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Abstract

Machine learning models have become a powerful tool in materials science, acceler-
ating the discovery process by accurately predicting molecular properties. However,
the black-box nature of many of these models makes it difficult to understand or
validate the reasoning behind their predictions. Consequently, explainable artificial
intelligence (XAI) has emerged as a field of study aimed at making these models
more transparent. This need for explainability is crucial in chemistry and materials
science, as identified structure-property relationships can be utilized to guide the
design of novel molecules. Yet, there is still a lack of XAI benchmarks focused
on molecular data. As a preliminary step to address this gap, this study presents
a comparative analysis of five selected XAl methods on molecular fingerprints,
which are commonly used representations for property prediction tasks. Our results
reveal significant discrepancies in the feature importance rankings generated by
different XAl methods, demonstrating that the choice of explanation approach can
introduce bias and alter scientific interpretation in the material discovery process.

1 Introduction

To overcome the limitations of time-consuming experimental work, material scientists increasingly
integrate computational approaches into their discovery workflows. In particular, machine learn-
ing (ML) models help prioritize promising candidates for synthesis by rapidly predicting molecular
properties. However, while complex ML models, such as graph neural networks (GNNs) [21]], can
achieve state-of-the-art results, their application in materials science is often limited by data scarcity.
Consequently, researchers often need to rely on classic ML methods and tabular data representations.
Among these representations, molecular fingerprints [26] are often used due to their simplicity and
efficiency, offering high predictive accuracy that can even outperform GNN-based approaches [4].
However, a significant challenge remains, as the black box nature of many ML models prevents
chemists from understanding the structure-property relationships learned by the model, which could
help guide the discovery of novel molecules [28].

This lack of transparency of ML models underscores the need for explainable artificial intelligence
(XAID) [5]. XAI methods can be categorized as offering global (model-level) or local (instance-level)
explanations and can be further divided into either factual or counterfactual, based on whether
they provide feature importance or counterexamples [5]. Despite the existence of numerous XAl
benchmarks for tabular [[1, 18,19, 13] and graph [2, 110} [17] datasets, their findings do not necessarily
extend to the chemical domain. General-purpose tabular XAI benchmarks lack the high dimensionality
or structure typical of molecular descriptors, whereas graph-based benchmarks typically evaluate
explanations based on abstract topological patterns rather than chemically meaningful substructures
or are limited to a narrow analysis for only drug-like molecules.
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Similarly, existing molecular XAI comparisons also present specific limitations — some lack compara-
tive analysis of methods [[7] or focus on a narrow subset or a single explanation approach [31, 27].
Others use only synthetic datasets [12], which may not capture the complexity of real-world tasks, or
focus on just one predictive target [20]. Furthermore, other comparisons [[18}19] are model-specific
and focus on explanations solely for GNNs. This demonstrates a need for a comparative XAl
benchmark on tabular molecular representations.

This work addresses the aforementioned gap by comparing factual and counterfactual, local, model-
agnostic, post-hoc XAl frameworks for their application to molecular property prediction tasks. Our
experimental analysis is conducted at a model level, where we identify the features deemed most
important by each XAI method. These features are then benchmarked against predictive faithfulness
and, where possible, ground-truth faithfulness. An overview of the study is presented in Figure[l]
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Figure 1: Schematic overview of the study.

2 Methods

2.1 Datasets

Our evaluation is conducted on two types of datasets: synthetic datasets with known ground-truth
explanations and two real-world datasets where the influential features are not defined.

