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Abstract

Visual Question Answering (VQA) has bene-001
fited from increasingly sophisticated models,002
but has not enjoyed the same level of engage-003
ment in terms of data creation. In this paper,004
we propose a method that automatically derives005
VQA examples at volume, by leveraging the006
abundance of existing image-caption annota-007
tions combined with neural models for textual008
question generation. We show that the resulting009
data is of high-quality. The VQA model trained010
on it improves state-of-the-art zero-shot accu-011
racy by double digits and achieves a level of012
robustness that lacks in the same model trained013
on human-annotated VQA data.014

1 Introduction015

Visual Question Answering (VQA) is a complex016

multimodal task that, to be successfully modeled017

and evaluated, requires large amounts of annota-018

tions that are not naturally produced by existing019

business processes, the way translation-pair anno-020

tations (Guo et al., 2018) or image alt-text annota-021

tions (Sharma et al., 2018) are produced.022

At present, a main bottleneck for developing ro-023

bust VQA systems that are useful for downstream024

applications, such as for visually-impaired people025

and in the medical and education domains, appears026

to be a lack of large image-question-answer train-027

ing triplets (on the order of millions). Manual an-028

notation of such triplets is costly, time-consuming,029

and prone to a variety of human biases that are dif-030

ficult to account for (Yuan, 2021). In addition, the031

brittleness of VQA systems trained on such man-032

ual annotations is well-understood and documented033

(Agrawal et al., 2018; Kafle and Kanan, 2017).034

To address the data limitation, we turn to a po-035

tential source for creating VQA examples: image-036

English caption pairs (Chen et al., 2015; Sharma037

et al., 2018). Large-scale image caption datasets038

exist with millions (Changpinyo et al., 2021), sev-039

eral hundreds millions (Radford et al., 2021), or040

Generated Question Answer
What are the two animals laying on the ice? “bears”

What are the bears doing? “laying down”

How many bears are laying on the ice? “two”

How many people are sitting down? “zero”

Caption: Two bears are laying down on the ice.

VQ2A

Figure 1: Given an English caption (along with its corre-
sponding image), our VQ2A method generates high-quality
question-answer pairs. These image-question-answer triplet
data can be automatically produced at volume (millions of
examples) and used to train high-accuracy VQA systems.

even billions (Jia et al., 2021) of examples. Cap- 041

tions come mostly in the form of declarative sen- 042

tences, e.g., “two bears are laying down on the 043

ice”. Yet, the task of converting declarative cap- 044

tions into VQA question/answer pairs is still largely 045

unexplored. It requires automatically inducing can- 046

didate answers fitting the VQA task, along with 047

their respective questions based on the caption text 048

(Fig. 1). We note that transforming declarative 049

form to interrogative form plus answer(s) seems 050

crucial, as there exists evidence that a vision-and- 051

language model trained on declarative-language 052

data cannot be successfully adapted or transferred 053

“out-of-the-box" for VQA (Wang et al., 2021). 054

In this paper, we explore the automatic cre- 055

ation of millions of quality VQA training data us- 056

ing neural models for textual question generation 057

and question answering. We refer to this method 058

as VQ2A, for Visual Question Generation with 059

Question Answering validation. We demonstrate 060

that VQA models trained on such data, with no ex- 061

posure to human-annotated VQA data at all, exhibit 062

high zero-shot performance. Our best models ob- 063
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tain 61.1% accuracy on VQA2.0, 52.1% on GQA,064

