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ABSTRACT

Autonomous agents powered by language models (LMs) have demonstrated
promise in their ability to perform decision-making tasks such as web automation.
However, a key limitation remains: LMs, primarily optimized for natural language
understanding and generation, struggle with multi-step reasoning, planning, and
using environmental feedback when attempting to solve realistic computer tasks.
Towards addressing this, we propose an inference-time search algorithm for LM
agents to explicitly perform exploration and multi-step planning in interactive web
environments. Our approach is a form of best-first tree search that operates within
the actual environment space, and is complementary with most existing state-of-
the-art agents. It is the first tree search algorithm for LM agents that shows effec-
tiveness on realistic web tasks. On the challenging VisualWebArena benchmark,
applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative
increase in success rate compared to the same baseline without search, setting a
state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0%
relative improvement over a baseline agent, setting a competitive success rate of
19.2%. Our experiments showcase the effectiveness of search for web agents, and
we demonstrate that performance scales with increased test-time compute. We
conduct a thorough analysis of our results to highlight improvements from search,
limitations, and promising directions for future work. Our code and models are
publicly released at removed for review

1 INTRODUCTION

Building agents that can perceive, plan, and act autonomously has been a long standing goal of ar-
tificial intelligence research (Russell & Norvig, 1995; Franklin & Graesser, 1996). In recent years,
the advent of large language models (LMs) with strong general capabilities has paved the way to-
wards building language-guided agents that can automate computer tasks. However, the best LM
agents today are still far worse than humans. On the realistic web benchmarks WebArena (Zhou
et al., 2024b) and VisualWebArena (Koh et al., 2024), humans succeed on 78% and 89% of tasks
respectively, but agents — even those powered by the latest frontier models — are far worse, typi-
cally achieving success rates below 20%. One significant bottleneck in existing agents arises from
their inability to leverage test-time computation for exploration and multi-step planning. Search
and planning is especially important in open ended web environments, as the potential action space
(i.e., all possible actions one can take on a webpage) is much larger than in most video games or
text-based simulators. There are often multiple plausible actions that must be sequenced to reach a
goal, and being able to efficiently explore and prune trajectories is essential.

In artificial intelligence systems, one effective strategy for leveraging test-compute to improve re-
sults is search: iteratively constructing, exploring, and pruning a graph of intermediate states and
possible solutions (Newell et al., 1959; Laird, 2019; Silver et al., 2016). The effectiveness of search
algorithms has been shown time and time again, enabling models to achieve or surpass human-
level performance on a variety of games, including Go (Silver et al., 2016; 2017), poker (Brown &
Sandholm, 2018; 2019), and Diplomacy (Gray et al., 2020).

How might we apply search in the context of automating computer tasks, where the search space
is large and — unlike games — there do not exist clear cut rewards and win conditions? Towards
this goal, we propose a method to enable autonomous web agents to search over a graph that is
iteratively constructed through exploration of an interactive web environment. This search procedure
is grounded within the actual environment space, and is guided with environmental feedback. Our
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Figure 1: Our proposed search algorithm. At each iteration, we pick the next state sp to expand from
frontier F and compute a score v for it using the value function. Then, we add the possible next
states that the agent can get to from sp to the frontier, and repeat the search procedure. Faded nodes
indicate explored and pruned states. The formal search algorithm is provided in Appendix. A.4.
Blue dashed arrows indicate backtracking.

approach allows agents to enumerate a much larger number of potentially promising trajectories at
test time, reducing uncertainty through explicit exploration and multi-step planning. To the best of
our knowledge, this is the first time that inference-time search has been shown to improve the success
rate of autonomous agents in realistic web environments. In order to handle the lack of clear cut
rewards in these diverse environments, we propose a model-based value function to guide best-first
search. The value function is computed by marginalizing over reasoning chains of a multimodal LM
conditioned on the agent’s observations, producing finegrained scores to effectively guide search.

Our experiments show that this search procedure is complementary with existing LM agents, and en-
ables these models to perform better on harder and longer horizon tasks. On VisualWebArena (Koh
et al., 2024), search improves the performance of a baseline GPT-4o (OpenAI, 2024) agent by 39.7%
relative to the baseline without search, setting a new state-of-the-art (SOTA) success rate of 26.4%.
On WebArena (Zhou et al., 2024b), search is also highly effective, contributing a 28.0% relative im-
provement (yielding a competitive success rate of 19.2%). We also demonstrate that our search pro-
cedure benefits from scale: achieving improved performance as the agent is allotted greater amounts
of test-time computation. Our code and models are publicly released at removed for review.

2 BACKGROUND

2.1 REALISTIC SIMULATED WEB ENVIRONMENTS

Towards the goal of developing autonomous web agents powered by large language models, several
prior works focused on building evaluation benchmarks for measuring the progress of models on web
tasks. Mind2Web (Deng et al., 2023) is an evaluation benchmark that measures the ability of fron-
tier models in predicting actions taken on static Internet pages. VisualWebBench (Liu et al., 2024b)
introduced a multimodal benchmark for assessing the ability of models to understand web content.
Others have looked towards simulators (as opposed to static HTML content): MiniWoB (Shi et al.,
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2017; Liu et al., 2018) was one of the first interactive simulators for web tasks, but consisted of
simplified environments that do not directly translate into real world performance. WebShop (Yao
et al., 2022a) simulates a simplified e-commerce site with real world data. WebLINX (Lù et al.,
2024) proposes a benchmark for tackling conversational web navigation, which involves communi-
cation between the agent and a human instructor. MMInA (Zhang et al., 2024c) and OSWorld (Xie
et al., 2024a) propose benchmarks to measure the ability of agents to accomplish tasks by navigating
across multiple computer applications. WorkArena (Drouin et al., 2024) is a simulated environment
for tasks on the ServiceNow platform. WebArena (WA) (Zhou et al., 2024b) is a benchmark of 812
tasks across 5 realistic self-hosted re-implementations of popular websites (Shopping, Reddit, CMS,
GitLab, Maps), each populated with real world data. VisualWebArena (VWA) (Koh et al., 2024) is a
multimodal extension to WebArena, consisting of 910 new tasks across realistic re-implementations
of 3 popular real world sites (Classifieds, Reddit, Shopping). To solve tasks in VWA, agents must
leverage visual grounding and understand image inputs, providing a realistic and challenging test
for multimodal agents.

Action Type a Description
click [elem] Click on elem.
hover [elem] Hover on elem.
type [elem] [text] Type text on elem.
press [key comb] Press a key combo.
new tab Open a new tab.
tab focus [index] Focus on the i-th tab.
tab close Close current tab.
goto [url] Open url.
go back Click back.
go forward Click forward.
scroll [up|down] Scroll up or down.
stop [answer] End with an output.

Table 1: Possible actions A in the (Vi-
sual)WebArena environments. Reproduced
with permission from Koh et al. (2024).

