AUTOMATO: AN OUT-OF-THE-BOX PERSISTENCE-BASED CLUSTERING ALGORITHM

Anonymous authors

Paper under double-blind review

ABSTRACT

We present AuToMATo, a novel clustering algorithm based on persistent homology. While AuToMATo is not parameter-free per se, we provide default choices for its parameters that make it into an out-of-the-box clustering algorithm that performs well across the board. AuToMATo combines the existing ToMATo clustering algorithm with a bootstrapping procedure in order to separate significant peaks of an estimated density function from non-significant ones. We perform a thorough comparison of AuToMATo (with its parameters fixed to their defaults) against many other state-of-the-art clustering algorithms. We find not only that AuToMATo compares favorably against parameter-free clustering algorithms, but in many instances also significantly outperforms even the best selection of parameters for other algorithms. AuToMATo is motivated by applications in topological data analysis, in particular the Mapper algorithm, where it is desirable to work with a clustering algorithm that does not need tuning of its parameters. Indeed, we provide evidence that AuToMATo performs well when used with Mapper. Finally, we provide an open-source implementation of AuToMATo in Python that is fully compatible with the standard *scikit-learn* architecture.

025 026 027

024

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

028 029

Clustering techniques play a central role in understanding and interpreting data in a variety of fields.
 The idea is to divide a heterogeneous group of objects into groups based on a notion of similarity.
 This similarity is often measured with a distance or a metric on a data set. There exist many different clustering techniques (Anderberg, 1973; Duda et al., 2000), including hierarchical, centroid-based and density-based techniques, as well as techniques arising from probabilistic generative models.
 Each of these methods is proficient at finding clusters of a particular nature. Many of the most commonly used clustering algorithms require a selection of a parameters, a process which poses a considerable challenge when applying clustering to real-world problems.

In this work, we present and implement AuToMATo (*Automated Topological Mode Analysis Tool*), a novel clustering algorithm based on the topological clustering algorithm ToMATo (Chazal et al., 2013). The latter summarizes the prominences of peaks of a density function in a so-called persistence diagram. The user then selects a prominence threshold τ and retains all peaks whose prominence is above this threshold, which results in the final clustering. A simple heuristic to select τ is to sort the peaks by decreasing prominence, and to look for the largest gap between two consecutive prominence values (Chazal et al., 2013). While yielding reasonable results in general, this procedure is not very robust to small changes in the prominence values.

A more robust and sophisticated method is to perform a bottleneck bootstrap on the persistence diagram produced by ToMATo, which is precisely what AuToMATo does. That is, given a persistence diagram obtained by running ToMATo on a point cloud, AuToMATo produces a confidence region for that diagram with respect to the bottleneck distance, which translates into a choice of τ that determines the final clustering. While AuToMATo is not parameter-free per se, we provide default choices that make it perform well across the board. Unless stated otherwise, AuToMATo will henceforth refer to our algorithm with its parameters set to these defaults. We experimentally analyze the clustering performance of AuToMATo and we find that it not only outperforms parameter-free clustering algorithms, but often also even the best choice of hyperparameters for many parametric clustering algorithms. Parameter-free algorithms building on ToMATo exist in the literature, for example, in Cotsakis et al. (2021) the final clustering is determined by fitting a curve to the values of
 prominence, and in Bois et al. (2024) significant values are separated from non-significant ones by
 adapting the process that produces the persistence diagrams. Indeed, the former algorithm is one of
 those that AuToMATo is shown to outperform.

058 We envision one important application of AuToMATo to be to the *Mapper* algorithm, introduced in Singh et al. (2007). Mapper constructs a graph that captures the topological structure of a data 060 set. It relies on many parameters, one them being a clustering algorithm applied to various chunks 061 of the data. Algorithms that depend heavily on a a good choice of a tunable hyperparameter are 062 generally not good candidates for usage with Mapper, as the best choice for the hyperparameter 063 can vary significantly over the different chunks, and manually choosing a different hyperparameter 064 for each may not be possible in practice. Thus, most choices of hyperparameter will generally perform badly on some of the subsets, leading to undesired results of Mapper. Thus AuToMATo 065 can be seen as progress towards finding optimal parameters for Mapper, which is active area of 066 research (Carrière et al., 2018; Chalapathi et al., 2021; Rosen et al., 2023). Running examples for 067 Mapper with AuToMATo, we see that it is indeed a good choice for a clustering algorithm in this 068 application when compared to parametric clustering algorithm such as DBSCAN. 069

071 2 BACKGROUND

072 073

074

081

2.1 PERSISTENCE AND THE TOMATO CLUSTERING ALGORITHM

Both ToMATo and AuToMATo rely on the theory of persistence (Edelsbrunner et al., 2002; Zomorodian & Carlsson, 2005; Carlsson, 2014) to quantify the prominence of peaks of (an estimate of) a density function, and to build a hierarchy of peaks. Given a topological space X equipped with a density function $f: X \to \mathbb{R}_{>0}$, the first step of persistence is to build a filtration from X.

Definition 2.1. Let X be a topological space and $f: X \to \mathbb{R}$ continuous. The superlevelset filtration of (X, f) is the family of superlevelsets $\{X_{\geq t} \mid t \in \mathbb{R}\}$, where $X_{\geq t} := f^{-1}([t, \infty))$.

In the following we assume for ease of exposition that all local extrema of f have distinct values. The idea underlying ToMATo is to track the evolution of (the number of) connected components of 083 $X_{>t}$ as t ranges from $+\infty$ to $-\infty$. In that process, the number of connected components of $X_{>t}$ 084 remains constant, unless t passes through the value of a local extremum of f. As t passes through 085 the value of a local maximum, a new connected component is "born" and added to the superlevelset 086 $X_{>t}$. Similarly, as t passes through the value of a local minimum, two connected components of 087 $X_{>t}$ are merged into one. ToMATo builds a hierarchy of local maxima of f by declaring that, as 880 two components get merged, the component corresponding to the local maximum with higher value 089 absorbs the other one and persists, whereas the component corresponding to the local maximum with lower value "dies". Therefore, to each local maximum we associate a pair (b, d) where b denotes 091 the birth and d the death time, respectively. The evolution of the connected components can be concisely recorded in a persistence diagram. 092

Definition 2.2. Let $\{(b_l, d_l)\}_l$ denote the birth and death times of connected components of the superlevelset filtration $\{X_{\geq t}\}_{t\in\mathbb{R}}$ associated to the density $f: X \to \mathbb{R}$. The associated **persistence diagram**, denoted by Dgm(X, f), is the multiset in the extended plane $\mathbb{R}^2 := \mathbb{R} \cup \{\pm\infty\}$ consisting of the points $\{(b_l, d_l)\}_l \subset \mathbb{R}^2$ (counted with multiplicity) and the diagonal $\Delta := \{(x, x) \mid x \in \mathbb{R}\}$ (where each point on Δ has infinite multiplicity). For a given local maximum of f with birth time b_l and death time d_l , we refer to the difference $d_l - b_l$ as its **prominence** or **lifetime**.

The reason for working in the extended plane is that, provided that f has a global maximum, the superlevelset filtration $X_{\geq t}$ will have a connected component that never dies, i.e., has death time equal to $-\infty$. See the red graph in Figure 1 for an illustration.

The persistence diagram Dgm(X, f) provides a summary of f. The points of Dgm(X, f) are in one-to-one correspondence with the local maxima of f, and twice the L^{∞} -distance of a point to the diagonal Δ (i.e., its Euclidean vertical distance) equals its prominence.

We now outline how the ToMATo clustering algorithm works. Given a point cloud X ToMATo relies on the assumption that the points of X were sampled according to some unknown density function

108 109 110	f. In a nutshell, ToMATo infers information about the local maxima of f by applying the above procedure to an estimate of f . ToMATo takes as input:
111 112 113	 A neighborhood graph G on the points of X. Chazal et al. mostly use the δ-Rips graph and the k-nearest neighbor graph.¹ A density estimator f. Each vertex v of G is assigned a non-negative value f(v) that corre-
114 115 116	 sponds to the estimated density at v. Chazal et al. propose two possible density estimators: the truncated Gaussian kernel density estimator and the distance-to-measure density, originally introduced in Biau et al. (2011).² A merging parameter τ > 0. This is a threshold that the prominence of a local maximum
117 118	of the estimated density \hat{f} must clear for that local maximum to be deemed a feature.
119	Given the inputs above, ToMATo proceeds as follows.
120	1 Estimate the underlying density function \hat{f} at the points of X.
121	2. Apply a hill-climbing algorithm on \mathcal{G} . Construct the neighborhood graph \mathcal{G} on the points
122	of X, and construct a directed subgraph \mathcal{G}' of \mathcal{G} as follows: at each vertex v of \mathcal{G} , place
123	a directed edge from v to its neighbor with highest value of \hat{f} , provided that that value is
124	higher than $\hat{f}(v)$. If all neighbors of v have lower values, v is a peak of \hat{f} . This yields a
125	collection of directed edges that form a spanning forest of the graph \mathcal{G} , consisting of one
126	tree for each local maximum of \hat{f} . In particular, these trees yield a partition of the elements
127	of X into pairwise disjoint sets that serves as a candidate clustering on X.
128	3. Construct the persistence diagram. Construct the persistence diagram $Dgm(\mathcal{G}, \hat{f})$ asso-
129	ciated to the superlevelset filtration of $\hat{f} \colon \mathcal{G} \to \mathbb{R}$.
130	4. Merge non-significant clusters. Iteratively merge every cluster of prominence less than
131	au of the candidate clustering found in Step 2 into its parent cluster, i.e., into the cluster
102	corresponding to the local maximum that it gets merged into in the superlevelset filtration
12/	of $f: \mathcal{G} \to \mathbb{R}$. ToMATo outputs the resulting clustering of points of X, in which every
135	cluster has prominence at least τ by construction.
136	The reason why we can expect the persistence diagram of the approximated density to be "close"
137	to the original one stems from the stability of persistence diagrams under the bottleneck distance
138	(explained in Section 2.2). This is illustrated in Figure 1.
139	
140	$f(x) \blacklozenge$
141	
142	
143	
144	

151 152

153

154

145 146 147

Figure 1: A function $f: K \to \mathbb{R}, K \subset \mathbb{R}$, in red, and an estimate \hat{f} of f in blue (left), with corresponding persistence diagrams Dgm(K, f) and $Dgm(\mathcal{G}, \hat{f})$ consisting of the red and blue dots, respectively, together with a dashed line separating noise from features (right).

b

¹⁵⁵ ¹Given a point cloud, both of these undirected graphs have the set of data points as their vertex set. In the case of the δ -Rips graph, two vertices are connected iff they are at a distance of at most δ apart, whereas in the *k*-nearest neighbor graph, a data point is connected to another iff the latter is among the *k*-nearest neighbors of the first.