The synthetic prediction problems were generated from the QM9 dataset [34]. First, all molecules
were represented as count-based ECFP fingerprints [24] from which we identified a subset of
molecules with the highest fingerprint complexity, defined by the number of non-zero features. To
mimic the problem of a lack of data often seen in real-world scenarios, we then sampled 200 instances
from this subset for the final dataset. For this dataset, we defined three target functions, each based on
six selected ECFP features, hence creating three synthetic predictive tasks with known ground-truth
explanations. To ensure a comprehensive evaluation, the target functions included linear, piecewise
linear, and polynomial functions. Further details regarding the representation of molecules and the
definition of target functions can be found in Appendix [A.T]

For the real-world case studies, we used the hERG dataset [3]] and a dataset of Covalent Organic
Framework (COF) substrates. The hERG dataset contains drug-like molecules with their correspond-
ing pIC50 potency values for estimating the cardiotoxicity risk of a molecule. From the hERG dataset,
we selected a subset of 200 molecules and represented them using ECFP fingerprints. Further details
on the hERG dataset can be found in Appendix [A.2] The COF dataset contains COF substrates with
experimentally measured specific capacitance (F/g). COFs are a promising type of electrode material
for supercapacitors due to their desirable characteristics such as high surface area and versatile
electronic structure [25]]. We represent these COF substrates using ECFP fingerprints and custom
descriptors. A detailed description of all the features utilized for COFs can be found in Appendix [A.3]

2.2 Selected XAI approaches

Our comparison focuses on model-agnostic, post-hoc XAI methods that are applicable to tabular
molecular descriptors. To benchmark both domain-agnostic and chemistry-specific explainers, we
selected a set of five methods, consisting of three general-purpose, factual approaches (SHAP,
SHAP-IQ, LIME) and two counterfactual methods developed for molecular data (MMACE, MEG).

The selected factual methods can be divided into two categories. SHAP [11] and SHAP-IQ [14]
are game-theoretic approaches that quantify feature importance by fairly distributing the model’s
prediction. While SHAP calculates the attribution of each feature individually, SHAP-IQ also



analyzes feature interactions. In contrast, LIME [22] approximates individual predictions using a
simple surrogate model and then derives the explanation from this approximation.

The counterfactual methods both focus on the exploration of the chemical space. MMACE [32] starts
by exploring the local chemical space around a given instance using the STONED algorithm [15]],
and then provides a diverse set of counterfactuals from different chemical space clusters. On the other
hand, MEG [16]] employs reinforcement learning with a task-specific reward function to generate
valid molecules as counterfactuals.

‘We note that features in ECFP fingerprints are dependent, which might hinder the performance of
some factual methods. However, these methods were widely used in some prior work [23] 130} 29, [33]]
for analysis of the model’s results, therefore, it is important to include them in this comparison.

2.3 Experimental evaluation

Our experimental evaluation (Figure[I]) uses 10-fold cross-validation to compare the analyzed XAl
methods. In each fold, we train a predictive model and then employ the selected XAI approaches
to explain the model’s predictions on the test set. We use two types of predictive models: the
ground-truth function, applied to synthetic data, and a Random Forest (RF) model, applied to all
datasets. Regarding the XAI methods, we compare LIME, SHAP, SHAP-IQ with first-order effects
(SHAP-IQ-1), SHAP-IQ with second-order effects (SHAP-1Q-2), and the counterfactual explainers
MEG and MMACE, each generating 25 counterfactuals per instance.

To perform the comparison, we derive a feature importance ranking from each XAI method. For the
factual methods, we calculate the absolute average importance for each feature. For counterfactual
approaches, the ranking is based on the frequency with which each feature was altered in the valid
generated counterfactuals.

To evaluate the explanations, we use three metrics from the OpenXAI benchmark [1]]: feature
agreement (FA), important feature perturbation (PGI), and unimportant feature perturbation (PGU).
While FA measures the XAI method’s agreement with the known ground-truth function, PGI and PGU
assess its faithfulness to the predictive model by analyzing changes in the model’s prediction after
perturbing the most and least important features, respectively. Furthermore, we analyze correlations
between method rankings and evaluate the performance of an aggregated ranking. Further details
on model and XAI method parameters, along with a description of the metrics can be found in

Appendix [B]

3 Results

The evaluation scores for the XAI methods applied to the ground-truth functions and Random Forest
models are presented in Tables [I] 2a] and 2b] revealing interesting insights into the application of
selected XAl methods to chemical tasks.