As the (V)WA environments are one of the most
realistic and comprehensive evaluation suites for
web tasks, we primarily benchmark our method on
(V)WA. We briefly describe the setting here but re-
fer readers to Zhou et al. (2024b) for additional con-
text. The environment E = (S,A,Ω, T ) consists
of a set of states S, actions A (Tab. 1), and a de-
terministic transition function T : S × A → S
that defines transitions between states conditioned
on actions. Each task in the benchmark consists of
a goal specified with a natural language instruction
I (e.g., “Find me the cheapest red Toyota car below
$2000.”). Each task has a predefined reward func-
tion R : S × A → {0, 1} which measures whether
an agent’s execution is successful. We implement
our search algorithm on the (V)WA web simulators,
but our method is fully general and can be applied to
any setting with an interactive environment.

2.2 LANGUAGE-GUIDED AUTONOMOUS AGENTS

Autonomous web agents, powered by frontier (multimodal) language models (Google, 2023; Ope-
nAI, 2024; Anthropic, 2024), are the SOTA approaches for many of the above benchmarks. Kim
et al. (2024) showed that large language models can be prompted to execute computer tasks on Mini-
WoB++ (Liu et al., 2018), requiring far fewer demonstrations than reinforcement learning methods.
AutoWebGLM (Lai et al., 2024) collects web browsing data for curriculum training and develops
a web navigation agent based off a 6B parameter language model that outperforms GPT-4 on We-
bArena. Patel et al. (2024) showed that a language model agent can improve its performance through
finetuning on its own synthetically generated data. Pan et al. (2024) show that introducing an au-
tomatic evaluator to provide guidance on task failure or success can improve the performance of
a baseline Reflexion (Shinn et al., 2024) agent. Fu et al. (2024) extracts domain knowledge from
offline data and provides this to the language agent during inference, to enable it to leverage helpful
domain knowledge. SteP (Sodhi et al., 2024) and AWM (Wang et al., 2024b) propose methods to
enable agents to dynamically compose policies to solve web tasks.

In the multimodal setting, WebGUM (Furuta et al., 2024) finetuned a 3B parameter multimodal
language model on a large corpus of demonstrations, achieving strong performance on MiniWoB
and WebShop. Koh et al. (2024) showed that prompting multimodal language models with a Set-
of-Marks (Yang et al., 2023a) representation enables the model to navigate complex webpages more
effectively than text-only agents. SeeAct (Zheng et al., 2024) demonstrated that frontier multimodal
models such as GPT-4V (Yang et al., 2023b) and Gemini (Google, 2023) can be grounded and
prompted to solve web tasks. ICAL (Sarch et al., 2024) builds a memory of multimodal insights
from demonstrations and human feedback, improving performance on VisualWebArena.
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Our procedure is an inference-time approach that is compatible with many of these past approaches
that focus on developing better base agents.

2.3 SEARCH AND PLANNING

Our method also draws inspiration from a rich history of search and planning algorithms in computer
science. Search algorithms such as breadth first search, depth first search, and A* search (Hart et al.,
1968) have long been used in artificial intelligence systems. Newell et al. (1959) and Laird (2019)
cast goal-oriented behavior as search through a space of possible states. Dean et al. (1993) and
Tash & Russell (1994) proposed planning algorithms over a limited search horizon, and employed
an expansion strategy to improve plans based off heuristics about the value of information. Tash &
Russell (1994) showed that this allowed agents to provide appropriate responses to time pressure and
randomness in the world. Deep Blue (Campbell et al., 2002), the chess engine which defeated world
champion Kasparov in chess in 1997, was based on massive parallel tree search. Pluribus (Brown &
Sandholm, 2019) leverages search to find better multiplayer poker strategies for dynamic situations.

In deep learning, search algorithms with neural network components have been instrumental in
achieving superhuman performance on many games: Monte-Carlo Tree Search (MCTS) (Browne
et al., 2012) was used to provide lookahead search in the AlphaGo (Silver et al., 2016; 2017) systems
that achieved superhuman performance in the game of Go. Gray et al. (2020) performs one-step
lookahead search to achieve SOTA on no-press Diplomacy. More recently, several papers (Yao
et al., 2024; Besta et al., 2024) showed the potential of applying search to large language models
to introduce exploration over multiple reasoning paths, enhancing performance on text based tasks
that require non-trivial planning. Others have applied MCTS (Xie et al., 2024b; Chen et al., 2024a;
Zhang et al., 2024b; Wang et al., 2024a; Zhang et al., 2024a; Zhou et al., 2024a; Hao et al., 2023) to
improve the performance of LMs on math and science benchmarks (Cobbe et al., 2021; Wang et al.,
2023a) or simplified environments (Yao et al., 2022a; Valmeekam et al., 2023).

In contrast to prior work, our setting is grounded in realistic web environments, and we search
over the actual environment space (i.e., the web). This means that the search mechanics need to
incorporate not just the text outputs of the agent, but also external environmental feedback from a
highly complex environment.

3 METHOD

In this section, we describe the search procedure (Fig. 1) in detail. Successfully solving a task in
a web environment such as (V)WA can be interpreted as navigating to a goal state s∗ which gives
a positive reward R(s∗) = 1. The agent starts at state s0 (e.g., the homepage). Given a natural
language instruction I , the agent’s goal is to navigate to s∗ by executing actions (a0, . . . , at) ∈ A.
Each action produces a new state st+1 ∈ S and observation ot+1 ∈ Ω from the environment. The
transition st → st+1 is governed by a deterministic transition function T : S ×A → S.

Most approaches treat this as a partially observable Markov decision process, and only condition
on the current observation ot when predicting the next action at to take. This has significant lim-
itations: the error of the agent compounds with each step, and if an erroneous action is taken at
time t, it cannot be easily rectified if this leads to a bad state in the future. Our approach aims to
alleviate this by explicitly conducting search and backtracking to identify better trajectories. There
are several components involved which we describe in the following sections: the baseline agent
model (Sec. 3.1), the value function (Sec. 3.2), and the search algorithm (Sec. 3.3)

3.1 AGENT BACKBONE

Most SOTA web agents are built through prompting large (multimodal) language models (Zhou
et al., 2024b; Pan et al., 2024; Fu et al., 2024; Zheng et al., 2024; Koh et al., 2024). A pretrained
language model or multimodal model fϕ is prompted with the current webpage observation ot and
instructed to predict the next action at to be executed. It is common to leverage prompting tech-
niques, such as ReAct (Yao et al., 2022b), RCI (Kim et al., 2024), or Chain-of-Thought (CoT)
prompting (Wei et al., 2022), to improve the performance of the agent. Language model agents also
allow us to sample a diverse set of actions (e.g., with nucleus sampling (Holtzman et al., 2020)),
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which is essential for creating plausible branches to explore during search (see Sec. 3.3). Our pro-
posed search algorithm can in principle be applied to any base agent. We show in Sec. 4 that search
improves inference-time performance on a range of models without retraining or finetuning fϕ.

3.2 VALUE FUNCTION

We implement a best-first search heuristic using a value function fv which estimates the expected
reward E[R(st)] of the current state st, where the ground truth goal state would provide perfect
reward of 1. As the state st of the simulator is not always accessible to the agent (st may include
private information such as database entries of the site), the value function computes the value vt
using the current and previous observations, as well as the natural language task instruction I:

vt = fv(I, {o1, . . . , ot}) ∈ [0, 1]

In our experiments, the value function is implemented by prompting a multimodal language model
with the natural language instruction and observations as screenshots (Sec. 4.1).