¹⁵⁹ ¹⁶⁰ ²For a smoothing parameter $m \in (0, 1)$, and a given data point x, its empirical (unnormalized) distance-to-¹⁶⁰ measure density is given by $\hat{f}(x) = \left(\frac{1}{k} \sum_{y \in N_k(x)} ||x - y||^2\right)^{-\frac{1}{2}}$, where $k = \lceil mn \rceil$, $N_k(x)$ denotes the set of the k nearest neighbors of x, and n is the cardinality of the data set.

In practice, the user must run ToMATo twice. First, ToMATo is run with $\tau = +\infty$ which is equivalent to computing the birth and death time of each local maximum of \hat{f} and hence the persistence diagram $Dgm(\mathcal{G}, \hat{f})$. From the diagram $Dgm(\mathcal{G}, \hat{f})$ the user then determines a merging parameter τ by visually identifying a large gap in $Dgm(\mathcal{G}, \hat{f})$ separating, say, C points corresponding to highly prominent peaks from the rest of the points. Then, ToMATo is run a second time with τ set to that value, which results in the final clustering of X into C clusters.

169 2.2 THE BOTTLENECK BOOTSTRAP

The bottleneck bootstrap, introduced in Chazal et al. (2017, Section 6), is used to separate significant
 features in persistence diagrams from non-significant ones. While it may be used in more general
 settings, we will restrict ourselves to the scenario of Section 2.1.

We first review the bottleneck distance, which is the standard distance measure between persistence diagrams (Edelsbrunner & Harer, 2010; Chazal et al., 2016).

Definition 2.3. Let Dgm_1 and Dgm_2 be two persistence diagrams that have finitely many points off the diagonal. Let π denote the set of bijections $\nu : Dgm_1 \to Dgm_2$. Given points $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , let $||x - y||_{\infty} = \max\{|x_1 - y_1|, |x_2 - y_2|\}$ denote their L^{∞} -distance, where we set $(+\infty) - (+\infty) = (-\infty) - (-\infty) = 0$. Then, the **bottleneck distance** between Dgm_1 and Dgm_2 is defined as

$$W_{\infty}(\mathrm{Dgm}_1, \mathrm{Dgm}_2) = \inf_{\nu \in \pi} \sup_{x \in \mathrm{Dgm}_1} \|x - \nu(x)\|_{\infty}.$$

Note that a bijection $\nu: Dgm_1 \to Dgm_2$ is allowed to match an off-diagonal point of Dgm_1 to the diagonal of Dgm_2 , and vice versa.

We now outline the bottleneck bootstrap. Suppose that X is a sample consisting of n data points, drawn according to some unknown probability density function $f: K \to [0, 1], K \subset \mathbb{R}^n$, and let $\mathcal{D} := Dgm(K, f)$ denote the corresponding (unknown) persistence diagram (we assume the density f and all of its estimates to be normalized here for ease of exposition). We estimate f and the connectivity of K with a density estimator and a neighborhood graph, respectively (as explained in Section 2.1). This allows us to compute $\widehat{\mathcal{D}} := Dgm(X, \widehat{f})$ (where \widehat{f} is the estimate of f), which, in turn, serves as an estimate of \mathcal{D} .

Given a confidence level $\alpha \in (0, 1)$ and a number $B \in \mathbb{Z}_{\geq 1}$ of bootstrap iterations, the bottleneck bootstrap gives an estimate of q_{α} , which is defined by

$$\mathbb{P}(\sqrt{n}W_{\infty}(\mathcal{D},\mathcal{D}) \le q_{\alpha}) = 1 - \alpha.$$
(1)

To that end, we first approximate f with the empirical measure P_n on X that assigns the probability mass of 1/n to each data point (note that this generally does not coincide with \hat{f}). This allows us to estimate the distribution

$$F(z) := \mathbb{P}(\sqrt{n}W_{\infty}(\mathcal{D},\widehat{\mathcal{D}}) \le z)$$

202 with the distribution

182 183

196 197

201

203

212 213

215

$$\widehat{F}(z) := \mathbb{P}(\sqrt{n}W_{\infty}(\widehat{\mathcal{D}}^*, \widehat{\mathcal{D}}) \le z),$$

where $\widehat{\mathcal{D}}^* := \text{Dgm}(X^*, \widehat{f}^*)$ is the persistence diagram corresponding to a sample X^* of size ndrawn from P_n , and the density \widehat{f}^* and the connectivity of X^* are estimated using the same estimators as before. Note that X^* may be thought of as a sample drawn from X with replacement. The distribution \widehat{F} itself is approximated by Monte Carlo as follows. We draw B samples X_1^*, \ldots, X_B^* of size n from P_n , and for each of these B samples, we compute the persistence diagram $\widehat{\mathcal{D}}_i^* := \text{Dgm}(X_i^*, \widehat{f}_i^*)$ and the quantity $T_i^* := \sqrt{n}W_{\infty}(\widehat{\mathcal{D}}_i^*, \widehat{\mathcal{D}}), i = 1, \ldots, B$. Finally, we use the function

$$\widetilde{F}(z) := \frac{1}{B} \sum_{i=1}^{B} \mathbf{1}_{[0,z]}(T_i^*)$$

as an approximation of \hat{F} , and hence of F. Using this, we set

$$\widehat{q}_{\alpha} := \inf\{z \mid \widetilde{F}(z) \ge 1 - \alpha\}$$

to be our estimate of q_{α} . This estimate is asymptotically consistent if $\sup_{z} |\tilde{F}(z) - F(z)| \xrightarrow{f} 0$. If that is the case, it follows from Equation 1 that (asymptotically) the true, unknown persistence diagram \mathcal{D} is at bottleneck distance of at most $\hat{q}_{\alpha}/\sqrt{n}$ from $\hat{\mathcal{D}}$. Hence, points of $\hat{\mathcal{D}}$ that are at L^{∞} distance at most $\hat{q}_{\alpha}/\sqrt{n}$ from the diagonal could be matched to the diagonal under the bottleneck distance, and thus a point of $\hat{\mathcal{D}}$ is declared to be a significant feature iff it is at L^{∞} -distance of at least $\hat{q}_{\alpha}/\sqrt{n}$ to the diagonal, i.e., iff its prominence is at least $2 \cdot \hat{q}_{\alpha}/\sqrt{n}$.

3 METHODOLOGY AND IMPLEMENTATION OF AUTOMATO

226 3.1 METHODOLOGY OF AUTOMATO

AuToMATo builds upon the ToMATo clustering scheme introduced in Chazal et al. (2013) and implemented in Glisse (2023). AuToMATo automates the step of visual inspection of the persistence diagram by means of the bottleneck bootstrap, thus promoting ToMATo to a clustering scheme that does not rely on human input.

More precisely, given a point cloud X to perform the clustering on, AuToMATo takes as input

- an instance of ToMATo with fixed neighborhood graph and density function estimators;
- 233 234 235

232

236

237

238

224 225

a confidence level α ∈ (0, 1); and
a number of bootstrap iterations B ∈ Z_{>1}.

Remark 3.1. We point out that our implementation of AuToMATo comes with default values for each of the objects. Each of these values can, of course, be adjusted by the user. For details on these default values, see Subsection 3.2.

In the present context the bottleneck bootstrap proceeds as follows. AuToMATo generates *B* bootstrap subsamples X_1^*, \ldots, X_B^* of *X*, each of the same cardinality as *X*. Then, the underlying ToMATo instance with $\tau = +\infty$ and its neighborhood graph and density function estimators is used to compute the persistence diagram for *X* and each of X_1^*, \ldots, X_B^* , yielding persistence diagrams $\widehat{\mathcal{D}}$ and $\widehat{\mathcal{D}}_1^*, \ldots, \widehat{\mathcal{D}}_B^*$, respectively. Using the bootstrapped diagrams $\widehat{\mathcal{D}}_1^*, \ldots, \widehat{\mathcal{D}}_B^*$, a bottleneck bootstrap is performed on $\widehat{\mathcal{D}}$. This yields a value \widehat{q}_{α} that (asymptotically as $n \to \infty$) satisfies

246

 $\mathbb{P}(\sqrt{n}W_{\infty}(\mathcal{D},\widehat{\mathcal{D}}) \le \widehat{q}_{\alpha}) = 1 - \alpha,$

where \mathcal{D} denotes the persistence diagram of the true, unknown density function from which X was sampled. Thus, points of $\hat{\mathcal{D}}$ of prominence at least $2 \cdot \hat{q}_{\alpha} / \sqrt{n}$ are declared to be significant features of $\hat{\mathcal{D}}$, and AuToMATo outputs its underlying ToMATo instance with prominence threshold set to $\tau = 2 \cdot \hat{q}_{\alpha} / \sqrt{n}$.

252 When computing the values $\sqrt{n}W_{\infty}(\widehat{D}_{i}^{*},\widehat{D})$, i = 1, ..., B, in the bottleneck bootstrap, we only 253 consider points in \widehat{D}_{i}^{*} and \widehat{D} with finite lifetimes. The reason for this choice is that we consider peaks 254 with infinite lifetime to be significant a priori. Moreover, some of the bootstrapped diagrams among 255 the $\widehat{D}_{1}^{*}, \ldots, \widehat{D}_{B}^{*}$ have a different number of points with infinite lifetime than the reference diagram 256 \widehat{D} . In these cases, the bottleneck distance of the bootstrapped diagram to the reference diagram is 257 infinite, which heavily distorts the distribution $\widetilde{F}(z)$. This choice is justified by experiments.

259 260

3.2 IMPLEMENTATION OF AUTOMATO

We implemented AuToMATo in Python, and all of the code with documentation is available on GitHub.³ For a description of AuToMATo in pseudocode, see Algorithm 1. The algorithm has a worst-case complexity of $O(B(nd + n \log(n) + N^{1.5} \log N))$, where *d* is the dimensionality of the data and *N* is the maximal number of off-diagonal points across all relevant persistence diagram (which is generally much smaller than *n*); see Appendix A.2 for details. Note that the factor of *B* can be significantly decreased through parallelization.

While the input parameters may be adjusted by the user, the implementation provides default values whose choices we discuss presently.

