
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TREE SEARCH FOR LANGUAGE MODEL AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous agents powered by language models (LMs) have demonstrated
promise in their ability to perform decision-making tasks such as web automation.
However, a key limitation remains: LMs, primarily optimized for natural language
understanding and generation, struggle with multi-step reasoning, planning, and
using environmental feedback when attempting to solve realistic computer tasks.
Towards addressing this, we propose an inference-time search algorithm for LM
agents to explicitly perform exploration and multi-step planning in interactive web
environments. Our approach is a form of best-first tree search that operates within
the actual environment space, and is complementary with most existing state-of-
the-art agents. It is the first tree search algorithm for LM agents that shows effec-
tiveness on realistic web tasks. On the challenging VisualWebArena benchmark,
applying our search algorithm on top of a GPT-4o agent yields a 39.7% relative
increase in success rate compared to the same baseline without search, setting a
state-of-the-art success rate of 26.4%. On WebArena, search also yields a 28.0%
relative improvement over a baseline agent, setting a competitive success rate of
19.2%. Our experiments showcase the effectiveness of search for web agents, and
we demonstrate that performance scales with increased test-time compute. We
conduct a thorough analysis of our results to highlight improvements from search,
limitations, and promising directions for future work. Our code and models are
publicly released at removed for review

1 INTRODUCTION

Building agents that can perceive, plan, and act autonomously has been a long standing goal of ar-
tificial intelligence research (Russell & Norvig, 1995; Franklin & Graesser, 1996). In recent years,
the advent of large language models (LMs) with strong general capabilities has paved the way to-
wards building language-guided agents that can automate computer tasks. However, the best LM
agents today are still far worse than humans. On the realistic web benchmarks WebArena (Zhou
et al., 2024b) and VisualWebArena (Koh et al., 2024), humans succeed on 78% and 89% of tasks
respectively, but agents — even those powered by the latest frontier models — are far worse, typi-
cally achieving success rates below 20%. One significant bottleneck in existing agents arises from
their inability to leverage test-time computation for exploration and multi-step planning. Search
and planning is especially important in open ended web environments, as the potential action space
(i.e., all possible actions one can take on a webpage) is much larger than in most video games or
text-based simulators. There are often multiple plausible actions that must be sequenced to reach a
goal, and being able to efficiently explore and prune trajectories is essential.

In artificial intelligence systems, one effective strategy for leveraging test-compute to improve re-
sults is search: iteratively constructing, exploring, and pruning a graph of intermediate states and
possible solutions (Newell et al., 1959; Laird, 2019; Silver et al., 2016). The effectiveness of search
algorithms has been shown time and time again, enabling models to achieve or surpass human-
level performance on a variety of games, including Go (Silver et al., 2016; 2017), poker (Brown &
Sandholm, 2018; 2019), and Diplomacy (Gray et al., 2020).

How might we apply search in the context of automating computer tasks, where the search space
is large and — unlike games — there do not exist clear cut rewards and win conditions? Towards
this goal, we propose a method to enable autonomous web agents to search over a graph that is
iteratively constructed through exploration of an interactive web environment. This search procedure
is grounded within the actual environment space, and is guided with environmental feedback. Our

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our proposed search algorithm. At each iteration, we pick the next state sp to expand from
frontier F and compute a score v for it using the value function. Then, we add the possible next
states that the agent can get to from sp to the frontier, and repeat the search procedure. Faded nodes
indicate explored and pruned states. The formal search algorithm is provided in Appendix. A.4.
Blue dashed arrows indicate backtracking.

approach allows agents to enumerate a much larger number of potentially promising trajectories at
test time, reducing uncertainty through explicit exploration and multi-step planning. To the best of
our knowledge, this is the first time that inference-time search has been shown to improve the success
rate of autonomous agents in realistic web environments. In order to handle the lack of clear cut
rewards in these diverse environments, we propose a model-based value function to guide best-first
search. The value function is computed by marginalizing over reasoning chains of a multimodal LM
conditioned on the agent’s observations, producing finegrained scores to effectively guide search.

Our experiments show that this search procedure is complementary with existing LM agents, and en-
ables these models to perform better on harder and longer horizon tasks. On VisualWebArena (Koh
et al., 2024), search improves the performance of a baseline GPT-4o (OpenAI, 2024) agent by 39.7%
relative to the baseline without search, setting a new state-of-the-art (SOTA) success rate of 26.4%.
On WebArena (Zhou et al., 2024b), search is also highly effective, contributing a 28.0% relative im-
provement (yielding a competitive success rate of 19.2%). We also demonstrate that our search pro-
cedure benefits from scale: achieving improved performance as the agent is allotted greater amounts
of test-time computation. Our code and models are publicly released at removed for review.

2 BACKGROUND

2.1 REALISTIC SIMULATED WEB ENVIRONMENTS

Towards the goal of developing autonomous web agents powered by large language models, several
prior works focused on building evaluation benchmarks for measuring the progress of models on web
tasks. Mind2Web (Deng et al., 2023) is an evaluation benchmark that measures the ability of fron-
tier models in predicting actions taken on static Internet pages. VisualWebBench (Liu et al., 2024b)
introduced a multimodal benchmark for assessing the ability of models to understand web content.
Others have looked towards simulators (as opposed to static HTML content): MiniWoB (Shi et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2017; Liu et al., 2018) was one of the first interactive simulators for web tasks, but consisted of
simplified environments that do not directly translate into real world performance. WebShop (Yao
et al., 2022a) simulates a simplified e-commerce site with real world data. WebLINX (Lù et al.,
2024) proposes a benchmark for tackling conversational web navigation, which involves communi-
cation between the agent and a human instructor. MMInA (Zhang et al., 2024c) and OSWorld (Xie
et al., 2024a) propose benchmarks to measure the ability of agents to accomplish tasks by navigating
across multiple computer applications. WorkArena (Drouin et al., 2024) is a simulated environment
for tasks on the ServiceNow platform. WebArena (WA) (Zhou et al., 2024b) is a benchmark of 812
tasks across 5 realistic self-hosted re-implementations of popular websites (Shopping, Reddit, CMS,
GitLab, Maps), each populated with real world data. VisualWebArena (VWA) (Koh et al., 2024) is a
multimodal extension to WebArena, consisting of 910 new tasks across realistic re-implementations
of 3 popular real world sites (Classifieds, Reddit, Shopping). To solve tasks in VWA, agents must
leverage visual grounding and understand image inputs, providing a realistic and challenging test
for multimodal agents.

Action Type a Description
click [elem] Click on elem.
hover [elem] Hover on elem.
type [elem] [text] Type text on elem.
press [key comb] Press a key combo.
new tab Open a new tab.
tab focus [index] Focus on the i-th tab.
tab close Close current tab.
goto [url] Open url.
go back Click back.
go forward Click forward.
scroll [up|down] Scroll up or down.
stop [answer] End with an output.

Table 1: Possible actions A in the (Vi-
sual)WebArena environments. Reproduced
with permission from Koh et al. (2024).

As the (V)WA environments are one of the most
realistic and comprehensive evaluation suites for
web tasks, we primarily benchmark our method on
(V)WA. We briefly describe the setting here but re-
fer readers to Zhou et al. (2024b) for additional con-
text. The environment E = (S,A,Ω, T) consists
of a set of states S, actions A (Tab. 1), and a de-
terministic transition function T : S × A → S
that defines transitions between states conditioned
on actions. Each task in the benchmark consists of
a goal specified with a natural language instruction
I (e.g., “Find me the cheapest red Toyota car below
$2000.”). Each task has a predefined reward func-
tion R : S × A → {0, 1} which measures whether
an agent’s execution is successful. We implement
our search algorithm on the (V)WA web simulators,
but our method is fully general and can be applied to
any setting with an interactive environment.

