

000 001 002 003 004 005 SIPDO: CLOSED-LOOP PROMPT OPTIMIZATION VIA 006 SYNTHETIC DATA FEEDBACK 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

024 ABSTRACT 025

026 Prompt quality plays a critical role in the performance of large language mod-
027 els (LLMs), motivating a growing body of work on prompt optimization. Most
028 existing methods optimize prompts over a fixed dataset, assuming static input
029 distributions and offering limited support for iterative improvement. We intro-
030 duce **SIPDO** (**S**elf-**I**mproving **P**rompts **th**rough **D**ata-**A**ugmented **O**ptimization),
031 a closed-loop framework for prompt learning that integrates synthetic data gen-
032 eration into the optimization process. SIPDO couples a synthetic data generator
033 with a prompt optimizer, where the generator produces new examples that reveal
034 current prompt weaknesses and the optimizer incrementally refines the prompt in
035 response. This feedback-driven loop enables systematic improvement of prompt
036 performance without assuming access to external supervision or new tasks. Ex-
037 periments across question answering and reasoning benchmarks show that SIPDO
038 outperforms standard prompt tuning methods, highlighting the value of integrating
039 data synthesis into prompt learning workflows.
040

041 1 INTRODUCTION 042

043 Large language models (LLMs) have demonstrated strong performance across a wide range of nat-
044 ural language tasks, including classification, question answering, and reasoning. However, their
045 output quality is highly sensitive to prompt design—small changes in phrasing, structure, or for-
046 matting can lead to significant variations in performance (He et al., 2024; Spiess et al., 2025). This
047 sensitivity has made prompt optimization a core challenge in adapting LLMs to downstream appli-
048 cations, where consistency and reliability are crucial. In domains such as healthcare and finance, the
049 inability to ensure stable, predictable performance makes prompt optimization more than a desirable
050 enhancement, but a critical necessity for reliable system deployment.

051 The core challenge of prompt optimization is multifaceted. Unlike traditional hyperparameter tun-
052 ing, the search space of prompts is discrete, non-differentiable, and vast. Small modifications to
053 prompts can have unpredictable effects on LLMs’ behavior, and the gradient-based methods that
054 typically power optimization in machine learning are not directly applicable. Furthermore, LLMs
055 often perform well on a fixed, curated test set, but their performance can deteriorate when faced
056 with novel linguistic variations, edge cases, or adversarial queries. This makes prompt optimization
057 particularly challenging, as a prompt that performs well in one scenario may fail when the input
058 distribution shifts, leading to issues such as catastrophic forgetting or fragile performance across
059 different contexts.

060 Prior work in prompt optimization has explored manual tuning, discrete search, and gradient-based
061 methods to improve model responses (Wang et al., 2023; Shin et al., 2020; Cui et al., 2024; Kwon
062 et al., 2024; Zhang et al., 2024). While effective in some settings, these approaches do not address
063 the dynamic nature of real-world inputs, where the input space evolves over time. As a result, they
064 can produce prompts that perform well on average but lack robustness when the input distribution
065 changes.

066 In contrast, data augmentation has long been used in supervised learning to improve model robust-
067 ness by exposing models to diverse training conditions (Mikołajczyk & Grochowski, 2018). In the
068 context of prompt learning, the ability of LLMs to generate high-quality synthetic data presents an
069 exciting opportunity to improve prompt optimization. However, existing prompt optimization meth-
070 ods do not leverage synthetic data in a dynamic, feedback-driven manner (Singh et al., 2023; Gilardi
071 et al., 2024).

et al., 2023; Tang et al., 2023; Gao et al., 2023). Moreover, it is not sufficient to simply produce more data; the challenge is to generate data that is purposeful and stress-test that targets the current failure modes of the prompt and provides a progressive challenge that helps guide its evolution. The synthetic data must also be carefully crafted to ensure that it does not overwhelm the model with trivially easy or overly difficult cases, but instead exposes latent weaknesses that need to be addressed.

To address these challenges, we propose **SIPDO** (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt optimization that integrates synthetic data generation directly into the learning process. SIPDO consists of two components: a *Synthetic Data Generator* that produces inputs specifically designed to challenge the current prompt, and a *Prompt Optimizer* that uses these examples to iteratively refine the prompt. This feedback loop enables the prompt to evolve continuously over time, adapting to new, previously unseen inputs without requiring external supervision or the need to tune for each new scenario individually. Particularly, **SIPDO** addresses the unique challenges of prompt optimization by transforming the optimization process from a static, one-time procedure to a dynamic, self-adaptive learning loop. This shift is critical for ensuring prompt robustness in the face of evolving input distributions.