³Anonymized GitHub-link

270 271 Algorithm 1: AuToMATo 272 **Input:** point cloud X of n data points; instance tom_{τ} of ToMATo with neighborhood graph 273 and density function estimators, and prominence threshold τ ; confidence level 274 $\alpha \in (0, 1)$; number of bootstrap iterations $B \in \mathbb{Z}_{\geq 1}$. 275 $\mathcal{D} \leftarrow \mathrm{Dgm}(\mathrm{tom}_{\infty}(X));$ // compute persistence diagram of point cloud 276 for i = 1 to B do 277 Let X_i^* be a subsample of X of size n, sampled with replacement; 278 $\mathcal{D}_i^* \leftarrow \mathrm{Dgm}(\mathrm{tom}_\infty(X_i^*));$ // compute persistence diagram of 279 subsample 280 $d_i \leftarrow \sqrt{n} W^{\text{fin}}_{\infty}(\mathcal{D}^*_i, \mathcal{D});$ // compute bottleneck distance between 281 finite points 282 end 283 Sort and reindex $\{\mathcal{D}_1^*, \ldots, \mathcal{D}_B^*\}$ such that $d_1 \leq \cdots \leq d_B$; $k \leftarrow \left\lceil (1 - \alpha) \cdot \vec{B} \right\rceil;$ 284 285 $\widehat{q}_{\alpha} \leftarrow d_k;$ $\tau \leftarrow 2 \cdot \hat{q}_{\alpha} / \sqrt{n};$ 286 287 **Output:** $tom_{\tau}(X)$; // copy of initial ToMATo instance with 288 prominence threshold set to au289 290

Choice of ToMATo parameters: Our implementation of AuToMATo is such that the user can directly pass parameters to the underlying ToMATo instance. If no such arguments are provided AuToMATo uses the default choices for those parameters, as determined by the implementation of ToMATo given in Glisse (2023). In particular, AuToMATo uses the *k*-nearest neighbor graph and the (logarithm of the) distance-to-measure density estimators by default, each with k = 10. Of course, the persistence diagrams produced by ToMATo, and hence the output of AuToMATo, depend on this choice. This can lead to suboptimal clustering performance of AuToMATo; see Section 6.

299

317

318

319

320

321

322

291

300 **Choice of** α and B: By default, AuToMATo performs the bootstrap on B = 1000 subsamples of 301 the input point cloud, and sets the confidence level to $\alpha = 0.35$. The choice of this latter parameter 302 means that AuToMATo determines merely a 65% confidence region for the persistence diagram produced by the underlying ToMATo instance. While in bootstrapping the confidence level is often 303 set to e.g. $\alpha = 0.05$, the seemingly strange choice of $\alpha = 0.35$ in the setting of AuToMATo is 304 justified by experiments. The value of 65% seems to be low enough to offset some of the negative 305 influence of using possibly non-optimized neighborhood graph and density estimators discussed in 306 Section 6, while at the same time being high enough to yield good results when these estimators 307 are chosen suitably. We point out that the value $\alpha = 0.35$ (as well as the value B = 1000) was 308 decided on after running an early implementation of AuToMATo on just a few synthetic data sets. 309 In particular, the choice was made before conducting the experiments in Section 4. AuToMATo is 310 implemented in such a way that the parameter α can be adjusted after fitting and the clustering is 311 automatically updated.

Our Python package for AuToMATo consists of two separate modules; one for AuToMATo itself, and one for the bottleneck bootstrap. Both are compatible with the *scikit-learn* architecture, and the latter may also be used as a stand-alone module for other scenarios. In addition to the functionality inherited from the *scikit-learn* API, the implementation of AuToMATo comes with options of

- adjusting the parameter α of a fitted instance of AuToMATo which automatically updates the resulting clustering without repeating the (computationally expensive) bootstrapping;
 plotting the persistence diagram and the prominence threshold found in the bootstrapping;
 setting a seed in order to make the creation of the bootstrap subsamples in AuToMATo
 - setting a seed in order to make the creation of the bootstrap subsamples in AuToMATo deterministic, thus allowing for reproducible results; and
 - parallelizing the bottleneck bootstrap for speed improvements.
- Finally, our implementation of AuToMATo contains a parameter that allows the algorithm to label points as outliers. In a nutshell, a point is classified as an outlier if it is not among the nearest

neighbors of more than a specified percentage of its own nearest neighbors. This feature, however, 325 is currently experimental (and is thus turned off by default).

326 327

328 329

330 331

332

333

334

335

336

347 348

361

362

367

370 371

372 373

374

375

376

377

EXPERIMENTS 4

4.1 CHOICE OF CLUSTERING ALGORITHMS FOR COMPARISON

We chose to compare AuToMATo with its default parameters against

- DBSCAN and its extension HDBSCAN;
- hierarchical clustering with Ward, single, complete and average linkage;
- the FINCH clustering algorithm (Sarfraz et al., 2019); and
- a clustering algorithm building on ToMATo stemming from the *Topology ToolKit* (TTK) suite (Tierny et al., 2018); in the following, we will refer to this as the TTK-algorithm.⁴

337 For DBSCAN, HDBSCAN and the hierarchical clustering algorithms mentioned above, we worked 338 with their implementations in *scikit-learn*.⁵ For the FINCH clustering algorithm, we worked with the 339 version available on GitHub.⁶ Indeed, we subclassed that version in order to make it compatible with 340 the scikit-learn API. Similarly, we created a scikit-learn compatible version of the TTK-algorithm 341 by combining code from TTK with the description of the algorithm given in Cotsakis et al. (2021, 342 Section 5.2). While we included DBSCAN and HDBSCAN among the clustering algorithms to 343 compare AuToMATo against because they are standard choices, we chose to include the hierarchical 344 clustering algorithms because they are readily available through *scikit-learn*. Finally, we chose to 345 include FINCH and the TTK-algorithm because, like AuToMATo, they are out-of-the-box (indeed, 346 parameter-free) methods and are thus especially interesting to compare AuToMATo against.

4.2 CHOICE OF DATA SETS

349 The data sets on which we ran AuToMATo and the above clustering algorithms stem from the *Clus*-350 *tering Benchmarks* suite.⁷ We chose this collection as it comes with a large variety of different data 351 sets, all of which are labeled by one or more ground truths, allowing for a fair and extensive com-352 parison. The collection contains five recommended batteries of data sets from which we selected 353 those (data set, ground truth)-pairs that we deemed reasonable for a general purpose parameter-free 354 clustering algorithm. For instance, we chose to include the data set named windows that is part 355 of the wut-battery, but not the data set named windows from the same battery (see Figure 5 in 356 the appendix for an illustration). We chose to include the windows data set because AuToMATo 357 determines clusters depending on connectivity, and topologically speaking, there is only one con-358 nected component in the olympic data set. Finally, we excluded all instances where the ground 359 truth contains data points that are labeled as outliers, as outliers creation is currently an experimental feature in AuToMATo. 360

4.3 METHODOLOGY OF THE EXPERIMENTS

363 We min-max scaled each data set, fitted the clustering algorithms to them, and recorded the clus-364 tering performance of each result by computing the Fowlkes-Mallows score (Fowlkes & Mallows, 1983) of the clustering obtained and the respective ground truth. While the Fowlkes-Mallows score 366 was originally defined for hierarchical clusterings only, it may be defined for general clusterings as follows. Given a clustering C found by an algorithm and a ground truth clustering G, one defines 368 the Fowlkes-Mallows score as 369

$$FMS := \sqrt{\frac{TP}{TP + FP}} \cdot \sqrt{\frac{TP}{TP + FN}},$$

where

- TP is the number of pairs of data points which are in the same cluster in C and in G;
- ⁴For the *Topology ToolKit*, see topology-tool-kit.github.io/ (BSD license).
- ⁵scikit-learn.org/stable/modules/clustering.html

⁶github.com/ssarfraz/FINCH-Clustering(CC BY-NC-SA 4.0 license)

⁷clustering-benchmarks.gagolewski.com/ (CC BY-NC-ND 4.0 license)

- FP is the number of pairs of data points which are in the same cluster in G but not in C; and
- 379 380

- 381 382
- FN is the number of pairs of data points which are not in the same cluster in G but are in the same cluster in C.

In other words, the Fowlkes-Mallows score is defined as the geometric mean of precision and recall 384 of a classifier whose relevant elements are pairs of points that belong to the same cluster in both C and G. It may attain any value between 0 and 1, and these extremal values correspond to the 385 386 worst and best possible clustering, respectively. We chose to use the Fowlkes-Mallows score as opposed to e.g. mutual information or any of the Rand indices, because the latter have been shown 387 to exhibit biased behaviour depending on whether the clusters in the ground truth are mostly of 388 similar sizes or not, see e.g. Romano et al. (2016); to the best of our knowledge, the Fowlkes-389 Mallows score does not suffer from such drawbacks. Moreover, we chose not to use any intrinsic 390 measures of clustering performance since any such measure implicitly defines a further clustering 391 algorithm to compare AuToMATo against, whereas we are interested in comparing AuToMATo 392 against a predefined ground truth clustering. 393

We set the hyperparameters of the HDBSCAN, FINCH and the TTK-algorithm to their default values (as per their respective implementations). In contrast to this, we let the distance threshold parameter for the DBSCAN and the hierarchical clustering algorithms vary from 0.05 to 1.00 in increments of 0.05, with the goal of comparing AuToMATo against the best and worst performing version of these clustering algorithms. To account for the randomized component of AuToMATo, we ran it ten times, each time with a different seed.

While we restricted ourselves to instances where the ground truth does not contain any points labeled as outliers, some of the clustering algorithms in our list (DBSCAN and HDBSCAN) label some data points as outliers. In order to prevent these algorithms from getting systematically low Fowlkes-Mallows scores because of these outliers, we removed all the points labeled as outliers by these algorithms, and only computed the Fowlkes-Mallows score on the remaining points, both for these clustering algorithms and for AuToMATo. This of course gives an advantage to DBSCAN and HDBSCAN over AuToMATo.

In order to allow reproducibility, we chose a fixed seed for all our experiments, which can bey found
 in our code on GitHub. We ran our experiments on a laptop with a 12th Gen Intel Core i7-1260P
 processor running at 2.10GHz.

410 411

4.4 **RESULTS AND INTERPRETATION**

412 Table 1 shows the average Fowlkes-Mallows score of each algorithm across all benchmarking data 413 sets; for AuToMATo, it shows the average and the standard deviation across the ten runs. For those 414 benchmarking data sets that come with more than one ground truth, we included only the best score 415 of the respective algorithm. Similarly, we included only the best performing parameter selection for those algorithms that we ran with varying distance thresholds (which, of course, skews the com-416 parison in favor of those algorithms). As Table 1 shows, AuToMATo outperforms each clustering 417 algorithm on average across all data sets, thus showing that it is indeed a versatile and powerful out-418 of-the-box clustering algorithm. In particular, AuToMATo outperforms the TTK-algorithm, which 419 also build on ToMATo. 420

•	01	ioninino voi reference erast
	Algorithm	Fowlkes-Mallows score
	AuToMATo	0.8554±0.0228
	DBSCAN	0.8457
	Average linkage	0.8321
	HDBSCAN	0.8209
	Single linkage	0.8156
	TTK clustering algorithm	0.8019
	Complete linkage	0.7592
		Continued on next page
		Algorithm AuToMATo DBSCAN Average linkage HDBSCAN Single linkage TTK clustering algorithm Complete linkage

Table 1: Average clustering performance of AuToMATo vs. reference clustering algorithms

Table 1: Average clustering performance of AuToMATo vs. reference clustering algorithms

Algorithm	Fowlkes-Mallows score
Ward linkage	0.5896
FINCH	0.5074

The scores of our experiments are reported in Tables 2 through 6 in Appendix A.3. As an illustration, Figure 2 shows that the best choice of parameter for DBSCAN sometimes outperforms AuToMATo, which is to be expected. However, on most data sets where this is the case, the results from Au-ToMATo are still competitive, and there is a significant number of instances where AuToMATo outperforms DBSCAN for all parameter selections, in some cases by a lot.

