
Input Conditioned Graph Generation for Language Agents

Anonymous ACL submission

Abstract001

Recent progress in the areas of Large Lan-002
guage Models (LLMs) and Language Agents003
has demonstrated significant promise for var-004
ious future applications across multiple disci-005
plines. While traditional approaches to lan-006
guage agents often rely on fixed, handcrafted007
designs, our research aims to develop agents008
that are both learnable and dynamic. In our009
method, we use an existing framework that ab-010
stracts language agents as graphs. Within this011
graph framework, we aim to learn a model that012
can generate edges for every given input to the013
language agent. This allows us to generate014
edges that represent the flow of communica-015
tion within the graph based on the given input,016
thereby adjusting the internal communication017
of a language agent. We learn to generate these018
edges using a pretrained LLM that is fine-tuned019
with reinforcement learning. This LLM can be020
fine-tuned on several datasets simultaneously,021
and we hypothesize that the model learns to022
adapt to these different domains during training,023
achieving good overall performance when en-024
countering data from different domains during025
deployment. We demonstrate that our approach026
surpasses the previous static approach by nearly027
6% accuracy on a combined dataset of MMLU028
and CMMLU, and by more than 10% when029
trained with a sparsity-inducing loss. It also030
shows superior performance in additional ex-031
periments conducted with the MMLU and Mini032
Crossword Puzzles datasets.033

1 Introduction034

Recent advancements in Large Language Models035

(LLMs) have significantly expanded their potential036

applications. Pretrained LLMs can effectively han-037

dle a wide range of Natural Language Processing038

(NLP) tasks with little to no additional training, a039

capability known as zero-shot or few-shot learning040

(Brown et al., 2020; Touvron et al., 2023; Team041

et al., 2024). This enables their use in various criti-042

cal applications, either to solve complex problems043

or to support human workflows (Chen et al., 2023; 044

Colombo et al., 2024; Roziere et al., 2023; Xu et al., 045

2024). 046

A notable application of LLMs is the develop- 047

ment of language agents. These agents use LLMs 048

as their core component and perform various tasks 049

through interactions among multiple LLMs, en- 050

hanced by additional operations such as memory 051

retrieval, code execution, and environmental inter- 052

actions like search (Birr et al., 2024; Hong et al., 053

2024; Chase, 2022). In contrast to usual LLMs, 054

language agents interact with various environments 055

by leveraging LLMs through actions and observa- 056

tions. Unlike LLMs, language agents can perform 057

internal actions such as reasoning, which may in- 058

volve multiple LLM queries before interacting with 059

the environment. They also employ various tools 060

to engage with data sources. Language agents 061

can function in single-agent or multi-agent frame- 062

works, using one or more LLMs (Wang et al., 2024). 063

These agents can be trained using Reinforcement 064

Learning (RL) techniques (Zhuge et al., 2024), al- 065

though much of the existing literature focuses on 066

handcrafted designs that utilize pretrained LLMs 067

without further training (Hong et al., 2024; Chase, 068

2022; Chen et al., 2024). 069

1.1 Towards Learned and Dynamic Language 070

Agents 071

Over the past few decades of deep learning re- 072

search, a recurring pattern has been the superiority 073

of learned features over handcrafted ones (Mikolov 074

et al., 2013; Hinton et al., 2012; Silver et al., 2017). 075

Notable examples include AlexNet by Krizhevsky 076

et al. (2012), which significantly outperformed the 077

state-of-the-art on ImageNet by employing Convo- 078

lutional Neural Networks, and Neural Architecture 079

Search algorithms, which improved performance 080

across various benchmarks through architectures 081

discovered via automated searches rather than hand- 082

crafted designs (Zoph and Le, 2016). While it re- 083

1

mains a topic of debate whether learned approaches084

consistently surpass handcrafted designs, ample085

evidence suggests their potential for superiority086

(Krizhevsky et al., 2012; Mikolov et al., 2013; Hin-087

ton et al., 2012; Silver et al., 2017; Zoph and Le,088

2016).089

In the realm of language agents, many existing090

approaches incorporate handcrafted designs (Hong091

et al., 2024; Chase, 2022; Chen et al., 2024; Liu,092

2022; Zhuge et al., 2023), often tailored explic-093

itly for specific tasks. For instance, the MetaGPT094

framework assigns predefined roles to agents, mim-095

icking human workflows (Hong et al., 2024). This096

strategy has shown promise, particularly in coding097

benchmarks, but it also introduces significant in-098

ductive biases by imposing human-like workflows099

on language agents, which may limit their potential100

by constraining their design.101

Another important ability is adaptability to input102

variations, allowing systems to manage different103

types of data through distinct processing steps.104

Research on Chain-of-Thought (CoT) prompting105

has highlighted its advantages for mathematical106

or reasoning tasks, where several reasoning steps107

precede the final output (Wei et al., 2022). Similarly,108

the Tree of Thought approach has demonstrated109

improved performance in tasks such as crossword110

puzzles by exploring various potential answers (Yao111

et al., 2024). Based on this, we hypothesize that112

applying different strategies or workflows based on113

the given input can optimize task solutions. A one-114

size-fits-all solution may serve as a starting point,115

but over the long term, language agents should have116

the flexibility to explore various communication117

flows and apply tailored methods to enhance their118

performance.119

Our work builds upon the framework proposed120

by Zhuge et al. (2024), which models language121

agents as Directed Acyclic Graphs (DAGs). This122

framework allows for an abstract understanding123

of language agents by representing them as com-124

putational graphs where nodes perform specific125

operations and edges depict the flow of data. We126

extend this DAG-based approach by introducing127

adaptive language agents that can modify their inter-128

nal and external communications based on initial in-129

put. Using reinforcement learning, specifically the130

REINFORCE algorithm (Williams, 1992), we aim131

to optimize the communication flows within these132

agents. Unlike previous methods with fixed edge133

probabilities, our approach learns input-dependent134

edge probabilities by utilizing a LLM, allowing for135

dynamic and context-sensitive graph structures. 136

We aim to assess the performance of our method 137

through three primary experiments using the Cross- 138

words Puzzle dataset (Yao et al., 2024). These 139

experiments evaluate the capability of language 140

agents in solving 5x5 crossword puzzles, with per- 141

formance measured by the number of correctly 142

predicted words. The second experiment uses 143

the Massive Multitask Language Understanding 144

(MMLU) (Hendrycks et al., 2021) dataset for ques- 145

tion answering to evaluate reasoning capabilities 146

and detect adversarial agents within the graph. The 147

final experiment combines the MMLU and Chi- 148

nese Massive Multitask Language Understanding 149

(CMMLU) (Li et al., 2023) datasets to test our 150

method’s ability to handle inputs from diverse do- 151

mains, with performance measured by the number 152

of correctly answered questions. 153

Our contributions are summarized as follows: 154

• We propose a novel method for edge opti- 155

mization in language agents, enabling input- 156

dependent graph generation. 157

• We provide theoretical justification and demon- 158

strate the superiority of our method through 159

experimental validation. 160

2 Related Work 161

Recent language models like GPT-3 (Brown et al., 162

2020), LLama (Touvron et al., 2023), and Claude1 163

excel in diverse NLP tasks through unified archi- 164

tectures (Achiam et al., 2023; Jiang et al., 2023; 165

Team et al., 2024; Touvron et al., 2023). Exten- 166

sive pretraining allows for zero-shot and few-shot 167

prompting without task-specific fine-tuning (Brown 168

et al., 2020). Few-shot prompting uses example 169

pairs for contextual learning, while zero-shot relies 170

solely on task descriptions. Our research extends 171

this by using language agents that interact with their 172

environment. This approach enhances LLM func- 173

tionality, enabling complex tasks like reasoning 174

and memory retrieval by interacting with external 175

tools and data sources (Liu, 2022; Chase, 2022; 176

Birr et al., 2024; Reed et al., 2022). 177

2.1 Language Agents in Role Play Setting 178

In the existing literature, considerable attention has 179

been devoted to exploring the potential of assigning 180

specific roles to language agents to enhance their 181

1https://docs.anthropic.com/claude/docs/
models-overview

2

https://docs.anthropic.com/claude/docs/models-overview
https://docs.anthropic.com/claude/docs/models-overview

