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ABSTRACT

The generation and simulation of diverse real-world scenes have significant ap-
plication value in the field of autonomous driving, especially for the corner cases.
Recently, researchers have explored employing neural radiance fields or diffusion
models to generate novel views or synthetic data under driving scenes. However,
these approaches suffer from unseen scenes or restricted video length, thus lack-
ing sufficient adaptability for data generation and simulation. To address these
issues, we propose a simple yet effective framework, named Glad, to generate
video data in a frame-by-frame style. To ensure the temporal consistency of syn-
thetic video, we introduce a latent variable propagation module, which views the
hidden features of previous frame as noise prior and injects it into the latent fea-
tures of current frame. In addition, we design a streaming data sampler to orderly
sample the original image in a video clip at continuous iterations. Given the ref-
erence frame, our Glad can be viewed as a streaming simulator by generating the
videos for specific scenes. Extensive experiments are performed on the widely-
used nuScenes dataset. Experimental results demonstrate that our proposed Glad
achieves promising performance, serving as a strong baseline for online genera-
tion. We will release the source code and models publicly.

1 INTRODUCTION

Autonomous driving tasks are usually data-intensive, relying on vast amounts of data to learn in-
formed models. In recent years, autonomous driving has achieved considerable progress, partic-
ularly in the field of Bird’s Eye View (BEV) perception (Huang et al., 2021; Liu et al., 2022; Li
et al., 2022b; Liu et al., 2023; Li et al., 2023b; Liao et al., 2022) and end-to-end planning (Shi et al.,
2016; Jiang et al., 2023; Chen et al., 2024), thanks to the availability of public datasets such as
nuScenes (Caesar et al., 2019), CARLA (Dosovitskiy et al., 2017), Waymo (Ettinger et al., 2021),
and ONCE (Mao et al., 2021). However, these real-world driving datasets exist several limitations.
On one hand, it is expensive and labor-intensive to collect large-scale real-world driving data. On
the other hand, although corner-cases comprises only a small portion of dataset, it is more important
for evaluating the safety of autonomous driving. Therefore, the scale and diversity of real-world
datasets constrain the further development of autonomous driving.

Instead of collecting large-scale real-world datasets, researchers have explored generating synthetic
street-view data. Some approaches focus on leveraging Neural Radiance Fields (NeRF) (Yang et al.,
2023a; Yan et al., 2024a; Yang et al., 2023c; Tonderski et al., 2023) and 3D Gaussian Splatting
(3DGS) (Yan et al., 2024b) for rendering the novel views in driving scenes. These cutting-edge ap-
proaches offer a powerful tool for rendering highly realistic and detailed images from various view-
points. However, as shown in Fig. 1(a), these approaches struggle to reconstruct the non-seen streets
when the source trajectory and simulated trajectory are different. Recently, some approaches (Gao
et al., 2023; Yang et al., 2023b; Swerdlow et al., 2024; Li et al., 2023a; Jia et al., 2023; Hu et al.,
2023) attempt to employ Stable Diffusion (Rombach et al., 2021) to generate the synthetic data of
driving scenes. For instance, Panacea (Wen et al., 2023) and DriveDreamer-2 (Zhao et al., 2024)
have delved into the ability of Stable Diffusion to generate synthetic video data from a given initial
frame. However, as shown in Fig. 1(b), these diffusion models (e.g., Panacea) are limited to offline
video generation and require high memory consumption. Moreover, it fails to dynamically generate
video data in response to the changes in simulated trajectory. For a flexible generator , it requires
the ability that generates dynamic scenes corresponding to the simulated trajectory.
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Figure 1: Comparison of Unisim, Panacea, and our proposed Glad: (a) The Nerf-based Unisim
(Yang et al., 2023c) struggles to render unseen scene and objects when the simulated ego trajectory
deviates from the source data. (b) The diffusion-based Panacea (Wen et al., 2023) generates fixed-
length video data in an offline manner. It suffers from relatively high memory consumption, and
lacks the adaptability to accommodate variations in dynamic simulated trajectory. (c) Our Glad is
designed for fame-by-frame generation, enabling to generate videos of arbitrary lengths and exhibit-
ing good flexibility in the variations of simulated trajectory.

To address the issues mentioned above, we propose Glad, a simple yet effective framework that
generates and forecasts synthetic video data in an online manner. Our Glad is based on Stable
Diffusion, and introduces the latent variable propagation (LVP) to maintain temporal consistency
when performing frame-by-frame generation. In LVP, the latent features of previous frame are
viewed as the noise prior injected into the latent features of current frame. In addition, we introduce
a streaming data sampler (SDS), which aims to keep the consistency between training and inference,
and present an efficient data sampling for training. In SDS, we sample original frames in video clip
one by one at continuous iterations, and save the generated latent features in cache used for the noise
prior of next iteration.