3.3 SEARCH ALGORITHM

Our proposed search algorithm is a best-first search method loosely inspired by A* search (Hart
et al., 1968), a classic graph traversal algorithm used widely in computer science. We use a language
model agent to propose candidate branches of the search tree. The search has hyperparameters depth
d, branching factor b, and search budget c which determine the maximum size of the search tree,1
and termination threshold θ. The search procedure is summarized in Fig. 1. We describe it in detail
in the following paragraphs and provide the formal algorithm in Appendix A.4.

At time t in the execution trajectory, the agent has previously executed a sequence of actions to arrive
at the current state st. We begin the search algorithm from st by initializing the frontier F ← {}
(implemented as a max priority queue) which holds the set of states that we plan to evaluate, the best
state found so far ŝt ← st, the score of the best sequence v̂t ← 0, and the search counter s← 0.

At each iteration of the search process, we extract the next state from the frontier, sp ← pop(F).
We use the value function to compute the score for state sp (with observation op and previous
observations o1, . . . , op−1):

vp = fv(I, {o1, . . . , op})

Then, we increment the search counter s, and if vp is higher than the current best score v̂t, we update
it and our best state accordingly:

s← s+ 1

ŝt ←
{
sp if vp > v̂t
ŝt otherwise

v̂t ← max(v̂t, vp)

If vp ≥ θ (i.e., the agent is likely to have found a goal state) or s ≥ c (the search budget has been
exceeded), we will terminate the search and navigate to the best state ŝt found thus far. Otherwise,
if the current branch does not exceed the maximum depth (i.e., |(s0, . . . , sp)| < d), we will generate
plausible next actions for branching by obtaining b candidate actions {a1p, . . . , abp} from the language
model agent fϕ. For each i, we execute aip and add the resulting state sip to the frontier with the score
of the current state2:

F ← F ∪ (vp, s
i
p) for i = 1, . . . , b

This concludes one iteration of search. If both of the termination conditions have not been reached,
we backtrack and repeat this process for the next best state from the updated frontier F .

1In Sec. 5.1 we show that increasing the size of the search tree improves results at the expense of using
increased compute for exploration.

2We opt for this approach instead of immediately computing the value for resulting states sip as immediate
evaluation requires more backtracking calls, which would incur much more overhead in the (V)WA simulators.
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4 EXPERIMENTS

We run experiments on the full set of 910 VisualWebArena (VWA) and 812 WebArena (WA) tasks.
These tasks are distributed across a set of diverse and realistic web environments: Classifieds, Red-
dit, and Shopping for VWA, and Shopping, CMS, Reddit, GitLab and Maps for WA.

4.1 IMPLEMENTATION DETAILS

Baseline agent models Our search algorithm is compatible with most off-the-shelf language
model agents. In this work, we test it with simpler, more general, prompt-based agents, and leave
incorporation of our method with more performant methods that incorporate domain-specific tech-
niques (Fu et al., 2024; Sodhi et al., 2024) for future work. We run several prompt-based agent
baselines with different input formats (full prompts provided in the appendix):

• Multimodal SoM: For multimodal models that accept multiple image-text inputs, such as
GPT-4o (OpenAI, 2024) (gpt-4o-2024-05-13), we run the multimodal agent from Koh
et al. (2024) with the same prompt. We similarly apply a preprocessing step to assign a
Set-of-Marks (SoM) (Yang et al., 2023a) representation to the webpage. This highlights
every interactable element on the webpage with a bounding box and a unique ID. The input
to the agent is a screenshot of the SoM-annotated webpage, and a text description of the
elements on the page with their corresponding SoM IDs.

• Caption-augmented: For base models that are not multimodal (e.g., Llama-3-70B-
Instruct (Dubey et al., 2024)), we run the caption-augmented agent with the same prompt
from Koh et al. (2024). We generate captions for each image on the webpage using an
off-the-shelf captioning model (in our case, BLIP-2; Li et al. 2023). The accessibility tree3

representation of the webpage observation is used as input observation at each step.

• Text-only: On WebArena (which does not require visual grounding), we run text-only
agents using the prompt from Zhou et al. (2024b), for both GPT-4o and Llama-3-70B-
Instruct. Similar to the caption-augmented baseline, this model uses an accessibility tree
representation of the current webpage as its input observation (without captions).

Search parameters We run these agents with and without search. Our search parameters are
set to d = 5, b = 5, c = 20, and we stop execution after a maximum of 5 actions. We enforce
these constraints due to compute and budget limitations, though we expect that increasing these
parameters is likely to further improve results (see Sec. 5.1 for results on scaling search parameters).
We note that the fairly strict limitations on maximum actions imply that there are certain tasks that
are intractable (e.g., VWA tasks with “hard” action difficulty usually require humans to execute 10 or
more actions to complete). Despite this, our results show that GPT-4o with search capped at 5 max
actions still substantially outperforms the GPT-4o baseline (without search) with 30 max actions.

Obtaining actions We sample actions using nucleus sampling (Holtzman et al., 2020) with a
temperature of 1.0 and top-p of 0.95 for all experiments. At each step of execution, we generate 20
outputs from the model by prompting it with CoT reasoning (Wei et al., 2022), and aggregate the
count of the action candidates. We use the top-b actions with the highest counts for branching.

Value function As detailed in Sec. 3.2, we require a value function which scores the likelihood
that the current state st is a goal state. We implement the value function by prompting a multimodal
language model with the task instruction I , screenshots of the agent’s trajectory, previous actions
the agent took, and the current page URL. The full prompt is provided in Appendix A.3.2. The
multimodal LM is instructed to output whether the current state is a success, a failure, and if it’s
a failure, whether it is on a trajectory towards success. These outputs are assigned values of 1,
0, and 0.5 respectively (and 0 for invalid output). In order to get more finegrained and reliable
scores, we leverage ideas from self-consistency prompting (Wang et al., 2023b), and sample multiple
reasoning paths by prompting the multimodal LM with CoT (Wei et al., 2022). We sample 20
different paths from the GPT-4o model using ancestral sampling (temperature of 1.0 and top-p of
1.0). The final value assigned to state st, used in the best-first search heuristic, is computed by

3https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree
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Agent Model Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct + captions (Koh et al., 2024)
30

9.8% - -
GPT-4o + SoM (Koh et al., 2024) 19.8% - -
ICAL (Sarch et al., 2024) 23.4% - -

Llama-3-70B-Instruct + captions 5 7.6% 16.7% +119.7%
GPT-4o + SoM 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b)

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) 15.6% - -
AutoWebGLM (Lai et al., 2024) 18.2% - -
AutoEval (Pan et al., 2024) 20.2% - -
BrowserGym (Drouin et al., 2024) 23.5% - -
SteP (Sodhi et al., 2024) 35.8% - -

Llama-3-70B-Instruct 5 7.6% 10.1% +32.3%
GPT-4o 15.0% 19.2% +28.0%

Table 2: Success rates (SR) and relative change (∆) for baseline models and models that employ
search on the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b)
benchmarks. We also show other published approaches. Search substantially improves our baseline
models, setting a new state-of-the-art on VWA.

averaging the values from each of the 20 reasoning paths. In our implementation, calling the value
function is significantly cheaper than predicting the next action, as action prediction consumes more
input tokens for few-shot examples and the representation of the page. We estimate the API cost of
the GPT-4o SoM agent for action prediction to be approximately 2× that of computing the value.