problem-solving capabilities (Zhuge et al., 2023;182

Li et al., 2024; Hong et al., 2024; Qian et al., 2023).183

NLSOM by Zhuge et al. (2023) employs a society184

of mind concept, where multiple LLMs and neural185

network-based experts operate within a structured186

society, exchanging information to facilitate com-187

plex decisions. Agents in NLSOM follow prede-188

fined roles akin to political systems, such as democ-189

racies and monarchies, which, while structured, lack190

flexibility and require handcrafted organizational191

structures. Similarly, the CAMEL framework by Li192

et al. (2024) assigns specific roles to agents to guide193

problem-solving processes, emphasizing role ad-194

herence to enhance creativity. However, CAMEL’s195

predefined role assignments and fixed communi-196

cation schemes limit its adaptability. MetaGPT197

by Hong et al. (2024) focuses on role specializa-198

tion and improved communication infrastructure,199

relying on user-defined roles and human workflow200

patterns adapted from software engineering. It201

uses a subscribe-and-publish mechanism for agent202

communication, offering some flexibility but still203

constrained by predefined workflows. In contrast,204

our research introduces a dynamic approach to inter-205

agent communication using reinforcement learning206

techniques, enabling agents to learn and adapt their207

communication strategies over time. This flexibility208

allows agents to modify their internal communi-209

cation based on real-time task requirements and210

performance, leading to more robust and adaptable211

problem-solving capabilities, enhancing respon-212

siveness to complex and evolving tasks.213

2.2 Dynamic Language Agents214

Although various methodologies have been devel-215

oped for dynamically generating language agents216

tailored to specific task requirements (Team, 2023b;217

Chen et al., 2024; Liu et al., 2023; Yao et al., 2022),218

most focus on role assignment and task-dependent219

agent creation. In contrast, our approach utilizes a220

fixed set of agents and concentrates on optimizing221

their communication. XAgent by Team (2023b) is222

an open-source framework with a Dispatcher, Plan-223

ner, and Actor, relying on LLMs for planning and224

dispatching tasks. Our method, however, integrates225

these functions within graph edge generation, using226

reinforcement learning for improved task-handling227

strategies. AgentVerse by Chen et al. (2024) em-228

ploys a multi-stage problem-solving process with229

dynamic expert recruitment and structured decision-230

making, while our approach autonomously learns231

decision-making procedures using a utility function232

for feedback, allowing task transferability. DyLAN 233

by Liu et al. (2023) uses inference-time agent selec- 234

tion based on an Agent Importance Score, restricted 235

to multi-round interactions. Our method, instead, 236

employs a generalized graph framework without 237

limiting inter-agent connections, evaluated through 238

a utility function on a dataset. Overall, our approach 239

focuses on an abstracted graph framework that opti- 240

mizes internal communication between agents using 241

RL techniques, differing from methods that rely on 242

LLMs’ internal knowledge for decision-making. 243

3 Methodology 244

3.1 Language Agents as Graphs 245

Language agents, enhanced by pretrained LLMs, 246

have shown significant promise in leveraging their 247

extensive knowledge to handle various tasks. These 248

agents often adopt complex behaviors, such as 249

teamwork and role assignments, to improve task 250

performance (Hong et al., 2024; Chen et al., 2024; 251

Qian et al., 2023). The framework proposed by 252

Zhuge et al. (2024) models language agents as 253

Directed Acyclic Graphs (DAGs). In this approach, 254

a language agent is defined as a graph𝐺 (𝑉, 𝐸, 𝐹, 𝑜), 255

where 𝑉 is the set of nodes, 𝐸 is the set of edges 256

between these nodes representing the flow of data 257

within the language agent, 𝐹 is a set of operations 258

with 𝑓𝑖 being the operation executed in node 𝑣𝑖 , and 259

𝑜 is the output node. In their research, they put 260

special emphasis on language agent swarms. These 261

swarms are graphs composed of several subgraphs, 262

where every subgraph represents a single language 263

agent. For their edge optimization techniques, they 264

restricted the optimization to the edges between 265

different agents within the composed graph. This 266

restricted set of edges is E ⊂ 𝐸 . 267

3.2 Static Edge Probabilities 268

A language agent as a graph can be executed based 269

on the topological order of the nodes within the 270

graph. Every node takes as input the output gener- 271

ated by all its predecessor nodes and generates its 272

own output. 273

In the method by Zhuge et al. (2024), edge se- 274

lection within the graph is governed by a single 275

parameter vector 𝜃, where 𝜃𝑖 represents the prob- 276

ability of sampling edge 𝑒𝑖. This probability is 277

optimized using RL techniques, specifically the RE- 278

INFORCE algorithm. The objective is to find the 279

optimal 𝜃 that maximizes the expected utility of the 280

3

graph structures generated by this parameterization:281

𝜃★ = arg max
𝜃∈Θ

E𝐺′∼𝐷𝜃
[𝑢T (𝐺′)], (1)282

where 𝜃★ represents the optimal parameter vector283

that maximizes the expected utility. Here, Θ is the284

set of all possible parameter vectors, 𝐺′ denotes285

a graph structure sampled from the distribution286

𝐷 𝜃 parametrized by 𝜃, and 𝑢T (𝐺′) is the utility287

function that evaluates the performance of the graph288

𝐺′.289

3.3 Input-Conditional Edge Probabilities290

Given the increasing complexity of tasks that lan-291

guage agents must handle, there is a need for these292

agents to exhibit a high degree of adaptability. This293

adaptability involves dynamically adjusting their294

computational routines based on the specific input,295

akin to the flexibility seen in Mixture of Experts296

(MoE) architectures, where different "experts" are297

selected based on the input to optimize processing298

(Jacobs et al., 1991).299

To enhance the adaptability and efficiency of300

language agents, we propose a novel method where301

edge probabilities are conditional on the input 𝑥.302

Instead of using a fixed parameter vector, we intro-303

duce a function 𝑓 that maps an input 𝑥 to a vector304

of probabilities 𝜃, tailored for that specific input:305

𝑓 (𝑥) = 𝜃, 𝑥 ∼ 𝐷, (2)306

where 𝑓 is a function from the set of all possible307

functions F . The input 𝑥 is sampled from the308

distribution 𝐷, and 𝜃 is the vector of probabilities309

generated by 𝑓 for the input 𝑥.310

This approach allows the graph structure to dy-311

namically adjust based on the input, improving the312

agent’s ability to handle diverse tasks effectively.313

The optimization objective is then redefined to max-314

imize the expected utility across different inputs315