With such streaming generation manner, our Glad is capable of generating videos of arbitrary lengths
in theory. Specifically, it can generate the videos of the novel scene from the noise when serving
as the data generator. While given the reference frame, it can produce the video data of specific
scene. We perform the experiments on the public autonomous driving dataset nuScenes, which
demonstrates the efficacy of our Glad. The contributions and merits can be summarized as follows:

• A simple yet effective framework, named Glad, is proposed to generate video data in an
online manner, instead of offline fixed-length manner. Theoretically, our proposed Glad
is able to generate videos of arbitrary lengths, showcasing substantial potential in data
generation and simulation.

• A latent variable propagation strategy is introduced to ensure the temporal consistency for
frame-by-frame video generation, where the latent features of previous frame are viewed
as the noise fed to the latent features of current frame.

• We further design a streaming data sampler to provide efficient training. In the streaming
data sampler, we sample the frame in video clip one by one at several continuous iterations,
and save the latent features in cache for next iterations.

• The experiments are performed on the widely-used dataset nuScenes. Our Glad is able
to generate high-quality video data as generator. Further, our generated video data can
significantly improve the perception ,tracking and HD map construction performance.
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2 RELATED WORKS

2.1 VIDEO GENERATION MODELS

Recent years have seen considerable advancements in video generation, focusing on improving the
quality, diversity, and controllability of generated content. Initial methods (Yu et al., 2022; Clark
et al., 2019; Tulyakov et al., 2018) extended the success of Generative Adversarial Networks (GANs)
from image synthesis to video generation. However, these approaches often faced challenges in
maintaining temporal consistency.

The introduction of diffusion models (Ho et al., 2020; Rombach et al., 2022) represents a paradigm
shift, providing a robust alternative for high-fidelity video synthesis. VDM (Ho et al., 2022b) uti-
lizes factorized spatio-temporal attention blocks to generate 16-frame, 64×64 pixels videos, which
are then upscaleable to 128×128 pixels and 64 frames using an enhanced model. ImagenVideo (Ho
et al., 2022a) further progresses the field through a cascaded diffusion process, beginning with a base
model that produces videos of 40×24 pixels and 16 frames, and sequentially upsampling through
six additional diffusion models to reach 1280 × 768 pixels and 128 frames. MagicVideo (Zhou
et al., 2022) employs Latent Diffusion Models (LDM) to enhance efficiency in video generation.
VideoLDM (Blattmann et al., 2023), leveraging a similar architecture, incorporates temporal at-
tention layers into a pre-trained text-to-image diffusion model, excelling in text-to-video synthesis.
TRIP (Zhang et al., 2024) proposes a new recipe of image-to-video diffusion paradigm that pivots on
image noise prior derived from static image. Vista (Gao et al., 2024) presents a generalizable driving
world model with high fidelity and versatile controllability. Additionally, Sora (Tim et al., 2024) sig-
nificantly enhances video quality and diversity, while introducing capabilities for text-prompt driven
control of video generation.

Despite these advancements, video generation still faces several challenges, including maintaining
temporal consistency, generating longer videos, and reducing computational costs. A streaming
video generation pipeline could present an elegant solution. Notably, several advanced works (Yan
et al., 2021; Hong et al., 2022; Huang et al., 2022; Henschel et al., 2024) have adopted an autore-
gressive approach to generate video frames. VideoGPT (Yan et al., 2021) predicts the current latent
code from the previous frame, Autoregressive GAN (Huang et al., 2022) generates frames based on
a single static frame, and CogVideo (Hong et al., 2022) employs a GPT-like transformer architec-
ture. ART·V (Weng et al., 2024) firstly explores autoregressive text-to-video generation and adopts
multi-reference frames and anchor frame as condition, while our Glad achieves streaming video gen-
eration by using previous latents as initial noise in the diffusion process. Nonetheless, these methods
do not yet fully satisfy the stringent requirements for generation quality, controllability, and motion
dynamics essential in autonomous driving applications.

