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ABSTRACT

The vast majority of techniques to train fair models require access to the protected
attribute (e.g., race, gender), either at train time or in production. However, in many
important applications this protected attribute is largely unavailable. In this paper,
we develop methods for measuring and reducing fairness violations in a setting
with limited access to protected attribute labels. Specifically, we assume access
to protected attribute labels on a small subset of the dataset of interest, but only
probabilistic estimates of protected attribute labels (e.g., via Bayesian Improved
Surname Geocoding) for the rest of the dataset. With this setting in mind, we
propose a method to estimate bounds on common fairness metrics for an existing
model, as well as a method for training a model to limit fairness violations by
solving a constrained non-convex optimization problem. Unlike similar existing
approaches, our methods take advantage of contextual information – specifically,
the relationships between a model’s predictions and the probabilistic prediction of
protected attributes, given the true protected attribute, and vice versa – to provide
tighter bounds on the true disparity. We provide an empirical illustration of our
methods using voting data. First, we show our measurement method can bound the
true disparity up to 5.5x tighter than previous methods in these applications. Then,
we demonstrate that our training technique effectively reduces disparity while
incurring lesser fairness-accuracy trade-offs than other fair optimization methods
with limited access to protected attributes.

1 INTRODUCTION

In both the private and public sectors, organizations are facing increased pressure to ensure they
use equitable machine learning systems, whether through legal obligations or social norms (22; 21;
43; 26; 25). For instance, in 2022, Meta Platforms agreed to build a system for measuring and
mitigating racial disparity in advertising to settle a lawsuit filed by the U.S. Department of Housing
and Urban Development under the Fair Housing Act (39; 28). Similarly, recent Executive Orders
in the United States (38; 42) direct government agencies to measure and mitigate disparity resulted
from or exacerbated by their programs, including in the “design, develop[ment], acqui[sition], and
us[e] [of] artificial intelligence and automated systems” (42).

Yet both companies (3) and government agencies (38) rarely collect or have access to individual-level
data on race and other protected attributes on a comprehensive basis. Given that the majority of
algorithmic fairness tools which could be used to monitor and mitigate racial bias require demographic
attributes (8; 7), the limited availability of protected attribute data represents a significant challenge
in assessing algorithmic fairness and training fairness-constrained systems difficult.

In this paper, we address this problem by introducing methods for 1) measuring fairness violations in,
and 2) training fair models on, data with limited access to protected attribute labels. We assume access
to protected attribute labels on only a small subset of the dataset of interest, along with probabilistic
estimates of protected attribute labels— for example, estimates generated using Bayesian Improved
Surname Geocoding (BISG) (27)—for the rest of the dataset.

We leverage this limited labeled data to establish whether certain relationships between the model’s
predictions, the probabilistic protected attributes, and the ground truth protected attributes hold. Given
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these conditions, our first main result (Theorem 1) shows that we can bound a range of common
fairness metrics, from above and below, over the full dataset with easily computable (un)fairness
estimators calculated using the probabilistic estimates of the protected attribute. We expound on
these conditions, define the fairness estimators, and introduce this result in Section 2.

To train fair models, we leverage our results on measuring fairness violations to bound disparity
during learning; we enforce the upper bound on unfairness calculated with the probabilistic protected
attribute (measured on the full training set) as a surrogate fairness constraint, while also enforcing
the conditions required to ensure the estimators accurately bound disparity in the model’s predictions
(calculated on the labeled subset), as constraints during training. We leverage recent work in
constrained learning with non-convex losses (14) to ensure bounded fairness violations with near-
optimal performance at prediction time.

We note that our data access setting is common across a variety of government and business contexts:
first, estimating race using BISG is standard practice in government and industry (12; 23; 33; 40; 39).
Although legal constraints or practical barriers often prevent collecting a full set of labels for protected
attributes, companies and agencies can and do obtain protected attribute labels for subsets of their
data. For example, companies such as Meta have started to roll out surveys asking for voluntary
disclosure of demographic information to assess disparities (40). Another method for obtaining
a subset of protected attribute data is to match data to publicly available administrative datasets
containing protected attribute labels for a subset of records, as in, e.g. Elzayn et al. (20).