around 15-17 points higher than previous zero-shot065

state-of-the-art results, and getting close to fully-066

supervised performance. In addition, taking our067

generated examples as a test set, we provide fur-068

ther evidence for the brittleness of VQA systems069

built with human-annotated examples, as well as070

evidence for the robustness of VQA systems built071

with the automatically-induced VQ2A data.072

2 Related Work073

2.1 Question generation in NLP074

Question Generation (QG) is an active research075

topic in NLP. It is explored as a standalone task076

(Heilman and Smith, 2009; Nema et al., 2019), as077

a pre-training task for language models (Narayan078

et al., 2020) and as a component in solutions for079

other textual tasks, such as question answering (Al-080

berti et al., 2019; Puri et al., 2020), information081

retrieval (Mass et al., 2020; Gaur et al., 2021) and082

generation evaluation (Durmus et al., 2020; Wang083

et al., 2020; Honovich et al., 2021). There are084

two main directions to QG: template-based (Heil-085

man and Smith, 2009; Lyu et al., 2021; Dhole and086

Manning, 2020) and neural-based, with the lat-087

ter achieving state-of-the-art results (Alberti et al.,088

2019; Narayan et al., 2020).089

2.2 Question generation in computer vision090

Question generation in computer vision aims at091

generating visual questions about a given image092

(or video), either for generating questions without093

knowing the answer (Mostafazadeh et al., 2016;094

Zhang et al., 2017; Yang et al., 2018; Uehara et al.,095

2018; Krishna et al., 2019), e.g., for them to to096

be answered by humans, or to help improving the097

VQA task (Kafle et al., 2017; Li et al., 2018; Shah098

et al., 2019; Xu et al., 2021; Kil et al., 2021; Akula099

et al., 2021), e.g., for additional evaluation and100

as means of data augmentation. Such QG mod-101

els are typically based on VQA triplets as train-102

ing data, whose language complexity is often lim-103

ited, or require the collection of visual QG data104

(Mostafazadeh et al., 2016). We take a different105

approach by leveraging models trained on textual106

QA datasets instead.107

Multiple works leverage image captions or video108

transcripts as training sources (Ren et al., 2015a;109

Banerjee et al., 2021; Yang et al., 2021; Lee et al.,110

2021). In this approach, question-answer pairs111

are automatically generated from the text, ignor-112

ing the visual source, and are then combined with 113

the related image/video to produce image-question- 114

answer triplets. Banerjee et al. (2021) propose 115

WeaQA, in which they generate questions from 116

MSCOCO image captions (Chen et al., 2015) us- 117

ing an improved template-based approach in CO- 118

COQA (Ren et al., 2015a) as well as QA-SRL meth- 119

ods, enhanced by paraphrasing and backtranslation 120

for linguistic variations. Lee et al. (2021) similarly 121

train a VQA model from question-answer pairs de- 122

rived from MSCOCO Captions but only use noun 123

phrases as candidate answers, focusing on using it 124

to verify generated captions but not on the VQA 125

task itself. Yang et al. (2021) generate question- 126

answer pairs from instructional video ASR tran- 127

scripts, which are then coupled with the related 128

video. 129

In this work, we follow this direction, investigat- 130

ing what requires to generate data with good cov- 131

erage for the VQA task in the image domain. We 132

show that our neural-based textual question genera- 133

tion approach with captions is much more effective 134

than previous approaches. Further, unlike previ- 135

ous work, we also explore automatically-curated 136

out-of-domain image-text data sources. 137

2.3 Transfer learning for and in VQA 138

Evidence suggests that image-text pre-training, es- 139

pecially when performed at scale, benefits vision- 140

and-language tasks, including VQA (Lu et al., 141

2019; Li et al., 2019; Chen et al., 2020; Tan and 142

Bansal, 2019; Su et al., 2020; Lu et al., 2020; 143

Zhou et al., 2020; Li et al., 2020; Zhang et al., 144

2021; Cho et al., 2021; Wang et al., 2021; Yuan 145

et al., 2021). However, these approaches do not 146

work well without fine-tuning on downstream VQA 147

datasets (Wang et al., 2021), unlike our approach 148

which directly works on data generation. 149

Our focus is the zero-shot transfer setting in 150

WeaQA (Banerjee et al., 2021) in which no manu- 151

ally created VQA triplets are available during train- 152

ing. Similar to this, Chao et al. (2018b) explore 153

cross-dataset VQA but they solely focus on human- 154

annotated data along with approaches to transfer. 155

3 Textual Question Generation for VQA 156

We study whether automatically producing VQA 157

annotations from existing image-text resources can 158

alleviate or completely replace the need for manual 159

data annotation. We only focus on English in this 160

paper. To this end, we follow and improve upon 161
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Candidate Answer Generated Question Validated Answer Match Score & Result
‘two’ ‘How many bears are laying on the ice?’ ‘two’ 1.0 (Pass)
‘bears’ ‘What are the two animals laying on the ice?’ ‘bears’ 1.0 (Pass)
‘two bears’ ‘How many bears are laying on the ice?’ ‘two’ 1.0 (Pass)
‘laying’ ‘What are the bears doing?’ ‘laying down on the ice’ 0.4 (Fail)
‘laying down’ ‘What are the bears doing?’ ‘laying down on the ice’ 0.7 (Pass)
‘ice’ ‘Two bears are laying down on what?’ ‘the ice’ 1.0 (Pass)
‘the ice’ ‘Where are the bears laying?’ ‘on the ice’ 0.7 (Pass)
‘on the ice’ ‘Where are the bears laying?’ ‘on the ice’ 1.0 (Pass)
‘no’ ‘Are the bears sleeping?’ ‘yes’ 0.0 (Fail)
‘yes’ ‘Are the bears on the ice?’ ‘yes’ 1.0 (Pass)
‘zero’ ‘How many people are sitting down?’ - Pass by definition

Table 1: Question/answer pairs generated from the sentence “two bears are laying down on the ice” and the filtering
decision. For answer candidate ‘zero’, no validation is performed .

some of the recent directions in Section 2.2 on162

automatic question-answer generation from text.163

We start with a given dataset of image-caption164

pairs D={imgi, capi}Ni=1. An important assump-165

tion we take is that the information conveyed by the166

caption is, in the vast majority of cases, present in167

the image, i.e., captions do not contain an excessive168

amount of external-world or personal knowledge169

(e.g., “my friend at my birthday party”).170

For each pair {imgi, capi}, an initial set of can-171

didate answers {ai,j}Mi
j=1 is first automatically de-172

rived from capi. For each such candidate answer,173

a question is generated by a neural model qi,j =174

QG(ai,j , capi). Each generated question-answer175

pair undergoes a validation step, and, if validated,176

is coupled with the corresponding image imgi to177

induce a VQA example triplet {imgi, qi,j , ai,j}.178

We refer to this method as VQ2A (Visual179

Question Generation with Question Answering val-180

idation). We next detail the steps in VQ2A.181

3.1 Candidate answer extraction182

The only prior work on neural question genera-183

tion from captions we are aware of, Lee et al.184

(2021), focuses on noun phrases as candidate an-185

swers. Yet, these are not enough to cover the an-186

swer types included in typical VQA benchmarks187

such as VQA2.0 (as we will show in Section 5.1),188

such as boolean, attribute, and verb answers, to189

name a few, which are required for questions like190

as “Is there...”, “What color...”, “What is the dog191

doing”. We present a method that covers all of192

these answer types.193

To extract candidate answers from a given cap-194

tion, we parse it using spaCy1 and then extract195

candidates based on the Part-of-Speech (POS) and196

dependency parse tree annotations, as follows:197

Noun Phrases. We extract all noun phrases anno-198

1https://spacy.io/

tated by spaCy, including named entities. 199

POS Spans. We extract sequences that begin with 200

an open-class POS (nouns, verbs, adjectives and 201

adverbs), that end with an open-class POS or an 202

adverbial particle, and that do not contain any other 203

POS in between except closed-class POS for deter- 204

miners, adpositions and conjunctions. 205

Parse Tree Spans. We consider all sub-trees that 206

include at least one open-class POS and no more 207

than 3 words altogether. We only extract maximal 208

spans, i.e., not extracting sub-trees that are fully 209

included in other extracted sub-trees. 210

Boolean. Boolean questions are frequent in VQA 211

benchmarks (Goyal et al., 2017). Yet, ‘yes’ and 212

‘no’ are not found in captions, and so cannot be 213

extracted as candidates by extracting text spans 214

from captions. To this end, we also add ‘yes’ and 215

‘no’ as candidate answers and generate one question 216

per candidate (see Section 3.2). 217

How many? 0. Captions do not normally contain 218

mentions of ‘zero’ object counts. Hence, marking 219

spans in a caption does not generate questions with 220

the answer ‘0’. Therefore, we randomly sample a 221

generated “How many?” question (with a non-zero 222

answer) from a different caption and add it with 223

the answer changed to ‘zero’ to the candidate set 224

of the target caption. This procedure is potentially 225

noisy because the answer for the sampled question 226

could be non-zero also for the target image. 227

From a manual inspection of 200 such questions, 228

we found this to happen infrequently – about 4.5%. 229

230

Our extraction method covers various answer 231

candidates such as compound nouns, noun phrases, 232

named entities, boolean answers, cardinal and or- 233

dinal numbers, verbs and their compounds, (multi- 234

word) adjectives and prepositional phrases, exem- 235

plified in Table 1 (more analysis in Appendix A). 236
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3.2 Question Generation237

