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Abstract
Dueling bandits are widely used to model pref-
erential feedback prevalent in many applications
such as recommendation systems and ranking. In
this paper, we study the Borda regret minimiza-
tion problem for dueling bandits, which aims to
identify the item with the highest Borda score
while minimizing the cumulative regret. We pro-
pose a rich class of generalized linear dueling
bandit models, which cover many existing mod-
els. We first prove a regret lower bound of or-
der Ω(d2/3T 2/3) for the Borda regret minimiza-
tion problem, where d is the dimension of contex-
tual vectors and T is the time horizon. To attain
this lower bound, we propose an explore-then-
commit type algorithm for the stochastic setting,
which has a nearly matching regret upper bound
Õ(d2/3T 2/3). We also propose an EXP3-type
algorithm for the adversarial setting, where the
underlying model parameter can change at each
round. Our algorithm achieves an Õ(d2/3T 2/3)
regret, which is also optimal. Empirical evalua-
tions on both synthetic data and a simulated real-
world environment are conducted to corroborate
our theoretical analysis.

1. Introduction
Preference-based bandits have gained much attention in
recent years as the preferential feedback is more natural than
numerical feedback as in various online learning tasks(Yue
& Joachims, 2009; Sui & Burdick, 2014; Minka et al., 2018;
Chen et al., 2013). In preference-based bandits (or, dueling
bandits), the agent repeatedly pulls two arms at a time and is
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provided with feedback being the binary outcome of “duels”
between the two arms.

In dueling bandits problems, the outcome of duels is com-
monly modeled as Bernoulli random variables due to their
binary nature. At each round, suppose the agent chooses to
compare arm i and j, then the binary feedback is assumed
to be sampled independently from a Bernoulli distribution.
For a dueling bandits instance with K arms, the probabilis-
tic model of the instance can be fully characterized by a
K ×K preference probability matrix with each entry being:
pi,j = P (arm i is chosen over arm j) .

In a broader range of applications such as ranking, “arms”
are often referred to as “items”. We will use these two
terms interchangeably in the rest of this paper. One central
goal of dueling bandits is to devise a strategy to identify
the “optimal” item as quickly as possible, measured by
either sample complexity or cumulative regret. However,
the notion of optimality for dueling bandits is way harder to
define than for multi-armed bandits. The latter can simply
define the arm with the highest numerical feedback as the
optimal arm, while for dueling bandits there is no obvious
definition solely dependent on {pi,j |i, j ∈ [K]}.

The first few works on dueling bandits imposed strong as-
sumptions on pi,j . For example, Yue et al. (2012) assumed
that there exists a true ranking that is coherent among all
items, and the preference probabilities must satisfy both
strong stochastic transitivity (SST) and stochastic triangle
inequality (STI). While relaxations like weak stochastic
transitivity (Falahatgar et al., 2018) or relaxed stochastic
transitivity (Yue & Joachims, 2011) exist, they typically still
assume the true ranking exists and the preference probabil-
ities are consistent, i.e., pi,j > 1

2 if and only if i is ranked
higher than j. In reality, the existence of such coherent
ranking aligned with item preferences is rarely the case. For
example, pi,j may be interpreted as the probability of one
basketball team i beating another team j, and there can be a
circle among the match advantage relations.

In this paper, we do not assume such coherent ranking exists
and solely rely on the Borda score based on preference
probabilities. The Borda score B(i) of an item i is the
probability that it is preferred when compared with another
random item, namely B(i) := 1

K−1

∑
j ̸=i pi,j . The item

with the highest Borda score is called the Borda winner.



Borda Regret Minimization for Generalized Linear Dueling Bandits

The Borda winner is intuitively appealing and always well-
defined for any set of preferential probabilities. The Borda
score also does not require the problem instance to obey any
consistency or transitivity, and it is considered one of the
most general criteria.

To identify the Borda winner, estimations of the Borda
scores are needed. Since estimating the Borda score for
one item requires comparing it with every other items, the
sample complexity is prohibitively high when there are nu-
merous items. On the other hand, in many real-world ap-
plications, the agent has access to side information that can
assist the evaluation of pi,j . For instance, an e-commerce
item carries its category as well as many other attributes,
and the user might have a preference for a certain category
(Wang et al., 2018). For a movie, the genre and the plot
as well as the directors and actors can also be taken into
consideration when making choices (Liu et al., 2017).

Based on the above motivation, we consider Generalized
Linear Dueling Bandits. At each round, the agent selects
two items from a finite set of items and receives a compari-
son result of the preferred item. The comparisons depend on
known intrinsic contexts/features associated with each pair
of items. The contexts can be obtained from upstream tasks,
such as topic modeling (Zhu et al., 2012) or embedding
(Vasile et al., 2016). Our goal is to adaptively select items
and minimize the regret with respect to the optimal item (i.e.,
Borda winner). Our main contributions are summarized as
follows:

• We show a hardness result regarding the Borda regret
minimization for the (generalized) linear model. We
prove a worst-case regret lower bound Ω(d2/3T 2/3) for
our dueling bandit model, showing that even in the
stochastic setting, minimizing the Borda regret is dif-
ficult. The construction and proof of the lower bound are
new and might be of independent interest.

• We propose an explore-then-commit type algorithm un-
der the stochastic setting, which can achieve a nearly
matching upper bound Õ(d2/3T 2/3). When the number
of items K is small, the algorithm can also be configured
to achieve a smaller regret Õ

(
(d logK)1/3T 2/3

)
.

• We propose an EXP3 type algorithm for linear dueling
bandits under the adversarial setting, which can achieve
a nearly matching upper bound Õ

(
(d logK)1/3T 2/3

)
.

• We conduct empirical studies to verify the correctness
of our theoretical claims. Under both synthetic and real-
world data settings, our algorithms can outperform all
the baselines in terms of cumulative regret.

Notation In this paper, we use normal letters to denote
scalars, lowercase bold letters to denote vectors, and upper-
case bold letters to denote matrices. For a vector x, ∥x∥
denotes its ℓ2-norm. The weighted ℓ2-norm associated with

a positive-definite matrix A is defined as ∥x∥A =
√
x⊤Ax.

The minimum eigenvalue of a matrix A is written as
λmin(A). We use standard asymptotic notations including
O(·),Ω(·),Θ(·), and Õ(·), Ω̃(·), Θ̃(·) will hide logarithmic
factors. For a positive integer N , [N ] := {1, 2, . . . , N}.

2. Backgrounds and Preliminaries
2.1. Problem Setting

We first consider the stochastic preferential feedback model
with K items in the fixed time horizon setting. We denote
the item set by [K] and let T be the total number of rounds.
At each round t, the agent can pick any pair of items (it, jt)
to compare and receive stochastic feedback about whether
item it is preferred over item jt, (denoted by it ≻ jt).
We denote the probability of seeing the event i ≻ j as
pi,j ∈ [0, 1]. Naturally, we assume pi,j + pj,i = 1, and
pi,i = 1/2.

In this paper, we are concerned with the generalized linear
model (GLM), where there is assumed to exist an unknown
parameter θ∗ ∈ Rd, and each pair of items (i, j) has its own
known contextual/feature vector ϕi,j ∈ Rd with ∥ϕi,j∥ ≤ 1.
There is also a fixed known link function (sometimes called
comparison function) µ(·) that is monotonically increasing
and satisfies µ(x) + µ(−x) = 1, e.g. a linear function or
the logistic function µ(x) = 1/(1 + e−x). The preference
probability is defined as pi,j = µ(ϕ⊤

i,jθ
∗). At each round,

denote rt = 1{it ≻ jt}, then we have

E[rt|it, jt] = pit,jt = µ(ϕ⊤
it,jtθ

∗).

Then our model can also be written as

rt = µ(ϕ⊤
it,jtθ

∗) + ϵt,

where the noises {ϵt}t∈[T ] are zero-mean, 1-sub-Gaussian
and assumed independent from each other. Note that, given
the constraint pi,j+pj,i = 1, it is implied that ϕi,j = −ϕj,i

for any i ∈ [K], j ∈ [K].

The agent’s goal is to maximize the cumulative Borda
score. The (slightly modified 1) Borda score of item i
is defined as B(i) = 1

K

∑K
j=1 pi,j , and the Borda win-

ner is defined as i∗ = argmaxi∈[K] B(i). The problem
of merely identifying the Borda winner was deemed triv-
ial (Zoghi et al., 2014a; Busa-Fekete et al., 2018) because
for a fixed item i, uniformly random sampling j and re-
ceiving feedback ri,j = Bernoulli(pi,j) yield a Bernoulli

1Previous works define Borda score as B′
i =

1
K−1

∑
j ̸=i pi,j ,

excluding the diagonal term pi,i = 1/2. Our definition is equiva-
lent since the difference between two items satisfies B(i)−Bj =
K−1
K

(B′
i − B′

j). Therefore, the regret will be in the same order
for both definitions.
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random variable with its expectation being the Borda score
B(i). This so-called Borda reduction trick makes identify-
ing the Borda winner as easy as the best-arm identification
for K-armed bandits. Moreover, if the regret is defined
as Regret(T ) =

∑T
t=1(B(i∗) − B(it)), then any optimal

algorithms for multi-arm bandits can achieve Õ(
√
T ) regret.