2.2 DRIVING DIFFUSION MODELS

In the realm of driving scenario generation, early research predominantly focus on synthesizing indi-
vidual images. BEVGen (Yan et al., 2024b) explores the generation of multi-view street images from
a BEV layout. BEVControl (Yang et al., 2023b) incorporates cross-view attention to enhance visual
consistency and ensure a cohesive scene representation. MagicDrive (Gao et al., 2023) highlights
the challenges associated with the loss of 3D geometric information after the projection from 3D to
2D. In addition to the cross-view consistency, cross-frame consistency remains crucial for temporal
modeling. Based on this point, DrivingDiffusion (Li et al., 2023a) and Panacea (Wen et al., 2023)
introduce sequences of BEV layouts to generate complex urban videos in a controllable manner.
However, their sliding-window approach to video generation proves inefficient and unsuitable for
extended durations. Moreover, DriveDreamer-2 (Zhao et al., 2024) and ADriver-I (Jia et al., 2023)
use the initial frame as a reference, demonstrating significant potential in autonomous driving sim-
ulation by predicting subsequent video sceness. GAIA-I (Hu et al., 2023) generates long-duration,
realistic video data conditioned on diverse inputs such as images, text, and action signals. Unfortu-
nately, the capability to manipulate motion trajectories of other vehicles through control signals is
limited in (Hu et al., 2023). To meet the demands of data generation and simulation, the challenges
such as extended video length, controllability, and consistency still hold significant value.
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Figure 2: Overall architecture of our proposed Glad. Glad is based on Stable Diffusion, and can
take random noise or a reference frame as input to generate new or specific scenes. Afterwards,
Glad generates video sequences from frame 1 to frame N orderly. We employ the proposed latent
variable propagation module to fed the denoised latent features at previous frame to current frame
as the noise prior, which can maintain video temporal consistency. This frame-by-frame generation
strategy enables to generate videos of arbitrary lengths. In addition, we employ ControlNet (Zhang
et al., 2023) to introduce BEV layout for fine-grained control on data generation.

3 METHOD

Here we introduce our proposed Glad, a simple yet effective approach that denoises the current
frame from the fully denoised latent feature of the previous frame instead of Gaussian noise, which
generates and simulates video data in an online manner. The proposed Glad is based on Stable
Diffusion (Rombach et al., 2022), and introduces two novel modules for generating video data, in-
cluding latent variable propagation and streaming data sampler. The latent variable propagation
aims to maintain temporal consistency when performing frame-by-frame generation, while stream-
ing data sampler provides an efficient data sampling pipeline and keeps data consistency between
training and inference. Our proposed Glad is capable of both generating an entirely new scene from
Gaussian noise and simulating a specific scene based on a given reference frame.

Overview. Fig. 2 presents the overall architecture of our proposed Glad. Given the Gaussian noise or
latent features z0 of the reference frame, we introduce latent variable propagation (LVP) to process
it first and then view it as the noise-added latent features z1 of frame 1. Afterwards, we employ
denoising UNet to recover the latent features z1, which are fed to VAE decoder for image generation
and LVP module for latent features propagation. By analogy, we can generate synthetic images from
frame 1 to frame N , which together form a continuous video sequence. Compared to the fixed-length
video generation in existing approaches (Wen et al., 2023; Zhao et al., 2024), our frame-by-frame
video generation approach is more efficient and flexible, which can theoretically generate the videos
of arbitrary lengths. In addition, similar to most existing approaches, we employ ControlNet (Zhang
et al., 2023) and CLIP (Radford et al., 2021) to condition feature extraction of denoising UNet by
given text prompt and BEV semantic layout.

3.1 LATENT VARIABLE PROPAGATION

Our latent variable propagation (LVP) aims to maintain the temporal consistency in frame-by-frame
video generation. The distribution of noise plays an essential role in conditioning image synthesis of
diffusion models. When extending image-level diffusion model Stable Diffusion (Rombach et al.,
2022) to generate video sequences, how to generate the noise distribution across time is crucial
to maintain video temporal consistency. One straightforward way is to sample the noise from the
same distribution for image generation at different frames similar to offline approaches (Wen et al.,
2023). However it cannot maintain temporal consistency in our frame-by-frame generation design.
To address this issue, our proposed LVP views the denoised latent features at previous frame as
the noise prior for image generation at current frame. Based on the LVP module, we can orderly
generate video sequences from frame 1 to frame N , while maintaining good temporal consistency.
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Specifically, we perform the forward diffusion process of frame n based on the latent features of
frame n− 1 as

q(zn1:T |zn0 ) =
T∏

t=1

q(znt |znt−1), q(z
n
t |znt−1) = N (znt ;

√
1− βtz

n
t−1, βtφ(z

n−1
0 )), n = 1, ..., N (1)

where znt represents the noisy latent features at frame n at time-step t, and zn−1 = zn−1
0 represents

the denoised latent features at frame n − 1 generated by denoising UNet. The function φ aims to
normalize the latent features zn−1 as the noise, where we adopt layer normalization operation. The
reverse process at frame n can be written as

pθ(z
n
0:T ) = p(znT )

T∏
t=1

pθ(z
n
t−1|znt ), pθ(znt−1|znt ) = N (znt−1;µθ(z

n
t , t),Σθ(z

n
t , t)), n = 1, ..., N

(2)
where p(znT ) = p(zn−1

0 ) is the Gaussian noise for generator or latent features of reference frame for
simulator when n = 1, and represents the denoised latent features zn−1 of generated image at frame
n− 1 when n = 2, ..., N .