Our question generation model, q = QG(a, cap),238

takes as input a caption, cap, and a candidate an-239

swer span within it, a, and generates a question q,240

whose answer given the input caption is the input241

answer span. Importantly, the answer a does not242

need to appear verbatim in the caption, enabling243

the generation of questions for answer types like244

boolean and zero counts (see Section 3.1).245

Given the advances in neural text generation, in-246

cluding models like T5 (Raffel et al., 2020), we247

choose to use a neural generation model as QG.248

Concretely, we use a T5-XXL model and further249

fine-tune it on SQuAD1.1 (Rajpurkar et al., 2016)250

for question generation. We take the top-scoring251

generated question for each caption-answer input.252

We note that our QG model is trained on a question253

answering dataset that is not caption-specific, and254

therefore is not optimized for caption inputs. From255

manual inspection of hundreds of generated ques-256

tions, our QG model copes well with captions as257

input; see examples in Table 1 and Section 3.5.258

3.3 Question-Answer Filtering259

Generative models may hallucinate, that is, gener-260

ate content that is inconsistent with its input source261

(Alberti et al., 2019; Honovich et al., 2021). To262

mitigate this, we follow Alberti et al. (2019) and263

apply round-trip consistency by answering the gen-264

erated question on the caption text with a question265

answering model. If the answer does not match266

the answer candidate offered as input to the ques-267

tion generation model, the generated question is268

discarded.269

We use the token-level F1 score (Wang et al.,270

2020) to determine if the candidate answer and271

the QA model’s answer is a match; If the score is272

above a threshold (manually set to 0.54, exempli-273

fied in Table 1), the pair is a match. For question274

answering, we use a T5-XXL model and further275

fine-tune it on SQuAD2.0 (Rajpurkar et al., 2018)276

and Natural Questions (Kwiatkowski et al., 2019).277

3.4 Sources of Image/Caption Data278

To gain insights on VQ2A potential performance,279

we generate VQA triplets with VQ2A from two280

sources of image captions: MSCOCO Captions281

(COCO-CAP) (Chen et al., 2015) and Conceptual282

Captions (CC3M) (Sharma et al., 2018). COCO-283

CAP captions contains 123,287 images from the284

COCO dataset (Lin et al., 2014), each with 5285

Dataset Image VQA examples
train dev train dev

VQ2A COCO 114.9K 8.4K 3.50M 257.5K
VQ2A CC3M 3.32M 15.8K 13.29M 61.2K
COCOQA 64.5K 4.7K 108.7K 38.6K
VQA2.0 114.9K 8.4K 582K 65.1K
GQA 82.4K 0.4K 1.08M 12.6K
OKVQA 9K 5K 8.3K 4.7K

Table 2: Sizes of our generated VQ2A data (top two
rows) and VQA datasets used in our experiments.

gold captions manually created by raters with care- 286

ful guidelines. CC3M contains 3.32M images 287

automatically-collected from the web, each with 288

one associated alt-text which we treat as a silver 289

caption. 290

These datasets are quite different. Both the 291

amount and the domain of CC3M images are larger 292

and its captions look more plausible for capturing a 293

larger set of object/attribute/action annotations. On 294

the other hand, COCO-CAP’s captions are cleaner 295

and represent image content more adequately (see 296

also Section 3.5). Thus, using COCO-CAP would 297

show the potential of training a VQA model using 298

VQ2A in a “cleaner” zero-shot setup, where cap- 299

tions are human-curated. Using CC3M would indi- 300

cate the potential of training on noisy web image– 301

alt-text pairs, where scaling up to billions of exam- 302

ples is possible. 303

To quantify the impact of our method, we fo- 304

cus on VQA classification for the VQA2.0 (Goyal 305

et al., 2017), GQA (Hudson and Manning, 2019), 306

and OKVQA (Marino et al., 2019) benchmarks 307

(see Section 4.2). We thus restrict our classifier 308

to top 5,971 answers that are part of a unified 309

answer vocabulary from these benchmarks (Ap- 310

pendix C.1). To this end, we remove triplets whose 311

answers are not in the target answer vocabulary, 312

and leave the study of using all generated triplets 313

to future work. We then split our datasets into 314

train/dev sets. In particular, since the images in 315

VQA2.0 are taken from COCO, we split the COCO 316

dataset based on the standard VQA2.0 train/dev 317

splits of *train2014 and minival2014 (Jiang et al., 318

2018)2. For the CC3M dataset, we use the default 319

CC3M train/dev splits (Sharma et al., 2018). For 320

each unique image-question pair in the dev split, 321

we construct an answer target of size 10, follow- 322

ing VQA2.0, by reducing or expanding the set of 323

seed answers that occur for this image-question 324

pair. Additional details are in Appendix C.1. 325

2With the exception of OKVQA in which we split into
train2014/val2014 to avoid using test images during training.
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Question Answers
How many pieces of fruit are in the bowl “0”
Is there a refrigerator in the kitchen “yes”
What color are the cabinets in the kitchen “white”
Is the kitchen lit or dark “lit”
Is there a stove in the kitchen “no”
What color is the formica in the kitchen “white”

What is on the door of the refrigerator “papers”,
“several papers”

Where are the papers on the refrigerator “door”

What kind of kitchen does the house have “small white 
formica kitchen”

Question Answers
Is the tumbler dishwasher safe “no”
Is the tumbler insulated “yes”
What color is the tumbler “blue”, “shiny blue”
What kind of blue is on the tumbler “shiny”
What is the name of the blue drinkware item “tumbler”
What is ceramic used for in the tumbler “lining”
Which part of the tumbler is made of stainless steel “exterior”
Which part of the tumbler is ceramic “inner”
What is the purpose of the stainless steel exterior of the tumbler “insulating”
What kind of steel is on the outside of the tumbler “stainless”
What material is the inside of the tumbler made of “ceramic”
What material is the outside of the tumbler made of “steel”, “stainless steel”

Figure 2: Examples from VQ2A COCO (top) and VQ2A
CC3M (bottom). Questions with the green background are
also present in VQA2.0.

Table 2 depicts the size of the induced datasets,326

named VQ2A-COCO and VQ2A-CC3M, as well as327

the VQA datasets used in our experiments.328

3.5 Quality Analysis329

To measure the quality of the generated datasets,330

we sampled 800 examples from each of the VQ2A-331

COCO and VQ2A-CC3M datasets. The sample332

was split between four authors, who assessed333

whether the answer to the question in an example334

is justified based on the example’s image. For each335

dataset, 50 examples were rated by all raters, result-336

ing in a free-margin Kappa (Randolph, 2005) of337

0.71 for VQ2A-COCO and 0.59 for VQ2A-CC3M,338

corresponding to high inter-rater agreement. The339

measured percentage of valid triplets is 87.3% for340

VQ2A-COCO and 66.0% for VQ2A-CC3M. This341

shows the difference between the high-quality cap-342

tions of COCO-CAP and the noisier web-based343

ones of CC3M.344

Fig. 2 demonstrates the diversity of questions345

generates in the VQ2A datasets. One can see that a346

significant amount of questions generated by VQ2A347

for the shared VQA2.0/COCO image do not appear348

in VQA2.0. Additional analysis and examples are349

in Appendix B.350

4 Visual Question Answering (VQA)351

To assess the effectiveness of our automatic gen-352

eration of VQA annotations, we perform extrinsic353

evaluations of the generated data by measuring its354

impact on a variety of established VQA bench-355

marks. We first describe the model, followed by356

the experimental setup and the results.357

Multi-Layer Transformer Image & Text Encoder

Global

Multi-Layer Transformer
Text Encoder

...

Answer

[CLS] Token 1 Token 2 Token N...

Faster R-CNN

Region 16Region 1

ResNet

Region 2

ImageImage [CLS] Token 1 Token 2 Token N...

Figure 3: VQA model used in our experiments. The text
encoder is initialized from a T5-base checkpoint, while the
image-text encoder is initialized from scratch. The parameters
of ResNet and Faster R-CNN are frozen during VQA training.