4.2 RESULTS

Our results are summarized in Tab. 2. Introducing search increases success rate substantially across
the board. Search improves the success rate of the baseline GPT-4o + SoM agent on VWA by
39.7% relatively (increasing from 18.6% to 26.4%), setting a new state-of-the-art on the benchmark.
On WA, introducing search to the GPT-4o agent improves the success rate substantially as well,
increasing it by 28.0% relatively (15.0% to 19.2%). This is competitive with other prompt-based
agents on WA, but in future work it will be interesting to explore introducing search to stronger
baseline agents that incorporate domain-specific techniques, such as SteP (Sodhi et al., 2024) or
AutoGuide (Fu et al., 2024).

With weaker base models, we also observe substantial improvements. For the Llama-3 caption-
augmented agent on VWA, introducing search improves the success rate on VWA by 119.7% relative
to the baseline (7.6% to 16.7%). With search, Llama-3-70B-Instruct achieves success rates that are
close to the best frontier multimodal models that do not use search. On WebArena, we also see a
substantial relative improvement of 32.2% for the text-based Llama-3 agent (7.6% to 10.1%). The
strong performance of the Llama-3-70B-Instruct agent with search can prove to be a cost effective
agent model for iteration in future work that requires access to model internals. These results over a
variety of model scales and capabilities demonstrate the generality and effectiveness of our approach.

5 ANALYSIS

5.1 ABLATIONS

We conduct several ablation experiments on a subset of 200 tasks from VWA (100 Shopping tasks,
50 Reddit task, and 50 Classifieds tasks).

Search budget We plot the success rate of the GPT-4o agent with search limited to varying budgets
c ∈ {0, 5, 10, 15, 20} in Fig. 2. All experiments are conducted with search parameters of depth d = 5
and branching factor b = 5. The search budget specifies the maximum number of node expansions
performed at each step. For example, a search budget of 10 indicates that at most 10 nodes will be
expanded, after which the agent will commit to and execute the trajectory with the highest value. We
observe that success rate generally increases as search budget increases. Notably, performing even
very small amounts of search (c = 5) substantially improves success rate by 30.6% relative to not

7
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Figure 2: Success rate on a subset of 200
VWA tasks with search budget c. c = 0 in-
dicates no search is performed. Success rate
generally increases as c increases.

Depth d Branch b SR (↑) ∆

0 1 24.5% 0%

1 3 26.0% +6%
5 32.0% +31%

2 3 31.5% +29%
5 35.0% +43%

3 5 35.5% +45%

5 5 37.0% +51%

Table 3: Success rate (SR) and relative change
(∆) over the baseline without search on a sub-
set of 200 VWA tasks with varying search
depth (d) and branching factor (b). d = 0 in-
dicates no search is performed. All methods
use a max search budget c = 20.

doing search (24.5% to 32.0%). When the budget is increased to c = 20, this improves success rate
by 51.0% relative to not doing search (from 24.5% to 37.0%), highlighting the benefit of scaling the
search budget. Running experiments with an even greater search budget to evaluate scaling trends
would be a promising future direction to explore.

Search depth and breadth We run an ablation experiment varying the search branching factor b
and maximum depth d. The results are summarized in Tab. 3. We observe that in general, success
rate increases as the size of search tree increases (along both b and d dimensions). In particular,
scaling both b and d is necessary to achieve strong performance.

Value Function SR (↑)
None (no search) 24.5%
LLaVA (w/ SC, n = 20) 30.0%
GPT-4o (no SC) 28.5%
GPT-4o (w/ SC, n = 5) 32.5%
GPT-4o (w/ SC, n = 20) 37.0%
Groundtruth 43.5%

Table 4: Success rate of the
GPT-4o agent with different
value functions.

Varying the value function We ablate the multimodal model
used for the value function, swapping out GPT-4o for (1) the
LLaVA-v1.6-34B (Liu et al., 2024a) multimodal model prompted
zero-shot (with only the current observation, as LLaVA only sup-
ports a single image input) and (2) the groundtruth reward from
VWA (which is a sparse reward signal that returns either 0 or 1),
and (3) GPT-4o without self-consistency. The results are summa-
rized in Tab. 4. We find that the GPT-4o value function significant
outperforms the LLaVA model, improving the result of the agent
from 30.0% to 37.0%. The groundtruth reward function achieves
a success rate of 43.5%. These results suggest that there is still
significant headroom in improving the search algorithm with better value functions. We also observe
that self-consistency is essential for good performance (28.5% → 37.0%), which we attribute to it
enabling marginalization over multiple reasoning chains, reducing noise during state evaluation.

5.2 SUCCESS RATE BREAKDOWN

Difficulty No Search Search ∆

easy 34.2% 42.3% +24%
medium 12.7% 22.2% +75%
hard 10.2% 14.9% +47%

Table 5: Success rates and relative change
(∆) of the GPT-4o agent on VWA tasks of
different action difficulty levels.

Success rate by task difficulty The VWA bench-
mark includes labels for the action difficulty of each
task. These labels are human annotated, and roughly
indicate the number of actions a human would need
to take to solve the tasks: easy tasks require 3 or
fewer actions, medium tasks require 4–9 actions, and
hard tasks demand 10 or more. These guidelines are
approximate and devised by the human annotators of
VWA, so there may exist more optimal solutions in
practice. The increase in success rate from introducing search is summarized in Tab. 5. Introducing
search improves performance across all difficulty levels, but it introduces much larger gains on tasks
of medium action difficulty, with a relative increase of 75% in success rate (from 12.7% to 22.2%).
We hypothesize that this is because our search parameters (max depth d = 5) are beneficial for a
large proportion of medium difficulty tasks. Conversely, achieving even better performance on hard
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Task Instruction (   ): “I recall seeing this exact item on the site, help me find the most recent 
post of it. I recall seeing it in either the Collectibles or Antiques section.”

1 2

3 4

5
Success
✅

v = 0.5

v = 0.2

v = 0.53

v = 0.53

v = 0.45

v = 0.63

v = 0.63

…

…

1 Search sequence Backtracking State valuesv = 0.4v = 0.5v = 1.0

v = 1.0

6

Legend:

GPT-4o Agent + Search

Starting State

Figure 3: Search can improve the robustness of agents by filtering out bad actions. Shown above is a
trajectory for VWA classifieds task #48 where greedily picking the first sampled actions would have
led to a failure (by taking the path in the first row). Search avoids this failure mode by exploring and
pruning less promising paths, ultimately committing to the highlighted trajectory.