Contributions. This paper makes the following contributions:

- We introduce a feedback-driven framework SIPDO that integrates synthetic data generation into prompt optimization, providing a novel pathway for improving prompt robustness.
- We develop a method to construct synthetic examples that dynamically stress-test prompts, revealing failure modes and guiding refinement.
- We empirically demonstrate that augmenting prompt optimization with synthetic data improves performance across multiple reasoning benchmarks, surpassing existing prompt tuning methods.

2 RELATED WORK

2.1 AUTOMATIC PROMPT ENGINEERING

Automatically discovering optimal prompts has become a key challenge in the era of large language models (LLMs). Automatic Prompt Engineering (APE) employs optimization-based, generative, and template-driven approaches. Optimization techniques include gradient-based search (Shin et al., 2020), reinforcement learning (Ouyang et al., 2022; Kwon et al., 2024), and evolutionary algorithms (Cui et al., 2024). Generative methods use models like GPT and Gemini to generate candidate prompts, with StablePrompt (Kwon et al., 2024) optimizing prompts via reinforcement learning. Additionally, PromptAgent (Wang et al., 2023) breaks down prompt creation into sub-goals, while template-driven approaches, like fill-in-the-blank formats, ensure clarity (Chen et al., 2024). Recent work has expanded on automatic prompt optimization techniques. AutoPDL (Spiess et al., 2025) automates the discovery of optimal configurations for agents which successive halving to explore the space of agentic and non-agentic prompting patterns. The sequential optimal learning approach for automated prompt engineering (Wang et al., 2025) uses Bayesian regression and Knowledge-Gradient policies to efficiently identify effective prompt features. Progressively Automatic Prompt Optimization (Qu et al., 2025) introduces an evolution-based algorithm to optimize prompts for visual classification tasks.

We propose a hybrid framework integrating LLM-driven rewriting with natural language feedback (Pryzant et al., 2023), alongside self-reflection (Shinn et al., 2024) and planning (Wang et al., 2023), enhancing prompt adaptability and precision.

2.2 DATA SYNTHESIS

Using large language models (LLMs) for data synthesis is a relatively new and rapidly evolving approach. Recent advancements have shown that LLMs possess the capability to generate text with fluency and quality comparable to human output (Li et al., 2023; Mukherjee et al., 2023; Eldan & Li, 2023). For instance, prior work (Gao et al., 2023) has explored leveraging pre-trained language models (PLMs) to generate task-specific text data that can be used to train and evaluate. Recent work Magpie (Xu et al., 2024) leverages the auto-regressive nature of aligned LLMs to generate high-quality instruction data. Additionally, Synthetic Text Generation for Training Large Language

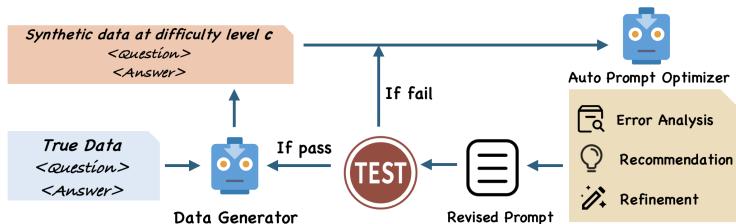


Figure 1: Starting from true data distribution S , the Data Generator(left) produces a synthetic question-answer pair at difficulty level c . The Auto Prompt Optimizer(right) evaluates the current prompt on this synthetic data via three sub-modules-error analysis, recommendation, and refinement-and outputs a revised prompt. The revised prompt is tested on present failures and all previously solved examples. If the prompt still makes errors, then return to the Auto Prompt Optimizer for further refinement; if passes, move on to the next sample(with higher c). The cycle repeats until no error remains or the budget is reached, yielding a self-improved prompt.

Models via Gradient Matching (Nguyen et al., 2025) proposes a novel approach to generate synthetic text that matches the gradients of human data. However, these studies have not fully incorporated advanced methodologies such as chain-of-thought (CoT) reasoning, in-context learning, or data synthesis driven by prompts that integrate task descriptions and label information.