and their corresponding graph structures:316

𝑓★ = arg max
𝑓 ∈F

E𝑥∼𝐷 [E𝐺′∼𝐷 𝑓 (𝑥) [𝑢̂(𝐺′(𝑥))]], (3)317

where 𝑓★ is the optimal function that maps inputs to318

edge probabilities. Here, F is the set of all possible319

functions, 𝑥 is an input sampled from the distribu-320

tion 𝐷, 𝐺′ ∼ 𝐷 𝑓 (𝑥) represents a graph structure321

sampled from the distribution 𝐷 𝑓 (𝑥) parametrized322

by the output of 𝑓 (𝑥), and 𝑢̂(𝐺′(𝑥)) is a utility323

function that evaluates the output of the graph 𝐺′324

executed on input 𝑥. This method is designed to be325

at least as effective as the previous approach, which 326

directly updates edge probabilities. This is because 327

the function can always be learned to be a constant 328

function. We provide a proof of this in Appendix 329

A. 330

3.4 Design of Our Methodology 331

We employ the REINFORCE algorithm for training, 332

providing a solid base for our initial experiments. 333

Our goal is to learn the function 𝑓 , which dynam- 334

ically adjusts graph structure using a pretrained 335

LLM. 336

Given the pivotal role of LLMs in processing 337

textual input, 𝑓 must comprehend and reason about 338

text to accurately assess task requirements and 339

devise optimal strategies. 340

We use a learnable linear transformation layer to 341

map the last hidden dimension of the LLM’s output 342

to a probability vector 𝜃 ∈ R | E | for edge selection 343

in our graph-based model: 𝜃 = 𝑊 · ℎ + 𝑏, where 344

𝑊 ∈ R | E |×𝑑 is the weight matrix, 𝑏 ∈ R | E | is the 345

bias vector, and ℎ ∈ R𝑑 is the output from the last 346

hidden layer of the LLM. 347

Following (Zhuge et al., 2024), we initialize the 348

weights𝑊 to zero and set the bias 𝑏 to reflect initial 349

probabilities, guiding the initial learning phase. 350

However, initializing 𝑊 with a normal distribu- 351

tion facilitates more effective gradient updates by 352

breaking symmetry among neurons (LeCun et al., 353

2002; Glorot and Bengio, 2010): 𝑊𝑖 𝑗 ∼ N(0, 𝜎2). 354

This diversity in initial weights allows neurons to 355

learn different aspects of the input data, leading 356

to more robust neural network models (Glorot and 357

Bengio, 2010). 358

4 Experiments 359

We replicated the experiments from (Zhuge et al., 360

2024) to demonstrate that our method is at least 361

as effective. Additionally, we introduced a new 362

experimental framework to show that our method 363

can significantly outperform the previous approach. 364

In the following, we will refer to the previous 365

method proposed by Zhuge et al. (2024) as Static 366

Graph, and our method as Dynamic Graph. The 367

code implementation we use is publicly available 368

on GitHub, building upon the existing code base by 369

Zhuge et al. (2024)2. 370

2https://github.com/metauto-ai/GPTSwarm

4

https://github.com/metauto-ai/GPTSwarm

Table 1: Accuracy results for 𝑘 = 5 runs on the Crosswords Puzzle dataset by Dynamic Graph and Static Graph. We
used LLama 3 8B instruction finetuned for LLM inference.

Method Accuracy 𝑥𝑖 for Run 𝑖 (in %) Std Mean
(in %) Acc. (in %)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

Static Graph 23.5 18.0 21.5 19.5 17.5 2.2 20.0
Dynamic Graph 21.5 18.5 19.5 21.5 21.0 1.2 20.4

Table 2: Comparison of Dynamic Graph and Static Graph in terms of accuracy on the test sets. The expected number
of edges refers to edges from the agents to the final decision node. We split the tasks into static tasks, which are
reproduced from (Zhuge et al., 2024), and dynamic tasks, specifically designed to require language agents to change
based on the input. The static tasks include accuracy results for the Crosswords Puzzle dataset and the Adversarial
Agent experiment on the MMLU dataset, while the dynamic tasks include accuracy with additional loss to reduce
computational costs on the combined MMLU and CMMLU dataset. All accuracies are reported in percentages.
Ratio refers to how much more likely it is to sample an edge from a truthful agent compared to an adversarial agent.

Method Static Task Dynamic Task

Crosswords Adversarial Agents Specialized Agents +Edge Reduction

Acc. (%) Acc. (%) Ratio Acc. (%) Edges Acc. (%) Edges

Static Graph 20.0 44.6 1.52 44.7 5.01 42.1 2.60
Dynamic Graph 20.4 48.6 2.73 50.3 4.38 52.4 2.72

4.1 Crosswords Puzzle Experiment371

In our initial experiment, we aimed to replicate372

the crosswords puzzle experiments to demonstrate373

that our method performs better than the previous374

approach. We utilized the instruction-finetuned375

version of LLM known as LLama 3 8B (Meta376

AI, 2024), which has shown robust performance377

across various benchmarks despite its relatively378

smaller parameter size. This model was selected379

for its suitability for the crosswords puzzle task.380

For learning the edge probabilities (Eq. 3), we381

employed a Gemma-2B LLM (Team et al., 2024),382

balancing model size and language understanding383

capabilities. The prompts used for this experiment384

are provided in Appendix G.385

Following Zhuge et al. (2024), we explored two386

types of agents: the CoT agent (Wei et al., 2022)387

and the Reflexion Agent (Shinn et al., 2024). The388

Chain of Thought agent processes tasks in three389

logical steps: it initially analyzes the task in the390

first two steps and then outputs a solution based on391

the derived information in the final step. The Re-392

flexion Agent initially solves the task with a greedy393

solution, receives feedback from an LLM, and then394

outputs a new solution based on the feedback. The395

outputs of these agents are collected by a Return396

All agent, which returns all solutions. There was a 397

third agent, the Tree of Thought agent (Yao et al., 398

2024), but it was excluded due to the quadratic scal- 399

ing of potential edges with the increase in nodes 400

within a graph, in order to maintain computational 401

feasibility. 402

We used a mini crosswords dataset of 156 5x5 403

puzzles from GooBix (Yao et al., 2024) and evalu- 404

ated performance based on correct words for direct 405

puzzle-solving assessment. Details of the dataset 406

and language agent’s graph structure, along with 407

training parameters, are provided in Appendix C 408

and B.1. 409

Results and Analysis: Due to the inherent ran- 410

domness in the graph sampling process during 411

evaluation, we tested our method on the test set five 412

times. For the Static Graph approach we sampled 413

five graphs. The results, detailed in Table 1, demon- 414

strate that Dynamic Graph not only achieves higher 415

average accuracy but also exhibits less variance 416

across these runs, indicating enhanced performance 417

and consistency from language agents using our 418

method. 419

4.2 Adversarial Agent Detection 420

We replicated experiments from Zhuge et al. 421

(2024) with the MMLU benchmark to validate 422

5

(a) Probabilities for sampling an edge in the graph learned by
Dynamic Graph.

(b) Probabilities for sampling an edge in the graph learned by
Static Graph.