Website No Search Search ∆

Classifieds 18.4% 26.5% +44%
Reddit 17.1% 20.5% +20%
Shopping 20.0% 29.0% +45%

Overall 18.9% 26.4% +40%

Table 6: Success rates and relative change
(∆) of the GPT-4o agent on VWA websites.

Website No Search Search ∆

CMS 11.0% 16.5% +50%
Map 21.1% 25.8% +22%
Shopping 24.0% 28.1% +17%
Reddit 7.9% 10.5% +33%
Gitlab 10.2% 13.3% +30%

Overall 15.0% 19.2% +28%

Table 7: Success rates and relative change
(∆) of the GPT-4o agent on WA websites.

tasks may require search over deeper trees. Easy tasks likely do not benefit as much from search,
as they generally involve less multi-step planning (some can be solved with 1 or 2 actions), and
baselines already have higher success rates.

Success rates by website Tables 6 and 7 summarize the success rates across the various websites
in the VWA and WA benchmarks. We observe an improvement in success rates across the board,
demonstrating that our method generalizes across sites. Specifically, the increase is most substantial
on the Classifieds and Shopping sites in VWA, with relative increases of 44% and 45%, respectively.
Similarly, the CMS site in the WA benchmark shows a significant relative improvement of 50%.

5.3 QUALITATIVE RESULTS

In this section, we discuss some qualitative examples of agent trajectories, and identify various
failure modes that are solved when incorporating search.

More robust multi-step planning Many tasks in VWA and WA require an agent to keep a per-
sistent memory of multiple previous actions and observations. A common failure mode amongst
agents without search is that they tend to undo previous actions, or get stuck in loops (see Appendix
C.4 of Koh et al. 2024). An example for VWA shopping task #256 is shown in Fig. 1, where the
agent is tasked to add two different types of canned fruit from the same brand to the comparison
list. The baseline agent successfully adds the first item, but fails to navigate to the second item, as
it returns to the homepage in step 3 and gets confused. This is an example of compounding error
leading to overall task failure, which is fairly common in existing baseline agents without search.

When search is introduced, the agent explores other plausible trajectories and backtracks when those
eventually result in failure: the same GPT-4o agent with search is able to find a successful multi-step

9
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trajectory for the same task, which involves adding the first item (action #1 in Fig. 1), typing in a
search query (action #6), and adding the correct second item to the comparison list (action #9).

Resolving uncertainty An inherent issue with sampling actions from language models is that
we are sampling from a distribution over text, and the first sample we generate may not always
be the best action to take in the environment. Search allows us to evaluate each generated action
concretely by executing it in the simulator, and use the received environmental feedback to make
better decisions. One example is VWA classifieds task #48 (Fig. 3), which is to find a post containing
a particular image. If the agent executes the first sampled action at every step (i.e., the sequence in
the top row), it results in failure. Search allows the agent to enumerate all possibilities by executing
plausible actions and receiving environment feedback.

5.4 LIMITATIONS

While we have shown that introducing search to language model agents achieves promising results
on web tasks, it does come with some practical limitations:

Search can be slow Introducing search allows us to expend more compute at inference time to
extract stronger results from the baseline LM agent. However, this results in trajectories taking sig-
nificantly longer to execute, as the agent has to perform more exploration and hence more inference
calls to the LM. For example, a search budget of c = 20 implies that an agent with search could
potentially expand up to 20 states in each search iteration, which would use up to 20× more LM
calls than an agent without search. Research on improving the efficiency and throughput of machine
learning systems (Leviathan et al., 2023; Dao et al., 2022; Dao, 2023) will likely help with optimiz-
ing this, but for practical deployment one may need to carefully set the search parameters b, d, and
c to balance between achieving better results and overall time spent completing a task.

In our approach, we implemented search by keeping track of the sequence of actions required to get
to a state. During backtracking, we reset the environment and apply the same sequence after resetting
the environment. This is necessary, as naively executing the go back action (Tab. 1) may discard
important information on the page, such as the scroll offset and already entered text. However,
these environment calls for backtracking introduce additional overhead, which may be restrictive
for deployment if calls to the environment are expensive.

Destructive actions For real world deployment, we will need to restrict the search space to actions
that are not destructive. Destructive actions are defined as actions that will irreversibly change
the state of the website and are difficult to backtrack from. For example, placing an order on an
e-commerce site is typically very difficult to automatically undo. One way to address this is to
introduce a classifier that predicts when certain actions are destructive, and prevent node expansion
for those states. If we have specific domain knowledge about the downstream application (e.g., we
know certain pages should be off limits), such rules can be manually enforced with high accuracy.
One advantage of tree search is that it is easier to incorporate such a constraint: it can be directly
integrated into the value function to prevent execution of dangerous actions. Another direction
to handle this would be to train a world model (Ha & Schmidhuber, 2018) that we can use for
simulations during search. Search may also be more easily implemented in offline settings where
actions are non-destructive as they can always be undone or reset, such as programming (Jimenez
et al., 2023; Yang et al., 2024) or Microsoft Excel (Li et al., 2024).

6 CONCLUSION

In this paper, we introduced an inference-time search algorithm designed to enhance the capabilities
of language model agents on realistic web tasks. Our approach integrates best-first tree search with
LM agents, enabling them to explore and evaluate multiple action trajectories to achieve superior
performance on web tasks. This is the first time search has been shown to significantly improve the
success rates of LM agents on realistic web environments, as demonstrated on the (Visual)WebArena
benchmarks. Our search procedure is general, and it will be valuable to apply it to other domains
in future work. We believe that inference-time search will be a key component for building capable
agents that can plan, reason, and act autonomously to perform computer tasks.
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ETHICS STATEMENT

As an active area of machine learning research, language model web agents present both opportuni-
ties and potential ethical considerations. Improved web agents could improve accessibility for users
with disabilities, automate repetitive or tedious tasks, and potentially democratize access to com-
plex web platforms. Our search method contributes towards making such benefits more reliable and
widely available by improving the robustness and success rate of language model agents. However,
we acknowledge several potential ethical considerations:

• Intended uses. Our work is a research product that aims to advance the development of
web agents that can help augment humans by automating computer tasks. It is not in its
current state intended for deployment in practical scenarios. However, we acknowledge
that as they get better, enhanced web agents might be leveraged for malicious purposes,
such as more sophisticated phishing attempts or automated attacks on web services. As
with all emerging technologies, developers deploying these technologies should incorpo-
rate consider potential misuse scenarios and implement the appropriate safeguards.

• Economic impact. As web agents become more capable, there may be concerns about
job displacement for roles that involve web-based tasks. We believe that web agents will
augment human capability, and will be able to improve the overall quality of work by
automating tedious computer tasks. However, as this technology starts being deployed
more broadly, researchers and developers should proactively consider how to manage this
transition and support affected workers.

• Fairness and bias. As with any modern AI system, web agents may inherit or amplify
biases present in their training data or underlying language models. Care must be taken
to assess and mitigate unfair treatment or representation of different user groups. As an
inference time algorithm, our approach can easily be applied to any off-the-shelf language
model, and will likely benefit from upstream efforts on language model safety and align-
ment.

