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ABSTRACT

Heterogeneous graphs are composed of multiple types of edges and nodes. The
existing heterogeneous graph neural network can be understood as a node feature
smoothing process guided by the graph structure, which can accurately simulate
complex relationships in the real world. However, due to real-world privacy and
data scarcity, some node features are inevitably missing. Furthermore, as model
depth increases and multiple types of meta-paths are aggregated, node embeddings
tend to be consistent, leading to semantic confusion and overfitting problems. To
improve the quality of node embeddings, we propose topology-driven residual
boosting network (TDR-HGN). It introduces one-hot encoding and node type en-
coding to generate initial features, uses topological structure features to guide
feature completion, combines residual networks to deal with semantic confusion
and over-fitting problems, and builds neighbor-based high-order graph networks
through meta-paths to achieve feature enhancement. We conduct extensive experi-
ments on three heterogeneous graph datasets, and the results show that TDR-HGN
can significantly improve the performance compared to other methods.

1 INTRODUCTION

Many real-world objects and phenomena can be accurately abstracted into network models, such
as traffic networks (Xu et al., 2023) and social networks (Peng et al., 2022; Kumar et al., 2023).
Network representation learning (Zhou et al., 2022) serves as the basis for downstream analysis
tasks, such as node classification (Yang et al., 2022), node clustering (Wu et al., 2023), and visual-
ization (Zhao et al., 2023a). Its goal is to learn accurate low-dimensional representations of nodes
in the network. Among them, graph neural networks (GNNs) (Ju et al., 2024) are one of the most
competitive network representation learning technologies, which have received extensive attention
and in-depth research in academia and industry. Heterogeneous graphs contain rich semantics and
can model various types of nodes and relationships. Current heterogeneous graph neural networks
(HGNNs) follow a message passing framework to learn neighbor features. Although they can ef-
fectively extract multiple content and structure features, there are still two challenges that cannot be
ignored.

Challenge 1: There are certain deficiencies in feature completion (Chen et al., 2020). At present,
mainstream HGNN mainly uses manual methods to process nodes with missing features. When
processing missing features, there are problems such as insufficient accuracy, inability to capture
complex relationships, and poor versatility, resulting in the lack of depth and adaptability of the
generated node representation. Recent studies have proposed using pre-trained topological learning
(Jiang et al., 2021a) to guide feature completion strategies, but there are still two limitations: over-
reliance on pre-training information and ignoring contextual semantic information (Dong et al.,
2017; Grover & Leskovec, 2016). The pre-training information obtained based on self-supervision
methods (Jiang et al., 2021b) is difficult to reflect the characteristics and task requirements of specific
application scenarios, and the generated node representation has negative transfer problems and low
generalization problems.

Challenge 2: Semantic confusion (Ji et al., 2021). Similar to oversmoothing in GNNs (Wang et al.,
2022b), semantic confusion means that HGNN injects the semantics of multiple neighbors into
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Fig. 1: An illustration of a citation network. The left figure shows the three types of nodes (i.e.,
author, paper, venue) and two types of connections (i.e., author-paper, paper-venue) of the citation
network. The right figure shows the high-order homogeneous neighbors of the author node a3
formed by two meta-paths (i.e., Author-Paper-Author and Author-Paper-Venue-Paper-Author).

node embeddings, which makes node embeddings difficult to distinguish. This causes the model
to be unable to accurately express complex relationships, seriously affecting the interpretability and
visualization of the model. As can be seen from Figure 1, the first-order neighbor of node a3 is node
p3. Through the meta-path APA, node a3 can obtain the features of a1 and a3. Through the meta-
path APVPA, node a3 can obtain the features of a1, a2, and a3. As the number of meta-paths and
the depth of the model increase, a3 aggregates features from multiple neighbors, which leads to the
convergence of all node features. Second, as the length of the meta-path increases, different nodes
will be connected to the same meta-path-based neighbors, and the obtained node representation is
not concise but redundant.

Therefore, in addition to aggregating neighbor features, the model should also absorb the local se-
mantics of nodes with appropriate weights. Even with multiple layers of stacking, the model can re-
tain the underlying features of the nodes instead of injecting confusing semantic information into the
node embeddings. Based on this idea, we propose a topology-driven residual enhancement network.
First, by combining node category encoding and onehot encoding, we use first-order neighbors to
learn topological structure features that contain more comprehensive information, use transformer-
based multi-head attention mechanism and topological structure features for feature completion,
capture high-order neighbors through meta-paths, and combine residual networks to retain the bot-
tom layer of nodes. The work of this paper can be summarized as follows:

• We propose a topology-driven feature completion strategy, which introduces one-hot en-
coding and node type encoding to generate initial features, and uses topology to drive node
feature completion.

• proposes a residual-enhanced heterogeneous graph network (TDR-HGNN), which uses a
multi-head attention mechanism to capture different subspace features, and uses meta-path
and residual networks to aggregate high-order neighbors and node underlying features.

• conducts extensive experiments on three datasets and compares with multiple existing
methods to demonstrate the advancement and effectiveness of the method.