However, the above definition of regret does not respect the
fact that a pair of items are selected at each round. When
the agent chooses two items to compare, it is natural to
define the regret so that both items contribute equally. A
commonly used regret, e.g., in Saha et al. (2021a), has the
following form:

Regret(T ) =
∑T

t=1

(
2B(i∗)−B(it)−B(jt)

)
, (1)

where the regret is defined as the sum of the sub-optimality
of both selected arms. Sub-optimality is measured by the
gap between the Borda scores of the compared items and the
Borda winner. This form of regret deems any classical multi-
arm bandit algorithm with Borda reduction vacuous because
taking jt into consideration will invoke Θ(T ) regret.

Adversarial Setting Saha et al. (2021b) considered an
adversarial setting for the multi-armed case, where at each
round t, the comparison follows a potentially different prob-
ability model, denoted by {pti,j}i,j∈[K]. In this paper, we
consider its contextual counterpart. Formally, we assume
there is an underlying parameter θ∗

t , and at round t, the
preference probability is defined as pti,j = µ(ϕ⊤

i,jθ
∗
t ).

The Borda score of item i ∈ [K] at round t is defined as
Bt(i) = 1

K

∑K
j=1 p

t
i,j , and the Borda winner at round T

is defined as i∗ = argmaxi∈[K]

∑T
t=1 Bt(i). The T -round

regret is thus defined as Regret(T ) =
∑T

t=1

(
2Bt(i

∗) −
Bt(it)−Bt(jt)

)
.

2.2. Assumptions

In this section, we present the assumptions required for
establishing theoretical guarantees. Due to the fact that
the analysis technique is largely extracted from Li et al.
(2017), we follow them to make assumptions to enable
regret minimization for generalized linear dueling bandits.

We make a regularity assumption about the distribution of
the contextual vectors:
Assumption 2.1. There exists a constant λ0 > 0 such that
λmin

(
1

K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j

)
≥ λ0.

This assumption is only utilized to initialize the design ma-
trix Vτ =

∑τ
t=1 ϕit,jtϕ

⊤
it,jt

so that the minimum eigen-
value is large enough. We follow Li et al. (2017) to deem
λ0 as a constant.

We also need the following assumption regarding the link
function µ(·):

Assumption 2.2. Let µ̇ be the first-order derivative of µ.
We have κ := inf∥x∥≤1,∥θ−θ∗∥≤1 µ̇(x

⊤θ) > 0.

Assuming κ > 0 is necessary to ensure the maximum log-
likelihood estimator can converge to the true parameter θ∗

(Li et al., 2017, Section 3). This type of assumption is
commonly made in previous works for generalized linear
models (Filippi et al., 2010; Li et al., 2017; Faury et al.,
2020).

Another common assumption is regarding the continuity
and smoothness of the link function.
Assumption 2.3. µ is twice differentiable. Its first and
second-order derivatives are upper-bounded by constants
Lµ and Mµ respectively.

This is a very mild assumption. For example, it is easy to
verify that the logistic link function satisfies Assumption 2.3
with Lµ = Mµ = 1/4.

3. The Hardness Result
This section presents Theorem 3.1, a worst-case regret lower
bound for the stochastic linear dueling bandits. The proof
of Theorem 3.1 relies on a class of hard instances, as shown
in Figure 1. We show that any algorithm will incur a certain
amount of regret when applied to this hard instance class.
The constructed hard instances follow a stochastic linear
model, which is a sub-class of the generalized linear model.
Saha et al. (2021b) first proposed a similar construction for
finite many arms with no contexts. Our construction is for a
contextual setting and the proof of the lower bound takes a
rather different route.

For any d > 0, we construct the class of hard instances as
shown in Figure 1. An instance is specified by a vector θ ∈
{−∆,+∆}d. The instance contains 2d+1 items (indexed
from 0 to 2d+1 − 1). See the more formal definition in
Appendix B.

Intuitively, the former half of items (those indexed from 0
to 2d − 1) are “good” items (one among them is optimal,
others are close to optimal), while the latter half of items
are “bad” items. Under such hard instances, every time one
of the two pulled items is a “bad” item, then a one-step
regret Bθ(i∗) − Bθ(i) ≥ 1/4 is incurred. To minimize
regret, we should thus try to avoid pulling “bad” items.
However, in order to identify the best item among all “good”
items, comparisons between “good” and “bad” items are
necessary. The reason is simply that comparisons between
“good” items give no information about the Borda scores
as the comparison probabilities are pθi,j = 1

2 for all i, j <

2d. Hence, any algorithm that can decently distinguish
among the “good” items has to pull “bad” ones for a fair
amount of times, and large regret is thus incurred. A similar
observation is also made by Saha et al. (2021a).
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“good”


“bad”





1
2 · · ·

1
2

...
. . .

...
1
2 · · ·

1
2

3
4 + ⟨ϕi,j ,θ⟩

1
4 + ⟨ϕj,i,θ⟩

1
2 · · ·

1
2

...
. . .

...
1
2 · · ·

1
2



3
4 + ⟨bit(0),θ⟩ 3

4 + ⟨bit(0),θ⟩ · · · 3
4 + ⟨bit(0),θ⟩

3
4 + ⟨bit(1),θ⟩ 3

4 + ⟨bit(1),θ⟩ · · · 3
4 + ⟨bit(1),θ⟩

...
...

. . .
...

3
4 + ⟨bit(2d − 1),θ⟩ 3

4 + ⟨bit(2d − 1),θ⟩ · · · 3
4 + ⟨bit(2d − 1),θ⟩

Figure 1. Illustration of the hard-to-learn preference probability matrix {pθi,j}i∈[K],j∈[K]. There are K = 2d+1 items in total. The first
2d items are “good” items with higher Borda scores, and the last 2d items are “bad” items. The upper right block {pi,j}i<2d,j≥2d is
defined as shown in the blue bubble. The lower left block satisfies pi,j = 1− pj,i. For any θ, there exist one and only best item i such
that bit(i) = sign(θ).

This specific construction emphasizes the intrinsic hardness
of Borda regret minimization: to differentiate the best item
from its close competitors, the algorithm must query the bad
items to gain information.

Formally, this class of hard instances leads to the follow-
ing regret lower bound for both stochastic and adversarial
settings:

Theorem 3.1. For any algorithm A, there exists a hard in-
stance {pθi,j} with T > 4d2, such thatA will incur expected
regret at least Ω(d2/3T 2/3).

The construction of this hard instance for linear dueling
bandits is inspired by the worst-case lower bound for the
stochastic linear bandit (Dani et al., 2008), which has the
order Ω(d

√
T ), while ours is Ω(d2/3T 2/3). The difference

is that for the linear or multi-armed stochastic bandit, elimi-
nating bad arms can make further exploration less expensive.
But in our case, any amount of exploration will not reduce
the cost of further exploration. This essentially means that
exploration and exploitation must be separate, which is also
supported by the fact that a simple explore-then-commit
algorithm shown in Section 4 can be nearly optimal.

4. Stochastic Contextual Dueling Bandit
4.1. Algorithm Description

We propose an algorithm named Borda Explore-Then-
Commit for Generalized Linear Models (BETC-GLM),
presented in Algorithm 1. Our algorithm is inspired by the
algorithm for generalized linear models proposed by Li et al.
(2017).

At the high level, Algorithm 1 can be divided into two
phases: the exploration phase (Line 2-11) and the exploita-
tion phase (Line 12-14). The exploration phase ensures that
the MLE estimator θ̂ is accurate enough so that the esti-
mated Borda score is within Õ(ϵ)-range of the true Borda

score (ignoring other quantities). Then the exploitation
phase simply chooses the empirical Borda winner to incur
small regret.

During the exploration phase, the algorithm first performs
“pure exploration” (Line 2-5), which can be seen as an ini-
tialization step for the algorithm. The purpose of this step is
to ensure the design matrix Vτ+N =

∑τ+N
t=1 ϕit,jtϕ

⊤
it,jt

is
positive definite.

After that, the algorithm will perform the “designed explo-
ration”. Line 6 will find the G-optimal design, which mini-
mizes the objective function g(π) = maxi,j ∥ϕi,j∥2V(π)−1 ,
where V(π) :=

∑
i,j π(i, j)ϕi,jϕ

⊤
i,j . The G-optimal de-

sign π∗(·) satisfies ∥ϕi,j∥2V(π∗)−1 ≤ d, and can be effi-
ciently approximated by the Frank-Wolfe algorithm (See
Remark 4.4 for a detailed discussion). Then the algorithm
will follow π(·) found at Line 6 to determine how many
samples (Line 7) are needed. At Line 8-11, there are in
total N =

∑K
i=1

∑K
j=1 N(i, j) samples queried, and the

algorithm shall index them by t = τ + 1, τ + 2, . . . , τ +N .

At Line 12, the algorithm collects all the τ + N samples
and performs the maximum likelihood estimation (MLE).
For the generalized linear model, the MLE estimator θ̂τ+N

satisfies:

τ+N∑
t=1

µ(ϕ⊤
it,jt θ̂τ+N )ϕit,jt =

τ+N∑
t=1

rtϕit,jt , (2)

or equivalently, it can be determined by solving a strongly
concave optimization problem:

θ̂τ+N ∈ argmax
θ

τ+N∑
t=1

(
rtϕ

⊤
it,jtθ −m(ϕ⊤

it,jtθ)

)
,

where ṁ(·) = µ(·). For the logistic link function, m(x) =
log(1 + ex). As a special case of our generalized linear
model, the linear model has a closed-form solution for (2).
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Algorithm 1 BETC-GLM

1: Input: time horizon T , number of items K, feature
dimension d, feature vectors ϕi,j for i ∈ [K], j ∈
[K], exploration rounds τ , error tolerance ϵ, failure
probability δ.