While our approach has stronger data requirements than recent work in similar domains (31; 46)
in that a subset of it must have protected attribute labels, many important applications satisfy this
requirement. The advantage to using this additional data is substantially tighter bounds on disparity:
in our empirical applications, we find up to 5.5x tighter bounds for fairness metrics, and up to 5
percentage points less of an accuracy penalty when enforcing the same fairness bound during training.

In sum, we present the following contributions: 1) We introduce a new method of bounding ground
truth fairness violations across a wide range of fairness metrics in datasets with limited access to
protected attribute data (Section 2); 2) We introduce a new method of training models with near-
optimal and near-feasible bounded unfairness with limited protected attribute data (Section 3); 3)
We show the utility of our approaches, including comparisons to a variety of baselines and other
approaches, on various datasets relevant for assessing disparities in regulated contexts: we focus on
voter registration data, commonly used to estimate racial disparities in voter turnout (1) (Section 4)
with additional datasets presented in Appendix F.

2 METHODOLOGY FOR MEASUREMENT

In this section, we formally introduce our problem setting and notation, define the types of fairness
metrics we can measure and enforce with our techniques, and define the probabilistic and linear
estimators of disparity for these metrics. We then introduce our first main result: given certain
relationships between the protected attribute, model predictions, and probabilistic estimates of
protected attribute in the data, we can upper and lower bound the true fairness violation for a given
metric using the linear and probabilistic estimators respectively.

2.1 NOTATION AND PRELIMINARIES

Setting and Datasets. We wish to learn a model of an outcome Y based on individuals’ features X .
Individuals have a special binary protected class feature B 2 {0, 1} which is usually unobserved, and
proxy variables Z ⇢ X which may be correlated with B. Our primary dataset, called the learning
dataset, is D := DU [ DL, where DU (the unlabeled set) consists of observations {(Xi, Yi, Zi)}nU

i=1
and DL (the labeled set) additionally includes B and so consists of {(Xi, Yi, Zi, Bi)}nL

i=1. An
auxiliary dataset {(Z,B)}nA

i=1 allows us to learn an estimate of bi := Pr[Bi|Zi]; except where
specified, we abstract away from the auxiliary dataset and assume access to b. When considering
learning, we assume a hypothesis class of models H which map X either directly to Y or a superset
(e.g. [0, 1] rather than {0, 1}), and consider models parameterized by ✓, i.e. h✓ 2 H. An important
random variable that we will use is the conditional covariance of random variables. In particular, for
random variables Q,R, S, T , we write CQ,R|S,T := Cov(Q,R|S, T ).
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Notation. For a given estimator ✓ and random variable X , we use ✓̂ to denote the sample estimator
and X̂ to denote a prediction of X . We use X̄ to indicate the sample average of a random variable
taken over an appropriate dataset. In some contexts we use group-specific averages, which we indicate
with a superscript. For example, we use b̄Bi to denote the sample average of b among individuals
who have protected class feature B equal to Bi. We will indicate a generic conditioning event using
the symbol E , and overloading it, we will write Ei as an indicator, i.e. 1 when E is true for individual
i and 0 otherwise. In the learning setting, Ei will depend on our choice of model h; when we want
to emphasize this, we write Ei(h). We will also use the (·) notation to emphasize dependence on
context more generally, e.g. Cf,b|B(h✓) is the covariance of f and b conditional on B under h✓.

Fairness Metrics. In this paper, we focus on measuring and enforcing a group-level fairness metric
that can be expressed as the difference across groups of some function of the outcome and the
prediction, possibly conditioned on some event. More formally:
Definition 1. A fairness metric µ is an operator associated with a function f and an event E such that

µ(D) := ED[f(Ŷ , Y )|E , B = 1]� ED[f(Ŷ , Y )|E , B = 0],

where the distribution D corresponds to the process generating (X,Y, Ŷ ).