Table 1: Mean values and standard deviations (in parentheses, in units of the last significant digit
of the mean value) of explainability metrics calculated for the analyzed XAI approaches explaining
the ground-truth functions on the synthetic datasets: Linear, Piecewise Linear, and Polynomial. Best
results highlighted in bold, second-best underlined.

Linear Piecewise Linear Polynomial
FA1+ PGItT PGU] FA{t+ PGIt PGU| FA?T PGIT PGU|
LIME 1.0(0) 20.6(7) 0.7(0) 1.0(0) 16.8(8) 0.9(1) 1.0(0) 18.6(9) 0.7(1)
SHAP 1.0(0) 20.7(7) 0.7(0) 1.0(0) 16.9(10) 0.6(1) 1.0(0) 18.5(8) 0.7(0)

SHAP-IQ-1 1.0(0) 20.7(7) 0.7(0) 1.0(0) 16.9(10) 0.6(1)  1.0(0) 18.5(10) 0.7(1)
SHAP-IQ-2 1.0(0) 20.7(6) 5.5(3) 1.0(0) 16.8(10) 6.3(16) 1.0(1) 18.3(10) 8.7(16)
MMACE  0.9(0) 20.5(6) 2.2(4) 0.9(1) 16.709) 1.4(4)  0.9(1) 18.4(9) 2.0(7)
MEG 0.9(1) 20.4(5) 2.9(6) 0.8(1) 16.9(9) 2.0(5) 0.8(0) 18.3(9) 3.7(5)
Aggregated 1.0(0) 20.6(8) 0.93) 1.0(0) 16.8(10) 0.7(1)  1.0(0) 18.6(9) 1.0(6)




Table 2: Means and standard deviations (in parentheses, in units of the last significant digit of the
mean value) of explainability metrics calculated for the XAI approaches explaining a Random Forest
model on (a) the synthetic datasets: Linear, Piecewise Linear, and Polynomial, and (b) real datasets:
hERG and COF. Best results highlighted in bold, second-best underlined.

(a) Results for synthetic datasets.

Linear Piecewise Linear Polynomial
PGI 1 PGU| PGItT PGU| PGI?T PGU |
LIME 16.2(11)  1.2(2) 14.3(14)  1.43) 15.8(12)  1.2(2)
SHAP 16.2(12)  1.1(1) 14.2(14)  1.1(2) 15.5(12)  1.0(2)

SHAP-IQ-1  16.3(11) 12(5)  14.0(14) 1.6(12) 16.012) 1.2(3)
SHAP-IQ-2 163(12) 2.1(15) 14.1(15) 3.021) 157(11) 1.6(3)
MMACE 163(12) 1.6(2)  14.4(16) 23(7)  15.6(10) 2.0(5)
MEG 162(11) 1.7(3)  14.3(15) 22(7)  154(10)  2.5(5)
Aggregated  16.5(12) 1.2(2)  143(15) 13(3)  156(11) 1.2(2)

(b) Results for real-world datasets.

hERG COF
PGIt PGU]  PGI?} PGU |
LIME 0.5922)  0.12(4)  91.4(144)  21.8(50)
SHAP 0.6022) 0.11(2) 92.8(150) 17.9(d2)

SHAP-IQ-1  0.60(21) 0.13(4) 89.8(140)  27.7(68)
SHAP-IQ-2  0.59(20)  0.29(19)  89.8(142)  45.9(98)
MMACE 0.58(19)  0.20(10)  89.9(148)  27.9(57)
MEG 0.57(19)  0.21(10)  86.4(138)  29.9(54)
Aggregated  0.59(21)  0.12(3) 93.4(142)  23.3(48)

First, as can be noticed in Table|l} the ground-truth faithfulness (FA) scores on the synthetic datasets
were perfect for most XAl methods, indicating that they correctly identified important features. The
only exceptions were counterfactual explanations, most likely because modifying all six ground-truth
features was not always necessary to generate a valid counterfactual (for details on the validity of
counterfactuals, see Appendix [C.).