3.2 STREAMING DATA SAMPLER

Figure 3: Illustration of streaming data sam-
pler. The streaming data sampler samples video
clip from frame 1 to frame N at continuous it-
erations. At each iteration, we save the denoised
latent features generated by diffusion model in the
cache, and reuse it as the noise at next iteration.

As mentioned above, our proposed Glad re-
quires the denoised latent features zn−1 at
frame n−1 as noise prior to generate the image
at frame n. To ensure the consistency between
training and inference, we need to caculate the
denoised latent features zn−1 at frame n − 1
when performing image generation at frame n
during training. However, it is time-consuming
and unnecessary to generate the denoised latent
features zn−1 at frame n− 1 from scratch (i.e.,
frame 1). To address this issue, we introduce a
streaming data sampler that samples video clip
orderly at continuous iterations, which can im-
prove the efficiency of training.

Fig. 3 presents the pipeline of our streaming
data sampler module. Given a video clip having
N frames for each clip, we orderly sample the
frame one by one at N continuous iterations. At
each iteration, we employ diffusion model to generate denoised latent features at current frame, and
save the denoised latent features at current frame in the cache. The saved denoised latent features at
current iteration will used as the noise prior at next iteration. In this streaming way, we just generate
the synthetic image of each frame in video clip only once, resulting in more efficient training.

3.3 TRAINING AND INFERENCE STRATEGY

Layout and text control. It is crucial to freely manipulate the agents within the scenes when
performing image generation. Following existing works (Wen et al., 2023; Gao et al., 2023), we
employ BEV layout and text prompt to precisely control the scene composition, which includes 10
common object categories and 3 different types of map elements. For BEV layout, we firstly convert
them into camera view perspective and extract the control elements as object bounding boxes, object
depth maps, road maps, and camera pose embeddings. Afterwards, we integrate them into denoising
UNet using the ControlNet (Zhang et al., 2023) framework. The text prompts are fed to denoising
UNet via pre-trained CLIP (Radford et al., 2021).

Training. Inspired by Panacea (Wen et al., 2023), we adopt a two-stage training strategy and em-
ployed the same data and processing rules. First, we perform image-level pre-training. Our Glad can
also be seen as an image synthesis model, where we only employ Stable Diffusion architecture to
generate the image of one frame from Gaussian noise. Second, we perform video-level fine-tuning
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on the autonomous driving dataset nuScenes by using our proposed streaming data sampler. To ob-
tain images with a resolution of 512×256, we randomly resize the original images to a proportion
of 0.3 to 0.36, and then perform a random crop. This ensures consistency in processing with the
downstream StreamPETR method.

Inference. Our Glad can be used as generator and simulator, which respectively generate video
sequence from Gaussian noise and reference frame. Specifically, given the reference frame or Gaus-
sian noise, we first employ VAE encoder to generate the latent features. Subsequently, we feed it to
the latent variable propagation module as noise prior, and employ denoising UNet and VAE decoder
to predict the denoised latent features and generate the image at frame 1. Then, the denoised latent
features at frame 1 are fed to the latent variable propagation module for image generation at next
frame. In this way, our Glad is able to generate a video sequence of arbitrary lengths.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

nuScenes dataset. The nuScenes dataset was collected from 1000 different driving scenes in Boston
and Singapore. These scenes are split into training, validation, and test sets. Specifically, the training
set contains 700 scenes, the validation set contains 150 scenes, and the test set contains 150 scenes.
The dataset has totally 10 object classes, and provides accurate 3D bounding-box annotations for
each object. In every scene, there are 6 camera views and each view records a length of about 20
second driving video.

Evaluation metrics. We evaluate the quality of the generation and simulation, respectively. To
quantitatively evalute the generation quality, we adopt the frame-wise Fréchet Inception Distance
(FID) (Parmar et al., 2022) and Fréchet Video Distance (FVD) (Unterthiner et al., 2018), which cal-
culate the Fréchet distance between generated content (image or video) and ground truth. To evaluate
the model’s ability to adhere the given input conditions, such as the BEV layout, we follow (Liao
et al., 2022) and report the performance of online vectorized HD map construction. This includes
the average precision (AP) for constructing pedestrian crossings (APped), lane dividers (APdivider),
road boundaries (APboundary), and their weighted average (mAP). To evaluate the potentiality of
Glad as simulator, we assess the 3D detection performance on the nuScenes dataset, including the
nuScenes Detection Score (NDS) and mean Average Precision (mAP). To further evaluate the tem-
poral consistency of the generated videos, we also report the multi-object tracking results, including
average multiple object tracking accuracy (AMOTA) and average multiple object tracking precision
(AMOTP).