Many common fairness metrics can be expressed in this form by defining an appropriate event E and
function f . For instance, demographic parity in classification (10; 47; 50) corresponds to letting E be
the generically true event and f be simply the indicator 1[Ŷ = 1]. False positive rate parity (15; 16)
corresponds to letting E be the event that Y = 0 and letting f(Ŷ , Y ) = 1[Ŷ 6= Y ]. True positive rate
parity (24) (also known as ”equality of opportunity”) corresponds to letting E be the event that Y = 1
and f(Ŷ , Y ) = 1[Ŷ 6= Y ].

For simplicity, we have defined a fairness metric as a scalar and assume it is conditioned over a single
event E . It is easy to extend this definition to multiple events (e.g. for the fairness metric known as
equalized odds) by considering a set of events {Ej} and keeping track of ED[fj(Ŷ , Y )|Ej , B] for
each. For clarity, we demonstrate how many familiar notions of fairness can be written in the form of
Definition 1 in Appendix A.5. There are other metrics that cannot be written in this form; we do not
consider those here.

2.2 FAIRNESS METRIC ESTIMATORS

Our first main result is that we can bound fairness metrics of the form described above over a dataset
with linear and probabilistic fairness estimates, given that certain conditions hold on the relationships
between model predictions, predicted protected attribute, and the ground truth protected attribute. In
order to understand this result, we define the probabilistic and linear estimators.

Intuitively, the probabilistic estimator is the population estimate of the given disparity metric weighted
by each observation’s probability of being in the relevant demographic group. Formally:
Definition 2 (Probabilistic Estimator). For fairness metric µ with function f and event E , the
probabilistic estimator of µ for a dataset D is given by

bDP
µ :=

P
i2E

bif(Ŷi, Yi)P
i2E

bi
�

P
i2E

(1� bi)f(Ŷi, Yi)P
i2E

(1� bi)
.

It is assumed that at least one observation in the dataset has had E occur.

Meanwhile, the linear disparity metric is the coefficient of the probabilistic estimate b in a linear
regression of f(Ŷ , Y ) on b and a constant among individuals in E . For example, in the case of
demographic parity, where f(Ŷ , Y ) = Ŷ , it is the coefficient on b in the linear regression of Ŷ on b
and a constant over the entire sample. Using the well-known form of the regression coefficient (see,
e.g. (4), we define the linear estimator as:
Definition 3 (Linear Estimator). For a fairness metric µ with function f and associated event E , the
linear estimator of µ for a dataset D is given by:

bDL
µ :=

P
i2E

⇣
f(Ŷi, Yi)� f(Ŷ , Y )

⌘
(bi � b)

P
i2E

(bi � b̄)2
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where · represents the sample mean among event E .

We define DP
µ and DL

µ to be the asymptotes of the probabilistic and linear estimators, respectively, as
the identically and independently distributed sample grows large.

2.3 BOUNDING FAIRNESS WITH DISPARITY ESTIMATES

Our main result proves that when certain covariance conditions between model predictions, predicted
demographic attributes, and true demographic attributes hold, we can guarantee that the linear and
probabilistic estimators of disparity calculated with the probabilistic protected attribute serve as upper
and lower bounds on truedisparity. This result follows from the following proposition:
Proposition 1. Suppose that b is a probabilistic estimate of a demographic trait (e.g. race) given
some observable characteristics Z and conditional on event E , so that b = Pr[B = 1|Z, E ]. Define
DP

µ as the asymptotic limit of the probabilistic disparity estimator, bDP
µ , and DL

µ as the asymptotic
limit of the linear disparity estimator, bDL

µ . Then:

DP
µ = Dµ � E[Cov(f(Ŷ , Y ), B|b, E)]

Var(B|E) (1)

and

DL
µ = Dµ +

E[Cov(f(Ŷ , Y ), b|B, E)]
Var(b|E) . (2)

