p21) (open p22) (open p23) (open p24) (open p25) (open p26
) (open p27) (open p28)

(l o c k e d p9) (l o c k e d p19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

; Connec ted c e l l s
(conn p0 p1)
(conn p0 p3)
(conn p1 p0)
(conn p1 p2)
(conn p1 p4)
(conn p2 p1)
(conn p2 p5)
(conn p3 p0)
(conn p3 p4)
(conn p3 p6)
(conn p4 p3)
(conn p4 p1)
(conn p4 p5)
(conn p4 p7)
(conn p5 p4)
(conn p5 p2)
(conn p5 p8)
(conn p6 p3)
(conn p6 p7)
(conn p6 p9)
(conn p7 p6)
(conn p7 p4)
(conn p7 p8)
(conn p8 p7)
(conn p8 p5)
(conn p9 p6)
(conn p9 p10)
(conn p10 p9)
(conn p10 p11)
(conn p10 p13)
(conn p11 p10)
(conn p11 p12)
(conn p11 p14)
(conn p12 p11)
(conn p12 p15)
(conn p13 p10)
(conn p13 p14)
(conn p13 p16)
(conn p14 p13)
(conn p14 p11)
(conn p14 p15)
(conn p14 p17)
(conn p15 p14)
(conn p15 p12)
(conn p15 p18)
(conn p16 p13)
(conn p16 p17)
(conn p17 p16)
(conn p17 p14)
(conn p17 p18)
(conn p18 p17)
(conn p18 p15)
(conn p18 p19)
(conn p19 p18)
(conn p19 p22)
(conn p20 p21)
(conn p20 p23)
(conn p21 p20)
(conn p21 p22)
(conn p21 p24)
(conn p22 p21)
(conn p22 p19)
(conn p22 p25)
(conn p23 p20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(conn p23 p24)
(conn p23 p26)
(conn p24 p23)
(conn p24 p21)
(conn p24 p25)
(conn p24 p27)
(conn p25 p24)
(conn p25 p22)
(conn p25 p28)
(conn p26 p23)
(conn p26 p27)
(conn p27 p26)
(conn p27 p24)
(conn p27 p28)
(conn p28 p27)
(conn p28 p25)
; Lock and key s h a p e s
(lock−shape p9 shape0)
(lock−shape p19 shape0)
(key−shape key0 shape0)
; Key p l a c e m e n t
(a t key0 p12)
; Robot p l a c e m e n t
(a t−r o b o t p16)
(arm−empty)

)
(: g o a l (a t−r o b o t p4))

)

Your p l a n as p l a i n t e x t w i t h o u t f o r m a t t i n g :

Bellow is the 1-shot prompt for the Trip Planning task.

P l e a s e s o l v e t h e problem :
You p l a n t o v i s i t 6 European c i t i e s f o r 13 days i n t o t a l . You on ly t a k e

d i r e c t f l i g h t s t o commute between c i t i e s . You want t o spend 3 days i n
Dubl in . You would l i k e t o meet your f r i e n d s a t Dubl in between day 7

and day 9 t o t o u r t o g e t h e r . You would l i k e t o v i s i t Madrid f o r 2 days
. You p l a n t o v i s i t r e l a t i v e s i n Madrid between day 2 and day 3 . You
p l a n t o s t a y i n Oslo f o r 3 days . You would l i k e t o v i s i t London f o r 2

days . You want t o spend 3 days i n V i l n i u s . You p l a n t o s t a y i n
B e r l i n f o r 5 days . You a r e go ing t o a t t e n d a wedding i n B e r l i n
between day 3 and day 7 .

Here a r e t h e c i t i e s t h a t have d i r e c t f l i g h t s :
London and Madrid , Oslo and V i l n i u s , B e r l i n and V i l n i u s , Madrid and Oslo ,

Madrid and Dubl in , London and Oslo , Madrid and B e r l i n , B e r l i n and
Oslo , Dub l in and Oslo , London and Dubl in , London and B e r l i n , B e r l i n
and Dubl in .