Our approach also potentially provides a framework that could help address some of these concerns.
The value function in our tree search algorithm offers a natural way to encode safety constraints
at inference time. For example, classifiers can be integrated with our proposed value function to
prevent destructive actions or violations of privacy and security policies. We encourage further
research into the ethical implications of web agents, and the development of guidelines and best
practices for the responsible deployment of web agents.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide details of the tree search algorithm within this
paper (Sec. 3.3) as well as more formally in Appendix. A.4. The details of the models used are
also provided in Sec. 4.1. All other prompts and implementation details necessary to reproduce our
results are provided in Appendix A.3. In order to ensure long term reproducibility, we also provide
results for a setting with open model weights for longer term reproducibility, the Llama-3 agent with
the LLaVA value function (Appendix. A.2.1), in addition to the API-based agents (which at present
achieve higher performance than open sourced alternatives). All of our code and experiment launch
scripts are open sourced and made publicly available on GitHub at removed for review.
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A APPENDIX

In the appendix we provide further qualitative analysis and implementation details, including the
prompts used in our experiments.

A.1 QUALITATIVE EXAMPLES

We discuss several other qualitative examples from the agent with search.

Figure 4: WA task #14 is an example where performing more exploration helps the model to identify
a trajectory that is likely to be more successful than others.

Enabling exploration A significant advantage of models with search is their ability to explore
larger parts of the environment compared to models without search. Fig. 4 part of the search tree for
WebArena task #14 (in the CMS environment), where the model is able to take multiple plausible
actions at the first step (actions 1, 2, 3, and 4 in the graph), and expand the search tree to find the
best trajectory (3→ 5→ 6→ 10, which achieves the highest value of 0.68). In this case, the model
terminates after hitting the search budget c (rather than finding a state with value of 1.0), committing
to the best found trajectory thus far, which is successful. This also highlights that our value function
does not need to be perfect for search to be helpful.

Improving robustness As discussed in Sec. 5.3, the baseline agent can be prone to selecting bad
samples from the language model due to randomness from nucleus sampling. Search allows the
agent to explore each possibility and identify the best trajectories. VWA shopping task #96 (shown
in Fig. 5) is another example. The baseline agent fails on this task, but the agent with search avoids
the first two trajectories (ending at actions 3 and 4) due to low values assigned after exploring the
subsequent states. It is able to prune these and identify a successful trajectory (highlighted in Fig. 5).
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Task Instruction (   ): “I need something like this for my apartment. Can you add one to my 
wishlist?”

1 2 3

5
Success
✅

v = 0.5 v = 0.98

1 Search sequence Backtracking State valuesv = 0.4v = 0.5v = 1.0

v = 0.9

Legend:

v = 0.9

4
v = 0.9

v = 0.55
…

v = 0.45
…

6
v = 1.0

GPT-4o Agent + Search

Starting State

Figure 5: VWA shopping task #96 is another example where search allows the model to be more
robust to sampling bad actions. On this task, the baseline agent without search failed, but the agent
with search is able to prune less promising trajectories (faded nodes in the figure) to identify the
successful one.

Agent Model Value Function Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct (Koh et al., 2024) - 30 9.8% - -
GPT-4o + SoM (Koh et al., 2024) - 19.8% - -

Llama-3-70B-Instruct + captions LLaVA-1.6-34B

5

7.6% 13.5% +77.6%
Llama-3-70B-Instruct + captions GPT-4o 7.6% 16.7% +119.7%
Llama-3.1-70B-Instruct + captions GPT-4o 9.1% 16.2% +78.0%
GPT-4o-mini + SoM GPT-4o-mini 9.1% 14.4% +58.2%
GPT-4o + SoM GPT-4o 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b) -

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) - 15.6% - -
AutoWebGLM (Lai et al., 2024) - 18.2% - -
AutoEval (Pan et al., 2024) - 20.2% - -
BrowserGym (Drouin et al., 2024) - 23.5% - -
SteP (Sodhi et al., 2024) - 35.8% - -

Llama-3-70B-Instruct GPT-4o 5 7.6% 10.1% +32.3%
GPT-4o GPT-4o 15.0% 19.2% +28.0%

Table 8: Success rates (SR) and relative change (∆) for baseline models and models that employ
search on the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b)
benchmarks. We also show other published approaches. Search substantially improves our baseline
models, setting a new state-of-the-art on VWA.

A.2 ADDITIONAL ABLATIONS

A.2.1 VALUE FUNCTION ABLATIONS

In Sec. 4.2 of the main paper, we experimented with using gpt-4o as our value function. In Tab. 8,
we present results using different language models as the agent models and the value functions.
We observe that our tree search algorithm is effective across a range of different model sizes and
capabilities. In particular, our approach applied to the Llama-3-70B-Instruct and LLaVA-1.6-34B
value function yields a 77.6% relative improvement over the baseline Llama-3-70B-Instruct agent
on VWA (7.6% to 13.5%), and is a fully open sourced and reproducible baseline. For the GPT-4o-
mini model (a relatively weaker model compared to GPT-4o) we also observed improvements when
it is used as both the agent model and the value function, improving performance by 58.2% over the
no-search baseline on VWA (9.1% to 14.4%).
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A.2.2 COMPARISON TO TRAJECTORY-LEVEL RERANKING
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Success Rate vs. Number of Trajectories

Trajectory Reranking
Tree Search (c = 5)
Tree Search (c = 20)

Figure 6: Success rate of a trajectory re-ranking approach compared to our approach.

An alternative to tree search would be to generate multiple trajectories, re-rank, and commit to the
best one as scored by the value function, similar to the methods proposed in Chen et al. (2024b)
and Pan et al. (2024) without their Reflexion (Shinn et al., 2024) component. This is a less practical
method, as it is harder to prevent destructive actions from being executed (see Sec. 5.4 for more
discussion) as the agent is required to take the trajectory to completion before it can be evaluated.
It is also a more limited form of search, as it only considers entire trajectories and cannot backtrack
to prune bad branches. Nevertheless, we perform an ablation where we sample n trajectories from
the GPT-4o agent (with nucleus sampling (Holtzman et al., 2020) at each step using a temperature
of 1.0 and top-p of 0.95) and use the same value function to re-rank the trajectories, picking the best
one out of n.

We observe that this re-ranking baseline starts to plateau around 7 runs, which achieves a success rate
of 30%. This underperforms our approach with search budget c ≥ 5 (Fig. 2). It is also substantially
worse than our approach with c = 20, which achieves a success rate of 37.0% on the ablation subset.

A.3 IMPLEMENTATION DETAILS

A.3.1 LANGUAGE MODEL AGENTS

For all experiments, we use a webpage viewport width of 1280, a viewport height of 2048, and
truncate text observations to 3840 tokens. We sample from models using nucleus sampling with a
temperature of 1.0 and a temperature of 1.0 and a top-p of 0.95. The system message used in all our
experiments is provided in Fig. 7. This instructs the agent with the guidelines for the web navigation
task, and list out all the possible actions that it can perform.