4.1 VQA Formulation and Model 358

Following the literature, we treat VQA as a classi- 359

fication task, i.e., vocab-based VQA. In particular, 360

we treat our target answers as labels, where a label 361

could be multi-token (e.g., "Christmas tree", "black 362

and white", "play tennis"). We define our set of 363

labels based on top answers in the training set of 364

downstream VQA datasets, which allows for a fair 365

comparison with most work in the VQA literature 366

since Antol et al. (2015). 367

Since our work explores the impact of 368

automatically-generated training data, we fix the 369

VQA model architecture across all experimental 370

conditions. Our model fuses the input image and 371

question (Fig. 3). On the image side, we take 372

global image features from ResNet-152 (He et al., 373

2016) pre-trained on ImageNet (Russakovsky et al., 374

2015) plus 16 region-of-interest image features 375

from Faster R-CNN (Ren et al., 2015b) pre-trained 376

on Visual Genome (Krishna et al., 2017). On the 377

question side, we use the encoder of a pretrained 378

T5-base checkpoint (Raffel et al., 2020). Given the 379

image features and the output token embeddings of 380

the question encoder, a Transformer (Vaswani et al., 381

2017) fuses the multi-modal intermediate represen- 382

tation and classifies it into the predefined answer 383

space. We train the (randomly-initialized) fusing 384

encoder and the text encoder end-to-end using stan- 385

dard cross-entropy loss. The parameters of both 386

ResNet and Faster R-CNN are frozen during train- 387

ing. Additional details are given in Appendix C.2. 388

4.2 Experimental Setup 389

We consider three VQA benchmarks: 390

VQA2.0 (Goyal et al., 2017), GQA (Hud- 391

son and Manning, 2019), and OKVQA (Marino 392

et al., 2019). These datasets have their own 393

characteristics and thus test different capability of 394

VQA models. For instance, GQA puts emphasis 395

on reasoning and OKVQA on external knowledge, 396

whereas VQA2.0 is more general; VQA2.0 and 397
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GQA are order-of-magnitude larger than OKVQA;398

GQA is generated using a question engine while399

VQA2.0 and OKVQA are human-annotated.400

For training and evaluating on VQA2.0, we use401

the standard train/dev splits *train2014 and mini-402

val2014 (Jiang et al., 2018). For GQA, we use the403

balanced v1.2 and combine the train and val splits404

for training and use the testdev split for evalua-405

tion, following the official guideline3 and (Tan and406

Bansal, 2019). For OKVQA, we use the train/val407

splits for training/evaluation. Table 2 summarizes408

the sizes of the different datasets.409

Evaluation Settings and Baselines. The main410

goal of our experiments is to explore the utility of411

our VQ2A data for transfer learning, as training or412

evaluation data.413

Our main focus in this paper is on zero-shot eval-414

uation. Still, fine-tuning would provide additional415

insight on using our induced data for pre-training.416

Therefore, following (Banerjee et al., 2021), we417

train VQA models on the generated VQ2A data and418

then evaluate them in two settings: (i) zero-shot419

evaluation, in which we evaluate our models as-is420

on the dev split of VQA2.0, GQA, or OKVQA;421

and (ii) fully-supervised fine-tuning evaluation, in422

which we further fine-tune our models on the train-423

ing split of VQ2A, GQA, or OKVQA before evalu-424

ating them. When training on VQ2A data, we ex-425

plore training on VQ2A-COCO only, VQ2A-CC3M426

only, and a two-stage training VQ2A-CC3M fol-427

lowed by VQ2A-COCO (VQ2A CC3M −→ COCO).428

Our baselines, which do not use VQ2A data,429

include (i) our VQA model trained on template-430

based question generation data COCOQA4 (Ren431

et al., 2015a), (ii) state-of-the-art zero-shot WeaQA432

(Banerjee et al., 2021) and its fully-supervised vari-433

ants, and (iii) our VQA model trained supervisely434

on each of the target benchmarks’ training data.435

Metrics. To be compatible with prior work, on436

VQA2.0 and OKVQA we measure the standard437

VQA Accuracy. It is the average score over 9438

subsets of the ground-truth 10 answers5, where439

each score is: min(#answer occurrences
3 , 1). On440

GQA, we measure Top-1 Accuracy against the sin-441

gle ground-truth answer.442

3https://cs.stanford.edu/people/
dorarad/gqa/evaluate.html

4Train/dev based on the standard VQA2.0 train/dev splits.
55 targets in OKVQA, replicated twice (Marino et al.,

2019).

Evaluation Benchmark
Approach VQA2.0 GQA OKVQA

Zero-shot
VQ2A COCO, nouns only 10.5 - -
COCOQA 11.7 4.4 6.3
WeaQA ZSL 46.8 33.7 -
VQ2A COCO 60.0 51.3 18.0
VQ2A CC3M 56.5 49.9 19.1
VQ2A CC3M −→ COCO 61.1 52.1 19.7
VQ2A CC3M +D 57.9 50.0 19.8

Fully-supervised
WeaQA FSL 65.3 55.2 -
w/o VQ2A data 68.8 61.8 22.1
w. VQ2A COCO 71.6 63.3 36.0
w. VQ2A CC3M 71.3 63.4 39.0
w. VQ2A CC3M −→ COCO 71.4 64.0 39.3

Human performance 82.4† 89.3‡ 82.8†

† from the inter-annotator agreement of ground-truth answers.
‡ from (Hudson and Manning, 2019).

Table 3: VQ2A as training data. VQA Accuracy in
zero-shot and fully-supervised settings. All results use
our architecture, except WeaQA ZSL and WeaQA FSL,
which are the zero-shot (ZSL + Patches + Encoder) and
fully-supervised (FSL + Patches + Encoder) models
in (Banerjee et al., 2021), respectively. +D stands for
recovered raw CC3M alt-texts with digits.

5 Results 443

We report several sets of experimental results that 444

shed light both on the accuracy and on the robust- 445

ness of VQA models trained on VQ2A data in this 446

section, with additional results, analysis and abla- 447

tion studies in Appendix D. 448

5.1 Zero-Shot Setting 449

Table 3 summarizes the outcomes of our VQA ex- 450

periments on various benchmarks. Our main result 451

is that the VQ2A models achieve new state-of-the- 452

art results in the zero-shot transfer learning set- 453

ting. The improvement in performance is large: 454

to the best of our knowledge, previous state-of- 455

the-art zero-shot accuracy was 46.8% on VQA2.0 456

and 33.7% on GQA by WeaQA (Banerjee et al., 457

2021), which also induces their training VQA data 458

from COCO Captions. Our VQ2A-COCO model 459

reaches 60.0% on VQA2.0 and 51.3% on GQA, an 460

absolute improvement of +13.2% and +17.6%, re- 461

spectively. Even higher accuracy for the zero-shot 462

setting – 61.5% (VQA2.0) and 52.1% (GQA) – is 463

reached with the VQ2A CC3M −→ COCO model 464

(trained first on the CC3M-derived data and then 465

fine-tuned on the COCO-derived data), establishing 466

new state-of-the-art results. 467

Training the same model architecture on the 468

manually-constructed VQA2.0 and GQA training 469

sets in a fully-supervised manner achieves 68.8% 470
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and 61.8% accuracy, respectively. Hence, our471