Implementation details. Our Glad is implemented based on Stable Diffusion 2.1 (Rombach et al.,
2021). We train our models on 8 NVIDIA A100 GPUs with the mini-batch of 2 images. During
training, we first perform image-level pre-training. Constant learning rate 4×10−5 has been adopted,
and there are 1.25M iterations totally. Afterwards, we fine-tune our Glad on nuScenes dataset with
same settings for 48 epochs. We split each video into 2 clip to balance video length and data
diversity. During inference, we utilize the DDIM (Song et al., 2020) sampler with 25 sampling
steps and scale of the CFG as 5.0. The image is generated at a spatial resolution of 256× 3072 with
6 different views, and split it to 6 images of 256×512 for evaluation. We adopt StreamPETR (Wang
et al., 2023a) with ResNet-50 (He et al., 2016) backbone as perception model. Regarding the map
construction model, we employ MapTR (Liao et al., 2022) with a ResNet-50 backbone and retrain
it under a 512 × 256 pixels resolution setting. The inference time of complete denoising process is
reported in single NVIDIA A100 GPU.

4.2 MAIN RESULTS

Generation quality. We first online generate video data on nuScenes validation set, and employ
the sliding window strategy to evaluation synthetic video quality similar to existing approach (Wen
et al., 2023). Tab. 1 compares data generation quality of our proposed Glad and some state-of-the-art
approaches. We present the results of our Glad respectively using Gaussian noise or from a given
reference frame. When generating video using Gaussian noise, Glad achieves an FID of 12.57 and
an FVD of 207. Furthermore, when generating videos starting from reference frame, Glad achieves
a lower FID of 11.18 and FVD of 188. Compared to the offline approaches, our online Glad achieves
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Table 1: Comparison of video generation with state-of-the-art approaches in terms of FID and
FVD metrics on nuScenes validation set. Compared to the Single frame approaches, our online
approach Glad supports high-quality multi-frame generation. Compared to the ‘offline’ approaches,
our Glad achieves promising performance in an online manner.

Type Method Ref-Frame Multi-View Multi-Frame FID↓ FVD↓

Single
BEVGen (Swerdlow et al., 2024) ✓ 25.54 N/A
BEVControl (Yang et al., 2023b) ✓ 24.85 N/A
MagicDrive (Gao et al., 2023) ✓ 16.20 N/A

Offline

DriveDreamer (Wang et al., 2023b) ✓ ✓ 52.60 452
WoVoGen (Lu et al., 2023) ✓ ✓ 27.60 418
Panacea (Wen et al., 2023) ✓ ✓ 16.96 139
MagicDrive (Gao et al., 2023) ✓ ✓ 16.20 218
DrivingDiffusion (Li et al., 2023a) ✓ ✓ 15.83 332
Drive-WM (Wang et al., 2024) ✓ ✓ 15.80 123

Online Glad (Ours) ✓ ✓ 12.57 207
Glad (Ours) ✓ ✓ ✓ 11.18 188

promising performance in terms of both FID and FVD. For instance, our Glad not using reference
frame generation outperforms MagicDrive by 3.63 and 11 in terms of FID and FVD respectively.
We evaluate the generation speed of our proposed method and some open-source methods. To
generate multi-view frames, BEVGen requires 6.6s, MagicDrive takes 11.2s, and our Glad takes
9.4s. Namely, our Glad has a comparable generation speed with these single frame approaches, but
has much better generation quality.

Table 2: Performance on downstream tasks of the generated data on the validation set. We em-
ploy a pre-trained perception model StreamPETR to perform 3D detection and multi object tracking
on generated and real data. We report the results on real data as Oracle. The input image size is set
as 512×256 pixels.