For the GPT-4o agent on VWA, we use the same prompt with SoM prompting from Koh et al. (2024),
reproduced in Fig. 8. The model is provided with 3 in-context examples. A similar prompt (without
the image screenshots) is used for the caption-augmented Llama-3-70B-Instruct agent which takes
the caption-augmented accessibility tree as input (shown in Fig. 9). On WA, the agents take the
accessibility tree as input, and we use the same prompt from Zhou et al. (2024b) that includes 2
in-context examples (reproduced in Fig. 10).

A.3.2 VALUE FUNCTION

As described in Sec. 3.2, we implement the value function fv by prompting a multimodal language
model with all current and previously seen observations {o1, . . . , op}. We use a prompt similar to
the one from Pan et al. (2024), but make several modifications:
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You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based
tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page screenshot: This is a screenshot of the webpage, with each interactable element assigned
a unique numerical id. Each bounding box and its respective id shares the same color.
The observation, which lists the IDs of all interactable elements on the current web page with their text content
if any, in the format [id] [tagType] [text content]. tagType is the type of the element, such as button, link, or
textbox. text content is the text content of the element. For example, [1234] [button] [’Add to Cart’] means
that there is a button with id 1234 and text content ’Add to Cart’ on the current web page. [] [StaticText] [text]
means that the element is of some text that is not interactable.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
ˋˋˋclick [id]ˋˋˋ: This action clicks on an element with a specific id on the webpage.
ˋˋˋtype [id] [content]ˋˋˋ: Use this to type the content into the field with id. By default, the “Enter” key is
pressed after typing unless press enter after is set to 0, i.e., ˋˋˋtype [id] [content] [0]ˋˋˋ.
ˋˋˋhover [id]ˋˋˋ: Hover over an element with id.
ˋˋˋpress [key comb]ˋˋˋ: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
ˋˋˋscroll [down]ˋˋˋ or ˋˋˋscroll [up]ˋˋˋ: Scroll the page up or down.

Tab Management Actions:
ˋˋˋnew tabˋˋˋ: Open a new, empty browser tab.
ˋˋˋtab focus [tab index]ˋˋˋ: Switch the browser’s focus to a specific tab using its index.
ˋˋˋclose tabˋˋˋ: Close the currently active tab.

URL Navigation Actions:
ˋˋˋgoto [url]ˋˋˋ: Navigate to a specific URL.
ˋˋˋgo backˋˋˋ: Navigate to the previously viewed page.
ˋˋˋgo forwardˋˋˋ: Navigate to the next page (if a previous ’go back’ action was performed).

Completion Action:
ˋˋˋstop [answer]ˋˋˋ: Issue this action when you believe the task is complete. If the objective is to find a
text-based answer, provide the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites
you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You can use
them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform is”
phrase, followed by action inside ˋˋˋˋˋˋ. For example, “In summary, the next action I will perform is ˋˋˋclick
[1234]ˋˋˋ”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop.

Figure 7: System message from Koh et al. (2024) in our SoM agent.

• Instead of just the current screenshot, we include the last-d screenshots of the evaluated
trajectory, to enable the value function to more accurately compute success or failure for
tasks that involve multi-step reasoning (e.g., whether the final observation corresponds to
the second item in the second row of the second last observation).
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• We modify the instructions to include more detailed instructions about what constitutes a
failure or a success crtieria. This is necessary as our search occurs over a denser graph
(compared to generating and re-ranking trajectories), and requires a more accurate value
function. We refer readers to Chen et al. (2024b) for more discussion.

• Rather than a binary output, we instruct the model to produce whether the given observa-
tions have succeeded at the task or failed. If it fails, we further prompt the model to output
if it is possibly on the right track to success. This allows us to collect scores in ‘{0, 0.5, 1},
enabling more finegrained value outputs (in addition to the averaging of multiple reasoning
paths described in Sec. 4.1).

The full system message and prompt for the value function is provided in Tab. 11. We also note
that our value function is heavily visual, which may be one explanation for why our method is more
effective on the multimodal VWA benchmark than on WA (Sec. 4). Including more finegrained
textual information about the trajectory on top of the screenshots, such as the accessibility tree
representations of each page, may further improve its performance (at greater compute and API
cost).

A.4 SEARCH ALGORITHM

Algorithm 1 Our proposed search algorithm at step t

Require: depth d, branching factor b, search budget c, start state st
1: Initialize frontier F ← {} as a max priority queue
2: Initialize best state ŝt ← st
3: Initialize the best score v̂t ← −∞
4: Initialize the search counter s← 0
5: while s < c do
6: sp, vprev ← pop(F)
7: Backtrack and execute new actions to get to state sp
8: Compute the score vp = fv(I, {o1, . . . , op}) from current and previous observations
9: s← s+ 1

10: if vp ≥ v̂t then
11: v̂t ← vp
12: ŝt ← sp
13: end if
14: if vp ≥ θ then
15: break {Found a likely successful state}
16: end if
17: if s ≥ c then
18: break {Search budget exceeded}
19: end if
20: if |s0, ..., sp| < d then
21: Sample b candidates for the next action from the LM: {a1p, ..., abp} ∼ fθ(op)
22: for i← 1 to b do
23: Execute aip to get to state sip
24: Add new candidate state and the current value to the frontier: F ← F ∪ (sip, vp)
25: end for
26: end if
27: end while
28: Reset F ← {} and s← 0
29: Go to the best state ŝt
30: Set t← t+ (#actions to get from st to ŝt)

Our search procedure described in Sec. 3.3 is summarized in Algorithm. 1.
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A.4.1 ENVIRONMENT RESET

In this section, we describe the implementation details of the backtracking used in our search proce-
dure:

1. We maintain a max priority queue that contains sequences of actions and their score v (from
the value function). Each element is a sequence of actions that the agent has to sequentially
execute starting from the initial state (task dependent, but often the website homepage) to
get to state s that has the corresponding score v.

2. After we execute a new action (L23 of Algorithm. 1), we append this action to the sequence
of actions and add the new sequence to the priority queue with its corresponding score v.

3. In order to reset the environment to get a clean slate for the next node to explore, we reset
to the initial state again, and repeat the execution of the next sequence of actions starting
from step 1.

We implemented backtracking in this fashion, as we found that this was a substantially more com-
plete way of resetting the state, as opposed to simply clicking the “back” button on the browser for
example, as this does not persist certain web states such as the scroll offset, or retain text in text
inputs. While our implementation does improve fidelity of backtracking and resets, it however does
add significant overhead in terms of time (see Sec. 5.4 for more discussion).