results significantly close the performance gap472

between automatically-generated and manually-473

constructed training sources, indicating that the474

VQ2A method may reduce the need for human cu-475

rated VQA training examples.476

The captions for COCO images are carefully an-477

notated to be of high-quality (Chen et al., 2015).478

Additionally, the VQA2.0 images are taken from479

COCO. To test the robustness of VQ2A, we also480

evaluate a VQ2A-CC3M model. While CC3M con-481

tains more image–alt-text pairs than COCO (see482

Table 2), the images are from a different distribu-483

tion and the text annotations are noisier and may484

represent a larger spectrum of discourse intents485

(Alikhani et al., 2020). In spite of these differences,486

the gap between COCO-based and CC3M-based487

VQ2A models is not large, 60.0% vs 56.5% on488

VQA2.0 and 51.3% vs. 49.9% on GQA. This result489

strengthens our previous observation, in that it does490

not seem to be crucial that the starting captions be491

manual, high-quality annotations; it appears that492

“silver” annotations such as the ones provided by493

CC3M are competitive in zero-shot VQA perfor-494

mance.495

To cover the types of answers present in VQA496

benchmarks, there is a need for thorough extraction497

of various answer/question types (Section 3). The498

QACE model (Lee et al., 2021), for example, fo-499

cuses only on noun-phrases as answer types. By an-500

alyzing the VQA2 devset, we find that only 32% of501

its answers are nouns. As such, it makes sense that,502

when limiting to only this answer type, the VQA503

Accuracy of VQ2A-COCO is 10.5%, compared to504

the 60% achieved with a full coverage. As another505

example, our model trained COCOQA (Ren et al.,506

2015a), which focuses on a few answer types and507

one-word answers, barely surpasses the accuracy508

of our COCO, nouns only baseline. For similar509

reasons, we want to be able to generate ‘how many’510

questions from the CC3M data, even though the511

published annotations have been stripped of digits512

and numerals. To solve this problem, we recover513

the original captions from the CC3M urls, gener-514

ate questions of the type ‘how many’, and train an515

additional VQ2A-CC3M +D model. The results in516

Table 3 show a small but consistent improvement517

over vanilla VQ2A-CC3M, further closing the gap518

between VQ2A models using curated “gold” cap-519

tions and noisier “silver” captions.520

To gain further insights, we provide a breakdown521

Question VQA2.0 VQ2A-COCO VQ2A-CC3M
Prefix Supervised Zero-shot Zero-shot

Boolean 96.3 93.2 94.2
‘What color’ 69.2 64.8 56.8
‘What kind/is’ 52.6 36.9 32.1
‘How many’ 49.3 29.4 19.5
‘Where are/is’ 38.0 30.0 25.3
‘What does’ 33.0 24.1 20.3
‘What time’ 23.6 11.9 12.7

Table 4: Aggregated average accuracy (%) on VQA2.0
for the most common question types.

of VQA Accuracy per VQA2.0 question types in 522

Table 4. Boolean questions are the easiest and all 523

models perform well on them. More challenging 524

question types are ‘How many?’ and ‘What is’. 525

One reason could be the validity of various answers, 526

like “several” for counts. ‘What time?’ is the most 527

difficult, probably due to lack of such information 528

in captions. 529

Finally, we provide zero-shot results on the more 530

difficult OKVQA benchmark. In this setting, a 531

supervised model reaches 22.1% accuracy, while 532

VQ2A models in zero-shot setting achieve close to 533

that – 18.0% with COCO and 19.1% with CC3M, 534

while their combination reaches 19.7%, -2.3% shy 535

of the supervised level. This result also supports 536

the conclusion that creating training data with the 537

VQ2A method is a good replacement for small- 538

scale supervised training data. 539

5.2 Fully-Supervised Setting 540

Another aspect of the VQ2A method that we want 541

to evaluate is whether it produces training data that 542

is similar with the human-annotated data, or it com- 543

plements it. To this end, we perform experiments 544

in which we first train a model using the VQ2A 545

data, and then fine-tuned it in a supervised manner 546

using the human-annotated training data. 547

The results, in the Fully-supervised part of Ta- 548

ble 3, tell two stories. For VQA2.0 and GQA, there 549

is a small yet consistent improvement of the fine- 550

tuned models on top of a model trained directly on 551

the supervised data in each benchmark (labeled w/o 552

VQ2A). This indicates that, at least for these two 553

benchmarks, there is a high overlap in the nature of 554

the signal between the human-annotated data and 555

the VQ2A data. 556

The results on OKVQA show a different trend. 557

Here, training first with VQ2A boosts performance 558

by +17.2% compared to supervised training with- 559

out VQ2A (22.1% −→ 39.3%). The small scale of 560

the OKVQA training set (Table 2) certainly con- 561

tributes to this effect, but it also points to another 562

7



aspect: question-answer pairs that subsume world563

knowledge can only be made available at-scale564

to models by means that are not bottlenecked by565

human-annotation processes.566

5.3 Robustness of Existing VQA Training Sets567

So far we have assessed the capability of models568

trained on VQ2A data. As a complementary study,569

we use 500 manually-validated random samples570

(see Section 3.5) from the dev part of each VQ2A571

dataset to assess VQA robustness for various train-572

ing setups. We use the VQA Accuracy metric for the573

VQ2A datasets (10 target answers, see Section 3.4),574

and Top-1 Accuracy on COCOQA (one target an-575

swer).576

Table 5 shows the results. The fully-supervised577

models (diagonal, similar training and test distri-578

butions) achieve in-domain Accuracy around 70%,579

with VQ2A CC3M achieving slightly higher 76.4%580

Accuracy. When tested on out-of-domain (non-581

diagonal), however, each model poses performance582

degradation at different degrees. First, the model583

based on template-generated COCOQA does not584

generalize at all. Second, the VQA2.0 model sees585

significant accuracy drops, even on the COCO586

(44.4%) and COCOQA (35.9%), which share a587

similar image domain with VQA2.0. This result588

provides another evidence that progress made on589

the VQA2.0 benchmark may not reflect progress590

on the VQA task in full (Chao et al., 2018a; Bras591

et al., 2020).592

In contrast, both VQ2A COCO and VQ2A593

CC3M perform robustly with more modest per-594

formance drops. For instance, on COCOQA,595

VQ2A CC3M achieves even better performance596

than VQA2.0 (42.1% vs. 35.9%) despite tested597

on out-of-domain images. This suggests that the598

VQ2A training data possesses a higher degree of599

question variations, provides better answer cov-600

erage, and exhibits less biases than the manually601

curated VQA2.0 training data, at least enough to602

address these different benchmarks.603

6 Considerations and Limitations604

Automatic data generation is prone to erroneous605

outputs. In VQ2A these may include hallucinations606

of the generative model, incorrect negative sam-607

pling, and bad answer span extraction. In addition,608

the image captions may contain details not in the609

image, e.g. additional details only aware to the610

photo taker or personal opinions, or information611

Evaluation Benchmark (Acc %)
Training COCO- VQA2.0 VQ2A VQ2A

data QA COCO CC3M
COCOQA 70.3 11.7 13.2 5.8
VQA2.0 35.9 68.8 44.4 41.6
VQ2A COCO 55.9 60.0 72.6 56.8
VQ2A CC3M 42.1 56.5 65.6 76.4