Figure 2: Fowlkes-Mallows score of AuToMATo and DBSCAN across benchmarking data sets. The shading of "automato_mean" indicates the standard deviation of the score across the ten runs.

5 APPLICATIONS OF AUTOMATO IN COMBINATION WITH MAPPER

The goal of *Mapper* (Singh et al., 2007) is to approximate the *Reeb graph* of a manifold M based on a sample from M. The input is a point cloud P with a filter function $P \to \mathbb{R}$, a collection of overlapping intervals $\mathcal{U} = \{U_1, \ldots, U_n\}$ covering \mathbb{R} and a clustering algorithm. For each $U_i \in$ \mathcal{U} , Mapper runs the clustering algorithm on the data points in the preimage $f^{-1}(U_i)$, creating a vertex for each cluster. Two vertices are then connected by an edge if the corresponding clusters (in different preimages) have some data points in common, yielding a graph that represents the shape of the data set. We ran the Mapper implementation of giotto-tda (Tauzin et al., 2020) on a synthetic two-dimensional data set consisting of noisy samples from two concentric circles (see Figure 3a) with projection onto the x-axis as the filter function. We ran Mapper on the same interval cover with three different choices of clustering algorithms: AuToMATo, DBSCAN, and HDBSCAN. As can be seen in Figure 3b, using DBSCAN, we get many unwanted edges in the graph. HDBSCAN performs better, giving two cycles with some extra loops. The output of Mapper with AuToMATo is exactly the Reeb graph of two circles.

We further tested the combination of Mapper with AuToMATo on one of the standard applications of Mapper: the Miller-Reaven diabetes data set, where Mapper can be used detect two strains of diabetes that correspond to "flares" in the data set (see Singh et al. (2007, Section 5.1) for details).⁸
As can be seen in Figure 4, AuToMATo performs well in this task; the graphs show a central core of vertices corresponding to healthy patients, and two flares corresponding to the two strains of diabetes. We were not able to reproduce this using DBSCAN or HDBSCAN; Figure 4 shows the output of Mapper with these algorithms with their respective default parameters.

⁸The data set is available as part of the "locfit" R-package (Loader, 2024).

Figure 3: (a) input data set; result of Mapper with (b) AuToMATo; (c) DBSCAN; (d) HDBSCAN

Figure 4: Mapper applied to the diabetes data set with AuToMATo (left); DBSCAN (center); HDBSCAN (right). Labels 0, 1 and 2 stand for "no", "chemical" and "overt diabetes".

6 DISCUSSION

We briefly outline some limitations of AuToMATo. AuToMATo comes with a choice of default val-ues for its parameters. In particular, it resorts to the default values as implemented in ToMATo for the choice of neighborhood graph and density estimators. In ToMATo, the options for the neighbor-hood graph estimators are the δ -Rips graph and the k-nearest neighbor graph, relying on parameters $\delta > 0$ and k > 1, respectively; the options for the density estimators are the kernel density estimator and the distance-to-measure density estimator, which in turn rely parameters h > 0 and $m \in (0, 1)$, respectively (see the footnotes in Section 2.1 for their definitions). While for most data sets that we ran our experiments on these default estimators yielded good results, there are cases where adjusting them before running AuToMATo improves the clustering performance. Nevertheless, since finding a priori optimal parameters for the neighborhood graph and density estimators for a given data set is largely an open problem, we chose to stick to the default values for these estimators. Indeed, there are heuristics for the selection of the bandwidth in kernel density estimation (see Cotsakis et al. (2021, Section 4.1)) and the smoothing parameter in distance-to-measure density estimation (see Chazal et al. (2017, Section 7.1)), but these methods either lack theoretical justification, or would require running AuToMATo multiple times on the same data set with different parameters and selecting the best ones a posteriori, which undermines the intended use of AuToMATo as an out-of-the-box clustering algorithm.

Optimizing the choice of the neighborhood graph and density estimators is an aspect of AuToMATo
that we plan to pursue in future work. Moreover, we plan to improve the currently experimental
feature for outlier creation in AuToMATo discussed at the end of Section 3.2. Finally, it is natural
to ask whether the results from Carrière et al. (2018) on optimal parameter selection in the Mapper
algorithm can be adapted to the scenario where Mapper uses AuToMATo as its clustering algorithm.

537 REFERENCES

539 Michael R. Anderberg. Index. In *Cluster Analysis for Applications*, Probability and Mathematical Statistics: A Series of Monographs and Textbooks, pp. 355–359. Academic Press,

540 541 542	1973. doi: https://doi.org/10.1016/B978-0-12-057650-0.50026-0. URL https://www.sciencedirect.com/science/article/pii/B9780120576500500260.
543 544 545 546	Gérard Biau, Frédéric Chazal, David Cohen-Steiner, Luc Devroye, and Carlos Rodríguez. A weighted k-nearest neighbor density estimate for geometric inference. <i>Electronic Journal of Statistics</i> , 5(none):204 – 237, 2011. doi: 10.1214/11-EJS606. URL https://doi.org/10.1214/11-EJS606.
547 548 549	Alexandre Bois, Brian Tervil, and Laurent Oudre. Persistence-based clustering with outlier- removing filtration. <i>Frontiers in Applied Mathematics and Statistics</i> , 10, 2024. doi: 10.3389/ fams.2024.1260828.
550 551 552	Gunnar Carlsson. Topological pattern recognition for point cloud data. <i>Acta Numerica</i> , 23:289–368, 2014.
553 554 555	Mathieu Carrière, Bertrand Michel, and Steve Oudot. Statistical analysis and parameter selection for mapper. <i>Journal of Machine Learning Research</i> , 19(12):1–39, 2018. URL http://jmlr.org/papers/v19/17-291.html.
556 557 558	Nithin Chalapathi, Youjia Zhou, and Bei Wang. Adaptive covers for mapper graphs using informa- tion criteria. In 2021 IEEE International Conference on Big Data (Big Data), pp. 3789–3800, 2021. doi: 10.1109/BigData52589.2021.9671324.
560 561	Frédéric Chazal, Leonidas J Guibas, Steve Y Oudot, and Primoz Skraba. Persistence-based cluster- ing in riemannian manifolds. <i>Journal of the ACM (JACM)</i> , 60(6):1–38, 2013.
562 563 564	Frédéric Chazal, Steve Y. Oudot, Marc Glisse, and Vin De Silva. <i>The Structure and Stability of Persistence Modules</i> . SpringerBriefs in Mathematics. Springer Verlag, 2016. URL https://hal.inria.fr/hal-01330678.
565 566 567 568 569	Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry A. Wasserman. Robust topological inference: Distance to a measure and kernel distance. <i>J. Mach. Learn. Res.</i> , 18:159:1–159:40, 2017. URL http://jmlr.org/papers/v18/15-484. html.
570 571 572 573	Ryan Cotsakis, Jim Shaw, Julien Tierny, and Joshua A. Levine. Implementing persistence-based clustering of point clouds in the topology toolkit. In Ingrid Hotz, Talha Bin Masood, Filip Sadlo, and Julien Tierny (eds.), <i>Topological Methods in Data Analysis and Visualization VI</i> , pp. 343–357, Cham, 2021. Springer International Publishing. ISBN 978-3-030-83500-2.
574 575	Richard O. Duda, Peter E. Hart, and David G. Stork. <i>Pattern Classification (2nd Edition)</i> . Wiley-Interscience, USA, 2000. ISBN 0471056693.
576 577 578 579	Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. <i>Discrete</i> & <i>Computational Geometry</i> , 28(4):511–533, Nov 2002. ISSN 1432-0444. doi: 10.1007/s00454-002-2885-2. URL https://doi.org/10.1007/s00454-002-2885-2.
580 581 582	H. Edelsbrunner and J. Harer. <i>Computational Topology: An Introduction</i> . Applied Mathemat- ics. American Mathematical Society, 2010. ISBN 9780821849255. URL https://books. google.fr/books?id=MDXa6gFRZuIC.
583 584 585 586	A. Efrat, A. Itai, and M. J. Katz. Geometry helps in bottleneck matching and related problems. <i>Algorithmica</i> , 31(1):1–28, Sep 2001. ISSN 1432-0541. doi: 10.1007/s00453-001-0016-8. URL https://doi.org/10.1007/s00453-001-0016-8.
587 588	Edward B Fowlkes and Colin L Mallows. A method for comparing two hierarchical clusterings. <i>Journal of the American statistical association</i> , 78(383):553–569, 1983.
589 590 591 592	Marc Glisse. persistence-based clustering. In <i>GUDHI User and Reference Manual</i> . GUDHI Ed- itorial Board, 3.9.0 edition, 2023. URL https://gudhi.inria.fr/python/3.9.0/ clustering.html. Available under MIT license.
593	Catherine Loader. <i>locfit: Local Regression, Likelihood and Density Estimation</i> , 2024. URL https://CRAN.R-project.org/package=locfit. R package version 1.5-9.9.

Simone Romano, Xuan Vinh Nguyen, James Bailey, and Karin Verspoor. Adjusting for chance clustering comparison measures. J. Mach. Learn. Res., 17:134:1-134:32, 2016. URL https: //jmlr.org/papers/v17/15-627.html. P. Rosen, M. Hajij, and B. Wang. Homology-preserving multi-scale graph skeletonization us-ing mapper on graphs. In 2023 Topological Data Analysis and Visualization (TopolnVis), pp. 10-20, Los Alamitos, CA, USA, oct 2023. IEEE Computer Society. doi: 10.1109/ TopoInVis60193.2023.00008. URL https://doi.ieeecomputersociety.org/10. 1109/TopoInVis60193.2023.00008. M. Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free clustering using first neighbor relations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8934-8943, 2019. Gurjeet Singh, Facundo Mémoli, Gunnar E Carlsson, et al. Topological methods for the analysis of high dimensional data sets and 3d object recognition. PBG@ Eurographics, 2:091-100, 2007. Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal Medina-Mardones, Alberto Dassatti, and Kathryn Hess. giotto-tda: A topological data analysis toolkit for machine learning and data exploration, 2020. Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet, and Michael Michaux. The topology toolkit. IEEE Transactions on Visualization and Computer Graphics, 24(1):832–842, January 2018. ISSN 1077-2626. doi: 10.1109/TVCG.2017.2743938. Funding Information: This work is partially supported by the Bpifrance grant "AVIDO" (Programme d'Investissements d'Avenir FSN2, reference P112017-2661376/DOS0021427) and by the National Science Foun-dation IIS-1654221. We would like to thank the reviewers for their thoughtful remarks and suggestions. We would also like to thank Attila Gyulassy, Julien Jomier and Joachim Pouderoux for insightful discussions and Will Schroeder, who encouraged us to write this manuscript. Publisher Copyright: © 1995-2012 IEEE. Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Computational Geometry, 33(2):249-274, Feb 2005. ISSN 1432-0444. doi: 10.1007/s00454-004-1146-y. URL https://doi.org/10.1007/s00454-004-1146-y.