2: for t = 1, 2, . . . , τ do
3: sample it ∼ Uniform([K]), jt ∼ Uniform([K])
4: query pair (it, jt) and receive feedback rt
5: end for
6: Find the G-optimal design π(i, j) based on ϕi,j for

i ∈ [K], j ∈ [K]

7: Let N(i, j) =
⌈
dπ(i,j)

ϵ2

⌉
for any (i, j) ∈ supp(π) ,

denote N =
∑K

i=1

∑K
j=1 N(i, j)

8: for i ∈ [K], j ∈ [K], s ∈ [N(i, j)] do
9: set t← t+ 1, set (it, jt) = (i, j)

10: query pair (it, jt) and receive feedback rt
11: end for
12: Calculate the empirical MLE estimator θ̂τ+N based on

all τ +N samples via (2)
13: Estimate the Borda score for each item:

B̂(i) =
1

K

K∑
j=1

µ(ϕ⊤
i,j θ̂τ+N ), î = argmax

i∈[K]

B̂(i)

14: Keep querying (̂i, î) for the rest of the time.

For example, if µ(x) = 1
2 + x, i.e. pi,j = 1

2 + ϕ⊤
i,jθ

∗, then
(2) becomes:

θ̂τ+N = V−1
τ+N

τ+N∑
t=1

(rt − 1/2)ϕit,jt ,

where Vτ+N =
∑τ+N

t=1 ϕit,jtϕ
⊤
it,jt

.

After the MLE estimator is obtained, Line 13 will calculate
the estimated Borda score B̂(i) for each item based on
θ̂τ+N , and pick the empirically best one.

4.2. A Matching Regret Upper Bound

Algorithm 1 can be configured to tightly match the worst-
case lower bound. The configuration and performance are
described as follows:
Theorem 4.1. Suppose Assumption 2.1-2.3 hold and T =
Ω(d2). For any δ > 0, if we set τ = C4λ

−2
0 (d+ log(1/δ))

(C4 is a universal constant) and ϵ = d1/6T−1/3, then with
probability at least 1 − 2δ, Algorithm 1 will incur regret
bounded by:

O
(
κ−1d2/3T 2/3

√
log
(
T/dδ

))
.

By setting δ = T−1, the expected regret is bounded as
Õ(κ−1d2/3T 2/3).

For linear bandit models, such as the hard-to-learn instances
in Section 3, κ is a universal constant. Therefore, Theo-
rem 4.1 tightly matches the lower bound in Theorem 3.1, up
to logarithmic factors.

Remark 4.2 (Regret for Fewer Arms). In typical scenar-
ios, the number of items K is not exponentially large in
the dimension d. In this case, we can choose a differ-
ent parameter set of τ and ϵ such that Algorithm 1 can
achieve a smaller regret bound Õ

(
κ−1(d logK)1/3T 2/3

)
with smaller dependence on the dimension d. See Theo-
rem A.1 in Appendix A.3.

Remark 4.3 (Regret for Infinitely Many Arms). In most
practical scenarios of dueling bandits, it is adequate to
consider a finite number K of items (e.g., ranking items).
Nonetheless, BETC-GLM can be easily adapted to accom-
modate infinitely many arms in terms of regret. We can
construct a covering over all ϕi,j and perform optimal de-
sign and exploration on the covering set. The resulting regret
will be the same as our upper bound, i.e., Õ(d2/3T 2/3) up
to some error caused by the epsilon net argument.

Remark 4.4 (Approximate G-optimal Design). Algorithm 1
assumes an exact G-optimal design π is obtained. In the
experiments, we use the Frank-Wolfe algorithm to solve
the constraint optimization problem (See Algorithm 5, Ap-
pendix G.3). To find a policy π such that g(π) ≤ (1 +
ε)g(π∗), roughly O(d/ε) optimization steps are needed.
Such a near-optimal design will introduce a factor of
(1 + ε)1/3 into the upper bounds.

5. Adversarial Contextual Dueling Bandit
This section addresses Borda regret minimization under the
adversarial setting. As we introduced in Section 2.1, the
unknown parameter θt can vary for each round t, while the
contextual vectors ϕi,j are fixed.

Our proposed algorithm, BEXP3, is designed for the contex-
tual linear model. Formally, at round t and given pair (i, j),
we have pti,j =

1
2 + ⟨ϕi,j ,θ

∗
t ⟩.

5.1. Algorithm Description

Algorithm 2 is adapted from the DEXP3 algorithm in Saha
et al. (2021b), which deals with the adversarial multi-armed
dueling bandit. Algorithm 2 maintains a distribution qt(·)
over [K], initialized as uniform distribution (Line 2). At
every round t, two items are chosen following qt indepen-
dently. Then Line 6 calculates the one-sample unbiased
estimate θ̂t of the true underlying parameter θ∗

t . Line 7
further calculates the unbiased estimate of the (shifted)
Borda score. Note that the true Borda score at round t
satisfies Bt(i) = 1

2 + ⟨ 1K
∑

j∈[K] ϕi,j ,θ
∗
t ⟩. B̂t instead

only estimates the second term of the Borda score. This is
a choice to simplify the proof. The cumulative estimated
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Algorithm 2 BEXP3

1: Input: time horizon T , number of items K, feature
dimension d, feature vectors ϕi,j for i ∈ [K], j ∈ [K],
learning rate η, exploration parameter γ.

2: Initialize: q1(i) = 1
K .

3: for t = 1, . . . , T do
4: Sample items it ∼ qt, jt ∼ qt.
5: Query pair (it, jt) and receive feedback rt
6: Calculate Qt =

∑
i∈[K]

∑
j∈[K] qt(i)qt(j)ϕi,jϕ

⊤
i,j ,

θ̂t = Q−1
t ϕit,jtrt.

7: Calculate the (shifted) Borda score estimates
B̂t(i) = ⟨ 1K

∑
j∈[K] ϕi,j , θ̂t⟩.

8: Update for all i ∈ [K], set

q̃t+1(i) =
exp(η

∑t
l=1 B̂l(i))∑

j∈[K] exp(η
∑t

l=1 B̂l(j))
;

qt+1(i) = (1− γ)q̃t+1(i) +
γ

K
.

9: end for

score
∑t

l=1 B̂l(i) can be seen as the estimated cumulative
reward of item i at round t. In Line 8, qt+1 is defined by
the classic exponential weight update, along with a uniform
exploration policy controlled by γ.

5.2. Upper Bounds

Algorithm 2 can also be configured to tightly match the
worst-case lower bound:

Theorem 5.1. Suppose Assumption 2.1 holds. If we
set η = (logK)2/3d−1/3T−2/3 and γ =

√
ηd/λ0 =

(logK)1/3d1/3T−1/3λ
−1/2
0 , then the expected regret is

upper-bounded by

O
(
(d logK)1/3T 2/3

)
.

Note that the lower bound construction is for the linear
model and has K = O(2d), thus exactly matching the upper
bound.

6. Experiments
This section compares the proposed algorithm BETC-GLM
with existing ones that are capable of minimizing Borda
regret. We use random responses (generated from fixed pref-
erential matrices) to interact with all tested algorithms. Each
algorithm is run for 50 times over a time horizon of T = 106.
We report both the mean and the standard deviation of the
cumulative Borda regret and supply some analysis. The
following list summarizes all methods we studies in this sec-
tion, a more complete description of the methods and param-
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Figure 2. The regret of the proposed algorithms (BETC-GLM,
BEXP3) and the baseline algorithms (UCB-BORDA, DEXP3,
ETC-BORDA).

eters are available in Appendix E: BETC-GLM(-MATCH):
Algorithm 1 proposed in this paper with different parame-
ters. UCB-BORDA: The UCB algorithm (Auer et al., 2002)
using Borda reduction. DEXP3: Dueling-Exp3 developed
by Saha et al. (2021a). ETC-BORDA: A simple explore-
then-commit algorithm that does not take any contextual
information into account. BEXP3: The proposed method
for adversarial Borda bandits displayed in Algorithm 2.

Generated Hard Case We first test the algorithms on the
hard instances constructed in Section 3.

As depicted in Figure 2a, the proposed algorithms (BETC-
GLM, BEXP3) outperform the baseline algorithms in terms
of cumulative regret when reaching the end of time horizon
T . For UCB-BORDA, since it is not tailored for the dueling
regret definition, it suffers from a linear regret as its second
arm is always sampled uniformly at random, leading to a
constant regret per round. DEXP3 and ETC-BORDA are
two algorithms designed for K-armed dueling bandits. Both
are unable to utilize contextual information and thus demand
more exploration. As expected, their regrets are higher than
BETC-GLM or BEXP3.

Real-world Dataset To showcase the performance of the
algorithms in a real-world setting, we use EventTime dataset
(Zhang et al., 2016). In this dataset, K = 100 historical
events are compared in a pairwise fashion by crowd-sourced
workers. The algorithms are tested under a simulated envi-
ronment where the generalized linear model is constructed
based on the dataset. See more details at Appendix F.