Figure 1: Comparative visualization of edge probabilities in graphs learned by Dynamic Graph and Static Graph.
Node 0 is the final decision node, nodes 1 to 8 are truthful agents, and nodes 9 to 16 are adversarial agents. Self-loops
and connections from the final decision node to any other node are set to 0.

our method’s ability to identify adversarial agents423

and compare it with Static Graph.424

Experimental Setup: We used the instruction-425

finetuned Gemma-7B model, configuring seventeen426

agents: eight adversarial, eight truthful, and one427

final decision agent. Adversarial agents output lies,428

while truthful agents provide honest answers. The429

final decision agent performs majority voting on the430

inputs. Smaller models like Gemma-7B struggled431

with untruthful responses, frequently defaulting to432

truthful answers. To address this, adversarial agents433

were modified to consistently respond with "A".434

The dataset used was the MMLU dataset435

(Hendrycks et al., 2021), which includes multiple-436

choice questions with four answer options, covering437

57 topics. This dataset is a standard for assessing438

the world knowledge and problem-solving abilities439

of LLMs. Samples of this dataset are in Appendix440

D.441

Following the original experiment’s configura-442

tion, we conducted 200 iterations with a batch443

size of 4, a learning rate of 0.0001, and used the444

Adam optimizer. Both methods were trained on the445

MMLU dev set and tested on 1000 questions from446

the val set. Prompts used for this experiment are in447

Appendix F.448

Results and Analysis449

The Dynamic Graph effectively identified and450

excluded most adversarial agents. The average451

probability across the test set was calculated as452

𝜃 =
1
|𝐷 |

∑︁
𝑥∈𝐷

𝑓 (𝑥),453

where 𝜃 is the average probability, 𝐷 is the test set, 454

and 𝑓 (𝑥) is the function outputting edge probabili- 455

ties. 456

Figures 1a and 1b show heatmaps of edge 457

probabilities in the graph. Our method demon- 458

strated higher effectiveness in identifying adversar- 459

ial agents, with probabilities for edges from truthful 460

agents close to 1 and from adversarial agents near 461

0. 462

Critical edges are those from agents (nodes 1 463

to 16) to the final decision agent (node 0). The 464

heatmaps illustrate that our method assigns high 465

probabilities to edges from truthful agents and low 466

probabilities to those from adversarial agents, en- 467

hancing robustness and accuracy. Outliers at nodes 468

5 or 10 had minimal impact due to the majority 469

vote mechanism. This is evident from the ratio 470

between the probability of sampling a critical edge 471

from truthful agents compared to adversarial agents, 472

which increased from 1.52 in the Static Graph to 473

2.73 in the Dynamic Graph. 474

Overall, the Dynamic Graph improves the detec- 475

tion and exclusion of adversarial agents, leading to 476

higher accuracy, as shown in Table 2. 477

4.3 Specialized Agents Experiment 478

This experiment aimed to demonstrate the superior- 479

ity of our method over the Static Graph approach. 480

We trained a language agent on a diverse dataset re- 481

quiring input-specific adaptation. Dynamic Graph 482

adjusts to the specific characteristics of the input, 483

unlike the Static Graph method, which aims for a 484

generalized solution, often resulting in decreased 485

6

(a) Probabilities for sampling an edge on
the MMLU dataset in the graph learned
by Dynamic Graph.

(b) Probabilities for sampling an edge on
the CMMLU dataset in the graph learned
by Dynamic Graph.

(c) Probabilities for sampling an edge in
the graph by Static Graph.

Figure 2: Comparative visualization of edge probabilities on MMLU and CMMLU datasets. Node 0 is the final
decision node, nodes 1 to 4 are truthful agents using Gemma-7B-it, and nodes 5 to 8 are truthful agents using
BlueLM-7B-chat. Notably, self-loops as well as connections from the final decision node to any other node are not
allowed and thereby 0.

performance.486

Experimental Setup: We configured eight truth-487

ful agents and a final decision agent, evenly di-488

vided between two language models: four based489

on Gemma-7B-it (Team et al., 2024) and four on490

BlueLM-7B-Chat (Team, 2023a). Despite their491

similar sizes, these LLMs show varying perfor-492

mance (Appenidx B.2) depending on the dataset493

used. Gemma-7B-it excels with the MMLU dataset494

(Hendrycks et al., 2021), while BlueLM-7B-Chat495

performs better on the CMMLU dataset (Li et al.,496

2023).497

Results and Analysis: Our experiment demon-498

strated that Dynamic Graph effectively identified499

performance differences between the two LLMs500

and assigned higher probabilities to agents better501

suited for specific questions. Visualizations of adja-502

cency matrices showed that the Static Graph found503

a more general solution, incorporating almost all504

agents with high probabilities (Figure 2c).505

Heatmaps for the CMMLU (Figure 2b) and506

MMLU (Figure 2a) datasets displayed the aver-507

age probability of sampling edges. Edges from508

Gemma-7B-it agents are highlighted in green, and509

those from BlueLM-7B-chat agents in pink. The510

model consistently assigned higher probabilities to511

the LLMs that performed better on these datasets,512

aiming for higher accuracy. Detailed edge proba-513

bilities are listed in Table B.2.514

Our approach selected relevant agents based on515

input, reducing computational load by minimizing516

the number of agents needed for final decisions, thus517

saving resources. Table 2 shows that our method518

improved accuracy by nearly 6% over Static Graph519

on the test set. 520

These results highlight the effectiveness of task- 521

dependent graph construction for edge optimization. 522

By dynamically adapting the graph and leveraging 523

agent specifications, Dynamic Graph outperforms 524

Static Graph, improving the performance of lan- 525

guage agents on diverse tasks. 526

4.4 Edge Reduction on Specialized Agents 527

In this graph framework, reducing the number of 528

edges can lower computational costs. We intro- 529

duced an additional loss function during training to 530

prioritize key nodes and reduce unnecessary inter- 531

nal communications. The loss function used was: 532

𝐿 (𝜃) = 𝛿 ·∑ | E |
𝑖=1 |𝜃𝑖 | with 𝛿 set to 0.1. This sparsity- 533

inducing loss (Tibshirani, 1996) was applied using 534

backpropagation to guide the model toward fewer 535

edges, enhancing computational efficiency. The ex- 536

perimental setup mirrored Section 4.3, maintaining 537

identical agent and training parameters. 538

Results and Analysis: Dynamic Graph showed 539

enhanced performance over Static Graph. While 540

the earlier method’s performance declined, our 541

approach improved, indicating that edge reduction 542

helps identify relevant nodes and generate input- 543

dependent graphs effectively. 544

Figure 3a shows edge probabilities with Static 545

Graph, while Figures 3b and 3c show edge prob- 546

abilities with Dynamic Graph on the MMLU and 547

CMMLU datasets. Dynamic Graph adapts pref- 548

erences based on input, especially noticeable in 549

the CMMLU dataset. Table 2 shows our method 550

outperformed the previous one by over 10%, identi- 551

fying relevant agents and demonstrating robustness 552

7

(a) Edge probabilities on MMLU with
Dynamic Graph and additional loss.

(b) Edge probabilities on CMMLU with
Dynamic Graph and additional loss.

(c) Edge probabilities with Static Graph
and additional loss.

Figure 3: Comparative visualization of edge probabilities learned by different methods on old and MMLU datasets.
Node 0 is the final decision node, nodes 1 to 4 are Gemma-7B-it agents, and nodes 5 to 8 are BlueLM-7B-chat
agents. Self-loops and connections from the final decision node to any other node are not allowed.