Method nuImage Video Length mAP↑ NDS↑ AMOTA↑ AMOTP ↓
Oracle ≤41 34.5 46.9 30.2 1.384
Oracle ✓ ≤41 37.8 49.4 33.9 1.325

Panacea (Wen et al., 2023) 8 18.8 32.1 - -
Panacea (Wen et al., 2023) ✓ 8 19.9 32.3 - -

DriveWM (Wang et al., 2024) ✓ 8 20.7 - - -

Glad (Ours)

✓ 1 26.8 40.0 19.7 1.563
8 26.3 39.6 20.0 1.563

✓ 8 28.3 41.3 22.7 1.526
✓ 16 27.7 40.5 21.9 1.535

Practicality for generation. To validate the practicality of our method in driving scenes, we gen-
erate all frames in the nuScenes validation set using BEV layout. Instead of using sliding window
strategy, we generate the video per 8 frames. We employ the video-based 3D object detection ap-
proach, StreamPETR (Wang et al., 2023a), to perform 3D object detection on both ground-truth and
synthetic validation set. Tab. 2 reports 3D detection and multi object tracking results. It can be
observed that, compared to Panacea (Wen et al., 2023), our Glad performs better on all 3D object
detection metrics, which reflect that our Glad can generate more realistic videos for 3D object de-
tection. Further, our Glad achieves an mAP of 28.3 and an NDS of 41.3, which correspond to 74.9%
and 83.6% of the Oracle, respectively. We also report the results when generating the video per 16
frame, the performance of the 3D object detection and tracking drop slightly.

Another crucial application is the expansion of driving dataset to boost the performance of percep-
tion model. We first generate synthetic nuScenes training set using Gaussian noise as the reference
frame and BEV layout. Then, we first pre-train StreamPETR on this synthetic training set, and then
fine-tune it on real training set. Tab. 3 presents the results of baseline, Panacea (Wen et al., 2023),
and our Glad. Compared to the offline Panacea, our online approach Glad achieves the comparable
performance, significantly outperforming the baseline. We further validate the effectiveness using
nuImage pre-training that can provide a better initialization. The baseline achieves NDS of 49.4 and
AMOTA of 33.9, having 2.5 and 3.7 improvement compared to using ImageNet (Deng et al., 2009)
pre-training, respectively. Compared to the stronger baseline, our Glad also has 1.9 improvement in
terms of NDS, and 2.6 improvement in terms of AMOTA.
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Table 3: Impact of training augmentation using generated synthetic data. In top part, we employ
generated data to pre-train the perception model StreamPETR, and then train it on real data. We set
the official reported results where StreamPETR trains on real data only as Baseline. In bottom part,
we orderly train the StreamPETR on nuImage, generated data, and real data.

Method nuImage Generated Real mAP↑ NDS↑ AMOTA↑ AMOTP ↓
Baseline ✓ 34.5 46.9 30.2 1.384
Panacea ✓ ✓ 37.1 (+2.6) 49.2 (+2.3) 33.7 (+3.5) 1.353

Glad (Ours) ✓ ✓ 37.1 (+2.6) 49.2 (+2.3) 33.4 (+3.2) 1.356
Baseline ✓ ✓ 37.8 49.4 33.9 1.325

Glad (Ours) ✓ ✓ ✓ 39.8 (+2.0) 51.3 (+1.9) 36.5 (+2.6) 1.295

Table 4: Performance on downstream tasks of the online vectorized HD map construction. We
retrain the MapTR-tiny under 512×256 pixels with R50 backbone, and report the results on real
data as Oracle or Baseline.

(a)
Method Video Length APped ↑ APdivider ↑ APboundary ↑ mAP ↑
Oracle ≤ 41 42.6 48.4 50.6 47.2

Glad (Ours) 8 25.7 32.1 38.1 32.0

(b)
Method Generated APped ↑ APdivider ↑ APboundary ↑ mAP ↑
Baseline 42.6 48.4 50.6 47.2

Glad (Ours) ✓ 49.4 (+6.8) 52.9 (+4.5) 53.9 (+3.3) 52.1 (+4.9)

Furthermore, we report the performance of our model on online vectorized HD map construction.
As shown in Table 4(a), for the generated validation set, our Glad achieves an mAP of 32.0, which
is above 65% of the Oracle performance. In Table 4(b), after pre-training on the generated training
set, compared to the baseline, our Glad demonstrates an improvement of 4.9% in mAP.

60%

80%

100%

1 2 3 4 5 6 7 8
Frames

NDS: mAP:

Figure 4: The relative detection performance of
simulated data compared to real data, as the
number of simulated frames increases. It tends to
slightly decrease at first two frames and then be-
comes stable.

Potentiality for simulation. To assess the ca-
pability of Glad as a simulator, we design an
experiment to evaluate simulation stability over
time. Specifically, we generate video data us-
ing reference frame, and perform 3D detection
from frame 1 to frame N respectively, and com-
pare the detection performance on simulated
data and real data. Fig. 4 gives the relative
detection performance between simulated data
and real data. The lower relative detection per-
formance is, the simulated data collapse. Al-
though the performance begins to decline, it
quickly converges at a high percentage, such as
the NDS around 85%. It demonstrates that our Glad has a good potentiality for simulation.