As depicted in Figure 2b, the proposed algorithm BETC-
GLM outperforms the baseline algorithms in terms of cu-
mulative regret when reaching the end of time horizon T .
The other proposed algorithm BEXP3 performs equally
well even when misspecified (the algorithm is designed for
linear setting, while the comparison probability follows a
logistic model).
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A. Additional Discussions and Results
A.1. Related Work

Multi-armed and Contextual Bandits Multi-armed bandit is a problem of identifying the best choice in a sequential
decision-making system. It has been studied in numerous ways with a wide range of applications (Even-Dar et al.,
2002; Lai et al., 1985; Kuleshov & Precup, 2014). Contextual linear bandit is a special type of bandit problem where
the agent is provided with side information, i.e., contexts, and rewards are assumed to have a linear structure. Various
algorithms (Rusmevichientong & Tsitsiklis, 2010; Filippi et al., 2010; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al.,
2017) have been proposed to utilize this contextual information.

Dueling Bandits and Its Performance Metrics Dueling bandits is a variant of MAB with preferential feedback (Yue et al.,
2012; Zoghi et al., 2014a; 2015). A comprehensive survey can be found at Bengs et al. (2021). As discussed previously, the
probabilistic structure of a dueling bandits problem is governed by the preference probabilities, over which an optimal item
needs to be defined. Optimality under the Borda score criteria has been adopted by several previous works (Jamieson et al.,
2015; Falahatgar et al., 2017a; Heckel et al., 2018; Saha et al., 2021a). The most relevant work to ours is Saha et al. (2021a),
where they studied the problem of regret minimization for adversarial dueling bandits and proved a T -round Borda regret
upper bound Õ(K1/3T 2/3). They also provide an Ω(K1/3T 2/3) lower bound for stationary dueling bandits using Borda
regret.

Apart from the Borda score, Copeland score is also a widely used criteria (Urvoy et al., 2013; Zoghi et al., 2015; 2014b; Wu
& Liu, 2016; Komiyama et al., 2016). It is defined as C(i) := 1

K−1

∑
j ̸=i 1{pi,j > 1/2}. A Copeland winner is the item

that beats the most number of other items. It can be viewed as a “thresholded” version of Borda winner. In addition to Borda
and Copeland winners, optimality notions such as a von Neumann winner were also studied in Ramamohan et al. (2016);
Dudı́k et al. (2015); Balsubramani et al. (2016).

Another line of work focuses on identifying the optimal item or the total ranking, assuming the preference probabilities
are consistent. Common consistency conditions include Strong Stochastic Transitivity (Yue et al., 2012; Falahatgar et al.,
2017a;b), Weak Stochastic Transitivity (Falahatgar et al., 2018; Ren et al., 2019; Wu et al., 2022; Lou et al., 2022),
Relaxed Stochastic Transitivity (Yue & Joachims, 2011) and Stochastic Triangle Inequality. Sometimes the aforementioned
transitivity can also be implied by some structured models like the Bradley–Terry model. We emphasize that these
consistency conditions are not assumed or implicitly implied in our setting.

Contextual Dueling Bandits In Dudı́k et al. (2015), contextual information is incorporated in the dueling bandits framework.
Later, Saha (2021) studied a structured contextual dueling bandits setting where each item i has its own contextual vector xi

(sometimes called Linear Stochastic Transitivity). Each item then has an intrinsic score vi equal to the linear product of an
unknown parameter vector θ∗ and its contextual vector xi. The preference probability between two items i and j is assumed
to be µ (vi − vj) where µ(·) is the logistic function. These intrinsic scores of items naturally define a ranking over items.
The regret is also computed as the gap between the scores of pulled items and the best item. While in this paper, we assume
that the contextual vectors are associated with item pairs and define regret on the Borda score. In Section A.2, we provide a
more detailed discussion showing that the setting considered in Saha (2021) can be viewed as a special case of our model.

A.2. Existing Results for Structured Contexts

A structural assumption made by some previous works (Saha, 2021) is that ϕi,j = xi − xj , where xi can be seen as
some feature vectors tied to the item. In this work, we do not consider minimizing the Borda regret under the structural
assumption.

The immediate reason is that, when pi,j = µ(x⊤
i θ

∗ − x⊤
j θ

∗), with µ(·) being the logistic function, the probability model
pi,j effectively becomes (a linear version of) the well-known Bradley-Terry model. Namely, each item is tied to a value
vi = x⊤

i θ
∗, and the comparison probability follows pi,j = evi

evi+evj
. More importantly, this kind of model satisfies both the

strong stochastic transitivity (SST) and the stochastic triangle inequality (STI), which are unlikely to satisfy in reality.

Furthermore, when stochastic transitivity holds, there is a true ranking among the items, determined by x⊤
i θ

∗. A true
ranking renders concepts like the Borda winner or Copeland winner redundant because the rank-one item will always be
the winner in every sense. When ϕi,j = xi − xj , Saha (2021) proposed algorithms that can achieve nearly optimal regret
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Õ(d
√
T ), with regret being defined as

Regret(T ) =

T∑
t=1

2⟨xi∗ ,θ
∗⟩ − ⟨xit ,θ

∗⟩ − ⟨xjt ,θ
∗⟩, (3)

where i∗ = argmaxi⟨xi,θ
∗⟩, which also happens to be the Borda winner. Meanwhile, by Assumption 2.3,

B(i∗)−B(j) =
1

K

K∑
k=1

[
µ(⟨xi∗ − xk,θ

∗⟩)− µ(⟨xj − xk,θ
∗⟩)
]
≤ Lµ · ⟨xi∗ − xj ,θ

∗⟩,

where Lµ is the upper bound on the derivative of µ(·). For logistic function Lµ = 1/4. The Borda regret (1) is thus at
most a constant multiple of (3). This shows Borda regret minimization can be sufficiently solved by Saha (2021) when
structured contexts are present. We consider the most general case where the only restriction is the implicit assumption that
ϕi,j = −ϕj,i.

A.3. Regret Bound for Fewer Arms

In typical scenarios, the number of items K is not exponentially large in the dimension d. If this is the case, then we can
choose a different parameter set of τ and ϵ such that Algorithm 1 can achieve a regret bound depending on logK, and
reduce the dependence on d. The performance can be characterized by the following theorem:

Theorem A.1. For any δ > 0, suppose the number of total rounds T satisfies,

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
, (4)

where C3 is some large enough universal constant. Then if we set τ = (d log(K/δ))1/3T 2/3 and ϵ =
d1/3T−1/3 log(3K2/δ)−1/6, Algorithm 1 will incur regret bounded by:

O
(
κ−1(d log(K/δ))1/3T 2/3

)
.

By setting δ = T−1, the expected regret is bounded as Õ
(
κ−1(d logK)1/3T 2/3

)
.

B. Omitted Proof in Section 3
The proof relies on a class of hard-to-learn instances. We first present the construction again for completeness.

For any d > 0, we construct a hard instance with 2d+1 items (indexed from 0 to 2d+1 − 1). We construct the hard instance
pθi,j for any θ ∈ {−∆,+∆}d as:

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+ ⟨ϕi,j ,θ⟩, (5)

where the feature vectors ϕi,j and the parameter θ are of dimension d, and have the following forms:

ϕi,j =


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

bit(i), if i < 2d, j ≥ 2d

−bit(j), if i ≥ 2d, j < 2d,

where bit(·) is the (shifted) bit representation of non-negative integers, i.e., suppose x = b0×20+b1×21+· · ·+bd−1×2d−1,
then bit(x) = 2b− 1. Note that bit(·) ∈ {−1,+1}d, and ϕi,j = −ϕj,i.
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Remark B.1 (d + 1-dimensional instance). The hard instance described above does not strictly satisfy the assumption
that pθi,j = ⟨θ,ϕi,j⟩, but can be easily fixed by appending an additional dimension to address the bias term defined in (5).
More specifically, we can set F (x) = 1

2 + x and pθi,j = F (⟨ϕ̃i,j , θ̃⟩), where θ̃ ∈ {−∆,+∆}d × { 14} ⊂ Rd+1 and ϕ̃i,j =

(ϕi,j , ci,j), with ci,j =


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

1, if i < 2d, j ≥ 2d

−1, if i ≥ 2d, j < 2d.

To ensure ∥ϕ̃i,j∥2 ≤ 1, we can further set ϕ̃i,j ← (d+ 1)−1/2ϕ̃i,j and

θ̃ ← (d+ 1)1/2θ̃.

We rewrite (5) as:

pθi,j =


1
2 , if i < 2d, j < 2d

1
2 , if i ≥ 2d, j ≥ 2d

3
4 , if i < 2d, j ≥ 2d

1
4 , if i ≥ 2d, j < 2d

+


0, if i < 2d, j < 2d

0, if i ≥ 2d, j ≥ 2d

⟨bit(i),θ⟩, if i < 2d, j ≥ 2d

−⟨bit(j),θ⟩, if i ≥ 2d, j < 2d,

(6)

and the Borda scores are:

Bθ(i) =

{
5
8 + 1

2 ⟨bit(i),θ⟩, if i < 2d,
3
8 , if i ≥ 2d.

Intuitively, the former half arms indexed from 0 to 2d − 1 are “good” arms (one among them is optimal), while the latter
half arms are “bad” arms. It is clear that choosing a “bad” arm i will incur regret B(i∗)−B(i) ≥ 1/4.

Now we are ready to present the proof.

Proof of Theorem 3.1. First, we present the following lemma:

Lemma B.2. Under the hard instance we constructed above, for any algorithm A that ever makes queries it ≥ 2d, there
exists another algorithm A′ that only makes queries it < 2d for every t > 0 and always achieves no larger regret than A.