to changes in loss functions. It should be noted that553

Dynamic Graph sampled slightly more edges from554

truthful agents to the final decision agents.555

4.5 Ablation Study556

We investigated the role of the LLM in predict-557

ing edge probabilities. We compared our method,558

which uses transformer layers for textual represen-559

tation, with a baseline model using a pretrained560

embedding matrix from Gemma 2B. The baseline561

averages embeddings and maps them to edge prob-562

abilities via a linear layer. This aligns with prior563

studies suggesting that averaging embeddings can564

capture essential textual information (Mikolov et al.,565

2013; Arora et al., 2017). The experiment setup566

was the same as in Section 4.3.567

Results and Analysis: The baseline method568

struggled to differentiate based on input text, often569

defaulting to a constant vector output. Despite this,570

it performed better than earlier methods, achieving571

an accuracy of 45.7%. The heatmap of probabilities572

is in Appendix B.3.573

These results highlight the importance of a com-574

ponent capable of comprehending language and575

text to generate task-dependent graphs accurately.576

5 Conclusion577

This work presents a new approach for edge opti-578

mization in graph frameworks for language agents,579

as introduced by Zhuge et al. (2024). Unlike Static580

Graph, which used a single vector of probabilities581

for edge sampling, Dynamic Graph learns a func-582

tion 𝑓 that dynamically maps the agent’s input to583

edge probabilities. This generalizes the previous584

approach, which is a special case where 𝑓 is con-585

stant. We train this function using a neural network 586

built on a pretrained LLM. 587

Experimental results in Section 4 show Dynamic 588

Graph consistently outperforms Static Graph across 589

all tasks. Specifically, in a task-dependent graph 590

construction experiment (Section 4.3), Dynamic 591

Graph exceeded Static Graph by nearly 6% accu- 592

racy. This flexibility allows language agents to ad- 593

just their communication strategies based on input, 594

processing input more effectively and enhancing 595

their adaptability across various tasks. 596

6 Limitations 597

Our work establishes an experimental foundation 598

demonstrating the potential benefits of dynamically 599

adjusting language agents based on their input. 600

However, further research is necessary to explore 601

these concepts on a larger scale. 602

To deepen understanding, the effect of dynamic 603

language agents should be investigated using agent 604

swarms comprising a greater number of agents and 605

employing larger LLMs. Additionally, while our 606

research aimed to demonstrate the comparative effi- 607

cacy of our method against that proposed by Zhuge 608

et al. (2024), with superiority demonstrated through 609

an additional experiment utilizing a mixed dataset, 610

our experiments were confined to those conducted 611

by Zhuge et al. (2024) employing edge optimiza- 612

tion. While this comparison suffices to showcase 613

the superior performance of our method in those 614

specific experiments, future research should assess 615

our method’s capabilities across a broader spectrum 616

of datasets and tasks, such as code generation. 617

Furthermore, exploring input-dependent edge 618

generation could empower agents to dynamically 619

8

adjust graph complexity based on input difficulty.620

For instance, a language agent might utilize a sub-621

graph induced by nodes 𝑉 ′ ⊆ 𝑉 to process an input622

𝑥 efficiently, thereby conserving computational re-623

sources.624

Moreover, we propose investigating dynamic625

node generation, which would enable agents to626

generate, add, or remove nodes and edges during627

execution. This capability could enhance flexibility628

and empower graphs to effectively handle diverse629

inputs.630

7 Potential Risks631

Language Agents can substantially extend the capa-632

bilities of LLMs, allowing them to interact with their633

environment through a multitude of ways. Conse-634

quently, there is a concern that these advancements635

could lead to widespread automation, potentially636

displacing human labor on a large scale (Brynjolf-637

sson and McAfee, 2015). Moreover, there is a638

risk that these language agents could be exploited639

for illegal or dangerous activities (Brundage et al.,640

2018).641

We acknowledge the potential for our research,642

contributing to this field, to have harmful effects on643

society. Therefore, we advocate for more work on644

AI safety measures and the controlled deployment645

of AI technologies (Amodei et al., 2016).646

References647

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama648
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo649
Almeida, Janko Altenschmidt, Sam Altman, Shyamal650
Anadkat, et al. 2023. Gpt-4 technical report. arXiv651
preprint arXiv:2303.08774.652

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul653
Christiano, John Schulman, and Dan Mané. 2016.654
Concrete problems in ai safety. arXiv preprint655
arXiv:1606.06565.656

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.657
A simple but tough-to-beat baseline for sentence658
embeddings. In International conference on learning659
representations.660

Timo Birr, Christoph Pohl, Abdelrahman Younes, and661
Tamim Asfour. 2024. Autogpt+ p: Affordance-based662
task planning with large language models. arXiv663
preprint arXiv:2402.10778.664

Tom Brown, Benjamin Mann, Nick Ryder, Melanie665
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind666
Neelakantan, Pranav Shyam, Girish Sastry, Amanda667
Askell, et al. 2020. Language models are few-shot668

learners. Advances in neural information processing 669
systems, 33:1877–1901. 670

Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, 671
Peter Eckersley, Ben Garfinkel, Allan Dafoe, Paul 672
Scharre, Thomas Zeitzoff, Bobby Filar, Hyrum Ander- 673
son, Heather Roff, Gregory C. Allen, Jacob Steinhardt, 674
Carrick Flynn, Seán Ó hÉigeartaigh, Simon Beard, 675
Haydn Belfield, Sebastian Farquhar, Clare Lyle, Re- 676
becca Crootof, Owain Evans, Michael Page, Joanna 677
Bryson, Roman Yampolskiy, and Dario Amodei. 678
2018. The malicious use of artificial intelligence: 679
Forecasting, prevention, and mitigation. Preprint, 680
arXiv:1802.07228. 681

Erik Brynjolfsson and Andrew McAfee. 2015. Will 682
humans go the way of horses. Foreign Aff., 94:8. 683

Harrison Chase. 2022. LangChain. 684

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, 685
Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia 686
Qin, Yaxi Lu, Ruobing Xie, et al. 2024. Agentverse: 687
Facilitating multi-agent collaboration and exploring 688
emergent behaviors in agents. In Proceedings of the 689
International Conference on Learning Representa- 690
tions (ICLR). ArXiv preprint arXiv:2309.10848. 691

Zeming Chen, Alejandro Hernández Cano, Angelika 692
Romanou, Antoine Bonnet, Kyle Matoba, Francesco 693
Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, 694
Amirkeivan Mohtashami, et al. 2023. Meditron-70b: 695
Scaling medical pretraining for large language models. 696
arXiv preprint arXiv:2311.16079. 697

Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, 698
Dominic Culver, Rui Melo, Caio Corro, Andre FT 699
Martins, Fabrizio Esposito, Vera Lúcia Raposo, 700
Sofia Morgado, et al. 2024. Saullm-7b: A pioneer- 701
ing large language model for law. arXiv preprint 702
arXiv:2403.03883. 703

Xavier Glorot and Yoshua Bengio. 2010. Understanding 704
the difficulty of training deep feedforward neural net- 705
works. In Proceedings of the thirteenth international 706
conference on artificial intelligence and statistics, 707
pages 249–256. 708

Dan Hendrycks, Collin Burns, Steven Basart, Andy 709
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 710
hardt. 2021. Measuring massive multitask language 711
understanding. Preprint, arXiv:2009.03300. 712

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, 713
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew 714
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N 715
Sainath, et al. 2012. Deep neural networks for acous- 716
tic modeling in speech recognition: The shared views 717
of four research groups. IEEE Signal processing 718
magazine, 29(6):82–97. 719

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng 720
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven 721
Ka Shing Yau, Zĳuan Lin, Liyang Zhou, et al. 2024. 722

9

https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

Metagpt: Meta programming for multi-agent col-723
laborative framework. In Proceedings of the Inter-724
national Conference on Learning Representations725
(ICLR). ArXiv preprint arXiv:2308.00352.726

Robert A Jacobs, Michael I Jordan, Steven J Nowlan,727
and Geoffrey E Hinton. 1991. Adaptive mixtures of728
local experts. Neural computation, 3(1):79–87.729

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,730
Chris Bamford, Devendra Singh Chaplot, Diego de las731
Casas, Florian Bressand, Gianna Lengyel, Guillaume732
Lample, Lucile Saulnier, et al. 2023. Mistral 7b.733
arXiv preprint arXiv:2310.06825.734

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.735
2012. Imagenet classification with deep convolutional736
neural networks. Advances in neural information737
processing systems, 25.738