2.2 LANGUAGE-GUIDED AUTONOMOUS AGENTS

Autonomous web agents, powered by frontier (multimodal) language models (Google, 2023; Ope-
nAI, 2024; Anthropic, 2024), are the SOTA approaches for many of the above benchmarks. Kim
et al. (2024) showed that large language models can be prompted to execute computer tasks on Mini-
WoB++ (Liu et al., 2018), requiring far fewer demonstrations than reinforcement learning methods.
AutoWebGLM (Lai et al., 2024) collects web browsing data for curriculum training and develops
a web navigation agent based off a 6B parameter language model that outperforms GPT-4 on We-
bArena. Patel et al. (2024) showed that a language model agent can improve its performance through
finetuning on its own synthetically generated data. Pan et al. (2024) show that introducing an au-
tomatic evaluator to provide guidance on task failure or success can improve the performance of
a baseline Reflexion (Shinn et al., 2024) agent. Fu et al. (2024) extracts domain knowledge from
offline data and provides this to the language agent during inference, to enable it to leverage helpful
domain knowledge. SteP (Sodhi et al., 2024) and AWM (Wang et al., 2024b) propose methods to
enable agents to dynamically compose policies to solve web tasks.

In the multimodal setting, WebGUM (Furuta et al., 2024) finetuned a 3B parameter multimodal
language model on a large corpus of demonstrations, achieving strong performance on MiniWoB
and WebShop. Koh et al. (2024) showed that prompting multimodal language models with a Set-
of-Marks (Yang et al., 2023a) representation enables the model to navigate complex webpages more
effectively than text-only agents. SeeAct (Zheng et al., 2024) demonstrated that frontier multimodal
models such as GPT-4V (Yang et al., 2023b) and Gemini (Google, 2023) can be grounded and
prompted to solve web tasks. ICAL (Sarch et al., 2024) builds a memory of multimodal insights
from demonstrations and human feedback, improving performance on VisualWebArena.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Our procedure is an inference-time approach that is compatible with many of these past approaches
that focus on developing better base agents.

2.3 SEARCH AND PLANNING

Our method also draws inspiration from a rich history of search and planning algorithms in computer
science. Search algorithms such as breadth first search, depth first search, and A* search (Hart et al.,
1968) have long been used in artificial intelligence systems. Newell et al. (1959) and Laird (2019)
cast goal-oriented behavior as search through a space of possible states. Dean et al. (1993) and
Tash & Russell (1994) proposed planning algorithms over a limited search horizon, and employed
an expansion strategy to improve plans based off heuristics about the value of information. Tash &
Russell (1994) showed that this allowed agents to provide appropriate responses to time pressure and
randomness in the world. Deep Blue (Campbell et al., 2002), the chess engine which defeated world
champion Kasparov in chess in 1997, was based on massive parallel tree search. Pluribus (Brown &
Sandholm, 2019) leverages search to find better multiplayer poker strategies for dynamic situations.

In deep learning, search algorithms with neural network components have been instrumental in
achieving superhuman performance on many games: Monte-Carlo Tree Search (MCTS) (Browne
et al., 2012) was used to provide lookahead search in the AlphaGo (Silver et al., 2016; 2017) systems
that achieved superhuman performance in the game of Go. Gray et al. (2020) performs one-step
lookahead search to achieve SOTA on no-press Diplomacy. More recently, several papers (Yao
et al., 2024; Besta et al., 2024) showed the potential of applying search to large language models
to introduce exploration over multiple reasoning paths, enhancing performance on text based tasks
that require non-trivial planning. Others have applied MCTS (Xie et al., 2024b; Chen et al., 2024a;
Zhang et al., 2024b; Wang et al., 2024a; Zhang et al., 2024a; Zhou et al., 2024a; Hao et al., 2023) to
improve the performance of LMs on math and science benchmarks (Cobbe et al., 2021; Wang et al.,
2023a) or simplified environments (Yao et al., 2022a; Valmeekam et al., 2023).

In contrast to prior work, our setting is grounded in realistic web environments, and we search
over the actual environment space (i.e., the web). This means that the search mechanics need to
incorporate not just the text outputs of the agent, but also external environmental feedback from a
highly complex environment.

3 METHOD

In this section, we describe the search procedure (Fig. 1) in detail. Successfully solving a task in
a web environment such as (V)WA can be interpreted as navigating to a goal state s∗ which gives
a positive reward R(s∗) = 1. The agent starts at state s0 (e.g., the homepage). Given a natural
language instruction I , the agent’s goal is to navigate to s∗ by executing actions (a0, . . . , at) ∈ A.
Each action produces a new state st+1 ∈ S and observation ot+1 ∈ Ω from the environment. The
transition st → st+1 is governed by a deterministic transition function T : S ×A → S.

Most approaches treat this as a partially observable Markov decision process, and only condition
on the current observation ot when predicting the next action at to take. This has significant lim-
itations: the error of the agent compounds with each step, and if an erroneous action is taken at
time t, it cannot be easily rectified if this leads to a bad state in the future. Our approach aims to
alleviate this by explicitly conducting search and backtracking to identify better trajectories. There
are several components involved which we describe in the following sections: the baseline agent
model (Sec. 3.1), the value function (Sec. 3.2), and the search algorithm (Sec. 3.3)

3.1 AGENT BACKBONE

Most SOTA web agents are built through prompting large (multimodal) language models (Zhou
et al., 2024b; Pan et al., 2024; Fu et al., 2024; Zheng et al., 2024; Koh et al., 2024). A pretrained
language model or multimodal model fϕ is prompted with the current webpage observation ot and
instructed to predict the next action at to be executed. It is common to leverage prompting tech-
niques, such as ReAct (Yao et al., 2022b), RCI (Kim et al., 2024), or Chain-of-Thought (CoT)
prompting (Wei et al., 2022), to improve the performance of the agent. Language model agents also
allow us to sample a diverse set of actions (e.g., with nucleus sampling (Holtzman et al., 2020)),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

which is essential for creating plausible branches to explore during search (see Sec. 3.3). Our pro-
posed search algorithm can in principle be applied to any base agent. We show in Sec. 4 that search
improves inference-time performance on a range of models without retraining or finetuning fϕ.

3.2 VALUE FUNCTION

We implement a best-first search heuristic using a value function fv which estimates the expected
reward E[R(st)] of the current state st, where the ground truth goal state would provide perfect
reward of 1. As the state st of the simulator is not always accessible to the agent (st may include
private information such as database entries of the site), the value function computes the value vt
using the current and previous observations, as well as the natural language task instruction I:

vt = fv(I, {o1, . . . , ot}) ∈ [0, 1]

In our experiments, the value function is implemented by prompting a multimodal language model
with the natural language instruction and observations as screenshots (Sec. 4.1).

3.3 SEARCH ALGORITHM

Our proposed search algorithm is a best-first search method loosely inspired by A* search (Hart
et al., 1968), a classic graph traversal algorithm used widely in computer science. We use a language
model agent to propose candidate branches of the search tree. The search has hyperparameters depth
d, branching factor b, and search budget c which determine the maximum size of the search tree,1
and termination threshold θ. The search procedure is summarized in Fig. 1. We describe it in detail
in the following paragraphs and provide the formal algorithm in Appendix A.4.

At time t in the execution trajectory, the agent has previously executed a sequence of actions to arrive
at the current state st. We begin the search algorithm from st by initializing the frontier F ← {}
(implemented as a max priority queue) which holds the set of states that we plan to evaluate, the best
state found so far ŝt ← st, the score of the best sequence v̂t ← 0, and the search counter s← 0.

At each iteration of the search process, we extract the next state from the frontier, sp ← pop(F).
We use the value function to compute the score for state sp (with observation op and previous
observations o1, . . . , op−1):

vp = fv(I, {o1, . . . , op})

Then, we increment the search counter s, and if vp is higher than the current best score v̂t, we update
it and our best state accordingly:

s← s+ 1

ŝt ←
{
sp if vp > v̂t
ŝt otherwise

v̂t ← max(v̂t, vp)

If vp ≥ θ (i.e., the agent is likely to have found a goal state) or s ≥ c (the search budget has been
exceeded), we will terminate the search and navigate to the best state ŝt found thus far. Otherwise,
if the current branch does not exceed the maximum depth (i.e., |(s0, . . . , sp)| < d), we will generate
plausible next actions for branching by obtaining b candidate actions {a1p, . . . , abp} from the language
model agent fϕ. For each i, we execute aip and add the resulting state sip to the frontier with the score
of the current state2:

F ← F ∪ (vp, s
i
p) for i = 1, . . . , b

This concludes one iteration of search. If both of the termination conditions have not been reached,
we backtrack and repeat this process for the next best state from the updated frontier F .