4.3 ABLATION STUDY

Table 5: Ablation study of our proposed method.

(a) The effectiveness of Latent Variable Propagation

Model FID↓ FVD ↓ mAP↑ NDS↑
Baseline 20.85 - 26.8 40.0

+LVP 12.57 206 28.3 41.3

(b) GPU memory consumption

Method 0 2 4 8

SWS 31GB +14GB +28GB OOM
SDS 31GB +7GB +7GB +7GB

(c) The impact of training video chunks

Chunk FID↓ FVD ↓ mAP↑ NDS↑
1 14.43 198 27.8 40.2
2 12.57 207 28.3 41.3
5 14.13 208 27.7 41.0

(d) The impact of inference video length

Length mAP↑ NDS↑ AMOTA↑ AMOTP ↓
4 28.1 41.2 22.1 1.540
8 28.3 41.3 22.7 1.526

16 27.7 40.5 21.9 1.535

Here we employ StreamPETR (Wang et al., 2023a) to evaluate detection and tracking performance
for ablation study.
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On the LVP module. Tab. 5(a) compares baseline and our Glad using latent variable propagation
(LVP). The baseline directly generates video data from Gaussian noise, instead of latent variable
propagation (LVP). Compared to the baseline, using LVP has the improvement of 1.3 and 1.5 in
terms of NDS and mAP. We also report the quality of image generation for the Baseline, with LVP
the FID reduce from 20.85 to 12.57. All the results has proved the simple yet effective LVP module
is vital for our Glad.

On the SDS module. Tab. 5(b) compares memory usage on single NVIDIA A100 GPU of streaming
data sampler (SDS) in our Glad and sliding window sampler(SWS) in Panecea. Compared to SWS,
our SDS does not increase memory usage with the increasing video length. The reason is that we
sample video orderly at continuous iterations.

Impact of the number of video chunks during training. During training, we split original training
video into several video chunks to balance video length and data diversity. Tab. 5(c) gives the
impact of different length of video chunks. When the number of chunk is equal to 2, it has the best
performance.

Impact of the length of generated video during inference. During inference, we can generate
video data of different lengths. Tab. 5(d) gives the impact of different video lengths during inference.
We observe that it has the best performance when the length is equal to 8. When the length is larger,
the performance only slightly drops.

Impact of LN Layer. We employ a LN layer to normalize the latent features as in Eq. 1. Without
LN layer, we observe the training loss escalating to NAN, highlighting the importance of LN layer.

Figure 5: Visualization of data generation examples. We generate video clip by fed Gaussian
noise to our Glad, with BEV layout sequences starting at index 2208 of the nuScenes validation set.

Figure 6: Demo of editing input conditions. The BEV’s perspective visualization of input condi-
tions is shown in the first column, where we have selected the conditions at index 74 of the nuScenes
validation set.

9
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4.4 QUALITATIVE ANALYSIS

Here we provide a multi-view generation examples of Glad. As in Fig. 5, as a generator, our Glad
generates multi-view images (corresponding to each row) with strong cross-view consistency. More-
over, Glad maintains strong temporal consistency from frame 1 to frame 8. In Fig. 6, we demonstrate
the capability of generating outputs under edited input conditions using our Glad. The first row dis-
plays the ground truth as a reference. Subsequent rows show frames selected from a video based
on the same reference frame, with modified conditions for each current frame. In the second row,
frames are generated under original conditions. In the third row, a car following the ego is removed.
In the fourth row, a new branch road is added, and in the last row, the ego vehicle switch lanes to the
adjacent one. Our Glad effectively manages these conditions while maintaining consistency across
frames under the same reference.

5 CONCLUSION

In this paper, we introduce a simple framework, named Glad, to generates video data in an online
framework. Our proposed Glad extends Stable Diffusion for video generation by introducing two
novel modules, including latent variable propagation and streaming data sampler. The latent variable
propagation views the denoised latent features of previous frame as noise prior for image generation
at current frame, leading to maintain a good temporal consistency. The streaming data sampler
samples the video frame orderly at continuous iterations, enabling efficient training. We perform the
experiments on the widely-used dataset nuScenes, which demonstrates the efficacy of our proposed
method as a strong baseline for generation tasks.