Since variance is always positive, the probabilistic and linear estimators serve as bounds on disparity
when Cf,b|B,E and Cf,B|b,E are either both positive or both negative, since they are effectively
separated from the true disparity by these values: if they are both positive, then DL

µ serves as an
upper bound and DP

µ serves as a lower bound; if they are both negative, then DP
µ serves as an upper

bound and DL
µ serves as a lower bound. Formally,

Theorem 1. Suppose that µ is a fairness measure with function f and conditioning event E as
described above, and that E[Cov(f(Ŷ , Y ), b|B, E)] > 0 and E[Cov(f(Ŷ , Y ), B|b, E ] > 0. Then,

DP
µ  Dµ  DL

µ .

Proposition 1 and Theorem 1, which we prove in Appendix A, subsume and generalize a result from
(20). These results define the conditions under which DL

µ and DP
µ , easily computable quantities,

serve as bounds on ground truth fairness violations — and as we show in Section 4.2, this allows us
to bound the specified fairness metrics in practice when measuring predictions in existing models
whenever these conditions hold. However, as we demonstrate in the next section, this also provides
us with a simple method to bound fairness violations when training machine learning models.

3 METHODOLOGY FOR TRAINING

We now combine our fairness estimators with existing constrained learning approaches to develop a
methodology for training fair models when only a small subset labeled with ground true protected
characteristics is available. The key idea to our approach is to enforce both an upper bound on the
magnitude of fairness violations computed with the probabilistic protected attributes ( bDL

µ ), while
also leveraging the small labeled subset to enforce the covariance constraints referenced in Theorem
1. This way, as satisfaction of the covariance constraints guarantees that bDL

µ serves as a bound on
unfairness, we ensure bounded fairness violations in models trained with probabilistic protected
characteristic labels. Due to space constraints, we defer discussion of the mathematical framework
underlying the ideas to Appendix B.

Problem Formulation In an ideal setting, given access to ground truth labels on the full dataset, we
could simply minimize the expected risk subject to the constraint that - whichever fairness metric we
have adopted - the magnitude of fairness violations do not exceed a given threshold ↵. However, in
settings where we only have access to a small labeled subset of data, training a model by directly
minimizing the expected risk subject to fairness constraints on the labeled subset may result in poor
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performance, particularly for complicated learning problems. Instead, we propose enforcing an upper
bound on the disparity estimator as a surrogate fairness constraint. Recall that Theorem 1 describes
conditions under which the linear estimator upper or lower bounds the true disparity; if we can
enforce these conditions in our training process using the smaller labeled dataset, then our training
process provides the fairness guarantees desired while leveraging the information in the full dataset.

To operationalize this idea, we recall that Theorem 1 characterizes two cases in which the linear
estimator could serve as an upper bound in magnitude: in the first case, both residual covariance
terms are positive, and Dµ  DL

µ ; in the second, both are negative, and DL
µ  Dµ

1. Minimizing risk
while satisfying these constraints in each case separately gives the following two problems:
Problem 1.A.

min
h2H

E[L(h(X), Y )] s.t. DL
µ  ↵; E[Cf,B|b,E ] � 0; E[Cf,b|B,E ] � 0

Problem 1.B.
min
h2H

E[L(h(X), Y )] s.t. � ↵  DL
µ ; E[Cf,B|b,E ]  0; E[Cf,b|B,E ]  0

To find the solution that minimizes the the fairness violation with the highest accuracy, we select:

h⇤ 2 argminh⇤
2a,h

⇤
2b
E[L(h(X), Y )].

By construction, h⇤ is feasible, and so satisfies |Dµ(h⇤)|  ↵; moreover, while h⇤ may not be the
lowest-loss predictor such that |Dµ|  ↵, it is the best predictor which admits the linear estimator as
an upper bound on the magnitude of the disparity. In other words, it is the best model for which we
can guarantee fairness using our measurement technique.
Remark. Note that the second covariance constraint (associated with the lower-bound, i.e. the
probabilistic estimator) in each problem is necessary to rule out solution far below the desired
range in the opposite sign; otherwise, a solution to Problem 1.A could have Dµ < �↵ and to
Problem 1.B Dµ > ↵, and the ultimate h⇤ selected could be infeasible with respect to the desired
fairness constraint. (Note also that as a consequence, the probabilistic estimator will also serve as a
lower bound for the magnitude of disparity under the selected model.)