1In Sec. 5.1 we show that increasing the size of the search tree improves results at the expense of using
increased compute for exploration.

2We opt for this approach instead of immediately computing the value for resulting states sip as immediate
evaluation requires more backtracking calls, which would incur much more overhead in the (V)WA simulators.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

We run experiments on the full set of 910 VisualWebArena (VWA) and 812 WebArena (WA) tasks.
These tasks are distributed across a set of diverse and realistic web environments: Classifieds, Red-
dit, and Shopping for VWA, and Shopping, CMS, Reddit, GitLab and Maps for WA.

4.1 IMPLEMENTATION DETAILS

Baseline agent models Our search algorithm is compatible with most off-the-shelf language
model agents. In this work, we test it with simpler, more general, prompt-based agents, and leave
incorporation of our method with more performant methods that incorporate domain-specific tech-
niques (Fu et al., 2024; Sodhi et al., 2024) for future work. We run several prompt-based agent
baselines with different input formats (full prompts provided in the appendix):

• Multimodal SoM: For multimodal models that accept multiple image-text inputs, such as
GPT-4o (OpenAI, 2024) (gpt-4o-2024-05-13), we run the multimodal agent from Koh
et al. (2024) with the same prompt. We similarly apply a preprocessing step to assign a
Set-of-Marks (SoM) (Yang et al., 2023a) representation to the webpage. This highlights
every interactable element on the webpage with a bounding box and a unique ID. The input
to the agent is a screenshot of the SoM-annotated webpage, and a text description of the
elements on the page with their corresponding SoM IDs.

• Caption-augmented: For base models that are not multimodal (e.g., Llama-3-70B-
Instruct (Dubey et al., 2024)), we run the caption-augmented agent with the same prompt
from Koh et al. (2024). We generate captions for each image on the webpage using an
off-the-shelf captioning model (in our case, BLIP-2; Li et al. 2023). The accessibility tree3

representation of the webpage observation is used as input observation at each step.

• Text-only: On WebArena (which does not require visual grounding), we run text-only
agents using the prompt from Zhou et al. (2024b), for both GPT-4o and Llama-3-70B-
Instruct. Similar to the caption-augmented baseline, this model uses an accessibility tree
representation of the current webpage as its input observation (without captions).

Search parameters We run these agents with and without search. Our search parameters are
set to d = 5, b = 5, c = 20, and we stop execution after a maximum of 5 actions. We enforce
these constraints due to compute and budget limitations, though we expect that increasing these
parameters is likely to further improve results (see Sec. 5.1 for results on scaling search parameters).
We note that the fairly strict limitations on maximum actions imply that there are certain tasks that
are intractable (e.g., VWA tasks with “hard” action difficulty usually require humans to execute 10 or
more actions to complete). Despite this, our results show that GPT-4o with search capped at 5 max
actions still substantially outperforms the GPT-4o baseline (without search) with 30 max actions.

Obtaining actions We sample actions using nucleus sampling (Holtzman et al., 2020) with a
temperature of 1.0 and top-p of 0.95 for all experiments. At each step of execution, we generate 20
outputs from the model by prompting it with CoT reasoning (Wei et al., 2022), and aggregate the
count of the action candidates. We use the top-b actions with the highest counts for branching.

Value function As detailed in Sec. 3.2, we require a value function which scores the likelihood
that the current state st is a goal state. We implement the value function by prompting a multimodal
language model with the task instruction I , screenshots of the agent’s trajectory, previous actions
the agent took, and the current page URL. The full prompt is provided in Appendix A.3.2. The
multimodal LM is instructed to output whether the current state is a success, a failure, and if it’s
a failure, whether it is on a trajectory towards success. These outputs are assigned values of 1,
0, and 0.5 respectively (and 0 for invalid output). In order to get more finegrained and reliable
scores, we leverage ideas from self-consistency prompting (Wang et al., 2023b), and sample multiple
reasoning paths by prompting the multimodal LM with CoT (Wei et al., 2022). We sample 20
different paths from the GPT-4o model using ancestral sampling (temperature of 1.0 and top-p of
1.0). The final value assigned to state st, used in the best-first search heuristic, is computed by

3https://developer.mozilla.org/en-US/docs/Glossary/Accessibility tree

6

https://developer.mozilla.org/en-US/docs/Glossary/Accessibility_tree

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Agent Model Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct + captions (Koh et al., 2024)
30

9.8% - -
GPT-4o + SoM (Koh et al., 2024) 19.8% - -
ICAL (Sarch et al., 2024) 23.4% - -

Llama-3-70B-Instruct + captions 5 7.6% 16.7% +119.7%
GPT-4o + SoM 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b)

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) 15.6% - -
AutoWebGLM (Lai et al., 2024) 18.2% - -
AutoEval (Pan et al., 2024) 20.2% - -
BrowserGym (Drouin et al., 2024) 23.5% - -
SteP (Sodhi et al., 2024) 35.8% - -

Llama-3-70B-Instruct 5 7.6% 10.1% +32.3%
GPT-4o 15.0% 19.2% +28.0%

Table 2: Success rates (SR) and relative change (∆) for baseline models and models that employ
search on the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b)
benchmarks. We also show other published approaches. Search substantially improves our baseline
models, setting a new state-of-the-art on VWA.

averaging the values from each of the 20 reasoning paths. In our implementation, calling the value
function is significantly cheaper than predicting the next action, as action prediction consumes more
input tokens for few-shot examples and the representation of the page. We estimate the API cost of
the GPT-4o SoM agent for action prediction to be approximately 2× that of computing the value.

4.2 RESULTS

Our results are summarized in Tab. 2. Introducing search increases success rate substantially across
the board. Search improves the success rate of the baseline GPT-4o + SoM agent on VWA by
39.7% relatively (increasing from 18.6% to 26.4%), setting a new state-of-the-art on the benchmark.
On WA, introducing search to the GPT-4o agent improves the success rate substantially as well,
increasing it by 28.0% relatively (15.0% to 19.2%). This is competitive with other prompt-based
agents on WA, but in future work it will be interesting to explore introducing search to stronger
baseline agents that incorporate domain-specific techniques, such as SteP (Sodhi et al., 2024) or
AutoGuide (Fu et al., 2024).

With weaker base models, we also observe substantial improvements. For the Llama-3 caption-
augmented agent on VWA, introducing search improves the success rate on VWA by 119.7% relative
to the baseline (7.6% to 16.7%). With search, Llama-3-70B-Instruct achieves success rates that are
close to the best frontier multimodal models that do not use search. On WebArena, we also see a
substantial relative improvement of 32.2% for the text-based Llama-3 agent (7.6% to 10.1%). The
strong performance of the Llama-3-70B-Instruct agent with search can prove to be a cost effective
agent model for iteration in future work that requires access to model internals. These results over a
variety of model scales and capabilities demonstrate the generality and effectiveness of our approach.

5 ANALYSIS

5.1 ABLATIONS

We conduct several ablation experiments on a subset of 200 tasks from VWA (100 Shopping tasks,
50 Reddit task, and 50 Classifieds tasks).