In this study, we systematically experimented with a range of techniques, including in-context learning and prompt-driven data synthesis, combining task descriptions and label information. Our results show that these approaches generate high-quality synthetic data. By introducing a difficulty tier, we further enhanced the data’s robustness and applicability. These findings demonstrate the potential of combining advanced LLM capabilities with tailored prompting strategies to improve data synthesis for prompt optimization.

3 METHOD

In this work, we introduce SIPDO, a two-agent system for optimizing prompts using data augmentation techniques. The workflow has two cooperating agents: (i) Data Generator creates synthetic data with increasing difficulty levels to expose weaknesses in the prompt, and (ii) Auto Prompt Optimizer iteratively analyzes errors and rewrites the prompt to maximize task performance. An overview of SIPDO is shown in Fig 1.

Notation. We define the true data distribution as S , which governs input-label pairs $(x, y) \in \mathcal{X} \times \mathcal{Y}$. Let N denote the size of an i.i.d. dataset drawn from S , denoted as $\{(x_i, y_i)\}_{i=1}^N \sim S$. We consider LLMs equipped with a prompt $p \in \mathcal{P}$, and define its output function as $f(p, x) \in \mathcal{Y}$. Prediction accuracy is measured using a bounded surrogate loss $L(f(p, x), y)$, where $L \in [0, 1]$. We introduce a synthetic data generator defined by a distribution $q_\psi(\tilde{x}, \tilde{y})$, parameterized by $\psi \in \Psi$, which produces synthetic samples forming a dataset $D = \{(\tilde{x}_i, \tilde{y}_i)\}_{i=1}^M$, where M is the number of generated examples. To ensure that the synthetic labels remain realistic, we estimate the population label prior with $p^*(y)$ and use this to regularize the generator.

3.1 DATA GENERATOR

The Data Generator supplies fresh, well-targeted examples that expose the weakness by creating a new synthetic-pair whose difficulty is designed beyond prompt’s current reach.

Sampling rule. The data generator first draws a target label $\tilde{y} \sim p^*(y)$. By sampling a latent variable $z \sim g_\phi(z|S)$ that captures the structure of few-shot S , the decoder q_ψ produces $\tilde{x} = q_\psi(z, \tilde{y}, c)$ where c is a controlled difficulty tier.

Learning objective. The parameters ψ are learned by minimizing a hybrid objective that balances the KL penalty and the bounded surrogate loss:

$$\min_{\psi} R(\psi) + \lambda \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim q_\psi} [L(f(p, \tilde{x}), \tilde{y})], \quad (1)$$

162 Note that, we penalize deviations from the true label distribution using the Kullback–Leibler diver-
 163 gence term $R(\psi) = \text{KL}(q_\psi(y) \parallel p^*(y))$, scaled by a factor $\lambda^{-1}R(\psi)$ during training.
 164

165 **Progressive difficulty.** To address tasks of varying difficulty, we introduce a progressive difficulty
 166 parameter c where $c \in \{1, \dots, n\}$ so that prompts could be tested on gradually more challenging
 167 examples. This allows the prompts to progressively improve and generalize effectively across task
 168 of increasing difficulty. Since q_ψ is conditioned on c , a single latent template (z, y) can therefore
 169 yield n difficulty-aligned variants

$$170 \quad \{\tilde{x}^{(1)}, \dots, \tilde{x}^{(n)}\} = \{q_\psi(z, y, 1), \dots, q_\psi(z, y, n)\}$$

172 For curriculum generation, an ordered sequence $c_1 < \dots < c_L$ is sampled and feeds the output of
 173 the previous level back into the generator,

$$174 \quad \tilde{x}^{(1)} = q_\psi(z, y, c_1), \tilde{x}^{(2)} = q_\psi(h_\phi(x^{(1)}), y, c_2), \dots, \tilde{x}^{(L)} = q_\psi(h_\phi(x^{(L-1)}), y, c_L),$$

175 where h_ϕ is a summarizer that distills the previous sample into a new latent cue, allowing semantic
 176 depth to accumulate across levels. The sequence $c_1 < c_2 < \dots < c_L$ guarantees monotone growth
 177 of problem difficulty, providing a rich gradient of difficulty for the prompt to learn from.
 178

180 3.2 AUTO PROMPT OPTIMIZER

182 After each new synthetic instance is calibrated, the Auto Prompt Optimizer probes the current
 183 prompt, identifies the weaknesses, and repairs them before the next instance is drawn. This stage
 184 builds a prompt that is both robust, suitable, and generalizable for specific tasks.