2 RELATED WORK

2.1 HETEROGENEOUS GRAPH NEURAL NETWORK

The HGNN method learns heterogeneous graph embedding from graph structure and node fea-
tures through neural networks.According to the technology adopted in the learning mode, the ex-
isting HGNN modeling methods are mainly divided into three types: convolution-based methods,
autoencoder-based methods and adversarial-based methods (Bing et al., 2023).

Convolution-based HGNN processes graph data through multiple layers of stacked heterogeneous
convolutional layers. Meta-path-based models capture high-order neighborhood features by aggre-
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gating nodes at both ends of meta-paths. Wang et al. (2019) designs hierarchical attention model
HAN calculates the importance scores of nodes and meta-paths through node-level and semantic-
level attention, and learns node embeddings in heterogeneous graphs based on the scores. MAGNN
(Fu et al., 2020) uses linear mapping to solve the dimension mismatch problem and adopts a single-
layer GCN to aggregate all nodes in the meta-path. The relation-based model selects the most useful
meta-path for downstream tasks by comparing the importance between nodes of different types,
providing support for the interpretability of the model. A model with a hierarchical aggregation
architecture (Yang et al., 2021) is proposed to dynamically assign edge weights through improved
graph convolution kernels and attention mechanisms to accurately aggregate neighbor feature. To
enhance the robustness of node embedding, HGSL (Zhao et al., 2021) uses graph attention network
and multi-view learning to capture the latent relations in the graph structure. AC-HEN (Wang et al.,
2022a) generates multi-view embeddings through feature aggregation and structure aggregation,
and fills in missing features with the embedding fusion module in the weakly supervised learning
paradigm. Meta-path-based methods ignore first-order neighbors and edge types, resulting in in-
sufficient learning feature in HG. Relation-based methods require more model parameters to handle
complex interactions between multiple types of nodes and edges, increasing space consumption.

Autoencoder-based methods reduce the dimension of input feature through encoders and restore
data to high-dimensional space through decoders, and learn effective embeddings by minimizing
the reconstruction error between input data and restored data. Wang et al. (2021) proposes a het-
erogeneous graph attention autoencoder HGATE, which reconstructs node features and edges of
heterogeneous graphs through stacked encoder and decoder layers, and captures semantic infor-
mation by combining node-level and semantic-level attention. Liu et al. (2023) proposes a new
bidirectional encoding HGBER unsupervised framework, which discovers the optimal node distri-
bution by introducing the minimization of the clustering constraint objective function L3, making
the representation of nodes of different categories more dense and compact. Adversarial methods
(Lan et al., 2020; Zhao et al., 2020) utilize the competition mechanism between the generator and the
discriminator of the generative adversarial network to improve the quality and diversity of node and
edge generation. Autoencoder-based methods require a lot of computing resources and are overly
dependent on the original graph structure. Adversarial methods focus on utilizing graph structure
feature and ignore content features. Therefore, comprehensive considerations are needed to design
efficient and accurate models.

2.2 FEATURE COMPLETION IN GRAPH NEURAL NETWORKS

In the real world, due to privacy or other reasons, relationships are partially observed, resulting in
incomplete graph structures and missing node features. To learn feature completion in incomplete
heterogeneous graphs, HGNN-AC (Jin et al., 2021) uses existing heterogeneous network embedding
methods to obtain the topological structure embedding of nodes, guides the weighted aggregation
of neighbor node features based on the topological structure feature, and uses the MAGNN (Fu
et al., 2020) model to further enhance node embeddings. AC-HEN (Wang et al., 2022a) adopts
a multi-view fusion strategy to capture richer feature representations through three views. It uses
the k-nearest neighbor method to select similar nodes in the feature space, uses GCN to aggregate
neighbor nodes in the structure space, and combines random walk sampling to aggregate high-order
neighbors.

Li et al. (2023) proposes a heterogeneous residual graph attention network HetReGAT-FC, and de-
signed the HetReGAT module through onehot encoding and multi-head attention mechanism. Simi-
lar to the idea of HGNN-AC, it uses the HetReGAT module to learn the topological structure feature
of the heterogeneous graph, and uses the attention coefficient obtained from the topological fea-
ture as a guide for feature completion. HOAE (Li et al., 2024) uses a self-attention mechanism
based on high-level transformers to fill in missing features and uses first-order neighbors to enhance
node embeddings. RA-HGNN (Zhao et al., 2023b) introduces a type conversion matrix to optimize
the embedding of heterogeneous network graphs and uses a residual attention network for feature
completion. At the same time, Xia Yong’s random dropout method reversely optimizes the feature
completion performance. However, HGNN-AC, RA-HGNN, and HetReGAT-FC do not consider
high-order neighbors of the same type resulting in suboptimal node embeddings. AC-HEN uses
stacked GCN layers for multi-neighbor feature aggregation, which easily leads to over-smoothing
problems. HOAE performs feature aggregation based on multiple GAT layers, ignoring the infor-
mation in the feature space.
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Fig. 2: A brief illustration of the overall framework of TDR-HGNN

3 PRELIMINARY

Definition 1: Heterogeneous Graph (HG). A heterogeneous graph is represented as G =
(V,E, T,R), which consists of nodes V and the corresponding node type set T , and edges E and
the corresponding edge-type set R. In a heterogeneous graph, |T | and |R| represent the number of
node types and the number of edge types respectively, |T | + |R| > 2. A ∈ RN×N denotes the
adjacency matrix and N denotes the number of nodes.