F ind a t r i p p l a n o f v i s i t i n g t h e c i t i e s f o r 13 days by t a k i n g d i r e c t
f l i g h t s t o commute between them .

Here i s t h e t r i p p l a n f o r v i s i t i n g t h e 6 European c i t i e s f o r 13 days :

Day 1−2: A r r i v i n g i n London and v i s i t London f o r 2 days .
Day 2 : Fly from London t o Madrid .
Day 2−3: V i s i t Madrid f o r 2 days .
Day 3 : Fly from Madrid t o B e r l i n .
Day 3−7: V i s i t B e r l i n f o r 5 days .
Day 7 : Fly from B e r l i n t o Dubl in .
Day 7−9: V i s i t Dubl in f o r 3 days .
Day 9 : Fly from Dubl in t o Oslo .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Day 9−11: V i s i t Oslo f o r 3 days .
Day 11 : Fly from Oslo t o V i l n i u s .
Day 11−13: V i s i t V i l n i u s f o r 3 days .
done .

P l e a s e s o l v e t h e problem :
You p l a n t o v i s i t 6 European c i t i e s f o r 17 days i n t o t a l . You on ly t a k e

d i r e c t f l i g h t s t o commute between c i t i e s . You want t o spend 4 days i n
Manches t e r . You p l a n t o s t a y i n F l o r e n c e f o r 5 days . You want t o

spend 3 days i n Geneva . You a r e go ing t o a t t e n d a wedding i n Geneva
between day 1 and day 3 . You want t o spend 3 days i n S e v i l l e . Dur ing
day 7 and day 9 , you have t o a t t e n d a c o n f e r e n c e i n S e v i l l e . You
would l i k e t o v i s i t P rague f o r 2 days . You p l a n t o s t a y i n V a l e n c i a
f o r 5 days . From day 3 t o day 7 , t h e r e i s a a n n u a l show you want t o
a t t e n d i n V a l e n c i a .

Here a r e t h e c i t i e s t h a t have d i r e c t f l i g h t s :
Manches t e r and Prague , S e v i l l e and Manches te r , Geneva and Manches te r ,

V a l e n c i a and S e v i l l e , Geneva and Va lenc i a , V a l e n c i a and Prague ,
Prague and F l o r e n c e , Geneva and Prague .

F ind a t r i p p l a n o f v i s i t i n g t h e c i t i e s f o r 17 days by t a k i n g d i r e c t
f l i g h t s t o commute between them .

Bellow is the 1-shot prompt for the Calendar Scheduling task.

P l e a s e s o l v e t h e problem :
You need t o s c h e d u l e a mee t ing f o r Samuel , Evelyn , Ruth and Amanda f o r

h a l f an hour between t h e work h o u r s o f 9 :00 t o 17 :00 on Monday .

Here a r e t h e e x i s t i n g s c h e d u l e s f o r e v e r y o n e d u r i n g t h e day :
Samuel i s f r e e t h e e n t i r e day .
Evelyn has m e e t i n g s on Monday d u r i n g 9 :00 t o 1 0 : 0 0 , 11 :00 t o 1 2 : 0 0 , 12 :30

t o 1 3 : 0 0 , 15 :30 t o 1 6 : 0 0 ;
Ruth has m e e t i n g s on Monday d u r i n g 9 :30 t o 1 1 : 0 0 , 11 :30 t o 1 2 : 3 0 , 13 :00

t o 1 3 : 3 0 , 14 :00 t o 1 4 : 3 0 , 15 :00 t o 1 6 : 0 0 , 16 :30 t o 1 7 : 0 0 ;
Amanda has m e e t i n g s on Monday d u r i n g 10 :00 t o 1 0 : 3 0 , 11 :00 t o 1 2 : 3 0 ,

13 :00 t o 1 3 : 3 0 , 14 :00 t o 1 5 : 0 0 , 15 :30 t o 1 6 : 0 0 ;

Amanda can n o t meet on Monday b e f o r e 1 6 : 0 0 . F ind a t ime t h a t works f o r
everyone ' s s c h e d u l e and c o n s t r a i n t s .