185 **Accuracy score.** At iteration $t \in \{1, \dots, M\}$, the optimizer improves the current prompt $p^{(t)}$ using
 186 the feedback collected from synthetic log $D_t = \{(\tilde{x}_j, \tilde{y}_j)\}_{j=1}^t \subseteq \mathcal{X} \times \mathcal{Y}$. For any prompt p and set
 187 $\mathcal{A} \subseteq \mathcal{X} \times \mathcal{Y}$, we define

$$188 \quad s_{\mathcal{A}}(p) = \frac{1}{|\mathcal{A}|} \sum_{(\tilde{x}, \tilde{y}) \in \mathcal{A}} \mathbb{I}[f(p, \tilde{x}) = \tilde{y}], \quad (1)$$

190 $\mathbb{I}[\cdot]$ is the indicator function that evaluates to 1 if the prompt’s output matches the target label, and 0
 191 otherwise.
 192

193 **Step 1: Error analysis.** We first evaluate $p^{(t)}$ on the whole set and collect the current error slice

$$194 \quad \mathcal{E}^{(t)} = \{(\tilde{x}, \tilde{y}) \in D \mid f(p^{(t)}, \tilde{x}) \neq \tilde{y}\}.$$

196 If $\mathcal{E}^{(t)} = \emptyset$, the prompt already “covers” all unseen cases, therefore, we terminate and return
 197 $p^* = p^{(t)}$; otherwise, we proceed to the next step.
 198

199 **Step 2: Recommendation.** A reflection module \mathcal{R}_φ inspects $\mathcal{E}^{(t)}$ and produces a textual-patch
 200 suggesting how to modify the prompt: $\Delta^{(t)} = \mathcal{R}_\varphi(p^{(t)}, \mathcal{E}^{(t)})$. This summarizes why the prompt
 201 failed and how it can be amended(e.g., clarify/revise instructions, drop distracting details).

202 **Step 3: Targeted refinement.** A prompt editor \mathcal{U}_θ applies the patch $\Delta^{(t)}$ to a revised prompt $\tilde{p}^{(t)}$ in
 203 order to fix the current error: $\tilde{p}^{(t)} = \mathcal{U}_\theta(\Delta^{(t)}, p^{(t)}, \mathcal{E}^{(t)})$.
 204

205 **Local confirmation.** We then test revised prompt $\tilde{p}^{(t)}$ only on the current errors: if $s_{\mathcal{E}^{(t)}}(\tilde{p}^{(t)}) < 1$,
 206 some errors still remain. In this case, we make the revised prompt as new baseline prompt by setting
 207 $p^{(t)} \leftarrow \tilde{p}^{(t)}$, updating $\mathcal{E}^{(t)}$, and repeating Step 2 to generate more sufficient patch $\Delta^{(t)}$; otherwise,
 208 proceed to global confirmation.

209 **Global confirmation.** Solving the local error slice is not enough—we must ensure that revised prompt
 210 “covers” all seen cases. Therefore, we evaluate $\tilde{p}^{(t)}$ on the entire synthetic history collected seen so
 211 far by $s_{D_t}(\tilde{p}^{(t)})$. During evaluation, if $\mathcal{E}^{(t)} \neq \emptyset$ at any previous data, we treat them as new error
 212 set and sent them back to step 2 with new $\mathcal{E}^{(t)}$ to fix the current error. If $\mathcal{E}^{(t)} = \emptyset$, we accept the
 213 revision, set $p^{(t+1)} = \tilde{p}^{(t)}$, draw the next synthetic example, and restart from Step 1 until $t = M$.
 214

215 **Convergence guarantee.** Because $s_D(p^{(t)})$ is non-decreasing and bounded above by 1, the process
 216 stops at most M successful corrections or the user-chosen cap T_{\max} . The final output

216 $p^* = \arg \max_{0 \leq t \leq T} s_D(p^{(t)})$ achieves perfect coverage ($s_{D_T}(p^*) = 1$) whenever it is attainable within the budget.