Definition 2: Meta-path. A meta-path can be defined as a specific path : v1
r1−→ v2

r2−→ · · · rl−→ vl+1,
where v ∈ T and r ∈ R. It describes a complex relationship r = r1 ◦ r2 ◦ · · · ◦ rl between node v1
and node vl+1, where ◦ represents a combinatorial operation between relations.

4 METHODOLOGY

In this section, we introduce the overall framework(in Fig.2) of TDR-HGNN in detail.

4.1 FEATURE COMPLETION OF RESIDUAL ATTENTION MECHANISM BASED ON
TOPOLOGICAL STRUCTURE

The network homogeneity principle states that similar nodes are more likely to form connections,
which affects the formation and evolution of the network. Due to the noise and incompleteness of
the initial graph nodes, using the original features to obtain the attention coefficient cannot accu-
rately reflect the relationship between nodes when the features are not rich. Using the topological
structure to guide message passing can effectively capture the overall connection pattern and net-
work structure, and reduce the impact of feature sparsity and noise on the attention mechanism.
First, TDR-HGNN uses the node onehot encoding Xonehot ∈ RN×N and the node type encoding
Xtype ∈ RN×|T | to obtain the model input Hin:

Hin = (XonehotW1 + b1)||(XtypeW2 + b2) (1)

where Hin ∈ RN×2dmodel represents the input of the model, dmodel and N represent the the di-
mension of the hidden layer and number respectively, and || represents the concatenation operation,
W1,W2, b1 and b2 are all trainable neural weights and biases of the linear transformation. Then, an
attention mechanism is used to guide the nodes to aggregate global structural feature:

esrcv,u = hin
v Wsrc

edstv,u = hin
u Wdst

(2)

where esrcv,u represents the attention coefficient starting from node v, and edstv,u represents the attention
coefficient ending at node u, Wsrc and Wdst are all trainable neural weights and biases of the linear
transformation, hin

v and hin
v represent feature vectors of nodes v and u in Hin. ev,u is the sum of
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the attention coefficients of the starting point and the end point:

ev,u = esrcv,u + edstv,u (3)

The softmax function is used to normalize the attention scores of multiple edges of a single node to
eliminate the dimension effect.

αv,u =
exp(ev,u)∑

n∈N (v) exp(ev,n)
(4)

The calculated normalized weights (in Eq.4) are used to guide the aggregation of neighbor features
to obtain the topological feature hv of node v.

hl
v = σ

( ∑
n∈Nv

α(l)
v,n · hl−1

n

)
(5)

where σ represent activate function. Faced with the differences in data dimensions and the com-
plexity of data content, TDR-HGNN introduces a multi-head attention mechanism to process input
sequences in parallel from different angles, improving the model’s ability to understand and capture
complex dependencies:

hl
v =∥Kk=1 σ

( ∑
n∈Nv

[
αl
v,n

]
k
· hl−1

n

)
(6)

where l represents the layer of the model. The dimension of Hl is transformed from N × dmodel

to N × (K ∗ dmodel) because of the multi-head attention mechanism, so TDR-HGNN introduces a
linear transformation to transform the output dimension of layer l to N × dmodel:

H l = H lW topo + btopo (7)

where H0=Hin in Eq.1, the output of the last layer H l is used as the topological structure feature
Htopo for feature completion. TDR-HGNN enriches the topological structure feature Htopo by ag-
gregating high-order neighbor features through multi-layer propagation, ensuring that the attention
coefficient βv,u calculated by Htopo can more accurately reflect the relationship between nodes.

βv,u =
exp(Wβh

topo
u )∑

n∈Nv
exp((Wβh

topo
n )

(8)

where htopo
u and htopo

n represent features of nodes v and n in Htopo, βv,u represents the attention
coefficient between node v and node u. β is used to guide the aggregation of the model input hin.

hv = σ

( ∑
n∈Nv

βv,n · hin
n

)
(9)

where hin
v = (Xin

v )M (Xonehot
v )1−M , Xin represents the initial features of the node, M represent

combination coefficient. Since multi-layer models are prone to overfitting and semantic confusion,
TDR-HGNN uses a residual connection mechanism to allow nodes to adaptively retain features:

hl
v = σ

[ ∑
n∈Nv

βl
v,nh

l
n +W l

resh
l−1
v

]
(10)

where Wcom and Wres denotes parameter matrices for node completion and residuals. For the
attention coefficients of different layers, TDR-HGNN also connect through residual network. The
specific form is as follows:

βl
v,u = (1− η)β̂l

v,u + ηβl−1
v,u (11)

Similarly, multi-head attention mechanism is introduced to capture the multivariate relationships
between nodes:

hl
v =∥Kk=1 σ

( ∑
n∈Nv

[
βl
v,n

]
k
· hl−1

n

)
(12)
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The parameter matrix Wcom is used for dimension conversion:

H l = H lWcom (13)

The output H l of the last layer is used as the node embedding after feature completion, which is
used for subsequent feature enhancement. Algorithm 1 shows the process of feature completion.