Table 5: Manually-validated VQ2A data for robust-
ness evaluation: Accuracy of training on "row" and
tested on "column"; diagonal (gray) numbers denote
supervised setting, non-diagonal numbers denote zero-
shot cross-dataset setting. Best zero-shot is in bold.

that is inconsistent with the image due to human 612

mistakes and biases. We addressed some of these 613

issues in automatically, filtering bad generations 614

via question answering round-trip validation. In ad- 615

dition, the classification task itself curbs the effects 616

of such errors through the use of a fixed answer 617

vocabulary. Yet, for automatic generation to be 618

more robust, additional methods to narrow down 619

mistakes or mismatches need to be developed. 620

The resulting VQA model incorporates and may 621

reinforce some of the biases and stereotypes present 622

in the data. For instance, it may learn that an- 623

swering questions such as “What is the gender of 624

this person?” is a binary choice dictated by shal- 625

low cues, or that the answer to “For whom is this 626

room decorated?” depends on stereotypical fea- 627

tures present (or not) in the room depicted in the 628

image. Mitigation strategies for such issues go be- 629

yond the scope of this paper, but we encourage the 630

research community to consider addressing these 631

issues as central for the successful deployment of 632

this technology. 633

7 Conclusions 634

In this paper, we show that large high-quality VQA 635

training data can be automatically induced from the 636

abundance of existing image/caption datasets. Our 637

method, VQ2A, annotates candidate answers using 638

syntactic parsing of the captions and then derives 639

questions for them using neural models for question 640

generation and question answering verification. We 641

demonstrate that VQA models trained only on such 642

data exhibit high zero-shot performance with new 643

state-of-the-art results on VQA2.0 and GQA. 644

For future work, we plan to explore even larger 645

automatically-curated image-text datasets, consist- 646

ing of billions of examples. In addition, we want to 647

test the applicability of VQ2A to languages other 648

than English, for which human-annotated VQA 649

data is scarce. 650
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Candidate Noun POS Parse Boolean
Answer Phrase Tree

‘two’ V V
‘bears’ V
‘two bears’ V V
‘laying’ V
‘laying down’ V
‘ice’ V
‘the ice’ V
‘on the ice’ V
‘no’ V
‘yes’ V

Table 6: Answer candidates extracted from the sentence
“two bears are laying down on the ice” and the mecha-
nism used to extract them.

A Answer candidate by method 909

Table 6 exemplifies which types of answer candi- 910

dates are extracted by the different answer extrac- 911

tion methods introduces in Section 3.1. 912

B Additional analysis of Generated Data 913

Table 7 presents the top question prefixes and 914

their distribution in the VQA2.0 and VQ2A-based 915

dev sets, showing significant differences between 916

datasets. Many questions in VQA2.0 are of boolean 917

answer type, e.g. ‘is the’, ‘is there’ and ‘does the’, 918

summing to 29.2%. In addition, (‘how many’) ques- 919

tions are frequent, 11%. Finally, questions for the 920

color attribute are standing out with 9%. On the 921

other hand, COCO and CC3M questions are more 922

explanatory in nature, with the majority of ques- 923

tions (45.5% in COCO, 43.9% in CC3M) of the 924

form ‘what is/are/do/does/type’. Another type that 925

is more prominent in COCO and CC3M are ‘where 926

is/are’ questions, which are more than twice fre- 927

quent compared to VQA2.0. 928

Another difference between the manually cu- 929

rated VQA2.0 dataset and the VQ2A automatically 930

generated datasets is question and answer word 931

length distribution (Fig. 5 and 6). The questions in 932

VQ2A-CC3M and VQ2A-COCO have an average 933

word length of 8.3 and 7.8 respectively, while the 934

average VQA2.0 is 6.3. Inspecting the generated 935

questions, we noticed that QG model tends to quote 936

parts of the caption, extending the question length. 937

The average answer word length in VQ2A-CC3M 938

and VQ2A-COCO is 1.76 and 1.85 words respec- 939

tively, while in VQA2.0 it is 1.1. While all answers 940

tend to be short, the VQ2A-induced datasets have 941

more “detailed” answers of length 2-3 words. 942

Fig. 4 provides additional examples of VQ2A 943

COCO and CC3M generated VQA triplets, show- 944
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Question Answers

What is flying over the ocean “eagle”,
“brown eagle”

What color is the bird's head “white”
What color is the bird “brown”
Is the brown eagle flying over land “no”
Is the brown eagle flying over the ocean “yes”
What does the bird do over the water “glides”
Which part of the bird is white “head”

What color are the bird's wings “brown”,
“brown wings”

What color is the eagle in the picture “brown”
Why is the bird flying down to the water “to catch food”

Question Answers
What is in the middle of the photo “coffee”
Where is the coffee in the three frame photo 
combination

“middle”,
“in middle”

How many frames are in the photo “3”,
“3 frame”

How many plates have desserts on them “2”
How much of the pastry had been eaten “partially”
Is there a cup of juice in the puzzle “no”
Is there a pie in the middle of the photo “no”
Are the desserts on the two plates the same or different “different”
A beverage is displayed in what type of glassware “cup”
What is the medium of the images of the desserts “photos”

Question Answers
What type of art is this “vector”
Aside from watches what else is included in the 
illustration “clocks”

What is the illustration of “clocks and 
watches”

Is this a hand drawn clock and watch set “yes”

How were the clocks and watches drawn “hand”

In addition to gold what color is used for the clocks 
and watches in this illustration “gray”

What colors are the clocks and watches in the 
illustration “gray and gold”

What kind of illustration is this “vector art”

Question Answers
Where is the woman in the photo “car”
Is the woman in the picture doing her 
makeup

“yes”

What adjective would you use to describe 
the woman in the car “pretty”

Who is in the car doing makeup “pretty young 
woman”

What is the woman in the car doing “makeup”
“doing makeup”

Figure 4: Additional examples from VQ2A COCO (top) and VQ2A CC3M (bottom). Questions with the green background are
present in VQA2.0.