Proof of Lemma B.2. The proof is done by reduction. For any algorithm A, we wrap A with such a agent A′:

1. If A queries (it, jt) with it < 2d, the agent A′ will pass the same query (it, jt) to the environment and send the
feedback rt to A;

2. If A queries (it, jt) with it ≥ 2d, jt < 2d, the agent A′ will pass the query (jt, it) to the environment and send the
feedback 1− rt to A;

3. If A queries (it, jt) with it ≥ 2d, jt ≥ 2d, the agent A′ will uniform-randomly choose i′t from 0 to 2d − 1, pass the
query (i′t, i

′
t) to the environment and send the feedback rt to A.

For each of the cases defined above, the probabilistic model of bandit feedback forA is the same as ifA is directly interacting
with the original environment. For Case 1, the claim is trivial. For Case 2, the claim holds because of the symmetry of our
model, that is pθi,j = 1− pθj,i. For Case 3, both will return rt following Bernoulli(1/2). Therefore, the expected regret of A
in this environment wrapped by A′ is equal to the regret of A in the original environment.

Meanwhile, we will showA′ will incur no larger regret thanA. For the first two cases,A′ will incur the same one-step regret
asA. For the third case, we know that Bθ(it) = Bθ(jt) =

3
8 , while E[Bθ(i′t)] =

5
8+

1
2 ⟨Ei′t

[bit(i′t)],θ⟩ = 5
8+

1
2 ⟨0,θ⟩ =

5
8 ,

meaning that the one-step regret is smaller.

Lemma B.2 ensures it is safe to assume it < 2d. For any θ and k ∈ [d], define

Pθ,k := Pθ

( T∑
t=1

1{bit[k](it) ̸= sign(θ[k])} ≥ T

2

)
,
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where the superscript [k] over a vector denotes taking the k-th entry of the vector. Meanwhile, we define θ\k to satisfy
(θ\k)[k] = −θ[k] and be the same as θ at all other entries. We have

Pθ\k,k := Pθ\k

( T∑
t=1

1
{

bit[k](it) ̸= sign
(
(θ\k)[k]

)}
≥ T

2

)

= Pθ\k

( T∑
t=1

1{bit[k](it) = sign(θ[k])} ≥ T

2

)

= Pθ\k

( T∑
t=1

1{bit[k](it) ̸= sign(θ[k])} < T

2

)
.

By the Bretagnolle–Huber inequality and the decomposition of the relative entropy, we have

Pθ,k + Pθ\k,k ≥
1

2
exp

(
−KL(Pθ,A∥Pθ\k,A)

)
≥ 1

2
exp

(
− Eθ

[ T∑
t=1

KL
(
pθi,j

∥∥∥pθ\k

i,j

)])

≥ 1

2
exp

(
− Eθ

[ T∑
t=1

C⟨ϕit,jt ,θ − θ\k⟩2
])

=
1

2
exp

(
− Eθ

[
40∆2

T∑
t=1

1{it < 2d ∧ jt ≥ 2d}
])

,

where the first inequality comes from the Bretagnolle–Huber inequality; the second inequality is the decomposition of the
relative entropy; the third inequality holds because the Bernoulli KL divergence KL(p∥p+ x) is 10-strongly convex in x
for any fixed p ∈ [1/8, 7/8], and indeed pθi,j ∈ [1/8, 7/8] as long as d∆ ≤ 1/8; the last equation holds because ϕit,jt has
non-zero entries only when (it, jt) belongs to that specific regions.

From now on, we denote N(T ) :=
∑T

t=1 1{it < 2d ∧ jt ≥ 2d}. Further averaging over all θ ∈ {−1,+1}d, we have

1

2d

∑
θ∈{−1,+1}d

Pθ,k ≥
1

4

1

2d

∑
θ∈{−1,+1}d

exp
(
− 40∆2Eθ[N(T )]

)
≥ 1

4
exp

(
− 40∆2 1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )]

)
,

where the first inequality is from averaging over all θ; the second inequality is from Jensen’s inequality.
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Utilizing the inequality above, we establish that

1

2d

∑
θ∈{−1,+1}d

Regret(T ;θ,A) ≥ 1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

Bθ(i∗)−Bθ(it)

]

=
1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

⟨θ, sign(θ)− bit(it)⟩
]

=
1

2d

∑
θ∈{−1,+1}d

Eθ

[ T∑
t=1

d∑
k=1

2∆1{bit[k](it) ̸= sign(θ[k])}
]

=
2∆

2d

∑
θ∈{−1,+1}d

d∑
k=1

Eθ

[ T∑
t=1

1{bit[k](it) ̸= sign(θ[k])}
]

≥ 2∆

2d

∑
θ∈{−1,+1}d

d∑
k=1

Pθ,k ·
T

2

≥ ∆dT

4
exp

(
− 40∆2 1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )]

)
, (7)

where the first inequality comes from the Borda regret; the second inequality comes from the inequality E[X] ≥ aP(X ≥ a)
for any non-negative random variable; the last inequality is from rearranging terms and invoking the results above.

Meanwhile, we have (remember N(T ) :=
∑T

t=1 1{it < 2d ∧ jt ≥ 2d})

1

2d

∑
θ∈{−1,+1}d

Regret(T ;θ,A) ≥ 1

2d

∑
θ∈{−1,+1}d

Eθ

[
1

4

T∑
t=1

1{it < 2d ∧ jt ≥ 2d}
]

=
1

4

1

2d

∑
θ∈{−1,+1}d

Eθ[N(T )], (8)

where the first inequality comes from that any items i ≥ 2d will incur at least 1/4 regret.

Combining (7) and (8) together and denoting that X = 1
2d

∑
θ∈{−1,+1}d Eθ[N(T )], we have that for any algorithm A,

there exists some θ, such that (set ∆ = d−1/3T−1/3
√
40

)

Regret(T ;θ,A) ≥ max

{
∆dT

4
exp(−40∆2X),

X

4

}
= max

{
d2/3T 2/3

4
√
40

exp(−d−2/3T−2/3X),
X

4

}
≥ d2/3T 2/3

4
√
40

max

{
exp(−d−2/3T−2/3X), d−2/3T−2/3X

}
≥ d2/3T 2/3

8
√
40

,

where the first inequality is the combination of (7) and (8); the second inequality is a rearrangement and loosely lower
bounds the constant; the last is due to max{e−y, y} > 1/2 for any y.

C. Omitted Proof in Section 4
We first introduce the lemma about the theoretical guarantee of G-optimal design: given an action setX ⊆ Rd that is compact
and span(X ) = Rd. A fixed design π(·) : X → [0, 1] satisfies

∑
x∈X π(x) = 1. Define V(π) :=

∑
x∈X π(x)xx⊤ and

g(π) := maxx∈X ∥x∥2V(π)−1 .
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Lemma C.1 (The Kiefer–Wolfowitz Theorem, Section 21.1, Lattimore & Szepesvári (2020)). There exists an optimal
design π∗(·) such that |supp(π)| ≤ d(d+ 1)/2, and satisfies:

1. g(π∗) = d.

2. π∗ is the minimizer of g(·).

The following lemma is also useful to show that under mild conditions, the minimum eigenvalue of the design matrix can be
lower-bounded:

Lemma C.2 (Proposition 1, Li et al. 2017). Define Vτ =
∑τ

t=1 ϕ
⊤
it,jt

ϕit,jt , where each (it, jt) is drawn i.i.d. from some
distribution ν. Suppose λmin

(
E(i,j)∼ν [ϕ

⊤
i,jϕi,j ]

)
≥ λ0, and

τ ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2B

λ0
,

where C1 and C2 are some universal constants. Then with probability at least 1− δ,

λmin(Vτ ) ≥ B.

C.1. Proof of Theorem 4.1

The proof relies on the following lemma to establish an upper bound on |⟨ϕi,j , θ̂τ+N − θ∗⟩|.
Lemma C.3 (extracted from Lemma 3, Li et al. (2017)). Suppose λmin(Vτ+N ) ≥ 1. For any δ > 0, with probability at
least 1− δ, we have

∥θ̂τ+N − θ∗∥Vτ+N
≤ 1

κ

√
d

2
log(1 + 2(τ +N)/d) + log(1/δ).

Proof of Theorem 4.1. The proof can be divided into three steps: 1. invoke Lemma C.2 to show that the initial τ rounds for
exploration will guarantee λmin(Vτ ) ≥ 1; 2. invoke Lemma C.1 to obtain an optimal design π and utilize Cauchy-Schwartz
inequality to show that |⟨θ̂τ+N − θ,ϕi,j⟩| ≤ 3ϵ/κ; 3. balance the not yet determined ϵ to obtain the regret upper bound.

Since we set τ such that

τ = C4λ
−2
0 (d+ log(1/δ))

≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2

λ0
,

with a large enough universal constant C4, by Lemma C.2 to obtain that with probability at least 1− δ,

λmin(Vτ ) ≥ 1. (9)

From now on, we assume (9) always holds.

Define N :=
∑

i,j N(i, j), Vτ+1:τ+N :=
∑τ+N

t=τ+1 ϕ
⊤
it,jt

ϕit,jt , Vτ+N := Vτ + Vτ+1:τ+N . Given the optimal design
π(i, j), the algorithm queries the pair (i, j) ∈ supp(π) for exactly N(i, j) = ⌈dπ(i, j)/ϵ2⌉ times. Therefore, the design
matrix Vτ+N satisfies

Vτ+N ⪰ Vτ+1:τ+N

=
∑
i,j

N(i, j)ϕi,jϕ
⊤
i,j

⪰
∑
i,j

dπ(i, j)

ϵ2
ϕi,jϕ

⊤
i,j

=
d

ϵ2
V(π),
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where V(π) :=
∑

i,j π(i, j)ϕi,jϕ
⊤
i,j . The first inequality holds because Vτ is positive semi-definite, and the second

inequality holds due to the choice of N(i, j).