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-739
Robert Müller. 2002. Efficient backprop. In Neural740
networks: Tricks of the trade, pages 9–50. Springer.741

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii742
Khizbullin, and Bernard Ghanem. 2024. Camel:743
Communicative agents for" mind" exploration of744
large language model society. Advances in Neural745
Information Processing Systems, 36.746

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang,747
Hai Zhao, Yeyun Gong, Nan Duan, and Timothy748
Baldwin. 2023. Cmmlu: Measuring massive mul-749
titask language understanding in chinese. Preprint,750
arXiv:2306.09212.751

Jerry Liu. 2022. LlamaIndex.752

Zĳun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and753
Diyi Yang. 2023. Dynamic llm-agent network: An754
llm-agent collaboration framework with agent team755
optimization. arXiv preprint arXiv:2310.02170.756

Meta AI. 2024. Introducing meta llama 3: The most757
capable openly available LLM to date.758

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-759
rado, and Jeff Dean. 2013. Distributed representa-760
tions of words and phrases and their compositionality.761
Advances in neural information processing systems,762
26.763

Chen Qian, Xin Cong, Cheng Yang, Weize Chen,764
Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong765
Sun. 2023. Communicative agents for software de-766
velopment. arXiv preprint arXiv:2307.07924.767

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-768
gio Gomez Colmenarejo, Alexander Novikov, Gabriel769
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay,770
Jost Tobias Springenberg, et al. 2022. A generalist771
agent. arXiv preprint arXiv:2205.06175.772

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten773
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,774
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.775
Code llama: Open foundation models for code. arXiv776
preprint arXiv:2308.12950.777

Noah Shinn, Federico Cassano, Ashwin Gopinath, 778
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 779
flexion: Language agents with verbal reinforcement 780
learning. Advances in Neural Information Processing 781
Systems, 36. 782

David Silver, Julian Schrittwieser, Karen Simonyan, 783
Ioannis Antonoglou, Aja Huang, Arthur Guez, 784
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian 785
Bolton, et al. 2017. Mastering the game of go without 786
human knowledge. nature, 550(7676):354–359. 787

BlueLM Team. 2023a. Bluelm: An open multilin- 788
gual 7b language model. https://github.com/ 789
vivo-ai-lab/BlueLM. 790

Gemma Team, Thomas Mesnard, Cassidy Hardin, 791
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 792
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, 793
Juliette Love, et al. 2024. Gemma: Open models 794
based on gemini research and technology. arXiv 795
preprint arXiv:2403.08295. 796

XAgent Team. 2023b. Xagent: An autonomous agent 797
for complex task solving. 798

Robert Tibshirani. 1996. Regression shrinkage and 799
selection via the lasso. Journal of the Royal Statistical 800
Society Series B: Statistical Methodology, 58(1):267– 801
288. 802

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 803
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 804
Baptiste Rozière, Naman Goyal, Eric Hambro, 805
Faisal Azhar, et al. 2023. Llama: Open and effi- 806
cient foundation language models. arXiv preprint 807
arXiv:2302.13971. 808

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao 809
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, 810
Xu Chen, Yankai Lin, et al. 2024. A survey on large 811
language model based autonomous agents. Frontiers 812
of Computer Science, 18(6):1–26. 813

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 814
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 815
et al. 2022. Chain-of-thought prompting elicits rea- 816
soning in large language models. Advances in neural 817
information processing systems, 35:24824–24837. 818

Ronald J Williams. 1992. Simple statistical gradient- 819
following algorithms for connectionist reinforcement 820
learning. Machine learning, 8:229–256. 821

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has- 822
san Awadalla. 2024. A paradigm shift in machine 823
translation: Boosting translation performance of 824
large language models. In Proceedings of the In- 825
ternational Conference on Learning Representations 826
(ICLR). ArXiv preprint arXiv:2309.11674. 827

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 828
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 829
2024. Tree of thoughts: Deliberate problem solving 830
with large language models. Advances in Neural 831
Information Processing Systems, 36. 832

10

https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://doi.org/10.5281/zenodo.1234
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM
https://github.com/vivo-ai-lab/BlueLM
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674
https://arxiv.org/abs/2309.11674

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak833
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.834
React: Synergizing reasoning and acting in language835
models. arXiv preprint arXiv:2210.03629.836

Mingchen Zhuge, Haozhe Liu, Francesco Faccio, Dy-837
lan R Ashley, Róbert Csordás, Anand Gopalakrishnan,838
Abdullah Hamdi, Hasan Abed Al Kader Hammoud,839
Vincent Herrmann, Kazuki Irie, et al. 2023. Mind-840
storms in natural language-based societies of mind.841
arXiv preprint arXiv:2305.17066.842

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco843
Faccio, Dmitrii Khizbullin, and Jurgen Schmidhuber.844
2024. Language agents as optimizable graphs. arXiv845
preprint arXiv:2402.16823.846

Barret Zoph and Quoc V Le. 2016. Neural architecture847
search with reinforcement learning. arXiv preprint848
arXiv:1611.01578.849

A Theoretical Justification of Our850

Method851

Our approach is naturally designed to be as effective852

as or better than the previous approach, particularly853

when learning a constant function defined as:854

𝑓 (𝑥) = 𝜃★ ∈ R | E | (4)855

where 𝜃★ is derived from Equation (1), ensuring856

that the performance matches or exceeds that of the857

existing methodology.858

The original optimization goal set forth by Zhuge859

et al. (2024) is:860

𝜃★ = arg max
𝜃∈Θ

E𝐺′∼𝐷𝜃
[𝑢T (𝐺′)] (5)861

Considering the utility function as the average862

utility over the current batch, we can rewrite this863

as:864

𝜃★ = arg max
𝜃∈Θ

E𝐺′∼𝐷𝜃

[
1
𝐵

𝐵∑︁
𝑖=1

𝑢̂(𝐺′(𝑥))
]

(6)865

Assuming a sufficiently large batch size, this866

average utility represents an unbiased estimator of867

the expected utility, allowing us to reframe it as:868

𝜃★ = arg max
𝜃∈Θ

E𝐺′∼𝐷𝜃
[E𝑥∼𝐷 [𝑢̂(𝐺′(𝑥))]] (7)869

Using the commutativity of expected values, it870

simplifies to:871

𝜃★ = arg max
𝜃∈Θ

E𝑥∼𝐷 [E𝐺′∼𝐷𝜃
[𝑢̂(𝐺′(𝑥))]] (8)872

Defining 𝜃★ as the solution to this optimization.873

By constraining the function set F to constant 874

functions, F𝑐, we align our new optimization goal 875

with the original objective: 876

arg max
𝑓 ∈F𝑐

E𝑥∼𝐷 [E𝐺′∼𝐷 𝑓 (𝑥) [𝑢̂(𝐺′(𝑥))]]

= arg max
𝜃∈Θ

E𝑥∼𝐷 [E𝐺′∼𝐷𝜃
[𝑢̂(𝐺′(𝑥))]]

= 𝜃★

(9) 877

Since the set of constant functions F𝑐 ⊆ F , our 878

solution is at least as good as the solution found by 879

the method introduced by Zhuge et al. (2024). 880

B Experiments 881

B.1 Crosswords Puzzle Experiment 882

We provide an example of the language agent graph 883

of the Crosswords Puzzle experiment in Figure 4. 884

Figure 4: This is a sample graph for the crosswords
experiment setup.