Question Prefix VQA2.0 % VQ2A-COCO % VQ2A-CC3M % Question Example from VQ2A-COCO
‘What is’ 0.140 0.288 0.217 ‘What is the man swinging?’
‘How many’ 0.110 0.022 0.005 ‘How many people are standing in front of a tv?’
‘Is the’ 0.098 0.084 0.053 ‘Is the baby wearing a Santa hat?’
‘What color’ 0.090 0.022 0.018 ‘What color is the man’s hair?’
‘Is this’ 0.082 0.008 0.015 ‘Is this a safe way to fly?’
‘Is there’ 0.037 0.011 0.022 ‘Is there a pool in the backyard?’
‘What kind’ 0.025 0.049 0.078 ‘What kind of truck is the yellow one?’
‘What are’ 0.024 0.049 0.022 ‘What are the sheep and other animals roaming?’
‘Are the’ 0.024 0.022 0.007 ‘Are the apples on the cutting board green?’
‘Are there’ 0.020 0.002 0.004 ‘Are there any exceptions to this rule?’
‘Where is’ 0.019 0.071 0.034 ‘Where is the tennis player pictured?’
‘What type’ 0.018 0.006 0.022 ‘What type of picture is this?’
‘Is it’ 0.017 0.001 0.005 ‘Is it possible to eat a whole pizza?’
‘Does the’ 0.014 0.007 0.007 ‘Does the adult giraffe have any young?’
‘What does’ 0.011 0.015 0.038 ‘What does a giraffe do with its long neck?’
‘Where are’ 0.006 0.032 0.014 ‘Where are the skateboarders in the photo?’
‘Who is’ 0.005 0.054 0.020 ‘Who is in the photo?’
‘What do’ 0.002 0.003 0.018 ‘What do the father and son ride?’
‘What was’ 0.000 0.009 0.023 ‘What was the woman looking at?’
‘What did’ 0.000 0.001 0.021 ‘What did the cat lay inside of?’

Table 7: Most popular question prefix distribution on valid questions whose answers are in the 6k target vocabulary.

Figure 5: Question length distributions per dataset.

ing the diversity compared to what can be found in945

VQA2.0.946

Fig. 7 offers a more visual view of the differ-947

ences between question type distribution presented948

in Table 7.949

Figure 6: Answer length distributions per dataset.

Table 8 depicts the percentage of questions of 950

each type (prefix) that were retained (not filtered 951

out) when applying the question answer validation 952

phase of VQ2A (Section 3.3). 953

12



Figure 7: VQA2.0 (top), VQ2A-COCO (middle),
VQ2A-CC3M (bottom) sunburst plots of question pre-
fixes.

Question VQ2A-COCO VQ2A-CC3M
Prefix Filter Pass Ratio Filter Pass Ratio

‘What is’ 0.73 0.65
‘Is the’ 0.64 0.39
‘What kind’ 0.84 0.80
‘How many’ 0.83 0.51
‘What color’ 0.92 0.90
‘Where is’ 0.79 0.79
‘Is this’ 0.83 0.62
‘What are’ 0.75 0.71
‘Who is’ 0.85 0.79
‘Is there’ 0.73 0.47
‘What does’ 0.75 0.67
‘Are the’ 0.58 0.32
‘Where are’ 0.80 0.81
‘What type’ 0.84 0.81
‘What was’ 0.72 0.67
‘Does the’ 0.60 0.43
‘Are there’ 0.80 0.62
‘What do’ 0.76 0.72
‘What did’ 0.69 0.64
‘Is it’ 0.62 0.59

Table 8: Question filtering stats.

C Implementation Details 954

C.1 Details on Data Processing 955

Our default question and answer preprocessor is 956

based on (Jiang et al., 2018; Singh et al., 2020)6, 957

with the exception of GQA which we use 7. The 958

unified answer vocabulary used in our experiments 959

is the union of top answers from existing COCO- 960

based VQA benchmarks: VQA2.0 (3,128, min- 961

imum answer frequency=9), GQA (1,843, all), 962

OKVQA (2,000, top), and Visual7W (3,140, mini- 963

mum answer frequency=3) of total size 5,971 964

For each image-unique question pair generated 965

by our VQ2A approach, we reduce or expand a list 966

of possibly different candidate answers based on 967

the list length, such that we eventually have a target 968

list of answers of size 10. In particular, we first sort 969

the answers based on their lengths ("dog" before 970

"black dog"), and select up to top-10 answers. If 971

the list legnth is less than 10, we replicate each of 972

the top answers one-by-one until we have the list of 973

size 10, similar to the process in OKVQA(Marino 974

et al., 2019). This is to ensure that we can adopt 975

VQA Accuracy to make the performance compari- 976

son. 977

6https://github.com/facebookresearch/
mmf/blob/main/mmf/datasets/processors/
processors.py

7https://github.com/stanfordnlp/
mac-network/blob/gqa/preprocess.py
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C.2 Details on Training and Evaluating Visual978