When (9) holds, from Lemma C.3, we have with probability at least 1− δ, that for each ϕi,j ,

|⟨θ̂ − θ∗,ϕi,j⟩| ≤ ∥θ̂τ+N − θ∗∥Vτ+N
· ∥ϕi,j∥V−1

τ+N

≤ ∥θ̂τ+N − θ∗∥Vτ+N
·
ϵ∥ϕi,j∥V(π)−1

√
d

≤ ∥θ̂τ+N − θ∗∥Vτ+N
· ϵ

≤ ϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ) (10)

where the first inequality is due to the Cauchy-Schwartz inequality; the second inequality holds because Vτ+N ⪰ d
ϵ2V(π);

the third inequality holds because π is an optimal design and by Lemma C.1, ∥ϕi,j∥2V(π)−1 ≤ d; the last inequality comes
from Lemma C.3.

To summarize, we have that with probability at least 1− 2δ, for every i ∈ [K],

|B̂(i)−B(i)| =
∣∣∣∣ 1K

K∑
j=1

(
µ(ϕ⊤

i,jθ
∗)− µ(ϕ⊤

i,j θ̂)
)∣∣∣∣

≤ 1

K

K∑
j=1

∣∣∣µ(ϕ⊤
i,jθ

∗)− µ(ϕ⊤
i,j θ̂)

∣∣∣
≤ Lµ

K

K∑
j=1

∣∣ϕ⊤
i,j

(
θ∗ − θ̂)

∣∣
≤ 3Lµϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ), (11)

where the first equality is by the definition of the empirical/true Borda score; the first inequality is due to the triangle
inequality; the second inequality is from the Lipschitz-ness of µ(·) (Lµ = 1/4 for the logistic function); the last inequality
holds due to (10). This further implies the gap between the empirical Borda winner and the true Borda winner is bounded
by:

B(i∗)−B(̂i) = B(i∗)− B̂(i∗) + B̂(i∗)−B(̂i)

≤ B(i∗)− B̂(i∗) + B̂(̂i)−B(̂i)

≤ 6Lµϵ

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ),

where the first inequality holds due to the definition of î, i.e., B̂(̂i) ≥ B̂(i) for any i; the last inequality holds due to (11).

Meanwhile, since N :=
∑

(i,j)∈supp(π) N(i, j) and supp(π) ≤ d(d+ 1)/2 from Lemma C.1, we have that

N ≤ d(d+ 1)/2 +
d

ϵ2
,

because ⌈x⌉ < x+ 1.



Borda Regret Minimization for Generalized Linear Dueling Bandits

Therefore, with probability at least 1− 2δ, the regret is bounded by:

Regret(T ) = Regret1:τ +Regretτ+1:τ+N +Regretτ+N+1:T

≤ τ +N +
12LµϵT

κ
·
√

d

2
log(1 + 2(τ +N)/d) + log(1/δ)

≤ τ + d(d+ 1)/2 +
d

ϵ2
+

12LµϵT

κ
·O

(
d1/2

√
log

(
T

dδ

))

= O

(
κ−1d2/3T 2/3

√
log

(
T

dδ

))
,

where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ + 1 to τ + N , and τ + N + 1 to T ; the
second inequality is simply bounding the one-step regret from 1 to τ +N by 1, while for t > τ +N , we have shown that
the one-step regret is guaranteed to be smaller than 12Lµϵ

√
d log(1 + 2(τ +N)/d) + log(1/δ)/

√
2κ. The last line holds

because we set τ = O(d+ log(1/δ)) and ϵ = d1/6T−1/3. Note that to ensure τ +N < T , it suffices to assume T = Ω(d2).

By setting δ = T−1, we can show that the expected regret of Algorithm 1 is bounded by

Õ
(
κ−1(d2/3T 2/3)

)
.

C.2. Proof of Theorem A.1

The following lemma characterizes the non-asymptotic behavior of the MLE estimator. It is extracted from Li et al. (2017).

Lemma C.4 (Theorem 1, Li et al. 2017). Define Vs =
∑s

t=1 ϕ
⊤
it,jt

ϕit,jt , and θ̂s as the MLE estimator (2) at round s. If
Vs satisfies

λmin(Vs) ≥
512M2

µ(d
2 + log(3/δ))

κ4
, (12)

then for any fixed x ∈ Rd, with probability at least 1− δ,

|⟨θ̂s − θ∗,x⟩| ≤ 3

κ

√
∥x∥2

V−1
s

log(3/δ).

Proof of Theorem A.1. The proof can be essentially divided into three steps: 1. invoke Lemma C.2 to show that the initial
τ rounds for exploration will guarantee (12) is satisfied; 2. invoke Lemma C.1 to obtain an optimal design π and utilize
Lemma C.4 to show that |⟨θ̂τ+N − θ,ϕi,j⟩| ≤ 3ϵ/κ; 3. balance the not yet determined ϵ to obtain the regret upper bound.

First, we explain why we assume

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
.

To ensure (12) in Lemma C.4 can hold, we resort to Lemma C.2, that is

τ ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
2B

λ0
,

B :=
512M2

µ(d
2 + log(3/δ))

κ4
.

Since we set τ = (d log(K2/δ))1/3T 2/3, this means T should be large enough, so that

(d log(K2/δ))1/3T 2/3 ≥
(
C1

√
d+ C2

√
log(1/δ)

λ0

)2

+
1024M2

µ(d
2 + log(3K2/δ))

κ4λ0
.
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With a large enough universal constant C3, it is easy to verify that the inequality above will hold as long as

T ≥ C3

κ6λ
3/2
0

max
{
d5/2,

log(K2/δ)√
d

}
.

By Lemma C.2, we have that with probability at least 1− δ,

λmin(Vτ ) ≥
512M2

µ(d
2 + log(3K2/δ))

κ4
. (13)

From now on, we assume (13) always holds.

Define N :=
∑

i,j N(i, j), Vτ+1:τ+N :=
∑τ+N

t=τ+1 ϕ
⊤
it,jt

ϕit,jt , Vτ+N := Vτ + Vτ+1:τ+N . Given the optimal design
π(i, j), the algorithm queries each pair (i, j) ∈ supp(π) for exactly N(i, j) = ⌈dπ(i, j)/ϵ2⌉ times. Therefore, the design
matrix Vτ+N satisfies

Vτ+N ⪰ Vτ+1:τ+N

=
∑
i,j

N(i, j)ϕi,jϕ
⊤
i,j

⪰
∑
i,j

dπ(i, j)

ϵ2
ϕi,jϕ

⊤
i,j

=
d

ϵ2
V(π),

where V(π) :=
∑

i,j π(i, j)ϕi,jϕ
⊤
i,j . The first inequality holds because Vτ is positive semi-definite, and the second

inequality holds due to the choice of N(i, j).

To invoke Lemma C.4, notice that λmin(V) ≥ λmin(Vτ ). Along with (13), by Lemma C.4, we have for any fixed ϕi,j , with
probability at least 1− δ/K2, that

|⟨θ̂ − θ∗,ϕi,j⟩| ≤
3

κ

√
∥ϕi,j∥2V−1

τ+N

log(3K2/δ)

≤ 3

κ

√
ϵ2

d
· ∥ϕi,j∥2V(π)−1 log(3K2/δ)

=
3ϵ

κ

√
∥ϕi,j∥2V(π)−1

d
·
√
log(3K2/δ)

≤ 3ϵ

κ
·
√

log(3K2/δ), (14)

where the first inequality comes from Lemma C.4; the second inequality holds because Vτ+N ⪰ d
ϵ2V(π); the last inequality

holds because π is an optimal design and by Lemma C.1, ∥ϕi,j∥2V(π)−1 ≤ d.

Taking union bound for each (i, j) ∈ [K]× [K], we have that with probability at least 1− δ, for every i ∈ [K],

|B̂(i)−B(i)| =
∣∣∣∣ 1K

K∑
j=1

(
µ(ϕ⊤

i,jθ
∗)− µ(ϕ⊤

i,j θ̂)
)∣∣∣∣

≤ 1

K

K∑
j=1

∣∣∣µ(ϕ⊤
i,jθ

∗)− µ(ϕ⊤
i,j θ̂)

∣∣∣
≤ Lµ

K

K∑
j=1

∣∣ϕ⊤
i,j

(
θ∗ − θ̂)

∣∣
≤ 3Lµϵ

κ
·
√
log(3K2/δ), (15)
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where the first equality is by the definition of the empirical/true Borda score; the first inequality is due to the triangle
inequality; the second inequality is from the Lipschitz-ness of µ(·) (Lµ = 1/4 for the logistic function); the last inequality
holds due to (14). This further implies the gap between the empirical Borda winner and the true Borda winner is bounded
by:

B(i∗)−B(̂i) = B(i∗)− B̂(i∗) + B̂(i∗)−B(̂i)

≤ B(i∗)− B̂(i∗) + B̂(̂i)−B(̂i)

≤ 6Lµϵ

κ
·
√
log(3K2/δ),

where the first inequality holds due to the definition of î, i.e., B̂(̂i) ≥ B̂(i) for any i; the last inequality holds due to (15).