Search budget We plot the success rate of the GPT-4o agent with search limited to varying budgets
c ∈ {0, 5, 10, 15, 20} in Fig. 2. All experiments are conducted with search parameters of depth d = 5
and branching factor b = 5. The search budget specifies the maximum number of node expansions
performed at each step. For example, a search budget of 10 indicates that at most 10 nodes will be
expanded, after which the agent will commit to and execute the trajectory with the highest value. We
observe that success rate generally increases as search budget increases. Notably, performing even
very small amounts of search (c = 5) substantially improves success rate by 30.6% relative to not

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20

Max Search Budget c (# of node expansions)

0.0

0.1

0.2

0.3

0.4

S
uc

ce
ss

 R
at

e
(

)

Success Rate vs. Search Budget

Figure 2: Success rate on a subset of 200
VWA tasks with search budget c. c = 0 in-
dicates no search is performed. Success rate
generally increases as c increases.

Depth d Branch b SR (↑) ∆

0 1 24.5% 0%

1 3 26.0% +6%
5 32.0% +31%

2 3 31.5% +29%
5 35.0% +43%

3 5 35.5% +45%

5 5 37.0% +51%

Table 3: Success rate (SR) and relative change
(∆) over the baseline without search on a sub-
set of 200 VWA tasks with varying search
depth (d) and branching factor (b). d = 0 in-
dicates no search is performed. All methods
use a max search budget c = 20.

doing search (24.5% to 32.0%). When the budget is increased to c = 20, this improves success rate
by 51.0% relative to not doing search (from 24.5% to 37.0%), highlighting the benefit of scaling the
search budget. Running experiments with an even greater search budget to evaluate scaling trends
would be a promising future direction to explore.

Search depth and breadth We run an ablation experiment varying the search branching factor b
and maximum depth d. The results are summarized in Tab. 3. We observe that in general, success
rate increases as the size of search tree increases (along both b and d dimensions). In particular,
scaling both b and d is necessary to achieve strong performance.

Value Function SR (↑)
None (no search) 24.5%
LLaVA (w/ SC, n = 20) 30.0%
GPT-4o (no SC) 28.5%
GPT-4o (w/ SC, n = 5) 32.5%
GPT-4o (w/ SC, n = 20) 37.0%
Groundtruth 43.5%

Table 4: Success rate of the
GPT-4o agent with different
value functions.

Varying the value function We ablate the multimodal model
used for the value function, swapping out GPT-4o for (1) the
LLaVA-v1.6-34B (Liu et al., 2024a) multimodal model prompted
zero-shot (with only the current observation, as LLaVA only sup-
ports a single image input) and (2) the groundtruth reward from
VWA (which is a sparse reward signal that returns either 0 or 1),
and (3) GPT-4o without self-consistency. The results are summa-
rized in Tab. 4. We find that the GPT-4o value function significant
outperforms the LLaVA model, improving the result of the agent
from 30.0% to 37.0%. The groundtruth reward function achieves
a success rate of 43.5%. These results suggest that there is still
significant headroom in improving the search algorithm with better value functions. We also observe
that self-consistency is essential for good performance (28.5% → 37.0%), which we attribute to it
enabling marginalization over multiple reasoning chains, reducing noise during state evaluation.

5.2 SUCCESS RATE BREAKDOWN

Difficulty No Search Search ∆

easy 34.2% 42.3% +24%
medium 12.7% 22.2% +75%
hard 10.2% 14.9% +47%

Table 5: Success rates and relative change
(∆) of the GPT-4o agent on VWA tasks of
different action difficulty levels.

Success rate by task difficulty The VWA bench-
mark includes labels for the action difficulty of each
task. These labels are human annotated, and roughly
indicate the number of actions a human would need
to take to solve the tasks: easy tasks require 3 or
fewer actions, medium tasks require 4–9 actions, and
hard tasks demand 10 or more. These guidelines are
approximate and devised by the human annotators of
VWA, so there may exist more optimal solutions in
practice. The increase in success rate from introducing search is summarized in Tab. 5. Introducing
search improves performance across all difficulty levels, but it introduces much larger gains on tasks
of medium action difficulty, with a relative increase of 75% in success rate (from 12.7% to 22.2%).
We hypothesize that this is because our search parameters (max depth d = 5) are beneficial for a
large proportion of medium difficulty tasks. Conversely, achieving even better performance on hard

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Task Instruction (): “I recall seeing this exact item on the site, help me find the most recent
post of it. I recall seeing it in either the Collectibles or Antiques section.”

1 2

3 4

5
Success
✅

v = 0.5

v = 0.2

v = 0.53

v = 0.53

v = 0.45

v = 0.63

v = 0.63

…

…

1 Search sequence Backtracking State valuesv = 0.4v = 0.5v = 1.0

v = 1.0

6

Legend:

GPT-4o Agent + Search

Starting State

Figure 3: Search can improve the robustness of agents by filtering out bad actions. Shown above is a
trajectory for VWA classifieds task #48 where greedily picking the first sampled actions would have
led to a failure (by taking the path in the first row). Search avoids this failure mode by exploring and
pruning less promising paths, ultimately committing to the highlighted trajectory.

Website No Search Search ∆

Classifieds 18.4% 26.5% +44%
Reddit 17.1% 20.5% +20%
Shopping 20.0% 29.0% +45%

Overall 18.9% 26.4% +40%

Table 6: Success rates and relative change
(∆) of the GPT-4o agent on VWA websites.

Website No Search Search ∆

CMS 11.0% 16.5% +50%
Map 21.1% 25.8% +22%
Shopping 24.0% 28.1% +17%
Reddit 7.9% 10.5% +33%
Gitlab 10.2% 13.3% +30%

Overall 15.0% 19.2% +28%

Table 7: Success rates and relative change
(∆) of the GPT-4o agent on WA websites.

tasks may require search over deeper trees. Easy tasks likely do not benefit as much from search,
as they generally involve less multi-step planning (some can be solved with 1 or 2 actions), and
baselines already have higher success rates.

Success rates by website Tables 6 and 7 summarize the success rates across the various websites
in the VWA and WA benchmarks. We observe an improvement in success rates across the board,
demonstrating that our method generalizes across sites. Specifically, the increase is most substantial
on the Classifieds and Shopping sites in VWA, with relative increases of 44% and 45%, respectively.
Similarly, the CMS site in the WA benchmark shows a significant relative improvement of 50%.

5.3 QUALITATIVE RESULTS

In this section, we discuss some qualitative examples of agent trajectories, and identify various
failure modes that are solved when incorporating search.

More robust multi-step planning Many tasks in VWA and WA require an agent to keep a per-
sistent memory of multiple previous actions and observations. A common failure mode amongst
agents without search is that they tend to undo previous actions, or get stuck in loops (see Appendix
C.4 of Koh et al. 2024). An example for VWA shopping task #256 is shown in Fig. 1, where the
agent is tasked to add two different types of canned fruit from the same brand to the comparison
list. The baseline agent successfully adds the first item, but fails to navigate to the second item, as
it returns to the homepage in step 3 and gets confused. This is an example of compounding error
leading to overall task failure, which is fairly common in existing baseline agents without search.

When search is introduced, the agent explores other plausible trajectories and backtracks when those
eventually result in failure: the same GPT-4o agent with search is able to find a successful multi-step

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

trajectory for the same task, which involves adding the first item (action #1 in Fig. 1), typing in a
search query (action #6), and adding the correct second item to the comparison list (action #9).

Resolving uncertainty An inherent issue with sampling actions from language models is that
we are sampling from a distribution over text, and the first sample we generate may not always
be the best action to take in the environment. Search allows us to evaluate each generated action
concretely by executing it in the simulator, and use the received environmental feedback to make
better decisions. One example is VWA classifieds task #48 (Fig. 3), which is to find a post containing
a particular image. If the agent executes the first sampled action at every step (i.e., the sequence in
the top row), it results in failure. Search allows the agent to enumerate all possibilities by executing
plausible actions and receiving environment feedback.