217
218 By iteratively applying this feedback-driven process, it systematically refines prompts to improve
219 clarity, adaptability, and overall performance, making the framework highly generalizable across
220 tasks and domains.

222 **3.3 THEORETICAL GUARANTEE**
223

224 Since one of our goals in SIPDO is to demonstrate that, data augmentation, a popular branch of
225 performance improvement in deep learning, can also be used in prompt optimization context, we
226 aim to offer similar performance guarantees as done in previous data augmentation literature (Wang
227 et al., 2022; Chen et al., 2020; Dao et al., 2019).

228 **Assumptions.** We first offer the assumptions that we need for the theoretical guarantees.

229
230 **A1 (Label-preservation)** *For all $\psi \in \Psi$ and for any (x, y) , the generator’s conditional satisfies*
231 $\Pr_{q_\psi}[\tilde{y} = y \mid \tilde{x} \xleftarrow{\mathcal{G}} (x, y)] = 1$.

232 We require the generator never flips the ground-truth label of the base example it is derived from
233 (it may, however, hallucinate novel inputs as long as their labels match the intended classes). In
234 practice, because LLMs sometimes assign unexpected labels, we first generate the label \tilde{y} and then
235 sample \tilde{x} conditioned on that label. For tasks and domains where producing valid synthetic data is
236 difficult, we apply a three-voter check: three expert agents independently verify each generated item
237 for label–input consistency and basic factual correctness.

238 **A2 (Approximate maximizer).** *Let $\psi^* = \arg \max_{\psi \in \Psi} \mathbb{E}_{q_\psi} L(f(p, \tilde{x}), \tilde{y}) - \lambda^{-1} R(\psi)$, The
239 inner-loop training of the generator attains a value at most ε below this supremum.*

240 A perfect maximizer would be ideal but is infeasible; we only need the learned generator to be good
241 enough—within ε of optimal. The residual ε directly appears in the bound.

242 **A3 (Uniform convergence).** (Wang et al., 2022) *For every prompt p , the empirical loss deviates
243 from its population counterpart by at most $q(|\mathcal{P}|, n, \delta)$ with probability $1 - \delta$, where a standard
244 form of $q(|\mathcal{P}|, n, \delta)$ is $\tilde{O}\left(\sqrt{\frac{\log |\mathcal{P}| + \log(1/\delta)}{N}}\right)$.*

245 PAC(probably approximately correct) guarantee: empirical performance generalizes provided n is
246 large enough.

247 **A4 (Alignment of risks).** *For any prompt p and generator ψ ,*

$$\mathbb{E}_{q_\psi} L(f(p, \tilde{x}), \tilde{y}) \leq \mathbb{E}_S L(f(p, x), y) + \lambda^{-1} R(\psi).$$

248 The KL penalty controls how far the generator may wander: if it manufactures rare-label outliers,
249 $R(\psi)$ increases and the bound tightens. We can verify that $q_\psi(y)$ is always absolutely-continuous
250 w.r.t. $p^*(y)$; KL is then finite and the inequality follows from the classical Donsker–Varadhan
251 variational formula.

252 **A5 (Surrogate link).** *The 0–1 loss is upper-bounded by the surrogate loss: $\mathbb{1}\{f(p, x) \neq y\} \leq$
253 $L(f(p, x), y)$.*

254 This is needed in order to translate guarantees on the differentiable training loss to the classification
255 error(e.g. cross-entropy, hinge, logistic).

256 **Theorem 3.1 Regularised Worst-case Data Generation.** Under Assumptions A1-A5, for any
257 fixed prompt $p \in \mathcal{P}$, with probability at least $1 - \delta$ over the draw of the training set, we have

$$\sup_{\psi \in \Psi} \mathbb{E}_{q_\psi} \mathbb{1}\{f(p, \tilde{x}) \neq \tilde{y}\} \leq \underbrace{\frac{1}{n} \sum_{i=1}^n L(f(p, x_i), y_i)}_{\text{population worst-case error}} + \underbrace{\lambda^{-1} R(\psi^*)}_{\substack{\text{KL penalty of} \\ \text{hardest generator}}} + \varepsilon + q(|\mathcal{P}|, n, \delta). \quad (2)$$

258 **Practical implication.** The inequality states that *if* the empirical loss of the prompt is low, *and* no
259 generator can inflate that loss without paying a high KL tax, *then* even a hypothetically all-powerful
260 adversary (generator) cannot cause the prompt to misclassify more than the RHS. Selecting a larger λ
261 tightens the KL tax, thus lowering the worst-case error but potentially harming accuracy—precisely
262 the robustness–performance trade-off observed empirically in Experiments Section 4. In addition,
263 detailed proof of theorem can be found in Appendix E.