Second, regarding predictive faithfulness (PGI and PGU, Tables and 2b), while no single
method proved consistently superior across all scenarios, the performance differences were most
evident on the more complex real-world datasets, where SHAP achieves the best mean PGU results.
Notably, there were discrepancies between SHAP and SHAP-1IQ-1, both of which approximate
first-order Shapley values. This suggests that the underlying implementation details can significantly
impact explanations, and potentially the insights experts extract from them; exemplary inconsistencies
are discussed in Appendix [C.2]

Third, an analysis of ranking correlations (Figures [2| and [8) reveals that the methods form distinct
clusters, which evolve with the complexity of the problem. For simple linear functions, we can
observe two main groups: factual and counterfactual approaches. However, as the complexity of the
problem increases, the methods become more distinct. These differences, combined with similar FA,
PGI, and PGU results, emphasize that each XAI method focuses on some particular aspect of the
model’s behavior.

Finally, the usage of the aggregated ranking can be beneficial as it integrates diverse perspectives
of the XAI methods. It consistently scores in the top-2 methods on most of the analyzed scenarios,
highlighting its value as a reliable alternative to using a single explainer. It does not strongly align
with any single method (Figures [2] and [8)), but rather exhibits a similar, mild correlation to all of them,
showcasing its role as a well-balanced compromise. The analysis of the properties of such aggregated
explanations in the context of chemistry and materials science is part of our ongoing work.
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Figure 2: The mean correlation matrices between the feature rankings of XAI methods explaining RF
models.

4 Discussion

In this work, we analyzed the properties and relations between selected XAl approaches, including
factual (LIME, SHAP, SHAP-IQ-1, SHAP-IQ-2) and counterfactual (MMACE, MEG) methods.
Results of experiments on synthetic and real data highlight inconsistencies between XAl methods. In

the context of molecular property prediction, this means that, depending on the explanation method
used, the chemical insights may differ.

However, to build a more complete understanding of the relationships between different XAI methods
in the context of chemistry and materials science, it is necessary to expand the scope of our comparison.
First, we plan to incorporate more complex and diverse synthetic target functions, as well as real-
world molecular datasets. We also aim to add other predictive models to ensure the generalizability
of our findings. Furthermore, the analysis will be extended by including other XAI methods, such as
rule-based explainers, and will explore the integration of explainability and causality. Moreover, the
promising performance of the aggregated feature ranking needs further investigation. Finally, we plan
to evaluate the practicality of the XAl methods using surveys and direct interactions with chemists.
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A Datasets

A.1 Synthetic datasets

For the three synthetic datasets, we applied count-based ECFP fingerprints of length 128 and radius 2.
We further filtered out near-constant columns, removing any feature where the most frequent value
occurred in more than 85% of the samples.

Regarding the ground-truth functions, we defined them based on 6 selected ECFP features: ECFP10
(f10), ECFP16 (fi6), ECFP30 (f30), ECFP33 (f33), ECFP81 (fs1), and ECFP123 (f123). These
features were selected for their diversity, enabling the creation of well-distributed and varied target
property distributions. The full mathematical definitions of the functions are provided in Table[3]

Table 3: Definitions of ground-truth functions.

Function Definition

Linear Yy = 85f30 + 10.5f123 — 3.5f10 + 3f16 — 2.5f81 + 55f33 + 30
10.5f30 + 6.5f123 — 1.5fs1 + 30 if f10 <1

Piecewise Linear 3y = < 5f30 + 13 f123 — 2.5f16 + 30 if1 < fig<2
—1.5f30 + 3.5f123 + 15.5f33 +30 if f10 >2

Polynomial y=25f2 + 1.5f2 + 7.5f30f123 — 9.5f10 — 3.5f16 + 30

Exemplary molecules and target distribution for each synthetic function can be seen in Figure 3]
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Figure 3: Exemplary molecules from a selected subset of QM9 dataset and target distribution for
defined synthetic functions.

A.2 hERG dataset

For the hERG dataset, we first filtered out molecules based on their target value, resulting in a dataset
of 8852 molecules. We then utilized Butina clustering [6] to select a diverse subset of 200 molecules.
For this subset, we used count-based ECFP fingerprints with a length of 1024 and radius of 2.