5.4 LIMITATIONS

While we have shown that introducing search to language model agents achieves promising results
on web tasks, it does come with some practical limitations:

Search can be slow Introducing search allows us to expend more compute at inference time to
extract stronger results from the baseline LM agent. However, this results in trajectories taking sig-
nificantly longer to execute, as the agent has to perform more exploration and hence more inference
calls to the LM. For example, a search budget of c = 20 implies that an agent with search could
potentially expand up to 20 states in each search iteration, which would use up to 20× more LM
calls than an agent without search. Research on improving the efficiency and throughput of machine
learning systems (Leviathan et al., 2023; Dao et al., 2022; Dao, 2023) will likely help with optimiz-
ing this, but for practical deployment one may need to carefully set the search parameters b, d, and
c to balance between achieving better results and overall time spent completing a task.

In our approach, we implemented search by keeping track of the sequence of actions required to get
to a state. During backtracking, we reset the environment and apply the same sequence after resetting
the environment. This is necessary, as naively executing the go back action (Tab. 1) may discard
important information on the page, such as the scroll offset and already entered text. However,
these environment calls for backtracking introduce additional overhead, which may be restrictive
for deployment if calls to the environment are expensive.

Destructive actions For real world deployment, we will need to restrict the search space to actions
that are not destructive. Destructive actions are defined as actions that will irreversibly change
the state of the website and are difficult to backtrack from. For example, placing an order on an
e-commerce site is typically very difficult to automatically undo. One way to address this is to
introduce a classifier that predicts when certain actions are destructive, and prevent node expansion
for those states. If we have specific domain knowledge about the downstream application (e.g., we
know certain pages should be off limits), such rules can be manually enforced with high accuracy.
One advantage of tree search is that it is easier to incorporate such a constraint: it can be directly
integrated into the value function to prevent execution of dangerous actions. Another direction
to handle this would be to train a world model (Ha & Schmidhuber, 2018) that we can use for
simulations during search. Search may also be more easily implemented in offline settings where
actions are non-destructive as they can always be undone or reset, such as programming (Jimenez
et al., 2023; Yang et al., 2024) or Microsoft Excel (Li et al., 2024).

6 CONCLUSION

In this paper, we introduced an inference-time search algorithm designed to enhance the capabilities
of language model agents on realistic web tasks. Our approach integrates best-first tree search with
LM agents, enabling them to explore and evaluate multiple action trajectories to achieve superior
performance on web tasks. This is the first time search has been shown to significantly improve the
success rates of LM agents on realistic web environments, as demonstrated on the (Visual)WebArena
benchmarks. Our search procedure is general, and it will be valuable to apply it to other domains
in future work. We believe that inference-time search will be a key component for building capable
agents that can plan, reason, and act autonomously to perform computer tasks.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

As an active area of machine learning research, language model web agents present both opportuni-
ties and potential ethical considerations. Improved web agents could improve accessibility for users
with disabilities, automate repetitive or tedious tasks, and potentially democratize access to com-
plex web platforms. Our search method contributes towards making such benefits more reliable and
widely available by improving the robustness and success rate of language model agents. However,
we acknowledge several potential ethical considerations:

• Intended uses. Our work is a research product that aims to advance the development of
web agents that can help augment humans by automating computer tasks. It is not in its
current state intended for deployment in practical scenarios. However, we acknowledge
that as they get better, enhanced web agents might be leveraged for malicious purposes,
such as more sophisticated phishing attempts or automated attacks on web services. As
with all emerging technologies, developers deploying these technologies should incorpo-
rate consider potential misuse scenarios and implement the appropriate safeguards.

• Economic impact. As web agents become more capable, there may be concerns about
job displacement for roles that involve web-based tasks. We believe that web agents will
augment human capability, and will be able to improve the overall quality of work by
automating tedious computer tasks. However, as this technology starts being deployed
more broadly, researchers and developers should proactively consider how to manage this
transition and support affected workers.

• Fairness and bias. As with any modern AI system, web agents may inherit or amplify
biases present in their training data or underlying language models. Care must be taken
to assess and mitigate unfair treatment or representation of different user groups. As an
inference time algorithm, our approach can easily be applied to any off-the-shelf language
model, and will likely benefit from upstream efforts on language model safety and align-
ment.

Our approach also potentially provides a framework that could help address some of these concerns.
The value function in our tree search algorithm offers a natural way to encode safety constraints
at inference time. For example, classifiers can be integrated with our proposed value function to
prevent destructive actions or violations of privacy and security policies. We encourage further
research into the ethical implications of web agents, and the development of guidelines and best
practices for the responsible deployment of web agents.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide details of the tree search algorithm within this
paper (Sec. 3.3) as well as more formally in Appendix. A.4. The details of the models used are
also provided in Sec. 4.1. All other prompts and implementation details necessary to reproduce our
results are provided in Appendix A.3. In order to ensure long term reproducibility, we also provide
results for a setting with open model weights for longer term reproducibility, the Llama-3 agent with
the LLaVA value function (Appendix. A.2.1), in addition to the API-based agents (which at present
achieve higher performance than open sourced alternatives). All of our code and experiment launch
scripts are open sourced and made publicly available on GitHub at removed for review.

REFERENCES

AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In AAAI, 2024.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 2012.

Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence,
2002.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. arXiv preprint arXiv:2405.03553, 2024a.

Ziru Chen, Michael White, Raymond Mooney, Ali Payani, Yu Su, and Huan Sun. When is tree
search useful for llm planning? it depends on the discriminator. ACL, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. NeurIPS, 2022.

Thomas L Dean, Leslie Pack Kaelbling, Jak Kirman, Ann E Nicholson, et al. Planning with dead-
lines in stochastic domains. In AAAI, 1993.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. NeurIPS, 2023.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for autonomous
agents. In International workshop on agent theories, architectures, and languages, pp. 21–35.
Springer, 1996.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. Autoguide: Automated generation and selection of state-aware guidelines for
large language model agents. arXiv preprint arXiv:2403.08978, 2024.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models.
ICLR, 2024.

Gemini Team Google. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

Jonathan Gray, Adam Lerer, Anton Bakhtin, and Noam Brown. Human-level performance in no-
press diplomacy via equilibrium search. arXiv preprint arXiv:2010.02923, 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. EMNLP, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. ICLR, 2020.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
Advances in Neural Information Processing Systems, 36, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. ACL, 2024.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: Bootstrap and reinforce a large lan-
guage model-based web navigating agent. arXiv preprint arXiv:2404.03648, 2024.

John E Laird. The Soar cognitive architecture. MIT press, 2019.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In ICML, 2023.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. NeurIPS, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, 2023.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. ICLR, 2018.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang
Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and
grounding? arXiv preprint arXiv:2404.05955, 2024b.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with multi-
turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general problem solving program.
In IFIP congress, volume 256, pp. 64, 1959.

OpenAI. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris
Callison-Burch, and Sepp Hochreiter. Large language models can self-improve at web agent
tasks. arXiv preprint arXiv:2405.20309, 2024.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach, 1995.

Gabriel Sarch, Lawrence Jang, Michael J Tarr, William W Cohen, Kenneth Marino, and Katerina
Fragkiadaki. Ical: Continual learning of multimodal agents by transforming trajectories into
actionable insights. arXiv preprint arXiv:2406.14596, 2024.

13

https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://openai.com/index/hello-gpt-4o/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In ICML, 2017.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. NeurIPS, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Paloma Sodhi, SRK Branavan, Yoav Artzi, and Ryan McDonald. Step: Stacked llm policies for web
actions. arXiv preprint arXiv:2310.03720v2, 2024.

Jonathan Tash and Stuart Russell. Control strategies for a stochastic planner. In AAAI, 1994.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. NeurIPS, 2023.

Ante Wang, Linfeng Song, Ye Tian, Baolin Peng, Dian Yu, Haitao Mi, Jinsong Su, and Dong Yu.
Litesearch: Efficacious tree search for llm. arXiv preprint arXiv:2407.00320, 2024a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
entific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
ICLR, 2023b.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory.
arXiv preprint arXiv:2409.07429, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS,
2022.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024a.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning.
arXiv preprint arXiv:2405.00451, 2024b.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023a.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
arXiv preprint arXiv:2405.15793, 2024.