Empirical Problem The problems above are over the full population, but in practice we usually only
have samples. We thus now turn to the question of how we can solve the optimization problem with
probabilistic fairness constraints empirically. We focus on the one-sided Problem 1.A for brevity but
the other side follows similarly. The empirical analogue of Problem 1.A is the following:
Problem 2.A.

min
h✓2H

1

nD

nDX

i=1

L(h✓(Xi), Yi) s.t. bDL
µ (h✓)  ↵; bCf,b|B,E(h✓) � 0; bCf,b|B,E(h✓) � 0

Solving the empirical problem. While Problem 2.A is a constrained optimization problem, it is not,
except in special cases, a convex problem. Despite this, recent results ((13),(14)) have shown that
under relatively mild conditions, a primal-dual learning algorithm can be used to obtain approximate
solutions with good performance guarantees.2 In particular, if we define the empirical Lagrangian as:

bL(✓, ~µ) = 1

nD

nDX

i=1

L(h✓(Xi), Yi) + µL

⇣
bDL
µ (h✓)� ↵)

⌘
� µb|B

bCf,b|B,E � µB|b
bCf,B|b,E (3)

(where bCf,b|B,E and bCf,B|b,E are as in Problem 1.A), the optimization problem can be viewed as
a min-max game between a primal (✓) and dual (µ) player where players are selecting ✓ and µ to
maxµ min✓ bL(✓, µ). Formally, Algorithm 1 in the appendix provides pseudocode for a primal-dual
learner similar to (14; 17), etc. specialized to our setting; adapting and applying Theorem 3 in (14),
provides the following guarantee:

1Note that as a result of Proposition 1, when Cf,b|B,E and Cf,B|b,E are both positive, the true fairness metric
is necessarily is forced to be positive, and symmetrically for for negative values.

2For the special case of linear regression with mean-squared error losses, we provide a closed-form solution
to the primal problem. This can be used for a heuristic solution with appropriate dual weights.
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Theorem 2. Let H have a VC-dimension d, be decomposable, and finely cover its convex hull.
Assume that y takes on a finite number of values, the induced distribution x|y is non-atomic for all
y, and Problem 2.A has a feasible solution. Then if Algorithm 1 is run for T iterations, and ✓̃ is
selected by uniformly drawing t 2 {1...T}, the following holds with probability 1 � �: For each
target constraint ` 2 {DL

µ , Cf,b|B,E , Cf,B|b,E},

E[`(h✓̃)]  ci +O
✓
d logNp

N

◆
+O

✓
1

T

◆
and E[L(h✓̃, y)]  P ⇤ +O

✓
d logNp

N

◆

where P ⇤ is the optimal value of Problem 2.A.

The theorem provides an average-iterate guarantee of approximate feasibility and optimality when
a solution is drawn from the empirical distribution. Note that it is not a priori obvious whether our
bounds remain informative over this empirical distribution, but we show in Appendix A that the
covariance conditions holding on average imply that our bounds hold on average:

Proposition 2. Suppose ✓̃ is drawn from the empirical distribution produced by Algorithm 1. If:

E
h
E[Cov(f(h✓̃(X), B))|E , b]|✓̃

i
� 0 and E

h
E[Cov(f(h✓̃(X), b))|E , B]|✓̃

i
� 0,

Then EDµ(h✓̃)  EDL
µ (h✓̃).

Remark. Combining Theorem 2 and Proposition 2 guarantees that a randomized classifier with
parameters drawn according to the empirical distribution from Algorithm 1 will approximately meet
our disparity bound goals on average. Without stronger assumptions, this is all that can be said;
this is a general limitation of game-based empirical optimization methods, since they correspond
equilibrium discovery, and only mixed-strategy equilibria are guaranteed to exit. In practice, however,
researchers applying similar methods select the final or best feasible iterate of their model, and often
find feasible good performance (17; 46); thus in our results section, we compare our best-iterate
performance to other methods.