MMLU Subject	Method	1st iteration	2nd iteration	3rd iteration	Final Result (Comparative Acc.)
College Computer Science	TextGrad	85	88	86	89(\downarrow 4.0)
	M-TextGrad	85	87	87	89(\downarrow 4.0)
	REVOLVE	85	88	89	90(\downarrow 3.0)
	SIPDO	—	—	—	93
Machine Learning	TextGrad	84.8	87.5	82.1	88.4(\downarrow 5.4)
	M-TextGrad	85.5	85.4	85.3	85.0(\downarrow 8.8)
	REVOLVE	85.7	86.6	85.7	88.4(\downarrow 5.4)
	ANN	—	—	—	90.1(\downarrow 3.7)
	SIPDO	—	—	—	93.8
College Biology	TextGrad	95.1	97.2	95.1	96.5(\downarrow 0.0)
	REVOLVE	96.5	96.1	97.2	96.5(\downarrow 0.0)
	SIPDO	—	—	—	96.5

Table 1: Results on MMLU Machine Learning, College Computer Science, and College Biology subject by GPT-4o, demonstrating SIPDO’s effectiveness on different subjects

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use following baseline methods are for comparison across the different datasets and benchmarks: Chain of Thought (CoT) (Suzgun et al., 2022) guides models through explicit step-by-step reasoning; Automatic Prompt Engineer (APE) (Wang et al., 2023) refines prompts via Monte Carlo search and model feedback; PromptAgent (Zhou et al., 2022) also uses Monte Carlo Tree Search to iteratively improve prompts; Neuro-Symbolic (Pan et al., 2023) converts LLM outputs into structured forms for rule-based inference; TextGrad (Yuksekgonul et al., 2024) treats textual feedback as a first-order gradient for prompt updates; Momentum-Enhanced TextGrad (Yuksekgonul et al., 2024) adds momentum, enlarging updates when feedback aligns; REVOLVE (Zhang et al., 2024) adjusts prompts using the trajectory of model responses as a second-order-style signal; and ANN (Ma et al., 2025) models agent collaboration as a layered neural network.

We test SIPDO on five main datasets across reasoning tasks:

BIG-Bench. We include all 4689 instances from six BIG-Bench tasks: Penguins In a Table, Geometric Shapes, Epistemic Reasoning, Object Counting, Temporal Sequences, and Causal Judgment (Srivastava et al., 2022). For these tasks, SIPDO is compared to Chain of Thought (CoT) (Suzgun et al., 2022), Automatic Prompt Engineer (APE) (Wang et al., 2023), and PromptAgent (Zhou et al., 2022).

Logical Reasoning Tasks. To assess logical reasoning, we sample 600 examples from the depth-5 subset of ProofWriter with a balanced label distribution (Tafjord et al., 2021), use 204 test examples from FOLIO that require first-order inference over short passages (Han et al., 2024), and select the 500 most challenging 5-hop scenarios from the fictional-character version of PrOntoQA (Saparov & He, 2022). For these tasks, SIPDO is compared to Chain of Thought (CoT) (Suzgun et al., 2022), Neuro-Symbolic (Pan et al., 2023), and REVOLVE (Zhang et al., 2024).

MMLU (Massive Multitask Language Understanding). To test expert-level factual knowledge and problem solving in LLMs, we evaluate on MMLU (Hendrycks et al., 2020), focusing on college-level subject areas: Biology (114 instances), Computer Science (100 instances), and Machine Learning (112 instances). For this benchmark, SIPDO is compared with TextGrad (Yuksekgonul et al., 2024), REVOLVE (Zhang et al., 2024), and ANN (Ma et al., 2025).

4.2 IMPLEMENTATION

Data Generation and Prompt Improvements. We specify a maximum level c and data generated with level of difficulties in prior iterations so that model is aware of the difficulty level of each

324 previous example. To illustrate this, we provide a detailed example of generating a Causal Judgment
 325 QA pair from BIG-Bench below.
 326

327 **Causal Judgment Prompt Template**
 328

329 [System Input]:

330 You are an expert in generating logical causal-attribute questions and answers. Your task is to generate
 331 one pair of causal attributions or causation. One is a causation statement, and another is a non-causation
 332 statement.