Zhengyuan Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Chung-Ching Lin, Zicheng Liu, and Li-
juan Wang. The dawn of lmms: Preliminary explorations with gpt-4v (ision). arXiv preprint
arXiv:2309.17421, 9(1), 2023b.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. NeurIPS, 2022a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. ICLR, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. NeurIPS,
2024.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024a.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing
gpt-4 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b.
arXiv preprint arXiv:2406.07394, 2024b.

Ziniu Zhang, Shulin Tian, Liangyu Chen, and Ziwei Liu. Mmina: Benchmarking multihop multi-
modal internet agents. arXiv preprint arXiv:2404.09992, 2024c.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. ICML, 2024a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. ICLR, 2024b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A APPENDIX

In the appendix we provide further qualitative analysis and implementation details, including the
prompts used in our experiments.

A.1 QUALITATIVE EXAMPLES

We discuss several other qualitative examples from the agent with search.

Figure 4: WA task #14 is an example where performing more exploration helps the model to identify
a trajectory that is likely to be more successful than others.

Enabling exploration A significant advantage of models with search is their ability to explore
larger parts of the environment compared to models without search. Fig. 4 part of the search tree for
WebArena task #14 (in the CMS environment), where the model is able to take multiple plausible
actions at the first step (actions 1, 2, 3, and 4 in the graph), and expand the search tree to find the
best trajectory (3→ 5→ 6→ 10, which achieves the highest value of 0.68). In this case, the model
terminates after hitting the search budget c (rather than finding a state with value of 1.0), committing
to the best found trajectory thus far, which is successful. This also highlights that our value function
does not need to be perfect for search to be helpful.

Improving robustness As discussed in Sec. 5.3, the baseline agent can be prone to selecting bad
samples from the language model due to randomness from nucleus sampling. Search allows the
agent to explore each possibility and identify the best trajectories. VWA shopping task #96 (shown
in Fig. 5) is another example. The baseline agent fails on this task, but the agent with search avoids
the first two trajectories (ending at actions 3 and 4) due to low values assigned after exploring the
subsequent states. It is able to prune these and identify a successful trajectory (highlighted in Fig. 5).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Task Instruction (): “I need something like this for my apartment. Can you add one to my
wishlist?”

1 2 3

5
Success
✅

v = 0.5 v = 0.98

1 Search sequence Backtracking State valuesv = 0.4v = 0.5v = 1.0

v = 0.9

Legend:

v = 0.9

4
v = 0.9

v = 0.55
…

v = 0.45
…

6
v = 1.0

GPT-4o Agent + Search

Starting State

Figure 5: VWA shopping task #96 is another example where search allows the model to be more
robust to sampling bad actions. On this task, the baseline agent without search failed, but the agent
with search is able to prune less promising trajectories (faded nodes in the figure) to identify the
successful one.

Agent Model Value Function Max Steps No Search + Search ∆

VWA

Llama-3-70B-Instruct (Koh et al., 2024) - 30 9.8% - -
GPT-4o + SoM (Koh et al., 2024) - 19.8% - -

Llama-3-70B-Instruct + captions LLaVA-1.6-34B

5

7.6% 13.5% +77.6%
Llama-3-70B-Instruct + captions GPT-4o 7.6% 16.7% +119.7%
Llama-3.1-70B-Instruct + captions GPT-4o 9.1% 16.2% +78.0%
GPT-4o-mini + SoM GPT-4o-mini 9.1% 14.4% +58.2%
GPT-4o + SoM GPT-4o 18.9% 26.4% +39.7%

WA

GPT-4o (Zhou et al., 2024b) -

30

13.1% - -
GPT-4 + Reflexion (Pan et al., 2024) - 15.6% - -
AutoWebGLM (Lai et al., 2024) - 18.2% - -
AutoEval (Pan et al., 2024) - 20.2% - -
BrowserGym (Drouin et al., 2024) - 23.5% - -
SteP (Sodhi et al., 2024) - 35.8% - -

Llama-3-70B-Instruct GPT-4o 5 7.6% 10.1% +32.3%
GPT-4o GPT-4o 15.0% 19.2% +28.0%

Table 8: Success rates (SR) and relative change (∆) for baseline models and models that employ
search on the VisualWebArena (VWA) (Koh et al., 2024) and WebArena (WA) (Zhou et al., 2024b)
benchmarks. We also show other published approaches. Search substantially improves our baseline
models, setting a new state-of-the-art on VWA.

A.2 ADDITIONAL ABLATIONS

A.2.1 VALUE FUNCTION ABLATIONS

In Sec. 4.2 of the main paper, we experimented with using gpt-4o as our value function. In Tab. 8,
we present results using different language models as the agent models and the value functions.
We observe that our tree search algorithm is effective across a range of different model sizes and
capabilities. In particular, our approach applied to the Llama-3-70B-Instruct and LLaVA-1.6-34B
value function yields a 77.6% relative improvement over the baseline Llama-3-70B-Instruct agent
on VWA (7.6% to 13.5%), and is a fully open sourced and reproducible baseline. For the GPT-4o-
mini model (a relatively weaker model compared to GPT-4o) we also observed improvements when
it is used as both the agent model and the value function, improving performance by 58.2% over the
no-search baseline on VWA (9.1% to 14.4%).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2.2 COMPARISON TO TRAJECTORY-LEVEL RERANKING

1 2 3 4 5 6 7

Number of Trajectories n

0.0

0.1

0.2

0.3

0.4

S
uc

ce
ss

 R
at

e
(

)

Success Rate vs. Number of Trajectories

Trajectory Reranking
Tree Search (c = 5)
Tree Search (c = 20)

Figure 6: Success rate of a trajectory re-ranking approach compared to our approach.

An alternative to tree search would be to generate multiple trajectories, re-rank, and commit to the
best one as scored by the value function, similar to the methods proposed in Chen et al. (2024b)
and Pan et al. (2024) without their Reflexion (Shinn et al., 2024) component. This is a less practical
method, as it is harder to prevent destructive actions from being executed (see Sec. 5.4 for more
discussion) as the agent is required to take the trajectory to completion before it can be evaluated.
It is also a more limited form of search, as it only considers entire trajectories and cannot backtrack
to prune bad branches. Nevertheless, we perform an ablation where we sample n trajectories from
the GPT-4o agent (with nucleus sampling (Holtzman et al., 2020) at each step using a temperature
of 1.0 and top-p of 0.95) and use the same value function to re-rank the trajectories, picking the best
one out of n.

We observe that this re-ranking baseline starts to plateau around 7 runs, which achieves a success rate
of 30%. This underperforms our approach with search budget c ≥ 5 (Fig. 2). It is also substantially
worse than our approach with c = 20, which achieves a success rate of 37.0% on the ablation subset.

A.3 IMPLEMENTATION DETAILS

A.3.1 LANGUAGE MODEL AGENTS

For all experiments, we use a webpage viewport width of 1280, a viewport height of 2048, and
truncate text observations to 3840 tokens. We sample from models using nucleus sampling with a
temperature of 1.0 and a temperature of 1.0 and a top-p of 0.95. The system message used in all our
experiments is provided in Fig. 7. This instructs the agent with the guidelines for the web navigation
task, and list out all the possible actions that it can perform.

For the GPT-4o agent on VWA, we use the same prompt with SoM prompting from Koh et al. (2024),
reproduced in Fig. 8. The model is provided with 3 in-context examples. A similar prompt (without
the image screenshots) is used for the caption-augmented Llama-3-70B-Instruct agent which takes
the caption-augmented accessibility tree as input (shown in Fig. 9). On WA, the agents take the
accessibility tree as input, and we use the same prompt from Zhou et al. (2024b) that includes 2
in-context examples (reproduced in Fig. 10).

A.3.2 VALUE FUNCTION

As described in Sec. 3.2, we implement the value function fv by prompting a multimodal language
model with all current and previously seen observations {o1, . . . , op}. We use a prompt similar to
the one from Pan et al. (2024), but make several modifications:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given web-based
tasks. These tasks will be accomplished through the use of specific actions you can issue.