A APPENDIX

A.1 About the choice of data sets

As explained in Section 4.2, we chose to include the data set named windows from the battery named wut, but not the data set named olympic from the same battery. Those are illustrated in Figure 5. In that figure, the data points are colored according to the ground truth clustering.

Figure 5: The data sets named windows (left) and olympic (right) from the wut-battery.

A.2 COMPLEXITY ANALYSIS OF ALGORITHM 1

Recall from Chazal et al. (2013, Section 2) that, if an estimated density and a neighborhood graph are provided, ToMATo has a worst-case time complexity in $O(n \log(n) + m\alpha(n))$, where n and m are the number of vertices and edges of the neighborhood graph, respectively, and α denotes the inverse Ackermann function (note that n equals the number of data points). By default, ToMATo (and hence AuToMATo) works with the k-nearest neighbor graph and distance-to-measure density estimators, where the latter relies itself on the k-nearest neighbor graph (each with k = 10). Taking into account the known complexity bound O(nd) for the creation of the k-nearest neighbor graph (where d is the dimensionality of the data), and using the fact that $m \in O(n)$ for this graph, this leads to a worst-case time complexity in $O(nd + n \log(n))$ for a single run of ToMATo. Creating the bootstrap samples X_i^* , $i = 1, \ldots, B$, has complexity in O(Bn); computing the values $\sqrt{n}W_{\infty}^{\text{fin}}(\mathcal{D}_i^*, \mathcal{D})$, i = 1, ..., B, has worst-case complexity $O(BN^{1.5}\log(N))$ (see e.g. Efrat et al. (2001); here N denotes the maximal number of off-diagonal points across all relevant persistence diagram), and sorting them has worst case complexity in $O(B \log(B))$. Combined, this leads to a worst-case complexity for AuToMATo in $O(B(nd + n \log(n) + N^{1.5} \log(N)) + B \log(B))$. Using that B is a constant, we obtain the runtime claimed in the main body.

689 A.3 BENCHMARKING RESULTS

In this subsection we report the Fowlkes-Mallows scores coming from comparing AuToMATo to the other clustering algorithms, as explained in Section 4. For those benchmarking data sets that come with more than one ground truth, we report the scores for each of those, and different ground truths are indicated by the last digit in the data set name. Moreover, each table is sorted according to increasing difference in clustering performance of AuToMATo and the respective clustering algorithm that AuToMATo is being compared against. As is customary, we indicate the score stemming from the best performing clustering algorithm in bold. Finally, each of the table is accompanied by a graph similar to the one depicted in Figure 2. Note that, in particular, that those figures indicate only the score corresponding to the ground truth on which the respective clustering algorithm performs best on.

703				
704	Dataset	automato_mean	dbscan_max	dbscan_min
705	sinu r15 2	0.4867+0.0000	1 0000	0 5607
706	wut trajectories 0	0.4007 ± 0.0000 0 5038+0 0107	1 0000	0.3007
707	wut x3 0	0.5050 ± 0.0107 0.5153 ± 0.0000	0 9398	0.5149
708	wit $x^2 0$	0.5155 ± 0.0000 0 5846+0 0000	0.9483	0.5779
709	sinu r15 1	0.5010 ± 0.0000 0.5436+0.0000	0.8954	0.5021
710	fens tetra 0	0.5450 ± 0.0000 0.6261 ±0.0000	0.0204	0.0000
711	sinu nathbased 0	0.0201 ± 0.0000 0.6517+0.0000	0.9569	0.5769
712	sipu spiral 0	0.0017 ± 0.0000 0.7028 ± 0.0000	1.0000	0.5756
713	wut isolation 0	0.7256+0.0113	1.0000	0 5773
714	sipu pathbased 1	0 7322+0 0000	0.9620	0 5170
714	sipu jain 0	0.7837 ± 0.0000	0.9880	0.7837
/15	graves dense 0	0.8377+0.1396	0.9970	0.7053
716	sipu compound 0	0.8616 ± 0.0000	1.0000	0.4972
717	fcps atom 0	0 8694+0 0000	1.0000	0 7067
718	wut circles 0	0.8857 ± 0.0000	1.0000	0.4998
719	fcps chainlink 0	0.8896 ± 0.0000	1.0000	0.7068
720	other iris 0	0.7715 ± 0.0000	0.8721	0.0000
721	wut mk4 0	0.9072 ± 0.0234	1.0000	0.5770
722	wut mk 2.0	0.6356+0.0000	0.7068	0.5778
723	sipu_compound_4	0.9442 ± 0.0000	1.0000	0.5523
724	wut_x3_1	0.6546 ± 0.0000	0.7042	0.6546
725	graves_zigzag_1	0.6720 ± 0.0000	0.7149	0.4446
726	other_iris5_0	0.6712±0.0000	0.7046	0.0000
720	wut_smile_1	0.9701±0.0000	1.0000	0.5825
720	wut_x1_0	0.9741±0.0818	1.0000	0.5846
728	fcps_target_0	0.9850 ± 0.0000	1.0000	0.6963
729	wut_smile_0	0.9681±0.0000	0.9753	0.5471
730	wut_mk3_0	0.7720 ± 0.0000	0.7774	0.5764
731	sipu_compound_1	0.9786 ± 0.0000	0.9825	0.5715
732	sipu_flame_0	0.7320 ± 0.0000	0.7341	0.5918
733	sipu_unbalance_0	0.9986 ± 0.0008	1.0000	0.5339
734	fcps_twodiamonds_0	0.7067±0.0000	0.7067	0.7067
735	sipu_aggregation_0	0.8652 ± 0.0000	0.8652	0.4653
736	wut_stripes_0	1.0000 ± 0.0000	1.0000	0.7070
737	wut_trapped_lovers_0	1.0000 ± 0.0000	1.0000	0.6632
738	wut_windows_0	1.0000 ± 0.0000	1.0000	0.6753
739	fcps_hepta_0	1.0000 ± 0.0000	1.0000	0.3727
740	fcps_lsun_0	1.0000 ± 0.0000	1.0000	0.6111
7/1	graves_line_0	1.0000±0.0000	1.0000	0.8238
740	graves_ring_0	1.0000 ± 0.0000	1.0000	0.7068
742	graves_ring_outliers_0	1.0000 ± 0.0000	1.0000	0.6863
743	graves_zigzag_0	1.0000 ± 0.0000	1.0000	0.5328
744	other_square_0	1.0000±0.0000	1.0000	0.7068
745	wut_mk1_0	0.9866±0.0000	0.9651	0.5754
746	wut_twosplashes_0	1.0000±0.0000	0.9649	0.7062
747	tcps_wingnut_0	0.9805±0.0000	0.8/84	0.7068
748	graves_parabolic_1	U.0710±U.UUUU 0.7884+0.0000	0.5000	0.4999
749	wui_iauiiyiiui_U	0.7004±0.0000 0.0802±0.0000	0.3221	0.3221
750	sinu d31 0	0.2002±0.0000 0.6001±0.0002	0.7008	0.7008
751	sipu_u31_0	0.0001±0.0005	0.1040	0.1707
752	$sipu_{a1_0}$	0.742250.0000	0.5209	0.2229
753	sipul 15_0	0.9888+0 0000	0.4551	0.2552
754	51Pu_51_0	0.2000-0.0000	0.4070	0.2301
755			Continued	on next page

Table 2: Fowlkes-Mallows scores of AuToMATo vs. DBSCAN

Dataset	automato_mean	dbscan_max	dbscan_min
sipu_a2_0	0.7555±0.0000	0.1685	$0.1685 \\ 0.1410 \\ 0.2581$
sipu_a3_0	0.7434±0.0000	0.1410	
sipu_s2_0	0.9405±0.0000	0.2581	

Figure 6: Comparison of AuToMATo and DBSCAN.

Table 3: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with average linkage

780				
781	Dataset	automato_mean	linkage_average_max	linkage_average_min
782	sipu_r15_2	0.4867 ± 0.0000	1.0000	0.3971
783	wut_trajectories_0	0.5038±0.0107	1.0000	0.3115
784	fcps_tetra_0	0.6261±0.0000	1.0000	0.0651
785	sipu_r15_1	0.5436 ± 0.0000	0.8954	0.4435
786	sipu_d31_0	0.6001 ± 0.0085	0.9322	0.1787
787	wut_x3_0	0.5153 ± 0.0000	0.8389	0.3343
788	wut_x3_1	0.6546 ± 0.0000	0.9747	0.2693
789	fcps_twodiamonds_0	0.7067 ± 0.0000	0.9925	0.1287
790	sipu_a2_0	0.7555 ± 0.0000	0.9432	0.1685
791	sipu_a1_0	0.7499 ± 0.0000	0.9268	0.2229
702	sipu_a3_0	0.7434 ± 0.0000	0.8825	0.1410
702	sipu_aggregation_0	0.8652 ± 0.0000	0.9932	0.1785
793	sipu_pathbased_1	0.7322 ± 0.0000	0.8564	0.2058
794	graves_dense_0	0.8377±0.1396	0.9604	0.6633
795	sipu_pathbased_0	0.6517 ± 0.0000	0.7704	0.1848
796	wut_x2_0	0.5846 ± 0.0000	0.7001	0.2782
797	wut_circles_0	0.8857 ± 0.0000	1.0000	0.2369
798	wut_mk3_0	0.7720 ± 0.0000	0.8771	0.0876
799	wut_mk2_0	0.6356 ± 0.0000	0.7068	0.1421
800	sipu_r15_0	0.9258 ± 0.0000	0.9900	0.2552
801	graves_zigzag_1	0.6720 ± 0.0000	0.7202	0.4380
802	other_iris_0	0.7715 ± 0.0000	0.8080	0.0791
803	other_iris5_0	0.6712 ± 0.0000	0.7042	0.0451
804	wut_x1_0	0.9741 ± 0.0818	1.0000	0.3070
007	sipu_jain_0	0.7837 ± 0.0000	0.7904	0.1736
000	wut_mk1_0	0.9866±0.0000	0.9933	0.2037
806	sipu_unbalance_0	0.9986±0.0008	0.9995	0.5339
807	fcps_hepta_0	1.0000 ± 0.0000	1.0000	0.3727
808			C	Continued on next page
809				