4.2 META-PATH-BASED HIGH-LEVEL FEATURE ENHANCEMENT

Algorithm 1 Feature Completion Algorithm
Require: The heterogeneous graph G = (V,E, T,R), the initial features Xin, the node type feature

Xtype, the node onehot encoding vector Xonehot, the residual layer hyperparameters η and the
number of attention head K.

Ensure: the completed feature h
1: Initialize the input of the topology feature module Hin through Eq.(1)
2: for k = 1 to K do
3: for v ∈ V do
4: Find the node neighbors Nv

5: Calculate the edge attention coefficient ev,u through Eq.(2,3)
6: for u ∈ Nv do
7: Calculate the node attention coefficient αv,u through Eq.(4)
8: end for
9: Calculate the node v embedding H l

v through Eq.(5)
10: end for
11: Concatenate all embedding H from all attention head through Eq.(6)
12: end for
13: Transforme the dimension of the topological feature Htopo through Eq.(7)
14: for k = 1 to K do
15: for v ∈ Nv do
16: Calculate the node attention coefficient βl

v,u through Eq.(8)
17: if l > 1 then
18: Residual connection attention coefficient βl

v,u through Eq.(11)
19: Residual connection the node v embedding hl

v through Eq.(10)
20: end if
21: Calculate the node v embedding hl

v through Eq.(9)
22: end for
23: Concatenate all embedding hv from all attention head through Eq.(12)
24: end for
25: Transforme the dimension of the node feature hv through Eq.(13)
26: Return h

In order to aggregate high-order homogeneous neighbor features, TDR-HGNN uses meta-paths to
divide HG into multiple isomorphic subgraphs. Given multiple meta-paths P = {P1, · · · , Pm}, the
normalized attention coefficient γpi

v,u of node v under meta-path Pi is defined as follows:

γpi
v,u =

exp (σ (hvWpi
hu))∑

n∈Nv
exp (σ (hvWpi

hn))
. (14)

where Wpi
is the learnable parameter matrix under the meta-path Pi. Similarly, multi-path ag-

gregation introduces a multi-head attention mechanism to stabilize the data variance during node
aggregation:

zpi
v =∥Kk=1 σ

( ∑
u∈N

pi
v

[
γpi
v,u

]
k
· hu

)
, (15)

Different meta-paths represent different semantic information. TDR-HGNN needs to set different
weight coefficients to balance the feature of multiple meta-paths:

spi =
1

|T |
∑
v∈T

σ (Wz · zpi
v + bz) (16)
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epi
= qT · spi

(17)
where qT is a learnable attention weight vector, multiple meta-paths share the parameter qT , Wz

and bz are learnable parameter matrices, σ indicates non-linear activation functions.

γpi =
exp (epi)

Σpj∈P exp
(
epj

) , (18)

zv =
∑
pi∈P

γpi
· zpi

v , (19)

Finally, we pass the linear encoder to get the final node, which functions similarly to a linear classi-
fier:

Ov = σ (Wo · zv) (20)
where σ(·) indicates non -linear activation functions. Wo is a learning weight parameter.

4.3 MODEL EVALUATION

Our model is applied to the semi-supervised classification task by defining the cross entropy loss
function as the optimization function:

loss = −
∑
v∈yL

Yvl · ln (C ·Ovl) , (21)

where Yvi and Ovl represent the category and predicted probability of node vi respectively, yL
denotes the set of labeled nodes, C represents the parameters of classifier. REHG-TAC optimizes
the parameters by minimizing the Eq.(21) using the gradient descent method.

5 EXPERMENTS

5.1 IMPLEMENTATION DETAILS

This paper uses three different heterogeneous graph datasets for experiments to comprehensively
evaluate the performance of the model in processing heterogeneous graphs. We compare TDR-
HGNN with ten competitors, among which HAN (Wang et al., 2019), GTN (Yun et al., 2019),
MAGNN (Fu et al., 2020), HGSL (Zhao et al., 2021), RoHE (Zhang et al., 2022) and HetReGAT-FC
(Li et al., 2023) are convolution-based methods, ie-HG (Yang et al., 2021), AC-HEN (Wang et al.,
2022a), RA-HGNN (Zhao et al., 2023b) and HOAE (Li et al., 2024) are encoder-based methods.

We use the same dataset partitioning ratio and meta-path for all models, and take the average results
of five experiments as the final test results. For different models, we select the model layer with
the best performance on the validation set as the baseline to ensure that each model can maximize
the advantages of its structure to achieve the best performance. In the experiment, the hidden layer
dimension is set to 64, the output layer dimension is set to 16, the dropout rate is set to 0.5, the weight
decay is set to 0.001, and the number of attention heads K is set to 8, because 8 attention heads can
produce more stable results. For AC-HEN and RA-HGNN, we use MAGNN as the downstream
model.