Here i s t h e p r o p o s e d t ime : Monday , 16 :00 − 16 :30
done .

P l e a s e s o l v e t h e problem :
You need t o s c h e d u l e a mee t ing f o r Wal te r , Jacob , J e n n i f e r and Joan f o r

one hour between t h e work h o u r s o f 9 :00 t o 17 :00 on Monday .

Here a r e t h e e x i s t i n g s c h e d u l e s f o r e v e r y o n e d u r i n g t h e day :
W a l t e r i s busy on Monday d u r i n g 9 :30 t o 1 0 : 0 0 , 13 :00 t o 1 3 : 3 0 ;
Jacob has m e e t i n g s on Monday d u r i n g 11 :00 t o 1 1 : 3 0 , 13 :00 t o 1 3 : 3 0 ;
J e n n i f e r i s busy on Monday d u r i n g 9 :30 t o 1 0 : 3 0 , 11 :30 t o 1 2 : 0 0 , 12 :30 t o

1 5 : 0 0 ;
Joan has b l o c k e d t h e i r c a l e n d a r on Monday d u r i n g 9 :30 t o 1 0 : 0 0 , 10 :30 t o

1 1 : 3 0 , 12 :00 t o 1 2 : 3 0 , 13 :00 t o 1 4 : 0 0 , 14 :30 t o 1 5 : 3 0 ;

F ind a t ime t h a t works f o r everyone ' s s c h e d u l e and c o n s t r a i n t s .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B EXPERIMENTAL DETAILS

B.1 DATASET CREATION

In these experiments BlocksWorld dataset for 3 to 7 blocks consists of 40000 samples.

In the creation of the BlocksWorld dataset as outlined in Algorithm 1, the key parameters include the maximum
number of blocks num_blocks and the quantity of examples n to be generated for each block count. Here, the
maximum number of blocks is a number greater than 3. As we use uniform sampling, this results in a linear
increase in the number of more complex examples. However, it’s important to note that as the number of blocks
increases, the simpler combinations are exhausted since all possible combinations might be included. The
methods CreateStacks generates random stacks of blocks, iteratively sampling from the available blocks to
determine stack heights until all blocks are utilized. The method CreatePro denotes a simple method to translate
the block configuration into PDDL which is python reimplementation of functionality in 4ops-Blockworld
code}5.

Algorithm 1 Create BlocksWorld Dataset
function CREATEDATASETBW(num_blocks, n)

dataset← [] . Initialize an empty list
for problem_id← 1 to n do

b← RANDOMUNIFORM(3, num_blocks)
initStacks← CREATESTACKS(b)
goalStacks← CREATESTACKS(b)
if initStacks == goalStacks then

continue . Skip equal stacks.
end if
problem←CREATEPRO(initStacks, goalStacks)
plan←FASTDOWNWARD(problem, domain)
dataset← dataset+ [(problem, plan)]

end for
return dataset

end function

Algorithm 1, we generate 28k unique samples. From these, we randomly select 25500 of the for training set and
2500 for validation set. This procedure yields a problem distribution as shown in Figure 8.

B.2 MAPPINGS PDDL TO NATURAL LANGUAGE

Here we present the templates to map PDDL problems to Natural Language. Details are shown in Table 6.

B.3 SEARCH PROCEDURE PARAMETERS

.

The two search procedures deployed and compared alongside ICL and SFT methods, (ToT) (Yao et al., 2023)
and monte-carlo tree search (MCTS) (Hao et al., 2023), were implemented as specified in their original papers.
The only deviations are listed below.

The biggest deviation from the reference papers are the LLM’s prompts, which had to be edited to make the
search procedures more aligned with the planning task.