The exact code implementation details can be found within the removed for review file of our
publicly available code at removed for review.
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example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[31] [IMG] [Image, description: hp fx-7010dn fax machine, url: B08GKZ3ZKD.0.jpg]
[32] [A] [HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)]
[ ] [StaticText] [$279.49]
[33] [BUTTON] [Add to Cart]
[34] [A] [Add to Wish List]
[35] [A] [Add to Compare]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue
the stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´
example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[ ] [StaticText] [/f/food]
[ ] [StaticText] [[homemade] Obligatory Halloween Pumpkin Loaf! Submitted by kneechalice t3 yid9lu 1
year ago]
[9] [IMG] [ ]
[ ] [StaticText] [Submitted by kneechalice t3 yid9lu 1 year ago]
[10] [A] [kneechalice]
[11] [A] [45 comments]
[ ] [StaticText] [[I ate] Maple Pecan Croissant Submitted by AccordingtoJP t3 y3hrpn 1 year ago]
[14] [IMG] [ ]
[ ] [StaticText] [Submitted by AccordingtoJP t3 y3hrpn 1 year ago]
[15] [A] [AccordingtoJP]
[16] [A] [204 comments]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which
is the post mentioned in the objective. In order to find the top comment, I will navigate into the comments
section of the post. In summary, the next action I will perform is ´´´click [11]´´´
example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[ ] [StaticText] [What are you looking for today?]
[5] [INPUT] [ ]
[6] [SELECT] [Select a category]
[7] [BUTTON] [Search]
[ ] [StaticText] [Latest Listings]
[ ] [StaticText] [Atlas Powered Audio System w/ Tripod 150.00 $ Music instruments Borough of Red Lion
(Pennsylvania) 2023/11/16]
[8] [IMG] [Atlas Powered Audio System w/ Tripod]
[9] [A] [Atlas Powered Audio System w/ Tripod]
[ ] [StaticText] [150.00 $]
[ ] [StaticText] [Neptune Gaming Console 350.00 $ Video gaming Pennwyn (Pennsylvania) 2023/11/16]
[10] [IMG] [Neptune Gaming Console]
[11] [A] [Neptune Gaming Console]
[ ] [StaticText] [350.00 $]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site.
The site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by
pressing the Enter afterwards. In summary, the next action I will perform is ´´´type [5] [guitar] [1]´´´

Figure 8: In-context examples and prompt adopted from Koh et al. (2024) for our SoM agents. The
webpage screenshots with SoM are added to the end of each round of the example user dialogue.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

example user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the
stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[204] [heading] [’/f/food’]
[593] [heading] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[942] [link] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[945] [StaticText] [’Submitted by ’]
[30] [link] [’kneechalice’ expanded: False]
[1484] [StaticText] [’t3 yid9lu’]
[949] [time] [’October 31, 2022 at 10:10:03 AM EDT’]
[1488] [StaticText] [’1 year ago’]
[1489] [link] [’45 comments’]
[605] [heading] [’[I ate] Maple Pecan Croissant’]
[963] [link] [’[I ate] Maple Pecan Croissant’]
[966] [StaticText] [’Submitted by ’]
[37] [link] [’AccordingtoJP’ expanded: False]
[1494] [StaticText] [’t3 y3hrpn’]
[970] [time] [’October 13, 2022 at 10:41:09 PM EDT’]
[1498] [StaticText] [’1 year ago’]
[1499] [link] [’204 comments’]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which
is the post mentioned in the objective. In order to find the top comment, I will navigate into the comments
section of the post. In summary, the next action I will perform is ´´´click [1499]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[42] [link] [’My account’]
[43] [link] [’Logout’]
[44] [link] [’Publish Ad’]
[25] [heading] [’What are you looking for today?’]
[143] [StaticText] [’Keyword’]
[81] [textbox] [’e.g., a blue used car’ required: False]
[146] [StaticText] [’Category’]
[28] [heading] [’Latest Listings’]
[86] [link] [’Atlas Powered Audio System w/ Tripod’]
[176] [img] [’Atlas Powered Audio System w/ Tripod’]
[511] [StaticText] [’150.00 $’]
[88] [link] [’Neptune Gaming Console’]
[178] [img] [’Neptune Gaming Console’]
[515] [StaticText] [’350.00 $’]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site.
The site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by
pressing the Enter afterwards. In summary, the next action I will perform is ´´´type [81] [guitar] [1]´´´

Figure 9: In-context examples and prompt used for the caption-augmented Llama-3 agent. The
webpage accessibility tree is added to the end of each round of the example user dialogue.
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example user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the
stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[164] [textbox] [’Search’ focused: True required: False]
[171] [button] [’Go’]
[174] [link] [’Find directions between two points’]
[212] [heading] [’Search Results’]
[216] [button] [’Close’]
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near CMU
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by “restaurants near”. I can
submit my typing by pressing the Enter afterwards. In summary, the next action I will perform is ´´´ type
[164][restaurants near CMU][1]´´´

Figure 10: In-context examples and prompt used for the text-only GPT-4o agent on WebArena. The
webpage accessibility tree is added to the end of each round of the example user dialogue.
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system message:
You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a
human user navigate a website to complete a task. Given the user’s intent, the agent’s action history, the final
state of the webpage, and the agent’s response to the user, your goal is to decide whether the agent’s execution
is successful or not. If the current state is a failure but it looks like the agent is on the right track towards
success, you should also output as such.

There are three types of tasks:
1. Information seeking: The user wants to obtain certain information from the webpage, such as the
information of a product, reviews, the text in a comment or post, the date of a submission, etc. This may be
formulated in the intent as “tell me”, “what is”, or “list out”. The agent’s response must contain the information
the user wants, or explicitly state that the information is not available. Otherwise, e.g. the agent encounters an
exception and respond with the error content, the task is considered to be a failure. It is VERY IMPORTANT
that the bot response is the stop action with the correct output. If the bot response is not stop (e.g., it is click,
type, or goto), it is considered a failure for information seeking tasks.
2. Site navigation: The user wants to navigate to a specific page (which may also be specified in the intent
as “find”, “show me”, “navigate to”). Carefully examine the agent’s action history and the final state of the
webpage (shown in the LAST IMAGE) to determine whether the agent successfully completes the task. It is
VERY IMPORTANT that the agent actually navigates to the specified page (reflected by the final state of the
webpage, in the LAST IMAGE) and NOT just output the name of the item or post. Make sure that the final
url is compatible with the task. For example, if you are tasked to navigate to a comment or an item, the final
page and url should be that of the specific comment/item and not the overall post or search page. If asked to
navigate to a page with a similar image, make sure that an image on the page is semantically SIMILAR to the
intent image. If asked to look for a particular post or item, make sure that the image on the page is EXACTLY
the intent image. For this type of task to be considered successful, the LAST IMAGE and current URL should
reflect the correct content. No need to consider the agent’s response.
3. Content modification: The user wants to modify the content of a webpage or configuration. Ensure that the
agent actually commits to the modification. For example, if the agent writes a review or a comment but does
not click post, the task is considered to be a failure. Carefully examine the agent’s action history and the final
state of the webpage to determine whether the agent successfully completes the task. No need to consider the
agent’s response.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: “success” or “failure”
On the right track to success: “yes” or “no”

user:
<intent screenshots>
User Intent: intent
<obs screenshot 1> ... <obs screenshot d>
Action History: last actions str
Bot response to the user: last response
Current URL: current url
The images corresponding to the user intent are shown in the FIRST {len(intent images)} images (before the
User Intent).
The last {len(screenshots)} snapshots of the agent’s trajectory are shown in the LAST {len(screenshots)}
images. The LAST IMAGE represents the current state of the webpage.

Figure 11: System message and prompt used for the value function. Blue text indicates items that
will be replaced by image content during the call to the value function.
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