812	Dataset	automato_mean	linkage_average_max	linkage_average_min
813	sinu flame 0	0.7320+0.0000	0.7320	0.0913
814	sipu si 0	0.9888 ± 0.0000	0.9821	0.0513
815	sipu compound 0	0.8616±0.0000	0.8431	0.2207
816	sipu_compound_4	0.9442±0.0000	0.9224	0.1985
817	sipu_compound_1	0.9786±0.0000	0.9546	0.1922
818	sipu_s2_0	0.9405±0.0000	0.9097	0.2581
819	wut_smile_1	0.9701±0.0000	0.8726	0.4041
820	fcps_atom_0	0.8694±0.0000	0.7491	0.2555
821	graves_parabolic_1	0.6916±0.0000	0.5708	0.2135
822	sipu_spiral_0	0.7028±0.0000	0.5756	0.1919
823	wut_mk4_0	0.9072±0.0234	0.7714	0.2071
824	wut_smile_0	0.9681±0.0000	0.8221	0.4303
825	wut_isolation_0	0.7256±0.0113	0.5773	0.1651
826	graves_line_0	1.0000 ± 0.0000	0.8238	0.3047
927	fcps_chainlink_0	0.8896±0.0000	0.7068	0.1456
021	fcps_target_0	0.9850±0.0000	0.7986	0.3285
020	fcps_wingnut_0	0.9805±0.0000	0.7739	0.1101
829	fcps_lsun_0	1.0000±0.0000	0.7896	0.1735
830	graves_ring_0	1.0000±0.0000	0.7780	0.2638
831	graves_parabolic_0	0.9802±0.0000	0.7580	0.1598
832	graves_ring_outliers_0	1.0000±0.0000	0.7767	0.2801
833	other_square_0	1.0000±0.0000	0.7413	0.1746
834	wut_labirynth_0	0.7884±0.0000	0.5221	0.2306
835	wut_stripes_0	1.0000±0.0000	0.7070	0.1082
836	wut_twindows_0	1.0000±0.0000 1.0000±0.0000	0.7062	0.4837
837	wut_willows_0	1.0000±0.0000 1.0000±0.0000	0.0733	0.1194
838	graves zigzag 0		0.0032	0.1077
839	graves_zigzag_0	1.0000±0.0000	0.0010	0.3008

Table 4: Fowlkes-Mallows scores of AuToMATo vs. HDBSCAN

Dataset	automato_mean	automato_std	hdbscan
wut_trajectories_0	0.5038±0.0107	0.0107	1.0000
wut_x3_0	0.5153±0.0000	0.0000	0.8959
wut_x2_0	0.5846 ± 0.0000	0.0000	0.9344
		Continued on	next page

Dataset	automato_mean	automato_std	hdbscan
sinu snirel 0	0.7028±0.0000	0.0000	0.0815
sipu_spirai_0	0.7028 ± 0.0000 0.7320 ± 0.0000	0.0000	0.9015
sipu_fiame_0	0.7320 ± 0.0000	0.0000	0.9900
sipu_d51_0	0.0001 ± 0.0083 0.7827 ± 0.0000	0.0085	0.0231
sipu_jaiii_0	0.7837 ± 0.0000	0.0000	0.9779
reps_tetra_0	0.0201 ± 0.0000 0.8277±0.1206	0.0000	0.015/
graves_delise_0	0.8377 ± 0.1390 0.7222±0.0000	0.1390	0.9094
form atom 0	0.7322 ± 0.0000	0.0000	0.0004
sipu pathbasad 0	0.6094 ± 0.0000	0.0000	1.0000
for a shainlink 0	0.0317 ± 0.0000	0.0000	1 0000
sipu r15 0	0.8890 ± 0.0000	0.0000	1.0000
sipu_15_0	0.9238 ± 0.0000	0.0000	0.9934
sipu_a1_0	0.7499 ± 0.0000	0.0000	0.0001
wul_X5_1	0.0340 ± 0.0000	0.0000	0.09/2
other_iris5_0	0.0712 ± 0.0000	0.0000	0.7042
wul_XI_0	0.9741 ± 0.0818	0.0818	1.0000
sipu_compound_1	0.9786 ± 0.0000	0.0000	
sipu_compound_4	0.9442 ± 0.0000	0.0000	0.9050
tcps_target_0	0.9850 ± 0.0000	0.0000	1.0000
sipu_compound_0	0.8616 ± 0.0000	0.0000	0.8/51
sipu_unbalance_0	0.9986±0.0008	0.0008	1.0000
graves_z1gzag_1	0.6720±0.0000	0.0000	0.6720
sipu_aggregation_0	0.8652±0.0000	0.0000	0.8652
wut_stripes_0	1.0000±0.0000	0.0000	1.0000
wut_trapped_lovers_	0 1.0000±0.0000	0.0000	1.0000
wut_windows_0	1.0000 ± 0.0000	0.0000	1.0000
fcps_hepta_0	1.0000±0.0000	0.0000	1.0000
fcps_lsun_0	1.0000 ± 0.0000	0.0000	1.0000
graves_line_0	1.0000 ± 0.0000	0.0000	1.0000
graves_ring_0	1.0000 ± 0.0000	0.0000	1.0000
graves_ring_outliers	_0 1.0000±0.0000	0.0000	1.0000
graves_zigzag_0	1.0000 ± 0.0000	0.0000	1.0000
other_square_0	1.0000 ± 0.0000	0.0000	1.0000
other_iris_0	0.7715±0.0000	0.0000	0.7715
wut_mk3_0	0.7720 ± 0.0000	0.0000	0.7719
wut_mk1_0	0.9866±0.0000	0.0000	0.9863
sipu_a3_0	0.7434±0.0000	0.0000	0.7415
sipu_a2_0	0.7555 ± 0.0000	0.0000	0.7502
sipu_r15_2	0.4867±0.0000	0.0000	0.4671
sipu_r15_1	0.5436±0.0000	0.0000	0.5212
wut_isolation_0	0.7256±0.0113	0.0113	0.6377
fcps_wingnut_0	0.9805±0.0000	0.0000	0.8725
sipu_s1_0	0.9888±0.0000	0.0000	0.8717
sipu_s2_0	0.9405±0.0000	0.0000	0.7410
wut_mk4_0	0.9072±0.0234	0.0234	0.6459
wut_labirynth_0	0.7884 ± 0.0000	0.0000	0.5134
graves_parabolic_1	0.6916±0.0000	0.0000	0.3616
fcps_twodiamonds_0	0.7067±0.0000	0.0000	0.2886
wut_mk2_0	0.6356±0.0000	0.0000	0.1574
wut_smile_0	0.9681±0.0000	0.0000	0.4000
wut_smile_1	0.9701±0.0000	0.0000	0.3714
graves_parabolic_0	0.9802±0.0000	0.0000	0.3526
wut_twosplashes_0	1.0000 ± 0.0000	0.0000	0.3074
* .	· · · · · · · · · · · · · · · · · · ·	0.0000	0 100

Table 4. Fowlkes-Mallows scores of AuToMATo vs HDBSCAN

Figure 8: Comparison of AuToMATo and HDBSCAN.

Table 5: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with single linkage

935				
936	Dataset	automato_mean	linkage_single_max	linkage_single_min
937	sipu_r15_2	0.4867 ± 0.0000	1.0000	0.5607
938	wut_trajectories_0	0.5038 ± 0.0107	1.0000	0.4999
939	sipu_r15_1	0.5436 ± 0.0000	0.8954	0.5021
940	fcps_tetra_0	0.6261±0.0000	0.9296	0.0829
941	sipu_spiral_0	0.7028 ± 0.0000	1.0000	0.5756
942	wut_isolation_0	0.7256±0.0113	1.0000	0.5773
943	wut_x3_0	0.5153 ± 0.0000	0.7347	0.4951
944	sipu_jain_0	0.7837 ± 0.0000	0.9510	0.7837
945	fcps_atom_0	0.8694 ± 0.0000	1.0000	0.7067
946	wut_circles_0	0.8857 ± 0.0000	1.0000	0.4998
0/7	fcps_chainlink_0	0.8896 ± 0.0000	1.0000	0.7068
049	wut_mk4_0	0.9072 ± 0.0234	1.0000	0.5770
948	sipu_compound_0	0.8616 ± 0.0000	0.9454	0.4972
949	sipu_pathbased_0	0.6517 ± 0.0000	0.7337	0.5769
950	sipu_pathbased_1	0.7322 ± 0.0000	0.8091	0.5170
951	graves_dense_0	0.8377±0.1396	0.9096	0.6882
952	wut_mk2_0	0.6356 ± 0.0000	0.7068	0.6007
953	graves_zigzag_1	0.6720 ± 0.0000	0.7344	0.4446
954	wut_x2_0	0.5846 ± 0.0000	0.6437	0.5105
955	other_iris5_0	0.6712 ± 0.0000	0.7042	0.0451
956	wut_smile_1	0.9701 ± 0.0000	1.0000	0.5825
957	wut_x1_0	0.9741 ± 0.0818	0.9920	0.5846
958	fcps_target_0	0.9850 ± 0.0000	1.0000	0.6963
959	wut_smile_0	0.9681 ± 0.0000	0.9748	0.5471
0.00	sipu_unbalance_0	0.9986 ± 0.0008	1.0000	0.5339
961	fcps_twodiamonds_0	0.7067±0.0000	0.7067	0.7067
901	wut_x3_1	0.6546±0.0000	0.6546	0.6140
962	sipu_aggregation_0	0.8652±0.0000	0.8652	0.4653
963	wut_stripes_0	1.0000±0.0000	1.0000	0.7070
964	wut_trapped_lovers_0	1.0000±0.0000	1.0000	0.6632
965	wut_windows_0	1.0000±0.0000	1.0000	0.6/53
966	tcps_hepta_0	1.0000±0.0000	1.0000	0.3727
967	graves_line_0	1.0000±0.0000	1.0000	0.8238
968	graves_ring_0	1.0000±0.0000	1.0000	0.7068
969	graves_ring_outliers_0		1.0000	0.0803
970	graves_zigzag_0	1.0000±0.0000	1.0000	0.3381
971			Co	ntinued on next page

973				0 0
974	Dataset	automato_mean	linkage_single_max	linkage_single_min
975	sipu_flame_0	0.7320±0.0000	0.7320	0.4598
976	other_iris_0	0.7715±0.0000	0.7715	0.1223
977	other_square_0	1.0000 ± 0.0000	0.9990	0.7068
978	fcps_lsun_0	1.0000 ± 0.0000	0.9983	0.6111
979	wut_twosplashes_0	1.0000 ± 0.0000	0.9850	0.7062
980	sipu_compound_1	0.9786±0.0000	0.9180	0.5715
981	sipu_compound_4	0.9442 ± 0.0000	0.8824	0.5523
982	wut_mk1_0	0.9866±0.0000	0.8866	0.5754
983	fcps_wingnut_0	0.9805 ± 0.0000	0.8087	0.7068
984	graves_parabolic_1	0.6916±0.0000	0.5000	0.4979
985	wut_mk3_0	0.7720 ± 0.0000	0.5764	0.5314
986	wut_labirynth_0	0.7884 ± 0.0000	0.5221	0.5221
987	graves_parabolic_0	0.9802 ± 0.0000	0.7068	0.7040
088	sipu_d31_0	0.6001 ± 0.0085	0.1846	0.1787
020	sipu_a1_0	0.7499±0.0000	0.3269	0.2229
909	sipu_r15_0	0.9258 ± 0.0000	0.4551	0.2552
990	sipu_a2_0	0.7555 ± 0.0000	0.1685	0.1685
991	sipu_a3_0	0.7434 ± 0.0000	0.1410	0.1410
992	sipu_s1_0	0.9888 ± 0.0000	0.3695	0.2581
993	sipu_s2_0	0.9405±0.0000	0.2581	0.2579