Additionally, for the MCTS procedure, the action log-probs were weighted by a factor of 1.5. All other weights
specified in the Reasoning as Planning MCTS procedure are the same (state log-probs, UCT, and exploration
lambda factor are all 1.0).

The same weights are used to compute the value of the nodes in the tree-of-thought search procedure.

5https://github.com/AI-Planning/pddl-generators/tree/main/blocksworld/4ops

20

https://github.com/AI-Planning/pddl-generators/tree/main/blocksworld/4ops

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

3 4 5 6 7
Average block count per problem

0

10

20

30

40

50

Pe
rc

en
t o

f P
ro

bl
em

s

4

6

8

10

12

14

Av
er

ag
e

Pl
an

 L
en

gt
h

Figure 8: Distribution with number of blocks and average plan length.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Term (with arguments) Mapping to Natural Language
AIRPLANE object2 object2 is an AIRPLANE.
CITY object2 object2 is a CITY.
TRUCK object2 object2 is a TRUCK.
at object2 object3 object2 is at object3.
in-city object2 object3 object2 is in the city object3.
drive-truck param2 param3 param4 param5 Drive truck param2 from param3 to param4 in param5.
load-truck param2 param3 param4 Load param2 into truck param3 at param4.
unload-truck param2 param3 param4 Unload param2 from truck param3 in param4.
fly-airplane param2 param3 param4 Fly airplane param2 from param3 to param4.
load-airplane param2 param3 param4 Load param2 into airplane param3 at param4.
unload-airplane param2 param3 param4 Unload param2 from airplane param3 at param4.
on object2 object3 object2 is on object3.
handempty The hand is empty.
ontable object2 object2 is on the table.
clear object2 object2 is clear.
unstack param2 param3 Unstack param2 from param3.
put-down param2 Put down param2.
pick-up param2 Pick up param2.
stack param2 param3 Stack param2 on param3.
conn object2 object3 object2 and object3 are connected.
lock-shape object2 object3 The lock object2 is object3 shaped.
key-shape object2 object3 The key object2 is object3 shaped.
arm-empty The arm is empty.
open object2 object2 is OPEN.
move param2 param3 Move from param2 to param3.
pickup param2 param3 Pickup param2 at param3.
unlock param2 param3 param4 param5 Unlock param2 at param3 using param4, which has param5.
pickup-and-loose param2 param3 At param2, pick up param3 and lose param2.
at-robot object2 Robot is at object2.

Table 6: Semantic mappings used in the system, showing terms and their arguments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Hyperparameter Value Description
LLM Model Gemini 1.0M The language model

used for text
generation.

LLM Temperature 1.0 Controls the
randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples 1 The number of
different outputs
generated by the
LLM for each input.

Max Depth 5 The maximum number
of steps in the
search tree.

Max Branching Factor 3 The maximum number
of actions to
consider at each
node.

Num Simulations 3 The number of times
to simulate the
game from each
node.

Table 7: Monte Carlo Tree Search (MCTS) Hyperparameters

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Hyperparameter Value Description
LLM Model Gemini 1.0M The language model

used for text
generation.

LLM Temperature 1.0 Controls the
randomness of LLM
outputs (higher
values = more
variance).

LLM Num Samples 1 The number of
different outputs
generated by the
LLM for each input.

Max Depth 5 The maximum number
of steps in the
thought process.

Max Branching Factor 3 The maximum number
of alternative
thoughts to
explore at each
step.

Num Simulations 3 The number of
rollouts for each
thought to
simulate.

Table 8: Tree of Thought (ToT) Hyperparameters

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Prompt Name Prompt Content

MCTS_STATE_PROMPT

Given the provided state and
action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]
blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]
[STATE]

MCTS_ACTION_PROMPT

[CONTEXT] {state} [END
CONTEXT] Given the
preceding task, and action,
what action should be taken
next? Only take a SINGLE STEP
at a time. Any composite
actions will be penalized.
[ACTION]

Table 9: MCTS Agent Prompts

B.4 FINETUNE EXPERIMENTS

For the fine tuning of the Gemini 1.0 S, we use learning rate of 0.0001 with drop out rate of 0.1. We train the
model for 5k step and choose the checkpoint with highest accuracy on the validation set. We then run the verifier
on the inference results of that checkpoint and report the results.