4 EMPIRICAL EVALUATION

We now turn to experiments of our disparity measurement and fairness enforcing training methods on
predicting voter turnout. We provide additional experiments on the COMPAS dataset (5), as well as
on simulated data, in Appendix F and Appendix G, respectively.

4.1 DATA

L2 Dataset. The L2 dataset provides demographic, voter, and consumer data from across the United
States collected by the company L2. Here, we consider the task of predicting voter turnout for the
general election in 2016 and measuring model fairness violations with respect to Black and non-Black
voters. This application is particularly relevant since race/ethnicity information is often not fully
available (27), and much of voting rights law hinges on determining whether there exists racially
polarized voting and/or racial disparities in turnout (6). We focus on the six states with self-reported
race labels (North Carolina, South Carolina, Florida, Georgia, Louisiana, and Alabama). We denote
Ŷ = 1 if an individual votes in the 2016 election and Ŷ = 0 otherwise; refer to Appendix C.1 for a
detailed description of this dataset.

Race Probabilities. The L2 dataset provides information on voters’ first names, last names, and
census block group, allowing the use of Bayesian Improved (Firstname and) Surname Geocoding
Method (BISG/BIFSG) for estimating race probabilities (18; 19; 27). We obtain our priors through
the decennial Census in 2010 on the census block group level. AUC for BISG/BIFSG across the six
states we investigate in the L2 data ranges from 0.85-0.90. Further details on how we implement
BISG/BIFSG for the L2 data and its performance can be found in Appendix C.2.

4.2 MEASUREMENT

In this section, we showcase our method of bounding true disparity when race is unobserved. Given
1) model predictions on a dataset with probabilistic race labels and 2) true race labels for a small
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Figure 1: Comparison of our
method of bounding true dispar-
ity (blue) to the method proposed
in Kallus et al. (31) (grey), us-
ing a logistic regression model
to predict voter turnout in six
states. Only a small subset (here,
n = 1, 500, i.e. 1%) of the data
contains information on true race.
The grey dot represents true dis-
parity. Both methods success-
fully bound true disparity within
its 95% standard errors, but our
estimators provide tighter bounds.

subset of that data, we attempt to obtain bounds on three disparity measures: demographic disparity
(DD), false positive rate disparity (FPRD), and true positive rate disparity (TPRD).

4.2.1 EXPERIMENTAL DESIGN AND COMPARISONS.

Setup. To simulate measurement of fairness violations on predictions from a pre-trained model with
limited access to protected attribute, we first train unconstrained logistic regression models with an
80/20 split of the available L2 data for each state. Then, in order to simulate realistic data access
conditions, we measure fairness violations on a random subsample of the test set (n = 150, 000),
with 1% (n = 1, 500) of this sample including ground truth race labels to constitute the labeled subset.
We do this by first checking the covariance constraints on the labeled subset, and then calculating
bDL and bDP on the entire set of 150, 000 examples sampled from the test set. We also compute
standard errors for our estimators as specified by the procedure in Appendix Section B. To evaluate
our method, we measure true fairness violations on the 150, 000 examples sampled from the test
set, and check to see whether we do in fact bound the true fairness violations within standard error.
Further information about our unconstrained models can be found in Appendix Section D.1. We
present our results in Figure 1.

Comparisons. We compare our method of estimating fairness violations using probabilistic pro-
tected characteristic labels to the method described in Kallus et al. (31), which is one of the only
comparable methods in the literature. We will refer to as KDC from here on. Details of KDC and our
implementation can be found in Appendix Section D.2.