Limitations and future work: We observe that our proposed method struggles to generate high-
quality video data under high dynamic scenes. In these scenes, the temporal consistency of objects
still needs to be improved. In future, we will explore improving high dynamic object generation.
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A APPENDIX

A.1 PRELIMINARY: LATENT DIFFUSION MODEL

The diffusion model (Ho et al., 2020) is a sophisticated probabilistic approach for image generation.
It typically encompasses two phases: the forward diffusion process in which the data is gradually
injected with Gaussian noise, and the reverse process that learns to reconstruct the original data from
the noise.

Specifically, in the forward diffusion process, the data x0 is transformed into a sequence of latent
variables x1, . . . ,xT following a predefined noise schedule β1, . . . , βT :

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (3)

Suppose that p(xT ) = N (xT ;0, I). The reverse process is modeled as a Markov chain with learned
transitions θ, aiming to recover the original data from the noisy latent variables:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

To maintain generation quality with limited computational resources, latent diffusion models like
Stable Diffusion (Rombach et al., 2022) perform the forward and reverse processes in the latent
space of pretrained VAE (Kingma & Welling, 2013). As in Fig. 2, the encoder function E maps the
input data x0 to a latent space representation z0 = E(x0), and the decoder D reconstructs the data
from the latent space: x0 = D(z0).

A.2 MORE EXPERIMENTS AND VISUALIZATION RESULTS

0

1000

2000

3000

4000

20181614128642 100

N
um

 o
f O

bj
ec

ts

Continuous Existence Frames

100%

90%

80%

70%

60%

 96.2%
 99.7%

Figure 7: Analysis of object persistence in frames.

Object continuous existence frames analysis on the nuScenes dataset. We analyzed object per-
sistence in frames to understand why using more video frames (such as 16 frames instead of 8) does
not further improve downstream task performance. As shown in Fig. 7, our analysis of the nuScenes
dataset reveals that 96.2% of objects appear in fewer than 8 consecutive frames, and 99.7% appear
in fewer than 16 consecutive frames.

Table 6: The influence for error accumulation under different noise prior. We report the FVD
by generating the videos with 8 frames. Where the zn−1

real is the latent freatures of privious frame, the
zn−1
noised is the noise added latent freatures of privious frame, and the zn−1

denoised is newly generated by
our Glad.

Strategy Noise prior FID ↓ FVD ↓ mAP↑ NDS↑

(a) zn−1
real 49.02 607 15.5 30.9

(b) zn−1
noised 32.43 362 19.5 35.5

(c) zn−1
denoised 11.18 188 28.3 41.3
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Figure 8: Different noise prior. Here, ”Sup.” refers to the training supervision for Glad, with
LayerNorm omitted for clarity. In (a), we directly use the latent feature of real image n as the noise
prior. In (b) adds Gaussian noise to the latent feature, while (c) shows our Glad approach of directly
denoising and caching latent features.

Ablation study on error accumulation. As shown in Fig.8, we evaluate error accumulation by
comparing three distinct methods of modifying the noise prior. In the Tab.6, between the noise prior
zn−1
generated and other strategies, the former achieves the best performance in all evaluation metrics.

Therefore, in our Glad approach, we utilize the denoised latent feature.

Table 7: Performance with temporal attention layer.
Temporal modeling FID ↓ FVD ↓ Memory↓ Training Time↓

Latent Variable Propagation (LVP) 12.57 207 38GB 1 Days
Temporal Layer (TL) 17.91 188 66GB 5 Days

Ablation study on temporal attention layer. As shown in the Tab.7, using the temporal layer for
propagating temporal information yielded an FID score of 17.91 and an FVD score of 183. While
the FID is slightly worse than that of latent variable propagation (LVP), the FVD is marginally
better. This suggests that the temporal layer more effectively models temporal propagation but
has limitations in spatial modeling of single frames. Overall, LVP achieves a better balance in
both spatial modeling and temporal propagation. Moreover, the approach using the temporal layer,
which requires modeling multiple frames simultaneously, is considerably more expensive in terms
of memory consumption and training time.

Visualization results on corner case scenes. To generate corner cases, we utilized the CODA (Li
et al., 2022a) dataset, which is specifically designed for real-world road corner cases. CODA encom-
passes three major autonomous driving datasets, including 134 scenes from nuScenes. We focused
on this subset of 134 nuScenes scenes. After filtering to identify which scenes belonged to the vali-
dation set, we retained 30 valid scenes. These 30 scenes serve as our corner case examples, and we
present selected generation results in Fig.9.
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Figure 9: Corner cases generation. From the nuScenes validation dataset, we showcase five corner
cases that demonstrate our generation capabilities: a car making a sudden turn in the opposite lane
(case 1), traffic cones along the roadside (cases 2 and 3), unusual roadside obstacles (case 4), and
unconventional road signs (case 5).
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