5.2 NODE CLASSIFICATION

We use SVM for node classification with training rates ranging from 20% to 80%. ACM and IMDB
are node classification datasets with original features, while DBLP is a node classification dataset
without original features. According to Table1, TDR-HGNN, HOOE, HRG-FC, and RA-HGNN
generally outperform HAN, GTN, MAG, IEHG, and ROHE. This is because the feature completion
module can help the model obtain richer node representations and use structure feature to allevi-
ate the sparsity problem of node features. Compared with RA-HGNN, TDR-HGNN has an over-
all improvement of 0.6%-3.0%, which may be because RA-HGNN only relies on original feature
for feature completion, and the expression ability of nodes is limited. Compared with HRG-FC,
TDR-HGNN has an overall improvement of 0.2%-1.0%, which may be because HRG-FC adopts
a relationship-based approach, which leads to certain limitations in capturing high-order neighbor
functions. Compared with HOAE, TDR-HGNN has an overall improvement of 0.6%-1.0%, which
may be due to the overfitting and semantic confusion caused by the multi-layer stacking of HOAE.
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Table 1: Performance (%) of TDR-HGNN and other models on the task of node classification(the
best results are highlighted in bold).

Dataset Metrics Ratio Without Feature Completion With Feature Completion

HAN GTN MAG ie-HG HGSL RoHE AC-HEN RA-HGNN HRG-FC HOAE TDR-HGNN

ACM

Ma-F1

20% 90.71 90.88 88.20 91.35 92.43 91.57 90.61 90.55 92.63 93.11 93.80
40% 91.33 91.36 89.60 92.14 92.58 92.01 91.12 91.13 93.53 93.54 94.11
60% 91.73 91.74 90.48 92.59 92.73 92.34 91.62 91.52 93.82 93.79 94.50
80% 91.91 91.81 90.89 92.79 92.83 92.50 92.11 91.96 93.89 93.83 94.72

Mi-F1

20% 90.59 90.76 88.28 91.27 92.38 91.47 90.75 89.41 92.54 93.03 93.71
40% 91.22 91.24 89.70 92.11 92.54 91.94 91.19 90.70 93.45 93.47 94.02
60% 91.60 91.61 90.51 92.53 92.69 92.25 91.71 91.55 93.73 93.69 94.39
80% 91.76 91.70 90.91 92.73 92.77 92.38 92.16 91.98 93.87 93.73 94.62

DBLP

Ma-F1

20% 92.63 93.99 92.93 92.73 93.72 92.39 92.51 93.62 93.87 93.32 93.88
40% 92.87 94.27 93.32 93.57 93.65 92.77 93.24 93.89 94.00 93.87 94.21
60% 93.05 94.15 93.69 93.66 93.81 92.84 93.69 94.08 94.11 94.02 94.38
80% 93.16 94.26 94.01 94.09 94.09 93.11 93.81 94.27 94.32 94.21 94.64

Mi-F1

20% 93.20 94.45 93.45 93.24 94.19 92.90 93.05 94.02 94.07 93.89 94.33
40% 93.43 94.71 93.82 94.00 94.09 93.28 93.74 94.26 94.32 94.10 94.64
60% 93.61 94.60 94.18 94.10 94.23 93.34 94.19 94.44 94.57 94.48 94.81
80% 93.69 94.70 94.48 94.47 94.52 93.55 94.29 94.71 94.88 94.67 95.04

IMDB

Ma-F1

20% 58.11 57.26 57.87 58.24 58.09 57.76 58.45 58.26 59.38 59.39 59.37
40% 58.56 57.90 59.23 59.33 58.24 57.93 59.71 59.46 60.01 59.67 60.11
60% 58.73 58.04 59.72 59.65 58.80 58.04 59.83 59.95 60.44 59.80 60.50
80% 58.88 58.84 59.94 59.87 58.93 58.13 59.78 60.19 60.67 59.95 60.79

Mi-F1

20% 58.14 57.12 57.89 58.16 58.44 58.03 58.17 58.27 59.32 59.68 59.56
40% 58.58 57.81 59.29 59.26 58.56 58.21 59.45 59.49 60.13 59.99 60.35
60% 58.72 57.89 59.80 59.57 58.98 58.32 59.97 59.98 60.55 60.13 60.71
80% 58.91 58.74 60.06 59.82 59.09 58.41 60.03 60.24 60.76 60.26 61.00

5.3 NODE CLUSTERING

(a) inital (b) MAG (c) HGSL

(d) HOAE (e) HRG-FC (f) TDR-HGNN

Fig. 3: Visual representation of the training results of the ACM dataset.

In the visualization experiment on the ACM dataset, we use principal component analysis
(Maćkiewicz & Ratajczak, 1993) to project node embeddings into two-dimensional space. Fig.3
shows that the clustering distance of the model MAG without feature completion is smaller, in-
dicating that feature completion can improve node embedding quality. In contrast, although the
inter-cluster distance of HOAE is larger, the points within the cluster are more scattered, the cluster
distance of the HRG-FC model is closer, and the clustering performance of HGSL and TDR-HGNN
is better.
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Table 2: Test results of four feature completion modules on the ACM dataset (MAGNN as a down-
stream model).