Meanwhile, since N :=
∑

(i,j)∈supp(π) N(i, j) and supp(π) ≤ d(d+ 1)/2 from Lemma C.1, we have that

N ≤ d(d+ 1)/2 +
d

ϵ2
,

because ⌈x⌉ < x+ 1.

Therefore, with probability at least 1− 2δ, the regret is bounded by:

Regret(T ) = Regret1:τ +Regretτ+1:τ+N +Regretτ+N+1:T

≤ τ +N +
12Lµϵ

κ
T ·
√
log(3K2/δ)

≤ τ + d(d+ 1)/2 +
d

ϵ2
+

12Lµϵ

κ
T ·
√
log(3K2/δ)

= O
(
κ−1(d log(K/δ))1/3T 2/3

)
,

where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ + 1 to τ + N , and τ + N + 1 to T . the
second inequality is simply bounding the one-step regret from 1 to τ + N by 1, while for t > τ + N , we have shown
that the one-step regret is guaranteed to be smaller than 12Lµϵ

√
log(3K2/δ)/κ. The last line holds because we set

τ = (d log(3K2/δ))1/3T 2/3 and ϵ = d1/3T−1/3 log(3K2/δ)−1/6.

By setting δ = T−1, we can show that the expected regret of Algorithm 1 is bounded by

O
(
κ−1(d log(KT ))1/3T 2/3)

)
.

Note that if there are exponentially many contextual vectors (K ≈ 2d), the upper bound becomes Õ(d2/3T 2/3).

D. Omitted Proof in Section 5
We make the following notation. Let Ht−1 := (q1, P1, (i1, j1), r1, . . . , qt, Pt) denotes the history up to time t. Here Pt

means the comparison probability pti,j at round t. The following lemmas are used in the proof. We first bound the estimate
B̂t(i).

Lemma D.1. For all t ∈ [T ], i ∈ [K], it holds that B̂t(i) ≤ λ−1
0 /γ2.

Proof of Lemma D.1. Using our choice of qt ≥ γ/K, we have the following result for the matrix Qt:

Qt =
∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j ⪰ γ2 1

K2

∑
i∈[K]

∑
j∈[K]

ϕi,jϕ
⊤
i,j . (16)

Furthermore, we can use the definition of the estimate B̂t(i) to show that

B̂t(i) =

〈
1

K

∑
j∈[K]

ϕi,j , θ̂t

〉
=

〈
1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt)

≤ 1

K

∑
j∈[K]

∥ϕi,j∥2Q−1
t
,
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where we use the fact that |rt| ≤ 1. Let Σ = 1
K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j . With (16) we have Qt ⪰ γ2Σ. Therefore, we can

further bound B̂t(i) with

B̂t(i) ≤
1

Kγ2

∑
j∈[K]

∥ϕi,j∥2Σ−1

≤ 1

γ2
max
i,j
∥ϕi.j∥2Σ−1

≤ λ−1
0

γ2
,

where the first inequality holds due to (16) and that ∥x∥2A−1 ≤ ∥x∥2B−1 if A ⪰ B; the third inequality holds because we
assume λ0 ≤ λmin

(
1

K2

∑K
i=1

∑K
j=1 ϕi,jϕ

⊤
i,j

)
and ∥ϕi,j∥ ≤ 1.

The following lemma proves that our (shifted) estimate is unbiased.

Lemma D.2. For all t ∈ [T ], i ∈ [K], the following equality holds:

E[B̂t(i)] = Bt(i)−
1

2
.

Proof of Lemma D.2. Using our definition of B̂t(i), we have

B̂t(i) =

〈
1

K

∑
j∈[K]

ϕi,j , θ̂t

〉
=

〈
1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt).

Therefore, by the law of total expectation (tower rule), we have

E[B̂t(i)] = EHt−1

[
E(it,jt,rt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
rt(it, jt)|Ht−1

]]

= EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
Ert [rt(it, jt)|(it, jt)]

∣∣∣Ht−1

]]

= EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jt

〉
pt(it, jt)

∣∣∣Ht−1

]]

Then we use the definition of pt and the expectation. We can further get the equality

E[B̂t(i)] = EHt−1

[
E(it,jt)

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t ϕit,jtϕ

⊤
it,jtθ

∗
〉∣∣∣Ht−1

]]

= EHt−1

[〈 1

K

∑
j∈[K]

ϕi,j , Q
−1
t

( ∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j

)
θ∗
〉∣∣∣∣Ht−1

]

= EHt−1

[〈 1

K

∑
j∈[K]

ϕi,j ,θ
∗
〉∣∣∣∣Ht−1

]
= Bt(i)−

1

2
.

Therefore, we have completed the proof of Lemma D.2.

The following lemma is similar to Lemma 5 in Saha et al. (2021b).

Lemma D.3. EHt [q
⊤
t B̂t] = EHt−1

[
Ex∼qt [Bt(x)|Ht−1]

]
− 1

2 , ∀t ∈ [T ].
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Proof of Lemma D.3. Taking conditional expectation, we have

EHt
[q⊤t B̂t] = EHt

[
K∑
i=1

qt(i)B̂t(i)

]

= EHt−1

[
K∑
i=1

qt(i)E(it,jt,rt)

[
B̂(i)

∣∣∣Ht−1

]]

= EHt−1

[
K∑
i=1

qt(i)

(
Bt(i)−

1

2

)]

= EHt−1

[
Ex∼qt

[
Bt(x)

∣∣∣Ht−1

]]
− 1

2
,

where we use the law of total expectation again as well as Lemma D.2.

The last lemma bounds a summation
∑

i∈[K] qt(i)B̂t(i)
2, which will be important in our proof.

Lemma D.4. At any time t, E[
∑

i∈[K] qt(i)B̂t(i)
2] ≤ d/γ.

Proof of Lemma D.4. Let P̂t(i, j) = ⟨ϕi,j , θ̂t⟩. Using the definition of B̂t and P̂t(i, j), we have the following inequality:

E

∑
i∈[K]

qt(i)B̂t(i)
2

 = E

∑
i∈[K]

qt(i)

 1

K

∑
j∈[K]

P̂t(i, j)

2


≤ E

∑
i∈[K]

qt(i)
1

K

∑
j∈[K]

P̂ 2
t (i, j)


= E

∑
i∈[K]

qt(i)
1

γ

∑
j∈[K]

γ

K
P̂ 2
t (i, j)


≤ 1

γ
E

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j)

 .

The first inequality holds due to the Cauchy-Schwartz inequality; the second inequality holds because the definition of qt
satisfies qt ≥ γ/K.

Expanding the definition of P̂ 2
t (i, j), we have

P̂ 2
t (i, j) = r2t (it, jt)

(
ϕ⊤

i,jQ
−1
t ϕit,jt

)2
≤ ϕ⊤

it,jtQ
−1
t ϕi,jϕ

⊤
i,jQ

−1
t ϕit,jt ,

where we use 0 ≤ r2t (it, jt) ≤ 1. Therefore, the following inequality holds,∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j) ≤

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕ
⊤
it,jtQ

−1
t ϕi,jϕ

⊤
i,jQ

−1
t ϕit,jt

= ϕ⊤
it,jtQ

−1
t

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,j

Q−1
t ϕit,jt

= ϕ⊤
it,jtQ

−1
t ϕit,jt

= trace(ϕit,jtϕ
⊤
it,jtQ

−1
t ).
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Using the property of trace, we have

E

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)P̂
2
t (i, j)

 ≤ trace

∑
i∈[K]

∑
j∈[K]

qt(i)qt(j)ϕi,jϕ
⊤
i,jQ

−1
t

 = d.

Therefore, we finish the proof of Lemma D.4.

Proof of Theorem 5.1. Our regret is defined as follows,

EHT
[RT ] = EHT

[
T∑

t=1

[2Bt(i
∗)−Bt(it)−Bt(jt)]

]

= max
i∈[K]

EHT

[
T∑

t=1

[2Bt(i)−Bt(it)−Bt(jt)]

]
.

The second equality holds because Bt and i∗ are independent of the randomness of the algorithm. Furthermore, we can
write the expectation of the regret as

EHT
[RT ] = 2 max

i∈[K]

T∑
t=1

Bt(i)−
T∑

t=1

EHT
[Bt(it) +Bt(jt)]

= 2 max
i∈[K]

T∑
t=1

Bt(i)− 2

T∑
t=1

EHt−1 [Ex∼qt [Bt(x)|Ht−1]]

= 2 max
i∈[K]

T∑
t=1

(
Bt(i)−

1

2

)
− 2EHt

[
q⊤t B̂t

]
, (17)

where the last equality is due to Lemma D.3.

Then we follow the standard proof of EXP3 algorithm (Lattimore & Szepesvári, 2020). Let St,k =
∑t

s=1

(
Bs(k)− 1

2

)
,

Ŝt,k =
∑t

s=1 B̂s(k), ωt =
∑

k∈[K] exp(−ηŜt,k) and ω0 = K. We have ∀a ∈ [K],

exp(−ηŜT,a) ≤
∑

k∈[K]

exp(−ηŜT,k) = ωT = ω0 ·
T∏

t=1

ωt

ωt−1
. (18)

For each term in the product, we have

ωt+1

ωt
=
∑

k∈[K]

exp(−ηŜt−1,k)

ωt−1
· exp(−ηB̂t(k))

=
∑

k∈[K]

q̃t(k) exp(−ηB̂t(k)), (19)

where the second equality holds because of the definition of q̃t. For any η ≤ λ0γ
2, Lemma D.1 presents |ηB̂t(k)| ≤ 1.