4.2.2 RESULTS

Figure 1 compares our method of estimating disparity (blue) with KDC (grey) for the three disparity
measures and all six states. This figure shows estimates when training a logistic regression model, and
Figure 5 in the Appendix shows similar results for training random forests. Across all experiments,
both KDC’s and our estimators always bound true disparity. However, we observe two crucial
differences: 1) our bounds are markedly tighter (3.8x smaller on average, and as much as 5.5x
smaller) than KDC, and as a result 2) our bounds almost always indicate the direction of true disparity.
When they do not, it is due to the standard error which shrinks with more data. By contrast, KDC’s
bounds consistently span[-0.5, 0.5], providing limited utility even for directional estimates.

4.3 TRAINING

In this section, we demonstrate the efficacy of our approach to training fairness-constrained machine
learning models. Following our algorithm in Section 3, we train models with both covariance
conditions necessary for the fairness bounds to hold and also constrain the upper bound on absolute
value of disparity, bDL

µ , to be below some bound ↵. We find that our method 1) results in lower true
disparity on the test set than using the labeled subset alone, or using prior methods to bound disparity;
2) more frequently reaches the target bound than other techniques; and 3) often incurs less of an
accuracy trade-off when enforcing the same bound on disparity compared to related techniques.
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4.3.1 EXPERIMENTAL DESIGN AND COMPARISONS.

Experimental Design. We demonstrate our technique by training logistic regression models to make
predictions with bounded DD, FPRD, and TPRD across a range of bounds. We include results for
neural network models in Appendix Section E.7. We train these models on the data from Florida
within the L2 dataset, as it has the largest unconstrained disparity among the six states, see Figure 1.We
report the mean and standard deviations of our experimental results over ten trials. For each trial,
we split our data (n = 150, 000) into train and test sets, with a 80/20 split. From the training set,
we subsample the labeled subset so that it is 1% of the total data (n = 1, 500). To enforce fairness
constraints during training, we solve the empirical problem 3A and its symmetric analogue, which
enforces negative covariance conditions and bDL

µ as a (negative) lower bound. We use the labeled
subset to enforce adherence to the covariance conditions during training. We use the remainder of the
training data, as well as the labeled subset, to enforce the constraint on bDL

µ during training. As noted
in Section 3, our method theoretically guarantees a near-optimal, near-feasible solution on average
over ✓(1)...✓(T ). However, following Wang et al. (46), for each of these sub-problems, we select the
best iterate ✓(t) which satisfies the bound on bDL

µ on the training set, the covariance constraints on
the labeled subset, and that achieves the lowest loss on the training set. We report our results on
the solution between these two sub-problems that is feasible and has the lowest loss. We present
the accuracy and resulting disparity of model predictions on the test set after constraining fairness
violations during training for a range of metrics (DD, FPRD, TPRD), across a range of bounds (0.04,
0.06, 0.08, 0.10) for our method as well as three comparisons, described below, in Figure 2. Further
details about the experimental setup can be found in Appendix Section E.1.

Comparisons. We compare our results for enforcing fairness constraints with probabilistic protected
attribute labels to the following methods: 1) A model trained only on the labeled subset with true race
labels, enforcing a fairness constraint over those labels. This is to motivate the utility of using a larger
dataset with noisy labels when a smaller dataset exists on the same distribution with true labels. To
implement this method, we use the non-convex constrained optimization technique from Chamon et
al. (14) to enforce bounds on fairness violations calculated directly on ground-truth race labels, as we
describe in greater detail in Appendix E.2. 2) We compare with a recent method by Wang et al. (46)
for enforcing fairness constraints on data with noisy protected attributes and a labeled auxiliary set,
which is based on an extension of Kallus et al. (31)’s disparity measurement method. This method
guarantees that the relevant disparity metrics will be satisfied within the specified slack, which we
take as a bound. However, their implementation does not consider DD – further details on this
method can be found in Appendix Section E.3. 3) We compare with a method for enforcing fairness
with incomplete demographic labels introduced by Mozannar et al. (36), which essentially modifies
Agarwal et al.’s (2) fair training approach to only enforce a fairness constraint on the available
demographically labeled data. This method also guarantees that the relevant disparity metrics will
be satisfied within specified slack, which we modify to be comparable to our bound. Details on this
approach can be found in Appendix E.4. In Appendix Section E.6, we also compare to two other
models: 1) an “oracle” model trained to enforce a fairness constraint over the ground-truth race
labels on the whole dataset; and 2) a naive model which ignores label noise and enforces disparity
constraints directly on the probabilistic race labels, thresholded to be in (0, 1).