Examples of molecules from the hERG subset and the target distribution in this subset are presented
in Figure 4
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Figure 4: Exemplary molecules from a selected subset of hERG dataset and target distribution of this
subset.

A.3 COF dataset

For the COF dataset, we first preprocessed the data by removing outliers based on the target variable,
which resulted in a dataset of 102 molecules. For this dataset, we used a combination of count-based
ECFP fingerprints and a set of custom expert-provided chemical descriptors.

We use ECFP fingerprints with a length of 1024 and radius of 2. A larger fingerprint length is
specifically chosen to prevent bit collisions, as the molecules in the COF dataset generally exhibit
higher similarity and are also larger than those in the QM9 dataset.

The custom set of descriptors included: radius, diameter, number of heteroatoms, number of rotatable
bonds, number of H-bond acceptors and donors, topological polar surface area, molecular weight,
and the percentages of oxygen, carbon, and nitrogen. The radius and diameter of a molecule are
defined as the minimal length of the longest path between atoms and the maximum length of the
shortest path, respectively.

While ECFP fingerprints encode the local substructures, the descriptors provide more global prop-
erties, combining information about molecular size, composition, and intermolecular interactions.
Similarly to the synthetic dataset, we filtered out the near-constant columns.

Exemplary molecules along with target distribution for COF dataset are presented in Figure 3}
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Figure 5: Exemplary molecules from COF dataset and distribution of capacitance in that dataset
(target variable).



B Experimental details

B.1 Predictive models

For our comparative analysis, we employed two types of predictive models. First, for the synthetic
datasets, we used the ground-truth functions, defined in Table [3] to provide a perfect, transparent
model to which the explanations could be compared. Second, for all datasets, we trained Random
Forest (RF) models. The RF model was trained to predict the synthetic target property and specific
capacitance for the synthetic and COF datasets, respectively.

The RF models’ hyperparameters were optimized within each cross-validation fold — the training data
was split to find the best parameters, and then the final model was retrained on the entire, original
training set for that fold.

The performance of RF models was evaluated using three metrics: root mean squared error (RMSE,
Equation|[I)), symmetric mean absolute percentage error (SMAPE, Equation [2), and pairwise accuracy
(PA, Equation [3). Pairwise accuracy was included in the evaluation because it is particularly relevant
for applications in chemistry, where the predictive models are often used for initial screening of
candidate molecules, making the correct relative ranking more important than precise value estimation.

> (Wi — )
RMSE =/ &=—"——~— 1
S N M

1 2lyi — 3il
SMAPE = — E — 2

n < |yi| + |9

- L(sgn(y: — y;) = sgn(y; — 95

PA — Zz<j (sgn(y; — yj) en(fi — 9;)) 3)

Zi<j I(y; # 'Uj)
The mean results of the RF models are presented in Table
Table 4: Mean values and standard deviations (in parentheses) of predictive accuracy metrics

calculated for the Random Forest models on the synthetic and real datasets. For COF dataset,
RMSE is expressed in F/g.

Dataset RMSE | SMAPE | PA7Y
Linear 6.52(0.9) 0.29(0.1)  0.89(0.0)
Synthetic  Piecewise Linear 8.05(3.1) 0.22(0.1) 0.82(0.1)
Polynomial 7.81(1.4) 0.20(0.1)  0.83(0.0)
Real hERG 0.85(0.1) 0.12(0.0)  0.67(0.1)
COF 168.55(34.8) 0.59(0.1)  0.73(0.1)

B.2 XAI methods

LIME We employ the LIME explainer with the Ridge regression model as the local surrogate. The
explainer is fitted on the training set of each fold.

SHAP We apply different SHAP variants for each model type — the TreeSHAP explainer for
Random Forest models, and the KernelSHAP for the ground-truth functions. The KernelSHAP
explainer is fitted on the training data for each fold.