Thus, using the basic inequality exp(x) ≤ 1 + x+ x2/2 when x ≤ 1, and exp(x) ≥ 1 + x, we have

ωt+1

ωt
≤
∑

k∈[K]

q̃t(k)
(
1− ηB̂t(k) + η2B̂2

t (k)
)

= 1− η
∑

k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

≤ exp

−η ∑
k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

 . (20)
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Combining (18), (19) and (20), we have

exp(−ηŜT,a) ≤ K exp

 T∑
t=1

−η ∑
k∈[K]

q̃t(k)B̂t(k) + η2
∑

k∈[K]

q̃t(k)B̂
2
t (k)

 ,

and therefore

T∑
t=1

B̂t(a)−
T∑

t=1

q̃⊤t B̂t ≤
logK

η
+ η

T∑
t=1

∑
k∈[K]

q̃t(k)B̂
2
t (k).

Since q̃t =
qt−γ/K

1−γ , we have

(1− γ)

T∑
t=1

B̂t(a)−
T∑

t=1

q⊤t B̂t ≤
logK

η
+ η

T∑
t=1

∑
k∈[K]

q̃t(k)B̂
2
t (k).

Choosing a = i∗, changing the summation index to i and taking expectation on both sides, we have

(1− γ)EHT

T∑
t=1

B̂t(i
∗)−

T∑
t=1

EHT

[
q⊤t B̂t

]
≤ logK

η
+ EHT

η T∑
t=1

∑
i∈[K]

qt(i)B̂
2
t (i)

 .

Substituting the above inequality into (17) and using Lemma D.2, D.3, we can bound the regret as

E[RT ] ≤ 2γT +
2 logK

η
+ 2η

T∑
t=1

EHT

∑
i∈[K]

qt(i)st(i)
2


≤ 2γT + 2

logK

η
+

2ηdT

γ

≤ 2(logK)1/3d1/3T 2/3
√
1/λ0 + 2(logK)1/3d1/3T 2/3 + 2(logK)1/3d1/3T 2/3

√
λ0,

where the second inequality holds due to Lemma D.4. In the last inequality, we put in our choice of parameters η =

(logK)2/3d−1/3T−2/3 and γ =
√

ηd/λ0 = (logK)1/3d1/3T−1/3λ
−1/2
0 . This finishes our proof of Theorem 5.1.
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E. Detailed Explanation of Studied Algorithms in Experiments
The following list summarizes all methods we implemented:

BETC-GLM(-MATCH): Algorithm 1 proposed in this paper. For general link function, to find θ̂ by MLE in (2), 100 rounds
of gradient descent are performed. The failure probability is set to δ = 1/T . Parameters τ and ϵ are set to values listed in
Theorem A.1. For BETC-GLM-MATCH, we use the τ and ϵ outlined in Theorem 4.1.

UCB-BORDA: The UCB algorithm (Auer et al., 2002) using Borda reduction technique mentioned by Busa-Fekete et al.
(2018). The complete listing is displayed in Algorithm 3.

DEXP3: Dueling-Exp3 is an adversarial Borda bandit algorithm developed by Saha et al. (2021a), which also applies to our
stationary bandit case. Relevant tuning parameters are set according to their upper-bound proof.

ETC-BORDA: We devise a simple explore-then-commit algorithm, named ETC-BORDA. Like DEXP3, ETC-BORDA does
not take any contextual information into account. The complete procedure of ETC-BORDA is displayed in Algorithm 4,
Appendix G.2. The failure probability δ is optimized as 1/T .

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 2. η and γ are chosen to be the value
stated in Theorem 5.1.

F. Real-world Data Experiments
To showcase the performance of the algorithms in a real-world setting, we use EventTime dataset (Zhang et al., 2016). In
this dataset, K = 100 historical events are compared in a pairwise fashion by crowd-sourced workers.

We first calculate the empirical preference probabilities p̃i,j from the collected responses. A visualized preferential matrix
consisting of p̃i,j is shown in Figure 5 in Appendix F.1, which demonstrates that STI and SST conditions hardly hold
in reality. During simulation, p̃i,j is the parameter of the Bernoulli distribution that is used to generate the responses
whenever a pair (i, j) is queried. The contextual vectors ϕi,j are generated randomly from {−1,+1}5. For simplicity,
we assign the item pairs that have the same probability value with the same contextual vector, i.e., if p̃i,j = p̃k,l then
ϕi,j = ϕk,l. The MLE estimator θ̂ in (2) is obtained to construct the recovered preference probability p̂i,j := µ(ϕ⊤

i,j θ̂)
where µ(x) = 1/(1 + e−x) is the logistic function. We ensure that the recovered preference probability p̂i,j is close to p̃i,j ,
so that ϕi,j are informative enough. As shown in Figure 3, our algorithm outperforms the baseline methods as expected. In
particular, the gap between our algorithm and the baselines is even larger than that under the generated hard case. In both
settings, our algorithms demonstrated a stable performance with negligible variance.
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Figure 4. The regret of the proposed algorithm (BETC-GLM,BEXP3) and the baseline algorithms (UCB-BORDA, DEXP3, ETC-
BORDA).

F.1. Data Visualization

The events in EventTime dataset are ordered by the time they occurred. In Figure 5, the magnitude of each p̃i,j is color
coded. It is apparent that there is no total/consistent ordering (i.e., p̃i,j > 1

2 ⇔ i ≻ j) can be inferred from this matrix due
to inconsistencies in the ordering and many potential paradoxes. Hence STI and SST can hardly hold in this case.
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Figure 5. Estimated preferential matrix consists of p̃i,j from the EventTime dataset.

G. Additional Information for Experiments
G.1. The UCB-BORDA Algorithm

The UCB-BORDA procedure, displayed in Algorithm 3 is a UCB algorithm with Borda reduction only capable of
minimization of regret in the following form:

Regret(T ) =

T∑
t=1

(
B(i∗)−B(it)

)
.

Let ni be the number of times arm i ∈ [K] has been queried. Let wi be the number of times arm i wins the duel. B̂(i) is the
estimated Borda score. α is set to 0.3 in all experiments.

Algorithm 3 UCB-BORDA

1: Input: time horizon T , number of items K, exploration parameter α.
2: Initialize: n = w = {0}K , B̂(i) = 1

2 , i ∈ [K]
3: for t = 1, 2, . . . , T do
4: it = argmaxk∈[K]

(
B̂k +

√
α log(t)

nk

)
5: sample jt ∼ Uniform([K])
6: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)
7: nit = nit + 1, wit = wit + rt, B̂(it) =

wit

nit

8: end for

G.2. The ETC-BORDA Algorithm

The ETC-BORDA procedure, displayed in Algorithm 4 is an explore-then-commit type algorithm capable of minimizing the
Borda dueling regret. It can be shown that the regret of Algorithm 4 is Õ(K1/3T 2/3).
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Algorithm 4 ETC-BORDA

1: Input: time horizon T , number of items K, target failure probability δ
2: Initialize: n = w = {0}K , B̂(i) = 1

2 , i ∈ [K]

3: Set N = ⌈K−2/3T 2/3 log(K/δ)1/3⌉
4: for t = 1, 2, . . . , T do

5: Choose action it ←

{
1 + (t− 1) mod K, if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

6: Choose action jt =

{
Uniform([K]), if t ≤ KN,

argmaxi∈[K] B̂(i), if t > KN.

7: query pair (it, jt) and receive feedback rt ∼ Bernoulli(pit,jt)
8: if t ≤ N then
9: nit = nit + 1, wit = wit + rt, B̂(it) =

wit

nit

10: end if
11: end for

G.3. FRANK-WOLFE algorithm used to find approximate solution for G-optimal design

In order to find a solution for the G-optimal design problem, we resort to Frank-Wolfe algorithm to find an approximate
solution. The detailed procedure is listed in Algorithm 5. In Line 4, each outer product costs d2 multiplications, K2

such matrices are scaled and summed into a d-by-d matrix V(π), which costs O(K2d2) operations in total. In Line 5,
one matrix inversion costs approximately O(d3). The weighted norm requires O(d2) and the maximum is taken over K2

such calculated values. The scaling and update in the following lines only requires O(K2). In summary, the algorithm is
dominated by the calculation in Line 5 which costs O(d2K2).

In experiments, the G-optimal design π(i, j) is approximated by running 20 iterations of Frank-Wolfe algorithm, which is
more than enough for its convergence given our particular problem instance. (See Note 21.2 in (Lattimore & Szepesvári,
2020)).

Algorithm 5 G-OPTIMAL DESIGN BY FRANK-WOLFE

1: Input: number of items K, contextual vectors ϕi,j , i ∈ [K], j ∈ [K], number of iterations R
2: Initialize: π1(i, j) = 1/K2

3: for r = 1, 2, · · · , R do
4: V(πr) =

∑
i,j πr(i, j)ϕi,jϕ

⊤
i,j

5: i∗r , j
∗
r = argmax(i,j)∈[K]×[K] ||ϕi,j ||V(πr)−1

6: gr = ||ϕi∗r ,j
∗
r
||V(πr)−1

7: γr = gr−1/d
gr−1

8: πr+1(i, j) = (1− γr)πr(i, j) + γr1(i
∗
r = i)1(j∗r = j)

9: end for
10: Output: Approximate G-optimal design solution πR+1(i, j)