Metrics(%) Ratio MAGavg MAGHRG-FC MAGHOAE MAGTDR-HGNN

Macro-F1

20% 87.82 91.86 92.97 93.71
40% 89.39 92.41 93.26 94.00
60% 90.35 93.61 93.66 94.41
80% 90.81 93.85 93.81 94.50

Micro-F1

20% 87.91 91.83 92.86 93.62
40% 89.42 92.68 93.13 93.92
60% 90.37 93.74 93.56 94.31
80% 90.83 93.35 93.77 94.39

Table 3: Test results of four feature completion modules on the ACM dataset (ie-HG as a downstream
model).

Metrics(%) Ratio ie-HGavg ie-HGHRG-FC MAGHOAE ie-HGTDR-HGNN

Macro-F1

20% 91.24 91.35 91.44 91.75
40% 92.12 92.26 91.96 92.62
60% 92.27 92.48 92.32 92.91
80% 92.38 93.14 92.86 93.21

Micro-F1

20% 91.14 91.42 91.57 91.63
40% 92.03 92.11 92.01 92.56
60% 92.17 92.43 92.29 92.78
80% 92.26 92.97 92.79 93.01

5.4 COMPATIBILITY

In order to evaluate the compatibility of different feature completion methods with heterogeneous
graph models, we selected two mainstream heterogeneous graph models, MAGNN and ie-HGCN,
for node classification tasks. Four different feature completion methods, avg, HetReGAT-FC,
HOAE, and TDR-HGNN, were used in the experiments on the ACM dataset.

The results show that the average interpolation strategy weakens the quality of embedding and per-
forms poorly in downstream tasks. Compared with MAGHRG-FC and MAGHOAE, the performance of
our feature completion model is improved by nearly 0.5% to 1.5%. Compared with ie-HGHRG-FC and
ie-HGHOAE, ie-HGTDR-HGNN also has an improvement of nearly 0.5%. This is because the HRG-FC
model uses topological feature to complete feature completion, focusing on the connection relation-
ship between nodes, while ignoring the subtle differences between node features. The HOAE model
takes into account the local contextual feature of nodes, but cannot fully capture the complex patterns
of graph structures. The results show that the feature completion module in the TDR-HGNN model
can adapt well to most heterogeneous graph neural networks and show significant compatibility.

5.5 ABLATION EXPERIMENTS

(a) ACM (b) DBLP (c) IMDB

Fig. 4: Experimental study of ablation of TDR-HGNN.
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In order to effectively evaluate the effectiveness of each component in TDR-HGNN separately, we
designed three TDR-HGNN variants for ablation studies:

• REHG-AC: It is a variant of TDR-HGNN that obtains attention coefficients from the origi-
nal graph for feature propagation, instead of guiding the feature aggregation of the original
graph by calculating topological structure feature.

• HG-TAC: It is a variant of TDR-HGNN that eliminates the residual connections in feature
completion.

• REHG: It is a variant of TDR-HGNN, which eliminates the node category encoding and
uses the original features as the input of the completion module.

We conducted node classification experiments on three variants of TDR-HGNN and presented
classification results with a training rate of 80% on three datasets. On the IMDB dataset with a
more complex graph structure, the performance of REHG-AC is significantly lower than that of
TDR-HGNN, which shows that the relationship between nodes can be effectively captured using
graph topology feature. Compared with HG-TAC, TDR-HGNN performance improved by 0.48% to
0.75%, which shows that residual connections help transfer the underlying features of nodes and al-
leviate the over-smoothing problem caused by model stacking. Compared with REHG, TDR-HGNN
performance improved by 0.3% to 2.75%, indicating that node type encoding, as important prior in-
formation, can help the model understand and utilize the complex structural feature of heterogeneous
graphs.

5.6 HYPER-PARAMETER ANALYSIS

(a) Hidden dimension dmodel (b) Model layers l (c) Combination coefficient η

Fig. 5: Analysis of hyperparameters (Hidden dimension dmodel, Model layers l, Combination coef-
ficient η) on the ACM dataset

We tested the impact of three hyperparameter values on model performance on the ACM dataset, and
the score of each hyperparameter is the average result calculated based on 80% of the training ratio.
As can be seen from Fig.5, when the initial hidden layer dimension increases, the model performance
improves, but too large a hidden layer dimension causes the model to overfit the training data,
thereby reducing the generalization ability to new data. In addition, the increase in the number of
initial layers is conducive to the model learning higher-level abstract features, but too many model
layers will produce gradient vanishing or gradient explosion, leading to semantic confusion and
overfitting problems. The combination coefficient η(in Eq.11) reflects the degree of dependence of
parameters between multiple layers. When η is too large, it may make it difficult for the model to
learn new feature during training and ignore new patterns that may exist in the data.

6 CONSLUSION AND FUTURE WORK

This paper proposes a residual enhanced heterogeneous graph network for topology-driven feature
completion. It uses the topological structure feature and meta-paths of HGNN for feature completion
and enhancement, and combines the residual network and the advanced attention mechanism based
on Transformer to guide message passing. In the future, we will consider exploring more intrinsic
relationships between multiple meta-paths and generalize the TDR-HGNN framework to dynamic
heterogeneous graphs.
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Andrzej Maćkiewicz and Waldemar Ratajczak. Principal components analysis (pca). Computers &
Geosciences, 19(3):303–342, 1993.