Here’s the information you’ll have:
The user’s objective: This is the task you’re trying to complete.
The current web page screenshot: This is a screenshot of the webpage, with each interactable element assigned
a unique numerical id. Each bounding box and its respective id shares the same color.
The observation, which lists the IDs of all interactable elements on the current web page with their text content
if any, in the format [id] [tagType] [text content]. tagType is the type of the element, such as button, link, or
textbox. text content is the text content of the element. For example, [1234] [button] [’Add to Cart’] means
that there is a button with id 1234 and text content ’Add to Cart’ on the current web page. [] [StaticText] [text]
means that the element is of some text that is not interactable.
The current web page’s URL: This is the page you’re currently navigating.
The open tabs: These are the tabs you have open.
The previous action: This is the action you just performed. It may be helpful to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
ˋˋˋclick [id]ˋˋˋ: This action clicks on an element with a specific id on the webpage.
ˋˋˋtype [id] [content]ˋˋˋ: Use this to type the content into the field with id. By default, the “Enter” key is
pressed after typing unless press enter after is set to 0, i.e., ˋˋˋtype [id] [content] [0]ˋˋˋ.
ˋˋˋhover [id]ˋˋˋ: Hover over an element with id.
ˋˋˋpress [key comb]ˋˋˋ: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+v).
ˋˋˋscroll [down]ˋˋˋ or ˋˋˋscroll [up]ˋˋˋ: Scroll the page up or down.

Tab Management Actions:
ˋˋˋnew tabˋˋˋ: Open a new, empty browser tab.
ˋˋˋtab focus [tab index]ˋˋˋ: Switch the browser’s focus to a specific tab using its index.
ˋˋˋclose tabˋˋˋ: Close the currently active tab.

URL Navigation Actions:
ˋˋˋgoto [url]ˋˋˋ: Navigate to a specific URL.
ˋˋˋgo backˋˋˋ: Navigate to the previously viewed page.
ˋˋˋgo forwardˋˋˋ: Navigate to the next page (if a previous ’go back’ action was performed).

Completion Action:
ˋˋˋstop [answer]ˋˋˋ: Issue this action when you believe the task is complete. If the objective is to find a
text-based answer, provide the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of websites
you can visit.
http://homepage.com/password.html lists all the account name and password for the websites. You can use
them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform is”
phrase, followed by action inside ˋˋˋˋˋˋ. For example, “In summary, the next action I will perform is ˋˋˋclick
[1234]ˋˋˋ”.
5. Issue stop action when you think you have achieved the objective. Don’t generate anything after stop.

Figure 7: System message from Koh et al. (2024) in our SoM agent.

• Instead of just the current screenshot, we include the last-d screenshots of the evaluated
trajectory, to enable the value function to more accurately compute success or failure for
tasks that involve multi-step reasoning (e.g., whether the final observation corresponds to
the second item in the second row of the second last observation).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• We modify the instructions to include more detailed instructions about what constitutes a
failure or a success crtieria. This is necessary as our search occurs over a denser graph
(compared to generating and re-ranking trajectories), and requires a more accurate value
function. We refer readers to Chen et al. (2024b) for more discussion.

• Rather than a binary output, we instruct the model to produce whether the given observa-
tions have succeeded at the task or failed. If it fails, we further prompt the model to output
if it is possibly on the right track to success. This allows us to collect scores in ‘{0, 0.5, 1},
enabling more finegrained value outputs (in addition to the averaging of multiple reasoning
paths described in Sec. 4.1).

The full system message and prompt for the value function is provided in Tab. 11. We also note
that our value function is heavily visual, which may be one explanation for why our method is more
effective on the multimodal VWA benchmark than on WA (Sec. 4). Including more finegrained
textual information about the trajectory on top of the screenshots, such as the accessibility tree
representations of each page, may further improve its performance (at greater compute and API
cost).

A.4 SEARCH ALGORITHM

Algorithm 1 Our proposed search algorithm at step t

Require: depth d, branching factor b, search budget c, start state st
1: Initialize frontier F ← {} as a max priority queue
2: Initialize best state ŝt ← st
3: Initialize the best score v̂t ← −∞
4: Initialize the search counter s← 0
5: while s < c do
6: sp, vprev ← pop(F)
7: Backtrack and execute new actions to get to state sp
8: Compute the score vp = fv(I, {o1, . . . , op}) from current and previous observations
9: s← s+ 1

10: if vp ≥ v̂t then
11: v̂t ← vp
12: ŝt ← sp
13: end if
14: if vp ≥ θ then
15: break {Found a likely successful state}
16: end if
17: if s ≥ c then
18: break {Search budget exceeded}
19: end if
20: if |s0, ..., sp| < d then
21: Sample b candidates for the next action from the LM: {a1p, ..., abp} ∼ fθ(op)
22: for i← 1 to b do
23: Execute aip to get to state sip
24: Add new candidate state and the current value to the frontier: F ← F ∪ (sip, vp)
25: end for
26: end if
27: end while
28: Reset F ← {} and s← 0
29: Go to the best state ŝt
30: Set t← t+ (#actions to get from st to ŝt)

Our search procedure described in Sec. 3.3 is summarized in Algorithm. 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4.1 ENVIRONMENT RESET

In this section, we describe the implementation details of the backtracking used in our search proce-
dure:

1. We maintain a max priority queue that contains sequences of actions and their score v (from
the value function). Each element is a sequence of actions that the agent has to sequentially
execute starting from the initial state (task dependent, but often the website homepage) to
get to state s that has the corresponding score v.

2. After we execute a new action (L23 of Algorithm. 1), we append this action to the sequence
of actions and add the new sequence to the priority queue with its corresponding score v.

3. In order to reset the environment to get a clean slate for the next node to explore, we reset
to the initial state again, and repeat the execution of the next sequence of actions starting
from step 1.

We implemented backtracking in this fashion, as we found that this was a substantially more com-
plete way of resetting the state, as opposed to simply clicking the “back” button on the browser for
example, as this does not persist certain web states such as the scroll offset, or retain text in text
inputs. While our implementation does improve fidelity of backtracking and resets, it however does
add significant overhead in terms of time (see Sec. 5.4 for more discussion).

The exact code implementation details can be found within the removed for review file of our
publicly available code at removed for review.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[31] [IMG] [Image, description: hp fx-7010dn fax machine, url: B08GKZ3ZKD.0.jpg]
[32] [A] [HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)]
[] [StaticText] [$279.49]
[33] [BUTTON] [Add to Cart]
[34] [A] [Add to Wish List]
[35] [A] [Add to Compare]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue
the stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´
example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[] [StaticText] [/f/food]
[] [StaticText] [[homemade] Obligatory Halloween Pumpkin Loaf! Submitted by kneechalice t3 yid9lu 1
year ago]
[9] [IMG] []
[] [StaticText] [Submitted by kneechalice t3 yid9lu 1 year ago]
[10] [A] [kneechalice]
[11] [A] [45 comments]
[] [StaticText] [[I ate] Maple Pecan Croissant Submitted by AccordingtoJP t3 y3hrpn 1 year ago]
[14] [IMG] []
[] [StaticText] [Submitted by AccordingtoJP t3 y3hrpn 1 year ago]
[15] [A] [AccordingtoJP]
[16] [A] [204 comments]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which
is the post mentioned in the objective. In order to find the top comment, I will navigate into the comments
section of the post. In summary, the next action I will perform is ´´´click [11]´´´
example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[] [StaticText] [What are you looking for today?]
[5] [INPUT] []
[6] [SELECT] [Select a category]
[7] [BUTTON] [Search]
[] [StaticText] [Latest Listings]
[] [StaticText] [Atlas Powered Audio System w/ Tripod 150.00 $ Music instruments Borough of Red Lion
(Pennsylvania) 2023/11/16]
[8] [IMG] [Atlas Powered Audio System w/ Tripod]
[9] [A] [Atlas Powered Audio System w/ Tripod]
[] [StaticText] [150.00 $]
[] [StaticText] [Neptune Gaming Console 350.00 $ Video gaming Pennwyn (Pennsylvania) 2023/11/16]
[10] [IMG] [Neptune Gaming Console]
[11] [A] [Neptune Gaming Console]
[] [StaticText] [350.00 $]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site.
The site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by
pressing the Enter afterwards. In summary, the next action I will perform is ´´´type [5] [guitar] [1]´´´