SHAP-IQ Analogous to SHAP, we use TreeSHAP-IQ for Random Forest models and KernelSHAP-
1Q for ground-truth functions. We analyze two configurations — SHAP-IQ-1, which computes
standard first-order Shapley values, and SHAP-1Q-2, which calculates k-SII interaction indices with
k=2.
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MMACE For the MMACE method, we first had to define a counterfactual for regression. Since
this is not straightforward, we defined a counterfactual as an example that satisfied the following
conditions: the absolute difference between the prediction for the original instance and the generated
example must be greater than a specified delta, and the model’s prediction for the example must fall
on the opposite side of the training set’s median.

To generate counterfactuals, MMACE requires the following parameters: the maximal number of
token mutations (#mutations) to the original molecule, the token alphabet (alphabet), and the
number of counterfactual examples to sample from the molecular neighborhood using the STONED
algorithm (#samples). Following the search, MMACE clusters the found counterfactuals based on
Tanimoto similarity and selected binary fingerprint (fingerprint) and returns the desired number
of counterfactuals (#counterfactuals). The exact values of the aforementioned parameters are
presented in Table[5]

Table 5: MMACE parameters.

Parameter Value

Synthetic datasets: 5.0
delta hERG dataset: 0.5
COF dataset: 50.0

#mutations 2

alphabet Basic alphabet from MMACE updated with alphabet based
on the training set

#samples 1000

fingerprint ECFP4 fingerprint

#counterfactuals 25

MEG Since MEG is a reinforcement learning-based approach, we designed its optimization
function R(c, 0, w) (Equation , where c is the candidate counterfactual, o is the original example,
and w is a weighting parameter. This optimization function is a weighted sum of two components: a
validity reward V (¢, 0) and a similarity reward S(c, o).

The validity reward V (¢, o) (Equation encourages the generation of valid counterfactuals using the
same definition as in MMACE. It evaluates if the change in prediction d(c, o) is both large enough
(relative to a target A, defined as a maximal value between the training set median and user-defined
delta) and in correct optimization direction Dy (guided by a sign agreement term A).

The similarity reward S(c, 0) focuses on promoting the candidates most similar to the original
instance. It measures Tanimoto similarity between binary fingerprints of the counterfactual and the
original molecule.

R(w,c,0) = (1 —w)V(c,0) +wS(c, o) 4)
)1 |d(c,0)| > A Asgn(d(c,0)) = Doy
Vie,o) = {tanh(A(d(c7 0), Dopt) - W) otherwise ©)

Furthermore, MEG requires the definition of parameters related to the learning process of the ex-
plainer (learning rate, batch size, #epochs), fingerprint used to compute the Tanimoto similar-
ity (fingerprint), allowed modification types (removals, atom additions, bond additions,
bonds between rings, ring sizes,no modifications), and maximal modification size (max
steps). The values set for these parameters can be found in Table|[6]

Implementation details We utilized open-source implementations of the aforementioned XAI
methods, adapting them as necessary to fit our experimental framework. The links to the repositories
are given in Table /| Furthermore, the code and data used in this study are publicly available on
GitHub at https://github.com/JNeubau/XAI-ChemBenchmark.gitl
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Table 6: MEG parameters.

Parameter Value

Synthetic datasets: 5.0

delta hERG dataset: 0.5
COF dataset: 50.0

w 0.1

#counterfactuals 25

learning rate 0.0001

batch size 32

#epochs 1000

fingerprint ECFP4 fingerprint

removals allowed

atom additions allowed

bond additions allowed

bonds between rings allowed

ring sizes 5,6
no modifications not allowed
max steps 2

Table 7: Links to the utilized repositories.

Method Repository

LIME marcotcr/lime

SHAP shap/shap

SHAP-IQ mmschlk/shapiq
MMACE  ur-whitelab/exmol
MEG danilonumeroso/meg

B.3 XAI evaluation metrics

This section provides a more detailed overview of the three selected XAl evaluation metrics, including
the adjustments made for our analysis.