Sancheng Peng, Lihong Cao, Yongmei Zhou, Zhouhao Ouyang, Aimin Yang, Xinguang Li, Weijia
Jia, and Shui Yu. A survey on deep learning for textual emotion analysis in social networks. 8:
745–762, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kai Wang, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu Dong. Heterogeneous graph
neural network for attribute completion. Knowledge-Based Systems, 251:109171, 2022a.

Wei Wang, Xiaoyang Suo, Xiangyu Wei, Bin Wang, Hao Wang, Hong-Ning Dai, and Xiangliang
Zhang. Hgate: heterogeneous graph attention auto-encoders. IEEE Transactions on Knowledge
and Data Engineering, 35(4):3938–3951, 2021.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip. A survey on hetero-
geneous graph embedding: methods, techniques, applications and sources. IEEE Transactions on
Big Data, 9(2):415–436, 2022b.

Siwei Wu, Xiangqing Shen, and Rui Xia. Commonsense knowledge graph completion via con-
trastive pretraining and node clustering. arXiv preprint arXiv:2305.17019, 2023.

Yuanbo Xu, Xiao Cai, En Wang, Wenbin Liu, Yongjian Yang, and Funing Yang. Dynamic traf-
fic correlations based spatio-temporal graph convolutional network for urban traffic prediction.
Information Sciences, 621:580–595, 2023.

Rui Yang, Wenrui Dai, Chenglin Li, Junni Zou, and Hongkai Xiong. Ncgnn: Node-level capsule
graph neural network for semisupervised classification. IEEE Transactions on Neural Networks
and Learning Systems, 35(1):1025–1039, 2022.

Yaming Yang, Ziyu Guan, Jianxin Li, Wei Zhao, Jiangtao Cui, and Quan Wang. Interpretable and
efficient heterogeneous graph convolutional network. IEEE Transactions on Knowledge and Data
Engineering, 35(2):1637–1650, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, and Jun Zhou. Robust
heterogeneous graph neural networks against adversarial attacks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 4363–4370, 2022.

Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous
graph structure learning for graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 4697–4705, 2021.

Jieqiong Zhao, Yixuan Wang, Michelle V Mancenido, Erin K Chiou, and Ross Maciejewski. Evalu-
ating the impact of uncertainty visualization on model reliance. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2023a.

Kai Zhao, Ting Bai, Bin Wu, Bai Wang, Youjie Zhang, Yuanyu Yang, and Jian-Yun Nie. Deep
adversarial completion for sparse heterogeneous information network embedding. In Proceedings
of The Web Conference 2020, pp. 508–518, 2020.

Zongxing Zhao, Zhaowei Liu, Yingjie Wang, Dong Yang, and Weishuai Che. Ra-hgnn: Attribute
completion of heterogeneous graph neural networks based on residual attention mechanism. Ex-
pert Systems with Applications, pp. 122945, 2023b.

Jingya Zhou, Ling Liu, Wenqi Wei, and Jianxi Fan. Network representation learning: from prepro-
cessing, feature extraction to node embedding. ACM Computing Surveys (CSUR), 55(2):1–35,
2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PRELIMINARY

Problem 1: Heterogeneous Graph Embedding. For a given heterogeneous graph G, the goal of
node embedding is to learn a mapping function f : V → Rd : v → h, where d ≪ |V |. The function
f aims to accurately reflect the connection relationship between nodes.

Problem 2: Feature Completion. Given a heterogeneous graph G = (V,E, T,R) as input, the goal
of feature completion is to learn a mapping function f1(G, A, h) : h → h+. h denotes the node with
missing features, and h+ denotes the node with completed features. The function f1 aims to make
h+ close to real features.

Problem 3: feature Enhancement. Given a heterogeneous graph G = (V,E, T,R) as input, feature
enhancement aims to learn a mapping function f2(G, A, h) : h → z, where z denotes the enhanced
node feature. Through function f2, the node feature z can learn the neighbor features and global
structural feature.

A.2 ALGORITHM

Algorithm 2 shows the main process of feature enhancement.

Algorithm 2 feature Enhancement Algorithm
Require: The heterogeneous graph G = (V,E, T,R), the completed node feature h, the multiple

meta-paths P = {P1, · · · , Pm} and the number of attention head K.
Ensure: The final embedding z.

1: Initialize the input of the topology feature module Hin through Eq.(1)
2: for Pi ∈ P do
3: for v ∈ V do
4: Find the node neighbors Nv

5: for u ∈ Nv do
6: Calculate the node attention coefficient γpi

v,u through Eq.(14)
7: end for
8: Calculate the node v embedding zv through Eq.(15)
9: end for

10: Concatenate all embedding zpi
v from all attention head through Eq.(15)

11: Transforme the dimension of the node embedding through Eq.(16)
12: Calculate the normalized meta-path coefficient γpi

through Eq.(17,18)
13: end for
14: Aggregating embeddings from multiple meta-paths through Eq.(19)
15: Return z

A.3 DATASET

This paper uses three different heterogeneous graph datasets for experiments to comprehensively
evaluate the performance of the model in processing heterogeneous graphs. The relevant information
of the three datasets is shown in Table 4.