We used a mini crosswords dataset comprising 885

156 5x5 crossword puzzles collected from GooBix3 886

as described in (Yao et al., 2024). Performance 887

on this dataset was evaluated using three primary 888

metrics: correct letters, correct words, and correct 889

games. Consistent with previous studies, our eval- 890

uation focused on the number of correct words, 891

allowing for a direct assessment of puzzle-solving 892

effectiveness based on the provided clues. Samples 893

of this dataset are available in Appendix C. 894

We used the same subset of 20 crossword puzzles 895

for training and testing as (Zhuge et al., 2024; Yao 896

et al., 2024). Our approach, with a greater number 897

of learnable parameters and a reduced learning rate, 898

required extended training iterations. We increased 899

the iteration count from 10 to 40 and decreased 900

the batch size from 20 to 5, ensuring a total of 901

200 examples were presented during training. The 902

3https://www.goobix.com/crosswords/

11

https://www.goobix.com/crosswords/

initial edge-sampling probability was set at 0.1, with903

a learning rate of 0.0001 using the Adam optimizer.904

We reported the best state word accuracy (Yao et al.,905

2024; Zhuge et al., 2024), indicating the accuracy906

of the best-proposed solution.907

B.2 Specialized Agents Experiment908

Training Details: We used a combined dataset909

from MMLU and CMMLU. Each dataset contains910

multiple-choice questions, testing agents on a wide911

range of domains and languages. The CMMLU912

benchmark, with questions in Mandarin Chinese,913

assesses LLMs across 67 topics and includes lin-914

guistic and culturally specific content (Appendix915

E).916

Training was conducted over 200 iterations with917

a batch size of 4 and a learning rate of 0.0001 using918

the Adam optimizer. We trained on the dev sets of919

MMLU and CMMLU, and tested on 1000 questions920

from the MMLU validation set and the CMMLU921

test set.922

We provide the performance of both LLMs used923

for Section 4.3 on the MMLU and CMMLU bench-924

marks. Since we couldn’t find a reported value925

for the performance of Gemma on the CMMLU926

dataset, we evaluated the model ourselves in Table927

3.928

Table 3: Comparison of LLM performance on the
MMLU and CMMLU benchmarks.

Model Name Accuracy (%)

CMMLU MMLU

BlueLM-7B-Chat 72.7 50.7
Gemma-7B 37.0 64.3

Results: We provide a detailed breakdown of929

the relevant edge probabilities from agents to the930

final decision node in Table 4. The table shows that931

our method was able to detect the differences in the932

LLMs’ abilities and adjust their contribution to the933

final result based on the input’s origin dataset.934

B.3 Ablation Study935

In this appendix, we provide the heatmap depict-936

ing the edge probabilities for the ablation study937

described in 4.5. The heatmap visualizes the prob-938

abilities assigned to different edges in the graph939

based on the input text.940

Figure 5: Probabilities for sampling an edge in the graph
by Dynamic Graph with the reduced model. Node 0 is
the final decision node, nodes 1 to 4 are truthful agents
using Gemma-7B-it, and nodes 5 to 8 are truthful agents
using BlueLM-7B-chat. Notably, self-loops as well as
connections from the final decision node to any other
node are not allowed and thereby 0.

C Mini Crosswords Puzzle Dataset 941

We provide samples (Table 5) of the Mini Cross- 942

words Puzzle dataset used for the experiments in 943

4.1. 944

Below is the raw input formatted for clarity, ↩→ 945

indicates a line break: 946

Input Data

[
[

"To stamp; to brand; to impress; to
put into type",↩→

"A scarf; a cymar; a loose dress",
"To cut",
"To perceive; wisdom; reason; feeling",
"The ridges on a tire; to walk

heavily",↩→
"A signaling sound",
"A rice processor; an implement for

ricing potatoes",↩→
"A chemical compound",
"A dog whelk or its shell",
"Chased up a tree"

],
[

"P", "R", "I", "N", "T",
"S", "I", "M", "A", "R",
"S", "C", "I", "S", "E",
"S", "E", "N", "S", "E",
"T", "R", "E", "A", "D"

]
]

D MMLU Dataset 947

The following question is a data sample from the 948

MMLU data set, used in the experiments in 4.2 and 949

4.3. Specifically sampled from the test set category 950

College Mathematics. 951

12

Table 4: Comparison of Dynamic Graph with Static Graph method. We report the probabilities for sampling edges
from the agents to the final decision node. For our method we further report the average probability over the test set
of both the MMLU and CMMLU datasets.

Node Dynamic Graph Static Graph

CMMLU MMLU Difference

Gemma-7B-It

1 0.792 0.974 -0.182 ↓ 0.942
2 0.629 0.716 -0.087 ↓ 0.456
3 0.460 0.936 -0.476 ↓ 0.717
4 0.059 0.023 0.036 ↑ 0.567

BlueLM-7B-Chat

5 0.519 0.211 0.308 ↑ 0.701
6 0.556 0.063 0.493 ↑ 0.471
7 0.938 0.075 0.863 ↑ 0.374
8 0.852 0.956 -0.104 ↓ 0.782

Table 5: Sample Data from the Mini Crosswords Dataset

P R I N T
S I M A R
S C I S E
S E N S E
T R E A D

Clue ID
To stamp; to brand; to impress; to put
into type

H1

A scarf; a cymar; a loose dress H2
To cut H3
To perceive; wisdom; reason; feeling H4
The ridges on a tire; to walk heavily H5
A signaling sound V1
A rice processor; an implement for ric-
ing

V2

potatoes
A chemical compound V3
A dog whelk or its shell V4
Chased up a tree V5

Dataset Question

Question: Let V and W be 4-dimensional
subspaces of a 7-dimensional vector space
X.

↩→
↩→
Which of the following CANNOT be the dimension

of the subspace V intersect W?↩→
Options:
A) 0
B) 1
C) 2

D) 3
Correct Answer: A

Below is the raw input formatted for clarity, ↩→ 952

indicates a line break: 953
Dataset Question

Let V and W be 4-dimensional subspaces of a
7-dimensional vector space X. Which of the
following CANNOT be the dimension of the
subspace V intersect W?,0,1,2,3,A

↩→
↩→
↩→

E CMMLU Dataset 954

The following question is a data sample from the 955

CMMLU data set, used in the experiments in 4.3. 956

Specifically sampled from the test set category 957

Chinese Food Culture. 958
Dataset Question

Question: 传统名菜“松鼠桂鱼”是典型的什么菜？
Options:
A) 川菜
B) 粤菜
C) 淮扬菜
D) 鲁菜
Correct Answer: C

Below is the raw input formatted for clarity, ↩→ 959

indicates a line break: 960

Input Data

传统名菜“松鼠桂鱼”是典型的什么菜？,川菜,粤

菜,淮扬菜,鲁菜,C↩→

In this appendix we provide samples for the 961

prompts used in our experiments. 962

13

F MMLU Prompt Set963

This appendix provides detailed examples of964

prompts used in the study. These prompts are965

part of the MMLUPromptSet for a 4-option ques-966

tion answering framework. Except the constraint967

prompt, all prompts are adapted from (Zhuge et al.,968

2024).969

F.1 Role of the Prompt970

The role prompt is defined as follows:971

a knowledgeable expert in question
answering↩→

F.2 Constraints of the Prompt972

The constraints are outlined to ensure the response973

format and correctness. We changed the required974

output format to JSON format. This made parsing975

easier and helped the models to adhere better to a976

given format:977

"I will ask you a question.
I will also give you 4 answers enumerated as

A, B, C, and D.↩→
Only one answer out of the offered 4 is

correct.↩→
You must choose the correct answer to the

question.↩→
Answer with only a single letter (A, B, C, or

D).↩→
Do not include any other information in your

answer except the letter.↩→
Your response should be in JSON format, with

the key 'answer' and the value being one
of the 4 letters: A, B, C, or D,
corresponding to the correct answer.