FA (Equation [f)) measures ground-truth faithfulness as the overlap between top-k features of the
explanation’s ranking S}¥ and ground-truth S,?T. PGI (Equation |7) and PGU (Equation [8)) are
both predictive faithfulness metrics, measuring the change in the model’s prediction M (x) when
perturbing the top-k most and least important features, respectively. Following the benchmark, we
compute the area under the curve (AUC) for these metrics for consecutive values of k. However, for
FA, we restrict the analysis to k > 6. This is because our ground-truth is composed of six features,
for which precise ranking is difficult to determine for piecewise linear and polynomial functions.

SGT N SR
A — | k k | (6)
max(k, [547])
PGI = IEx’~perlurb(3(:,t0p—k explanation features) “M(l‘) - M(X/)” @)
PGU = ]Ex’Nperturb(as,non top-k explanation features) “M(:C) - M(Xl) |] (3)

12


https://github.com/marcotcr/lime
https://github.com/shap/shap
https://github.com/mmschlk/shapiq
https://github.com/ur-whitelab/exmol
https://github.com/danilonumeroso/meg

Furthermore, the metrics are adjusted to handle interactions for SHAP-IQ. For PGI and PGU, features
in an interaction are perturbed simultaneously. For ranking, a feature’s first appearance, whether
alone or in an interaction, determines its position.

C Additional results

C.1 Counterfactuals results — validity and similarity

For completeness of the results, we report the validity (Table@ and similarity (Table E]) scores for the
counterfactuals generated by MEG and MMACE. Notably, both methods demonstrated lower validity
on real-world datasets compared to synthetic ones. This gap was especially pronounced for the COF
dataset, emphasizing the complex nature of this predictive problem.

Moreover, the comparison reveals a trade-off: MMACE consistently generated a higher percentage
of valid counterfactuals, but MEG’s valid examples exhibited higher mean similarity to the original
instances.

Table 8: Fractions of valid counterfactuals generated by MMACE and MEG methods.
MMACE MEG

Linear 0.96 0.88
Piecewise Linear 0.97 0.94
RF model Polynomial 0.99 0.97
hERG 0.95 0.82
COF 0.65 0.34
Linear 0.94 0.88
Ground-truth model Piecewise Linear 0.99 0.96
Polynomial 0.99 0.97

Table 9: Mean values and standard deviations (in parentheses) of similarity score of valid counterfac-
tuals generated by MMACE and MEG.

MMACE MEG

Linear 0.28(0.14)  0.32(0.10)
Piecewise Linear 0.30(0.14) 0.34(0.10)
RF model Polynomial 0.30(0.14) 0.37(0.09)
hERG 0.37(0.18) 0.62(0.11)
COF 0.42(0.18) 0.62(0.10)
Linear 0.31(0.16) 0.34(0.11)
Ground-truth model  Piecewise Linear 0.32(0.16) 0.36(0.10)
Polynomial 0.31(0.14) 0.37(0.09)

C.2 Exemplary inconsistencies between SHAP and SHAP-IQ rankings

The unexpectedly low ranking correlation between SHAP and SHAP-IQ-1, as well as differences
in evaluation metrics, led us to investigate their disagreements on specific examples. Figures[6|and
[7]show representative instances from the COF dataset, where SHAP and SHAP-IQ top-10 feature
rankings exhibited significant discrepancies. Notably, these differences did not involve only the
feature order. The methods even disagreed on the direction of a feature’s impact, as can be observed
in the case of ECFP features in Figure [6a) (for the molecule presented in Figure and Diameter
feature in Figure [6b] (for the molecule presented in Figure [7b).

C.3 Additional results: XAI methods for ground-truth functions

Figure [§|shows the ranking correlations of the selected XAI methods for ground-truth functions.
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Figure 6: Representative instances from the COF dataset showcasing the discrepancies in the top-10
rankings of SHAP and SHAP-IQ.

OH

NH,

(a) Molecule 024H10N404 (b) Molecule CQ7H22 N405

Figure 7: Molecules from the COF dataset for which the discrepancies in the top-10 rankings of
SHAP and SHAP-IQ are presented in Fig@
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Figure 8: The mean correlation matrices between the rankings of XAI methods explaining ground-
truth functions.
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