Figure 8: In-context examples and prompt adopted from Koh et al. (2024) for our SoM agents. The
webpage screenshots with SoM are added to the end of each round of the example user dialogue.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

example user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the
stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[204] [heading] [’/f/food’]
[593] [heading] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[942] [link] [’[homemade] Obligatory Halloween Pumpkin Loaf!’]
[945] [StaticText] [’Submitted by ’]
[30] [link] [’kneechalice’ expanded: False]
[1484] [StaticText] [’t3 yid9lu’]
[949] [time] [’October 31, 2022 at 10:10:03 AM EDT’]
[1488] [StaticText] [’1 year ago’]
[1489] [link] [’45 comments’]
[605] [heading] [’[I ate] Maple Pecan Croissant’]
[963] [link] [’[I ate] Maple Pecan Croissant’]
[966] [StaticText] [’Submitted by ’]
[37] [link] [’AccordingtoJP’ expanded: False]
[1494] [StaticText] [’t3 y3hrpn’]
[970] [time] [’October 13, 2022 at 10:41:09 PM EDT’]
[1498] [StaticText] [’1 year ago’]
[1499] [link] [’204 comments’]
URL: http://reddit.com
OBJECTIVE: Tell me what the top comment on the croissant post says.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a post titled ’[I ate] Maple Pecan Croissant’, which
is the post mentioned in the objective. In order to find the top comment, I will navigate into the comments
section of the post. In summary, the next action I will perform is ´´´click [1499]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[42] [link] [’My account’]
[43] [link] [’Logout’]
[44] [link] [’Publish Ad’]
[25] [heading] [’What are you looking for today?’]
[143] [StaticText] [’Keyword’]
[81] [textbox] [’e.g., a blue used car’ required: False]
[146] [StaticText] [’Category’]
[28] [heading] [’Latest Listings’]
[86] [link] [’Atlas Powered Audio System w/ Tripod’]
[176] [img] [’Atlas Powered Audio System w/ Tripod’]
[511] [StaticText] [’150.00 $’]
[88] [link] [’Neptune Gaming Console’]
[178] [img] [’Neptune Gaming Console’]
[515] [StaticText] [’350.00 $’]
URL: http://classifieds.com
OBJECTIVE: Help me find the cheapest dark colored guitar.
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. The objective is to find the cheapest dark colored guitar on the site.
The site has a search box whose ID is [5]. I can search for guitars by entering “guitar”. I can submit this by
pressing the Enter afterwards. In summary, the next action I will perform is ´´´type [81] [guitar] [1]´´´

Figure 9: In-context examples and prompt used for the caption-augmented Llama-3 agent. The
webpage accessibility tree is added to the end of each round of the example user dialogue.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

example user:
OBSERVATION:
[1744] [link] [’HP CB782A#ABA 640 Inkjet Fax Machine (Renewed)’]
[1749] [StaticText] [$279.49]
[1757] [button] [’Add to Cart’]
[1760] [button] [’Add to Wish List’]
[1761] [button] [’Add to Compare’]
URL: http://onestopmarket.com/office-products/office-electronics.html
OBJECTIVE: What is the price of HP Inkjet Fax Machine?
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page list the information of HP Inkjet Fax Machine, which is
the product identified in the objective. Its price is $279.49. I think I have achieved the objective. I will issue the
stop action with the answer. In summary, the next action I will perform is ´´´stop [$279.49]´´´ example user:
IMAGES: (1) current page screenshot
OBSERVATION:
[164] [textbox] [’Search’ focused: True required: False]
[171] [button] [’Go’]
[174] [link] [’Find directions between two points’]
[212] [heading] [’Search Results’]
[216] [button] [’Close’]
URL: http://openstreetmap.org
OBJECTIVE: Show me the restaurants near CMU
PREVIOUS ACTION: None
example assistant: Let’s think step-by-step. This page has a search box whose ID is [164]. According to the
nominatim rule of openstreetmap, I can search for the restaurants near a location by “restaurants near”. I can
submit my typing by pressing the Enter afterwards. In summary, the next action I will perform is ´´´ type
[164][restaurants near CMU][1]´´´

Figure 10: In-context examples and prompt used for the text-only GPT-4o agent on WebArena. The
webpage accessibility tree is added to the end of each round of the example user dialogue.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

system message:
You are an expert in evaluating the performance of a web navigation agent. The agent is designed to help a
human user navigate a website to complete a task. Given the user’s intent, the agent’s action history, the final
state of the webpage, and the agent’s response to the user, your goal is to decide whether the agent’s execution
is successful or not. If the current state is a failure but it looks like the agent is on the right track towards
success, you should also output as such.

There are three types of tasks:
1. Information seeking: The user wants to obtain certain information from the webpage, such as the
information of a product, reviews, the text in a comment or post, the date of a submission, etc. This may be
formulated in the intent as “tell me”, “what is”, or “list out”. The agent’s response must contain the information
the user wants, or explicitly state that the information is not available. Otherwise, e.g. the agent encounters an
exception and respond with the error content, the task is considered to be a failure. It is VERY IMPORTANT
that the bot response is the stop action with the correct output. If the bot response is not stop (e.g., it is click,
type, or goto), it is considered a failure for information seeking tasks.
2. Site navigation: The user wants to navigate to a specific page (which may also be specified in the intent
as “find”, “show me”, “navigate to”). Carefully examine the agent’s action history and the final state of the
webpage (shown in the LAST IMAGE) to determine whether the agent successfully completes the task. It is
VERY IMPORTANT that the agent actually navigates to the specified page (reflected by the final state of the
webpage, in the LAST IMAGE) and NOT just output the name of the item or post. Make sure that the final
url is compatible with the task. For example, if you are tasked to navigate to a comment or an item, the final
page and url should be that of the specific comment/item and not the overall post or search page. If asked to
navigate to a page with a similar image, make sure that an image on the page is semantically SIMILAR to the
intent image. If asked to look for a particular post or item, make sure that the image on the page is EXACTLY
the intent image. For this type of task to be considered successful, the LAST IMAGE and current URL should
reflect the correct content. No need to consider the agent’s response.
3. Content modification: The user wants to modify the content of a webpage or configuration. Ensure that the
agent actually commits to the modification. For example, if the agent writes a review or a comment but does
not click post, the task is considered to be a failure. Carefully examine the agent’s action history and the final
state of the webpage to determine whether the agent successfully completes the task. No need to consider the
agent’s response.

IMPORTANT
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>
Status: “success” or “failure”
On the right track to success: “yes” or “no”

user:
<intent screenshots>
User Intent: intent
<obs screenshot 1> ... <obs screenshot d>
Action History: last actions str
Bot response to the user: last response
Current URL: current url
The images corresponding to the user intent are shown in the FIRST {len(intent images)} images (before the
User Intent).
The last {len(screenshots)} snapshots of the agent’s trajectory are shown in the LAST {len(screenshots)}
images. The LAST IMAGE represents the current state of the webpage.

Figure 11: System message and prompt used for the value function. Blue text indicates items that
will be replaced by image content during the call to the value function.

25

	Introduction
	Background
	Realistic Simulated Web Environments
	Language-Guided Autonomous Agents
	Search and Planning

	Method
	Agent Backbone
	Value Function
	Search Algorithm

	Experiments
	Implementation Details
	Results

	Analysis
	Ablations
	Success Rate Breakdown
	Qualitative Results
	Limitations

	Conclusion
	Appendix
	Qualitative Examples
	Additional Ablations
	Value Function Ablations
	Comparison to Trajectory-Level Reranking

	Implementation Details
	Language Model Agents
	Value Function

	Search Algorithm
	Environment Reset