• ACM: It is a subset of the ACM dataset, which is a citation network containing 4,019 papers
(P ), 7,167 authors (A), and 60 topics (S). The features of the papers in the dataset are bags
of keywords, which are divided into three categories: database, wireless communication,
and data mining according to the labels. In the experiment, we choose two types of meta-
paths {PSP, PAP}.

• DBLP: It is a subset of the DBLP dataset, which is an academic network containing 4,057
authors (A), 14,328 papers (P), 8,789 terms (T), and 20 positions (V). The features of the
authors in the dataset are bags of keywords. In the experiment, we use three types of meta-
paths: {APA,APTPA,APV PA}.
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Table 4: Details of three datasets.
Dataset Nodes Target node Arrributes Meta-path

ACM
paper: 4019
author: 7167
subject: 60

paper
paper: original
auther: missing
subject: missing

PSP
PAP

DBLP

auther: 4057
paper: 14328
term: 8789
venue: 20

auther

auther: missing
paper: original
term: missing

venue: missing

APA
APTPA
APVPA

IMDB
movie: 4278
actor: 5257

director: 2081
movie

movie: original
actor: missing

director: missing

MAM
MDM

• IMDB: It is the IMDB dataset itself, which is a movie dataset containing 4,278 movies
(M ), 5,257 actors (A), and 2,081 directors (D). The features of the movies in the dataset
are bags of keywords, and the labels are divided into three categories. In the experiment,
we choose two types of meta-paths: {MAM,MDM}.

A.4 BASLINE

We compare REHG-TAC with ten competitors and the details are as follows:

• HAN (Wang et al., 2019): A hierarchical attention model that calculates the importance
scores of nodes and meta-paths through node-level and semantic-level attention, and learns
node embeddings in heterogeneous graphs based on the scores

• GTN (Yun et al., 2019): It uses Graph Transformer Layer to automatically learn useful
meta-paths and multi-hop connections, and generates new meta-path graphs to achieve
effective node representation learning.

• MAGNN (Fu et al., 2020): It optimizes HAN and uses all node features on meta-paths
to achieve more powerful heterogeneous graph representation learning. It is referred to as
MAG in subsequent experiments.

• ie-HG (Yang et al., 2021): It decomposes HG into multiple bipartite graphs, and uses
node-level aggregation and semantic-level aggregation to assign different weights to each
bipartite graph to capture relationship information. It is referred to as ie-HG in subsequent
experiments.

• HGSL (Zhao et al., 2021): It uses graph attention network and multi-view learning to
capture the potential relationship in the graph structure, effectively improving the flexibility
and accuracy of embedding extraction

• RoHE (Zhang et al., 2022): It equips with attention purifier to mask the noise information
of topological attack to improve the robustness of the model.

• AC-HEN (Wang et al., 2022a): It generates multi-view embeddings through feature aggre-
gation and structure aggregation, and combines the embedding fusion module in the weakly
supervised learning paradigm for feature completion.

• RA-HGNN (Zhao et al., 2023b): It completes the features of missing nodes through the
topological structure of heterogeneous graphs and residual networks, and enhances node
embeddings using the completed embeddings and MAGNN model.

• HetReGAT-FC (Li et al., 2023): It is designed through one-hot encoding and multi-head
attention mechanism. Similar to the idea of HGNN-AC, it uses the HetReGAT module
to learn the topological structure feature of heterogeneous graphs and uses the attention
coefficient obtained from the topological feature as a guide for feature completion. It is
referred to as HRG-FC in subsequent experiments.

• HOAE (Li et al., 2024): It completes the missing features of nodes through the self-
attention mechanism based on advanced Transformer and combines meta-path to learn
high-order neighbor features.
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Table 5: Performance (%) of REHG-TAC and other models on the task of node clustering(the best
results are highlighted in bold).

Datasets ACM DBLP IMDB

NMI ARI NMI ARI NMI ARI

HAN 68.61 71.62 65.92 67.37 12.98 13.46
MAG 70.16 72.14 78.67 84.02 13.08 12.76
ie-HG 49.47 34.89 32.33 27.21 13.08 13.04
HGSL 72.25 76.25 77.63 82.47 6.21 8.78
ROHE 69.21 72.48 70.84 77.26 12.39 12.89

AC-HEN 70.45 73.88 77.19 82.05 9.32 10.18
RA-HGNN 65.21 69.88 79.59 84.92 14.31 14.12
HRG-FC 73.85 78.19 80.33 86.72 13.94 14.11
HOAE 73.68 77.36 79.64 85.11 12.20 10.52

REHG-TAC 77.05 81.63 81.14 86.35 14.16 14.57

A.5 NODE CLUSTERING

The NMI and ARI evaluation indicators in Table 5 show that the REHG-TAC model has a perfor-
mance improvement of nearly 4% 10% compared with the model without feature completion on
ACM and DBLP. Compared with HOAE, the NMI and ARI of HRG-FC and REHG-TAC have an
improvement of nearly 1.5% 3%, indicating that the topological feature of the node has a positive
impact on clustering. In addition, we found that residual networks can effectively improve the node
clustering effect (RA-HGNN and REHG-TAC have higher scores on the IMDB dataset).
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