4.4 RESULTS

We display our results in Figure 2, with additional results in Sections E and G of the Appendix.
Looking at the top row of the figure, we find that our method, in all instances, reduces disparity
further than training on the labeled subset alone (blue vs. orange bars in Figure 2), than using Wang
et al. (46) (blue versus green bars in Figure 2), and than using Mozannar et al. (36) (blue versus
pink bars in Figure 2). Second, our method satisfies the target fairness bound on the test set more
often than the other methods (12 out of 12 times, as opposed to 0, 1, and 0 for labeled subset, Wang,
and Mozannar respectively). In other words, the disparity bounds our method learns on the train
set generalize better to the test set than the comparison methods. We note that deviations from the
enforced bound on the test set, when they arise, are due to generalization error in enforcing constraints
from the train to the test set, and because our training method guarantees near-feasible solutions.

The bottom row of the figure shows how our method performs with respect to accuracy in comparison
to other methods. The results here are more variable; however, we note that this dataset seems to
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Figure 2: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom,
y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); only
using the labeled subset with true labels (orange) and Wang et al. (46) (green) over ten trials. On the
top row, we fade bars when the mean does not meet the desired bound, which is indicated by the
dotted blue lines. The dashed grey line in all plots indicates disparity from the unconstrained model.

exhibit a steep fairness-accuracy tradeoff—yet despite our method reducing disparity much farther
than all other methods (indeed, being the only metric that reliably bounds the resulting disparity in
the test set), we often perform comparably or slightly better. For example, when mitigating TPRD,
our method mitigates disparity much farther than Mozannar et al. (36) and Wang et al. (46), yet
outperforms both with respect to accuracy. In the case of FPRD, while our method does exhibit
worse accuracy, these sets of experiments also exhibit the largest difference in disparity reduction
between our method and the other methods, which may make such an accuracy difference inevitable.
Similarly, the accuracy discrepancy between the labeled subset method and our method is reasonable
given the fairness-accuracy trade-off.

5 RELATED WORK

While there are many methods available for training models with bounded fairness violations (2; 24; 7),
the vast majority of them require access to the protected attribute at training or prediction time. While
there are other works which assume access only to noisy protected attribute labels (46), and no
protected attribute labels (34), or a even a labeled subset of protected attribute labels, but without an
auxiliary set to generate probabilistic protected attribute estimates (30); very few works mirror our
data access setting. One exception, from which we draw inspiration, is Elzayn et al. (20); that work
studies in detail the policy-relevant question of whether Black U.S. taxpayers are audited at higher
rates than non-Black taxpayers, and uses a special case of our Theorem 1 (for measurement only). In
this paper, we formalize and extend their technique to bound a wide array of fairness constraints, and
introduce methods to train fair models given this insight.

Within the set of techniques with a different data access paradigm, we differ from many in that we
leverage information about the relationship between probabilistic protected attribute labels, ground
truth protected attribute, and model predictions to measure and enforce our fairness bounds. Thus,
while we do require the covariance conditions to hold in order to enforce our fairness bounds, we note
that these are requirements we can enforce during training, unlike assumptions over noise models
as in other approaches to bound true disparity with noisy labels (9; 29; 11). Intuitively, leveraging
some labeled data can allow us to have less of an accuracy trade-off when training fair models, as
demonstrated with our comparison to Wang et al. (46). In this case, using this data means we do
not have to protect against every perturbation within a given distance to the distribution, as with
distributionally robust optimization (DRO). Instead, need only to enforce constraints on optimization—
in our experimental setting, we see that this can lead to a lower fairness-accuracy trade-off.
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