C ERROR ANALYSIS: ADDITIONAL PLOTS

As mentioned in Section 4, for Logistics SFT experiments the three categories of the error are all present, for
example, in the Id setting for 3-5 packets, number of correct instances are 317/500 and the distribution of failure
modes are 57/500, 125/500, 1/500 for categories (1), (2), (3) respectively. and in the OOD setting of 1-2 packet
to 3-5 packet case, number of correct instances are 54/500 and the distribution of failure modes are 180/500,
237/500, 29/500 for categories (1), (2), (3) respectively.

3 6 9 12 15 18 21 24
Failure Step

0

6

12

18

24

30

36

42

48

54

Nu
m

be
r o

f P
la

ns

pick-up
unstack
stack

(a) Failure Cases 3-7 ICL (b) Failure Cases 3-7 SFT

Figure 9: Side by side portray of Failure cases where constraints are not met for BlocksWorld 3-7
blocks cases in ICL and SFT scenarios per step number color coded by action name.

(a) Successful cases (b) All cases (c) Constraints Not Met (d) Goal not reached

Figure 10: In-domain failure analysis: Distribution of number of blocks in successful and failed cases
and different failure reasons for Logistics 3-5 packets. As the number of blocks increases the number
of successful cases decreases.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Prompt Name Prompt Content

MCTS_STATE_PROMPT

Given the provided state and
action, estimate the next
state. Your state should
look similar to preceding
state, enclosed in [STATE]
blocks. Do not repeat or
reiterate information from
the preceding states /
actions. [STATE CONTEXT]
{state} [END STATE CONTEXT]
[STATE]

MCTS_ACTION_PROMPT

[CONTEXT] {state} [END
CONTEXT] Given the
preceding task, and action,
what action should be taken
next? Only take a SINGLE STEP
at a time. Any composite
actions will be penalized.
[ACTION]

Table 10: Tree-of-Thought Prompts

Table 11: CalendarPlan Performance with search procedures (ToT, MCTS) per number of few-shot examples
provided to the procedure. We observe that for contexts fitting within Gemini 1.0M, it competes with significantly
more powerful models. Without these methods, the model fails outright.

N
G1.0M

ToT
G1.0M
MCTS

G1.5
Flash

GPT4
Turbo

1 29 28 39 19
4 33 39 50 64
10 31 36 58 71

Dataset Train Size Test Size
BW(3-7) 28,386 500
BW(8-9) 3,995 500
BW(8-20) 4,160 500

Logistics(1-2) 13,483 500
Logistics(3-5) 13,483 500

Table 12: Details of the dataset size

1 2 3 4 5 6 7 8
Failure Step

0

8

16

24

32

40

48

56

64

72

Nu
m

be
r o

f P
la

ns

load-airplane

(a) Failure Cases Logistics ICL (b) Failure Cases Logistics SFT

Figure 11: Side by side portray of Failure cases where constraints are not met for Logistics 3-5
packets cases in ICL and SFT scenarios per step number color coded by action name.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 12: Histogram of # of tasks by task-length in the Travel Plan and Calendar Plan natural
language tasks.

27

	Introduction
	Related Work

	Benchmark
	PDDL Benchmarks
	Native Natural Language Planning Benchmarks

	Experiments
	In-context learning
	Many-shot in-context learning
	Effect of inference time techniques

	Supervised Fine Tuning (SFT)
	Plan generalization
	Comparison with PlanBench

	Investigating Failure Cases
	Conclusion
	Prompts
	Experimental Details
	Dataset Creation
	Mappings PDDL to Natural Language
	Search Procedure Parameters
	Finetune experiments

	Error Analysis: additional plots