↩→
↩→
↩→
Here is an example of the correct format:
{

'answer': 'A'
}"

F.3 Formatting of the Response978

The expected format of the response is:979

one of the letters: A, B, C or D980

In JSON format.981

F.4 Example Prompts982

Here are some specific prompts used for different983

scenarios within the framework:984

F.5 Adversarial Answer Prompt985

Designed to receive a deceptive answer to the given986

question. We did not use this prompt for our987

experiments because the LLMs seemed to be unable988

to output a lie:989

Answer a lie to the following question:
{question}.↩→

F.6 Reflective Prompt 990

Encourages reflection on the provided question and 991

answer, assessing correctness and accuracy: 992

Reflect on the following question and answer:
Question: {question}
Answer: {answer}
What are your thoughts on the correctness and

accuracy of the answer? Do you agree or
disagree? Why? Please provide a brief
explanation.

↩→
↩→
↩→

G Crosswords Prompt Set 993

This appendix provides detailed examples of 994

prompts used in the mini crossword puzzle game 995

framework. These prompts are part of the 996

CrosswordsPromptSet, designed to guide LLMs 997

in solving a 5 x 5 crossword puzzle. The prompts 998

are mainly adapted from the framework and experi- 999

ments by Zhuge et al. (2024). 1000

G.1 Propose Prompt 1001

The prompt used for to start the game is the follow- 1002

ing: 1003

Let's play a 5 x 5 mini crossword, where each
word should have exactly 5 letters.↩→

{board}

Given the current status, list all possible
answers for unfilled or changed words, and
your confidence levels
(certain/high/medium/low), using the JSON
format with the position of the word as
key and a list of lists consisting of
possible answer and your confidence about
the solution, as shown in this example
{{"<position>": [["<answer>" ,
"<confidence>"]]}}. Use "certain"
cautiously and only when you are 100\%
sure this is the correct word. You can
list more than one possible answer for
each word. Each word should have a length
of exactly 5 characters. Consider the
intersection of horizontal and vertical
words.

↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→

G.2 Prompt to Test Correctness 1004

The prompt used to verify the correctness of an 1005

answer by an LLM: 1006

"Does {word} has meaning "{meaning}"? Responde
only Yes or No."↩→

14

G.3 Formatting of the Response1007

The expected format of the response is:1008

a JSON object containing the position,1009

possible answers, and their confidence1010

levels1011

G.4 Suggest Prompt1012

A prompt to inform an LLM about a previous game1013

and ask it to plan the next game:1014

You are playing a 5 x 5 mini crossword,
where each word should have exactly 5
letters.

↩→
↩→

Given the current status: The target words are
classified as {List of words and their
categorization into "correct",
"incorrect", and "impossible"} You will
retry the game. Write a plan for the next
time.

↩→
↩→
↩→
↩→
↩→
Respond at most five sentences, one sentence

per line.↩→
Do not include the phrase "next time" in your

response.↩→

G.5 Evaluation Prompt1015

A prompt to make the LLM evaluate the current1016

state of the board and find possible solutions based1017

on letters that have already been filled in.:1018

Evaluate if there exists a five letter word
of some meaning that fit some letter
constraints (sure/maybe/impossible).

↩→
↩→

Incorrect; to injure: w _ o _ g
The letter constraint is: 5 letters, letter 1

is w, letter 3 is o, letter 5 is g.↩→
Some possible words that mean "Incorrect; to

injure":↩→
wrong (w r o n g): 5 letters, letter 1 is w,

letter 3 is o, letter 5 is g. fit!↩→
sure

A person with an all-consuming enthusiasm,
such as for computers or anime: _ _ _ _ u↩→

The letter constraint is: 5 letters, letter 5
is u.↩→

Some possible words that mean "A person with
an all-consuming enthusiasm, such as for
computers or anime":

↩→
↩→
geek (g e e k): 4 letters, not 5
otaku (o t a k u): 5 letters, letter 5 is u
sure

Dewy; roscid: r _ _ _ l
The letter constraint is: 5 letters, letter 1

is r, letter 5 is l.↩→
Some possible words that mean "Dewy; roscid":
moist (m o i s t): 5 letters, letter 1 is m,

not r↩→
humid (h u m i d): 5 letters, letter 1 is h,

not r↩→
I cannot think of any words now. Only 2 letters

are constrained, it is still likely↩→

maybe

A woodland: _ l _ d e
The letter constraint is: 5 letters, letter 2

is l, letter 4 is d, letter 5 is e.↩→
Some possible words that mean "A woodland":
forest (f o r e s t): 6 letters, not 5
woods (w o o d s): 5 letters, letter 2 is o,

not l↩→
grove (g r o v e): 5 letters, letter 2 is r,

not l↩→
I cannot think of any words now. 3 letters are

constrained, and _ l _ d e seems a common
pattern

↩→
↩→
maybe

An inn: _ d _ w f
The letter constraint is: 5 letters, letter 2

is d, letter 4 is w, letter 5 is f.↩→
Some possible words that mean "An inn":
hotel (h o t e l): 5 letters, letter 2 is o,

not d↩→
lodge (l o d g e): 5 letters, letter 2 is o,

not d↩→
I cannot think of any words now. 3 letters are

constrained, and it is extremely unlikely
to have a word with pattern _ d _ w f to
mean "An inn"

↩→
↩→
↩→
impossible

Chance; a parasitic worm; a fish: w r a k _
The letter constraint is: 5 letters, letter 1

is w, letter 2 is r, letter 3 is a, letter
4 is k.

↩→
↩→
Some possible words that mean "Chance; a

parasitic worm; a fish":↩→
fluke (f l u k e): 5 letters, letter 1 is f,

not w↩→
I cannot think of any words now. 4 letters are

constrained, and it is extremely unlikely
to have a word with pattern w r a k _ to
mean "Chance; a parasitic worm; a fish"

↩→
↩→
↩→
impossible

{input}

H CMMLU and MMLU Prompt Set 1019

Direct translations of the prompts into Chinese 1020

were considered; however, such translations did 1021

not influence the performance outcomes of the 1022

models. Therefore, for simplicity and to streamline 1023

the implementation process, identical prompts were 1024

employed during training on both the MMLU and 1025

CMMLU datasets. 1026

15

	Introduction
	Towards Learned and Dynamic Language Agents

	Related Work
	Language Agents in Role Play Setting
	Dynamic Language Agents

	Methodology
	Language Agents as Graphs
	Static Edge Probabilities
	Input-Conditional Edge Probabilities
	Design of Our Methodology

	Experiments
	Crosswords Puzzle Experiment
	Adversarial Agent Detection
	Specialized Agents Experiment
	Edge Reduction on Specialized Agents
	Ablation Study

	Conclusion
	Limitations
	Potential Risks
	Theoretical Justification of Our Method
	Experiments
	Crosswords Puzzle Experiment
	Specialized Agents Experiment
	Ablation Study

	Mini Crosswords Puzzle Dataset
	MMLU Dataset
	CMMLU Dataset
	MMLU Prompt Set
	Role of the Prompt
	Constraints of the Prompt
	Formatting of the Response
	Example Prompts
	Adversarial Answer Prompt
	Reflective Prompt

	Crosswords Prompt Set
	Propose Prompt
	Prompt to Test Correctness
	Formatting of the Response
	Suggest Prompt
	Evaluation Prompt

	CMMLU and MMLU Prompt Set