Table 5: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with single linkage

Figure 9: Comparison of AuToMATo and agglomerative clustering with single linkage.

|--|

Dataset	automato_mean	automato_std	ttk
wut_trajectories_0	0.5038±0.0107	0.0107	0.8682
fcps_tetra_0	0.6261 ± 0.0000	0.0000	0.9043
wut_x3_0	0.5153 ± 0.0000	0.0000	0.7818
wut_isolation_0	0.7256±0.0113	0.0113	0.9416
sipu_a1_0	0.7499 ± 0.0000	0.0000	0.9143
wut_x2_0	0.5846 ± 0.0000	0.0000	0.7283
sipu_flame_0	0.7320 ± 0.0000	0.0000	0.8562
sipu_aggregation_0	0.8652 ± 0.0000	0.0000	0.9692
graves_zigzag_1	0.6720 ± 0.0000	0.0000	0.7698
other_iris_0	0.7715 ± 0.0000	0.0000	0.8639
sipu_jain_0	0.7837 ± 0.0000	0.0000	0.8182
		Continued on n	ext page

1026	Table 6: Fowlkes-Mallows sc	ores of AuToMAT	o vs. TTK cluste	ering algori
1027				
1028	Dataset	automato_mean	automato_std	ttk
1029	graves_dense_0	0.8377±0.1396	0.1396	0.8615
1030	sipu_r15_0	0.9258 ± 0.0000	0.0000	0.9374
1031	wut_mk3_0	0.7720 ± 0.0000	0.0000	0.7755
1032	wut_labirynth_0	0.7884±0.0000	0.0000	0.7884
1033	fcps_chainlink_0	0.8896±0.0000	0.0000	0.8896
1034	wut_smile_0	0.9681±0.0000	0.0000	0.9681
1035	wut_stripes_0	1.0000 ± 0.0000	0.0000	1.0000
1036	graves_ring_outliers_0	1.0000 ± 0.0000	0.0000	1.0000
1037	wut_smile_1	0.9701±0.0000	0.0000	0.9701
1038	sipu_unbalance_0	0.9986±0.0008	0.0008	0.9951
1039	sipu_s1_0	0.9888±0.0000	0.0000	0.9843
10/0	sipu_s2_0	0.9405±0.0000	0.0000	0.9311
1040	other_iris5_0	0.6712±0.0000	0.0000	0.6612
1041	fcps_atom_0	0.8694±0.0000	0.0000	0.8472
1042	wut_x3_1	0.6546±0.0000	0.0000	0.6312
1043	sipu_d31_0	0.6001±0.0085	0.0085	0.5667
1044	fcps_hepta_0	1.0000±0.0000	0.0000	0.9594
1045	graves_parabolic_1	0.6916±0.0000	0.0000	0.6473
1046	sipu_r15_2	0.4867±0.0000	0.0000	0.4322
1047	sipu_pathbased_0	0.6517±0.0000	0.0000	0.5947
1048	sipu_spiral_0	0.7028 ± 0.0000	0.0000	0.6422
1049	sipu_r15_1	0.5436±0.0000	0.0000	0.4827
1050	sipu_pathbased_1	0.7322 ± 0.0000	0.0000	0.6668
1051	fcps_target_0	0.9850 ± 0.0000	0.0000	0.9185
1051	wut_x1_0	0.9741±0.0818	0.0818	0.8960
1052	wut_twosplashes_0	1.0000±0.0000	0.0000	0.9140
1053	wut_mk4_0	0.9072±0.0234	0.0234	0.8050
1054	wut_mk2_0	0.6356±0.0000	0.0000	0.5302
1055	graves_parabolic_0	0.9802±0.0000	0.0000	0.8653
1056	sipu_compound_4	0.9442±0.0000	0.0000	0.8145
1057	fcps_wingnut_0	0.9805±0.0000	0.0000	0.8497
1058	wut_circles_0	0.8857±0.0000	0.0000	0.7543
1059	wut_mk1_0	0.9866±0.0000	0.0000	0.8148
1060	fcps_twodiamonds_0	0.7067±0.0000	0.0000	0.5251
1061	sipu_compound_0	0.8616±0.0000	0.0000	0.6728
1062	sipu_compound_1	0.9786±0.0000	0.0000	0.7892
1062	graves_line_0	1.0000±0.0000	0.0000	0.7917
1063	fcps_lsun_0	1.0000±0.0000	0.0000	0.7897
1064	wut_trapped_lovers_0	1.0000±0.0000	0.0000	0.7859
1065	other_square_0	1.0000±0.0000	0.0000	0.7774
1066	graves_zigzag_0	1.0000 ± 0.0000	0.0000	0.7686
1067	graves_ring_0	1.0000 ± 0.0000	0.0000	0.7278
1068	sipu_a2_0	0.7555±0.0000	0.0000	0.4641
1069	wut_windows_0	1.0000 ± 0.0000	0.0000	0.5853
1070	sipu_a3_0	0.7434±0.0000	0.0000	0.1882
1071	<u>.</u>			

Table 6: Fowlkes-Mallows scores of AuToMATo vs. TTK clustering algorithm

Table 7: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with complete linkage 1072

Dataset	automato_mean	linkage_complete_max	linkage_complete_min
sipu_r15_2	0.4867±0.0000	1.0000	0.225
wut_trajectories_0	0.5038 ± 0.0107	1.0000	0.170
sipu_r15_1	0.5436 ± 0.0000	0.8954	0.251
wut_x3_1	0.6546 ± 0.0000	0.9740	0.200

1082	Dataset	automato_mean	linkage_complete_max	linkage_complete_min
083	fcps_tetra_0	0.6261±0.0000	0.9356	0.0651
004	sipu_d31_0	0.6001 ± 0.0085	0.8733	0.2717
085	wut_x3_0	0.5153±0.0000	0.7842	0.2477
086	sipu_a3_0	0.7434 ± 0.0000	0.8979	0.2294
087	wut_mk3_0	0.7720 ± 0.0000	0.9207	0.0711
088	wut_x2_0	0.5846 ± 0.0000	0.7298	0.1964
089	sipu_a2_0	0.7555 ± 0.0000	0.8992	0.2642
090	sipu_jain_0	0.7837±0.0000	0.9116	0.1288
091	wut_circles_0	0.8857 ± 0.0000	1.0000	0.1761
)92	sipu_r15_0	0.9258 ± 0.0000	0.9799	0.3372
93	sipu_a1_0	0.7499 ± 0.0000	0.8040	0.3092
ол	graves_zigzag_1	0.6720 ± 0.0000	0.7119	0.3039
05	sipu_aggregation_0	0.8652 ± 0.0000	0.9030	0.1246
095	other_iris_0	0.7715±0.0000	0.8064	0.0680
)96	wut_x1_0	0.9741±0.0818	1.0000	0.2326
)97	sipu_unbalance_0	0.9986 ± 0.0008	0.9988	0.5774
)98	fcps_hepta_0	1.0000 ± 0.0000	1.0000	0.4321
)99	fcps_twodiamonds_0	0.7067±0.0000	0.7060	0.0916
100	sipu_flame_0	0.7320 ± 0.0000	0.7276	0.0834
101	sipu_compound_0	0.8616±0.0000	0.8472	0.1567
102	sipu_s1_0	0.9888±0.0000	0.9563	0.3672
103	sipu_pathbased_0	0.6517±0.0000	0.6022	0.1384
10/	sipu_pathbased_1	0.7322±0.0000	0.6709	0.1539
105	graves_parabolic_1	0.6916±0.0000	0.6168	0.1482
100	sipu_compound_1	0.9786±0.0000	0.9023	0.1366
106	sipu_compound_4	0.9442±0.0000	0.8652	0.1408
07	graves_dense_0	0.8377±0.1396	0.7584	0.3538
08	wut_mk1_0	0.9866±0.0000	0.8950	0.1591
09	wut_smile_1	0.9701±0.0000	0.8697	0.3562
10	graves_parabolic_0	0.9802±0.0000	0.8610	0.1088
11	wut_mk2_0	0.6356±0.0000	0.5032	0.1096
12	other_iris5_0	0.6712±0.0000	0.5305	0.0451
13	fcps_atom_0	0.8694±0.0000	0.7278	0.1364
14	wut_smile_0	0.9681±0.0000	0.8206	0.3793
15	sipu_s2_0	0.9405±0.0000	0.7642	0.3114
116	wut_mk4_0	0.9072±0.0234	0.7282	0.1297
	fcps_target_0	0.9850 ± 0.0000	0.7881	0.1934
17	fcps_lsun_0	1.0000 ± 0.0000	0.7668	0.1377
81	fcps_wingnut_0	0.9805±0.0000	0.7406	0.0816
19	graves_ring_0	1.0000 ± 0.0000	0.7589	0.1849
20	graves_ring_outliers_0	1.0000±0.0000	0.7528	0.1995
21	wut_labirynth_0	0.7884±0.0000	0.4893	0.1426
22	fcps_chainlink_0	0.8896±0.0000	0.5889	0.0919
23	sipu_spiral_0	0.7028±0.0000	0.3512	0.1424
24	wut_isolation_0	0.7256±0.0113	0.3397	0.1153
25	graves_line_0	1.0000±0.0000	0.5972	0.1909
26	other_square_0	1.0000±0.0000	0.5846	0.1142
20	graves_zigzag 0	1.0000 ± 0.0000	0.5505	0.2042
27	wut twosplashes 0	1.0000 ± 0.0000	0.5310	0.2771
28	wut stripes 0	1.0000 ± 0.0000	0 5136	0.0706
29	wut trapped lovers 0	1.0000 ± 0.0000	0.4790	0.0579
30	wut windows 0	1.0000 ± 0.0000	0 4 3 4 9	0.0781
31		1.0000-0.0000	0.1549	

1080 Table 7: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with complete linkage

Figure 11: Comparison of AuToMATo and agglomerative clustering with complete linkage.