Question Answering979

Our code for the VQA model is based on the Flax-980

former framework8. Both the text encoder and the981

multi-modal encoder have 6 blocks of Transform-982

ers, each of which consists of self-attention and a983

feed-forward network. We use 12 heads of inner984

dimension of 64, the embedding dimension of 768,985

and the MLP dimension of 2048. During training,986

we use Adafactor (Shazeer and Stern, 2018), with987

an initial learning rate of 0.0025, a linear warm-up988

step of 5K for (pre-)training and 1K for fine-tuning,989

and an “inverse square root” learning rate schedule990
1√

max(n,k)
, where n is the current training iteration991

and k is the number of warm-up steps. We use a992

dropout rate of 0.0. We train each of the models993

with data parallelism using 16 Cloud TPU Pods9,994

each with a batch size of 256, unless otherwise995

stated.996

The default numbers of training steps during997

training and fine-tuning are 100K and 30K, respec-998

tively. The exceptions are OKVQA (30K/15K) and999

VQ2A CC3M (150K/NA). In addition, in the two-1000

stage training where we fine-tune a VQ2A-CC3M1001

model with VQ2A COCO, we also use 100K steps.1002

Each single training run on average took fewer1003

than 10 hours, including the time used to evaluate1004

a checkpoint — every 1K iterations. For instance,1005

training on VQA2.0 took approximately 7 hours,1006

VQ2A COCO 13 hours, VQ2A CC3M 10 hours.1007

Note that VQ2A COCO has larger evaluation set1008

than other datasets, hence taking longer time to to1009

train then VQ2A CC3M.1010

The hyperparameters for Transformers are se-1011

lected to be consistent with a T5-base checkpoint,1012

which has 220 million parameters (Raffel et al.,1013

2020) (except that now we have 2 encoders rather1014

than an encoder and a decoder). We initially1015

tuned the initial learning rate (0.0125, 0.075, 0025,1016

0.00125, 0.00075) and the dropout rate (0.0, 0.1,1017

0.2) on a fully-supervised model on VQA2.0 base-1018

line using VQA Accuracy and observed that 0.00251019

and 0.0 work robustly across our experiments but1020

we did not extensively tuned them in all of our1021

experiments.1022

We implement VQA Accuracy ourselves based1023

on the official challenge page for VQA2.010.1024

8https://github.com/google/flaxformer
9https://cloud.google.com/tpu

10https://visualqa.org/evaluation.html

Question VQA2.0 VQ2A-COCO VQ2A-CC3M
Prefix Supervised Zero-shot Zero-shot

‘is there’ 98.6 98.1 98.2
‘are there’ 98.0 97.1 97.2
‘does this’ 98.0 95.1 95.8
‘are they’ 96.9 95.0 95.3
‘does the’ 96.4 95.2 95.9
‘is it’ 96.3 91.4 92.7
‘is this’ 96.1 91.2 92.8
‘are the’ 95.6 92.1 93.1
‘is the’ 95.3 91.7 92.9
‘are these’ 95.1 90.7 92.2
‘what color’ 69.2 64.8 56.8
‘what kind’ 56.3 35.8 31.4
‘what type’ 54.4 32.3 30.8
‘what are’ 51.3 40.2 33.9
‘how many’ 49.3 29.4 19.5
‘what is’ 48.5 39.4 32.2
‘where are’ 40.9 33.9 27.6
‘where is’ 35.1 26.0 23.0
‘what does’ 33.0 24.1 20.3
‘what time’ 23.6 11.9 12.7

Table 9: Average accuracy (%) on VQA2.0 for the most
common question prefixes.

D Additional Results 1025

Table 9 offers the Accuracy of the supervised 1026

VQA2.0 model, as well as of the zero-shot VQ2A 1027

models, on the VQA2.0 devset, split by most com- 1028

mon question prefixes. The Table is sorted by the 1029

supervised model’s Accuracy. It shows a several 1030

performance differences, first between all types of 1031

boolean questions, which all have high precision 1032

on all models, vs. other types, which show not only 1033

lower performance for all models, but also more 1034

significant performance drop between the super- 1035

vised and zreo-shot models. 1036

Table 10 shows the zero-shot performance of 1037

models when using all of the VQ2A dev sets, not 1038

only the manually validated sample, for which Ta- 1039

ble 5 reports results. What we see is that the dif- 1040

ference in performance on the whole VQ2A dev 1041

sets (Table 10) is similar in magnitude to that of the 1042

manually validated dev samples (Table 5), and most 1043

importantly, it keeps the order of models in terms 1044

of capabilities/performance. We therefore suggests 1045

that the utility of the VQ2A approach could go 1046

beyond training; it can be used as an automatic 1047

test-bed for VQA robustness, if not for absolute fig- 1048

ures, for ranking models for robustness zero-shot 1049

capabilities. 1050

Table 11 shows the effect of candidate answer 1051

types on the VQA2.0 performance. We train our 1052

model on VQ2A COCO or VQ2A CC3M subsets 1053

with questions with (i) noun answers, (ii) yes/no an- 1054

swers, (iii) answers containing color-related tokens 1055

based on a list of common colors from Wikipedia, 1056

14

https://github.com/google/flaxformer
https://cloud.google.com/tpu
https://visualqa.org/evaluation.html


Evaluation Benchmark
Training COCO- VQA2.0 VQ2A VQ2A

data QA COCO CC3M
COCOQA 70.3 11.7 11.5 3.7
VQA2.0 35.9 68.8 41.1 33.3
VQ2A COCO 55.9 60.0 71.2 49.3
VQ2A CC3M 42.1 56.5 60.3 69.5

Table 10: VQ2A as evaluation data for measuring ro-
bustness: VQA Accuracy when training on "row" and
tested on "column"; diagonal (gray) numbers denote
the supervised setting, non-diagonal numbers denote
zero-shot cross-dataset setting. Best zero-shot is bold.

Training data VQA Accuracy on VQA2.0
Standard Normalized

VQ2A COCO 60.0 60.0
VQ2A COCO nouns 10.5 32.5
VQ2A COCO yes/no 38.4 94.3
VQ2A COCO color 6.7 55.6
VQ2A COCO number 3.9 25.4
VQ2A CC3M 56.5 56.5
VQ2A CC3M nouns 8.8 27.2
VQ2A CC3M yes/no 38.4 94.4
VQ2A CC3M color 6.0 49.5
VQ2A CC3M number 3.4 22.1

Table 11: Effect of candidate answer types on the
VQA2.0 performance.

and (iv) answers containing digits from 0 to 100.1057

We then evaluate models trained on these subsets1058

on VQA2.0 using VQA Accuracy and the normal-1059

ized version (by the percentage of evaluation ques-1060

tions with corresponding answer types. This high-1061

lights the importance of incorporating diverse an-1062

swer candidates in our datasets. We also observe1063

that VQ2A CC3M is on par with VQ2A COCO on1064

yes/no-answer questions but are behind on nouns,1065

color, and number, which we attribute to their lower1066

degree image-text relevance, less mentioning of col-1067

ors (due to the style of alt-texts vs. captions), and1068

digit substitution.1069

Table 12 shows the effect of scale on the VQA2.01070

performance. We randomly sampled 10%, 20%,1071

and 50% of VQ2A COCO or VQ2A CC3M training1072

data. We observe that the bigger the data, the higher1073

the accuracy. However, the gain is diminishing. We1074

identify improving the data generation process to1075

achieve higher degree of diversity in the output as1076

interesting future work.1077

Table 13 provides question-only baselines (no1078

image features as input). Interestingly, the mod-1079

els trained on our generated VQ2A data has simi-1080

lar answer distributions to those of existing VQA1081

benchmarks. At the same time, this reveals the1082

exploitation of the language bias, suggesting that1083

Training data VQA Accuracy
on VQA2.0

VQ2A COCO (100%) 60.0
VQ2A COCO (50%) 58.5
VQ2A COCO (20%) 56.7
VQ2A COCO (10%) 55.4
VQ2A CC3M (100%) 56.5
VQ2A CC3M (50%) 55.8
VQ2A CC3M (20%) 54.8
VQ2A CC3M (10%) 53.8

Table 12: Effect of dataset sizes on the VQA2.0 perfor-
mance.

Evaluation Benchmark
Approach VQA2.0 GQA OKVQA

Zero-shot
questions VQ2A COCO 48.9 44.4 11.4
questions VQ2A CC3M 47.8 44.6 11.9
VQ2A COCO 60.0 51.3 18.0
VQ2A CC3M 56.5 49.9 19.1

Table 13: Zero-shot question-only baselines using
VQ2A as training data.

additional research on bias mitigation is needed, 1084

both in terms of model and data (existing bench- 1085

marks and our datasets). 1086

E Further Considerations 1087

Information that names or uniquely identifies 1088

individual people or offensive content. COCO 1089

Captions are human-curated and cleaned while the 1090

approach to collection of CC3M upholds rigorous 1091

privacy and ethics standards such as the removal of 1092

offensive content and hypernymization. This signif- 1093

icantly mitigates the risks that our VQ2A datasets 1094

would contain such information. 1095

Intended uses. Due to considerations and limita- 1096

tions as we mention in Section 6, COCO Captions, 1097

CC3M, and our induced VQ2A are intended to be 1098

used for research-only purposes. 1099
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