Table 8: Fowlkes-	Mallows scores	of AuT	oMATo vs.	hierarchical	clustering with	n Ward linkage
					0	0

1166				-
1167	Dataset	automato_mean	linkage_ward_max	linkage_ward_min
1168	wut x3 0	0.5153+0.0000	0.8537	0.2203
1169	sipu d31 0	0.6001 ± 0.0085	0.9223	0.2766
1170	sipu a3 0	0.0001 ± 0.0000	0.9223	0.2880
1171	sipu_a3_0	0.7434 ± 0.0000	0.7377	0.2009
1170	sipu_a2_0	0.7555 ± 0.0000	0.9360	0.2655
1172	sipu_a1_0	0.7499 ± 0.0000	0.9166	0.2464
1173	wut_x2_0	0.5846 ± 0.0000	0.7219	0.2076
1174	sipu_r15_2	0.4867 ± 0.0000	0.5893	0.1868
1175	graves_zigzag_1	0.6720 ± 0.0000	0.7358	0.2693
1176	sipu_r15_0	0.9258 ± 0.0000	0.9832	0.4072
1177	sipu_r15_1	0.5436 ± 0.0000	0.5993	0.2082
1178	wut_x3_1	0.6546 ± 0.0000	0.7090	0.1795
1170	wut_x1_0	0.9741±0.0818	1.0000	0.2429
1179	sipu_unbalance_0	0.9986 ± 0.0008	1.0000	0.2063
1180	fens henta ()	1,0000+0,0000	1 0000	0 4314
1181	sipu s1 0	0.0888±0.0000	0.0844	0.2453
1182	sipu_si_0	0.9000 ± 0.0000	0.9844	0.2455
1102	sipu_pathbased_0	0.651/±0.0000	0.6251	0.1370
1103	sipu_s2_0	0.9405±0.0000	0.9085	0.2177
1184	sipu_pathbased_1	0.7322±0.0000	0.6844	0.1523
1185	fcps_tetra_0	0.6261±0.0000	0.5622	0.0651
1186			Con	tinued on next page
1187			Con	indea on next page

89				•
90	Dataset	automato_mean	linkage_ward_max	linkage_ward_min
91	graves dense 0	0 8377+0 1396	0 7454	0 2684
92	wut trajectories 0	0.5038 ± 0.0107	0.3933	0.0981
93	other iris 0	0.7715 ± 0.0000	0.6377	0.0680
94	fcps atom 0	0.8694+0.0000	0.0377	0.0000
95	graves parabolic 1	0.6916+0.0000	0.5260	0.1301
96	fcps_target_0	0.0910 ± 0.0000	0.5200	0.1503
97	other iris5 0	0.9030 ± 0.0000 0.6712 ± 0.0000	0.4508	0.0451
98	sinu aggregation 0	0.8652 ± 0.0000	0.6064	0.1215
0	sipu flame 0	0.7320 ± 0.0000	0.0004	0.0819
0	sipu compound 0	0.8616+0.0000	0.5846	0.1523
U	wut mk3 0	0.7720 ± 0.0000	0.3010	0.0711
1	feps twodiamonds 0	0.7720 ± 0.0000 0.7067 ± 0.0000	0.3967	0.0861
2	sinu jain 0	0.7837 ± 0.0000	0.5507	0.1201
3	wut mk1 0	0.9866+0.0000	0.4000	0.1201
4	fens Isun 0	$1,0000\pm0.0000$	0.659	0.1270
5	sipu compound 4	0.9442 ± 0.0000	0.0057	0.1270
6	sipu_compound_4	0.9442 ± 0.0000 0 7028 ±0.0000	0.3793	0.1308
7	wait labiryinth 0		0.3740	0.1304
2 2	sinu compound 1	0.7864±0.0000	0.3749	0.0901
0	sipu_compound_1		0.3046	0.1327
9	wut_twospiasites_0	1.0000 ± 0.0000	0.3017	0.2040
0	wut_smile_1	0.9701 ± 0.0000	0.3240	0.2552
1	wut_shine_0	0.9001 ± 0.0000	0.3179	0.2303
2	wut_IIIK2_0	0.0330 ± 0.0000 1 0000±0 0000	0.1014	0.0997
3	graves_zigzag_0	1.0000±0.0000 0.7256±0.0112	0.3448	0.1809
4	graves line 0	0.7250 ± 0.0115 1 0000±0 0000	0.2309	0.0800
5	graves_inie_0		0.3043	0.1007
6	fong chainlink 0	0.003/±0.0000	0.3081	0.1323
7	reps_challink_0	0.0090±0.0000 0.0072±0.0224	0.3407	0.0694
8	wut_IIIK4_0	$0.90/2\pm0.0234$	0.5557	0.1079
0	graves_parabolic_0	0.9002 ± 0.0000	0.4104	0.0933
9	graves_ing_o		0.4133	0.1427
0	graves_ring_outhers_0		0.4082	0.1515
1	icps_wingnut_0		0.5229	0.0727
2	other_square_0	1.0000±0.0000	0.3347	0.1007
3	wut_windows_0	1.0000±0.0000	0.2833	0.0003
4	wut_trapped_lovers_0	1.0000±0.0000	0.2552	0.04/1
5	wut_stripes_0	1.0000 ± 0.0000	0.1922	0.0552
6				
7				
0				
0	1-		\neg . \sim ,	clusterer
9		$\wedge \wedge \wedge$	$^{\prime}$ \/ $^{\prime}$ \/ $^{\prime}$	automato_me uinkage was
0 e.o.		$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$		linkage_war
1 ^{s-s}		\mathbb{V}		
2 🖁		A		
3	0.2			
34				
5	ישר אין	ther ber ther ther ther ther ther ther ther th	ps_lt_smith	+ aves
6	den: etra athb: 1 1 1 epta nbal; 1 1 1 2 2 3 3	ain 3 3 	hain' _lin∉ _lin∉ _lin∉ olati 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ripes apped apped squar _ring _ring
7	ased ance	amond zag yatio	link s ion aboli aboli ith	J Lout
1		ທ ສີ່ທີ່	'n	liers
8		benchmark		**
9				
0	Figure 12: Comparison o	f AuToMATo and a	agglomerative clusteri	ng with Ward linkage.
				e

 1188
 Table 8: Fowlkes-Mallows scores of AuToMATo vs. hierarchical clustering with Ward linkage

242 243	Table 9: Fowlkes-M	Table 9: Fowlkes-Mallows scores of AuToMATo vs. FINCH					
244	Dataset	automato_mean	automato_std	finch			
245	whet $x^2 = 0$	0.5153±0.0000	0.0000	0 7070			
246	sinu $d31.0$	0.5155 ± 0.0000	0.0000	0.8657			
247	sipu_u31_0	0.0001 ± 0.0003 0.7434+0.0000	0.0005	0.8306			
248	$\frac{310}{20}$	0.7434 ± 0.0000 0.5846+0.0000	0.0000	0.6500			
249	wit $mk_3 0$	$0.30 + 0 \pm 0.0000$ 0.7720+0.0000	0.0000	0.8503			
250	other iris 5.0	0.7720 ± 0.0000 0.6712+0.0000	0.0000	0.0505			
251	sinu a2 0	0.0712 ± 0.0000 0.7555 ± 0.0000	0.0000	0.7635			
252	wit x_{3} 1	0.7555 ± 0.0000 0.6546 ± 0.0000	0.0000	0.7655			
252	sipu unbalance 0	0.0910 ± 0.0000	0.0008	0.9998			
255	sipu r15 0	0.9258+0.0000	0.0000	0.9083			
204	wit mk1 0	0.9866+0.0000	0.0000	0.9655			
255	other iris 0	0.7715 ± 0.0000	0.0000	0 7477			
256	sipu al 0	0.7499 ± 0.0000	0.0000	0.7124			
257	sipu r15 2	0.4867 ± 0.0000	0.0000	0.4156			
258	graves zigzag 1	0.6720 ± 0.0000	0.0000	0.5965			
259	graves dense 0	0.8377+0.1396	0.1396	0.5705			
260	sinu r15 1	0.5436+0.0000	0.0000	0 4641			
261	sipu s1 0	0.9888 ± 0.0000	0.0000	0.8728			
262	fcps hepta 0	1.0000 ± 0.0000	0.0000	0.8794			
263	fcps atom 0	0.8694 ± 0.0000	0.0000	07319			
264	fcps tetra 0	0.6261 ± 0.0000	0.0000	0.4680			
04	sipu s2 0	0.9405±0.0000	0.0000	0.7282			
200	wit x_1^{0}	0.9741 ± 0.0818	0.0818	0 7607			
200	graves parabolic 1	0.6916 ± 0.0000	0.0000	0.4446			
67	sipu flame 0	0.7320 ± 0.0000	0.0000	0.4767			
68	sipu pathbased 0	0.6517±0.0000	0.0000	0.3440			
69	sipu compound 0	0.8616±0.0000	0.0000	0.5390			
70	sipu_pathbased_1	0.7322±0.0000	0.0000	0.3828			
71	wut trajectories 0	0.5038±0.0107	0.0107	0.1503			
2	fcps_lsun_0	1.0000 ± 0.0000	0.0000	0.6206			
	sipu_compound_4	0.9442±0.0000	0.0000	0.5493			
	sipu_jain_0	0.7837±0.0000	0.0000	0.3824			
	sipu_compound_1	0.9786±0.0000	0.0000	0.5356			
	sipu_spiral_0	0.7028±0.0000	0.0000	0.2553			
	wut_mk4_0	0.9072±0.0234	0.0234	0.4331			
	wut_mk2_0	0.6356±0.0000	0.0000	0.1478			
	sipu_aggregation_0	0.8652±0.0000	0.0000	0.3674			
	fcps_twodiamonds_0	0.7067±0.0000	0.0000	0.1837			
	wut_smile_0	0.9681±0.0000	0.0000	0.4452			
	wut_smile_1	0.9701±0.0000	0.0000	0.4181			
	fcps_target_0	0.9850±0.0000	0.0000	0.4297			
	wut_labirvnth_0	0.7884±0.0000	0.0000	0.2209			
	wut_isolation 0	0.7256±0.0113	0.0113	0.1440			
	wut_twosplashes 0	1.0000 ± 0.0000	0.0000	0.4162			
	graves zigzag 0	1.0000 ± 0.0000	0.0000	0.4094			
	graves parabolic 0	0.9802+0.0000	0.0000	0.3343			
	graves line 0	1.0000+0.0000	0.0000	0.3379			
	fcps chainlink 0	0.8896+0.0000	0.0000	0.2224			
	fcps wingnut 0	0.9805+0.0000	0.0000	0.3110			
	oraves ring 0	1.0000+0.0000	0.0000	0 2770			
	wit tranned lovers 0	1.0000+0.0000	0.0000	0 2767			
	other square 0	1.0000+0.0000	0.0000	0 2393			
	oraves ring outliers 0	1 0000+0 0000	0.0000	0.2373			
		1.0000-0.0000	0.0000	0.22-10			
			Continued on n	ext page			

Table 9: Fowlkes-Mallows scores of AuToMATo vs. FINCH