333 [User Input]:

334 **Guidelines:**

1. Make sure that the data generated is different.
2. Use clear and direct words in the question, avoiding overly complex phrasing, trickiness, or ambiguity.
3. Do not make the logic in the statement overly complicated; the statement and question should be understood at a fair level.
4. Be creative and diverse. Only follow the logic and flow of the given examples, but be creative and diverse with the content and not limited to the given example.
5. Only one data instance needs to be generated each time.
6. Generate only one output: the generated content should strictly follow the output format from the examples below.
7. Difficulty should increase with each iteration with total difficulty level: {max difficulty level} (current difficulty level: {c}).
8. Make sure the generated data is sufficient and robust without any errors, especially logic.
9. The generated samples are suppose to challenge the model’s ability to reason and answer the question correctly.

349 **Past generated samples:** {Generated data with difficulty}

350 **Below are the Examples with expected data format:**

351 {True Data 1}

352 {True Data 2}

353
 354 We set the difficulty budget at $c = 10$ for all benchmarks except Penguins In a Table and Geometric
 355 Shapes from BIG-Bench, where $c = 25$ accommodates their complex reasoning. The number
 356 of training iterations is tied to the difficulty level, with $t = c$ to ensure progressively harder
 357 samples. The model temperature is set to 0.5 for data generation to maintain coherence. We fix the
 358 target label \tilde{y} and prompt the model to generate a matching question for data validity. For chal-
 359 lenging MMLU benchmarks, three expert agents review each generated item, and only those with
 360 unanimous approval are passed to the auto-prompter. This minimizes hallucinations and ensures ac-
 361 curate question–answer pairs. Examples of synthetic BIG-Bench Causal Judgment data at different
 362 difficulty levels are shown in Appendix D.

363 For further prompt optimization, we set the model temperature to 0.0 during error analysis and im-
 364 provement steps to ensure deterministic, high-quality outputs. However, we use a higher temperature
 365 of 0.7 for generating recommendations, which encourages the model to produce more diverse and
 366 creative suggestions. This combination stabilizes the error analysis and prompt improvement phases
 367 while simultaneously enhancing the breadth and quality of recommendations. The full prompt-
 368 improvement process for BIG-Bench Penguins In a Table is in Appendix C.

369 **Geometric Data Generation.** Constructing complex or irregular shapes exceeds the limits of few-
 370 shot methods, so we introduce three safeguards for SVG path generation in the geometry task: (1) *precision normalization*—each coordinate is rounded to two decimal places, preventing floating-
 371 point drift that makes downstream parsers miscount line (L) and arc (A) commands; (2) *template-
 372 guided retrieval*—a retriever selects an SVG path template whose instruction pattern matches the
 373 target shape (e.g., “4 L” for a rectangle, “1 A” for a sector), and the generator perturbs only
 374 the vertex coordinates, ensuring syntactic correctness while adding variety; (3) *reverse-generation
 375 check*—because the shape label is known in advance, a rule-based decoder parses the generated path,
 376 tallies L/A commands, and rejects any sample whose inferred label disagrees. Examples appear in
 377 Appendix D.

378	379	Model	Method	Accuracy (%)						Avg. Acc. (%) (Comparative Acc.)
				Penguins	Geome.	Epistemic	Obj. Count	Temporal	Causal	
380	381	GPT-4o	CoT	79.8	79.1	79.3	85.2	98.0	67.8	81.5(\downarrow 7.6)
			APE	84.8	65.3	84.8	86.0	99.2	74.0	82.4(\downarrow 6.7)
			PromptAgent	96.1	83.0	91.6	88.2	98.4	77.8	89.2 (\uparrow 0.1)
			SIPDO	96.4	82.2	86.3	91.1	99.3	79.0	89.1
383	384	GPT-4o-mini	CoT	75.8	68.6	85.2	81.5	94.9	63.6	78.3(\downarrow 9.0)
			APE	83.7	44.5	81.6	86.3	97.2	75.6	78.2(\downarrow 9.1)
			PromptAgent	89.8	72.0	86.0	84.3	94.6	84.6	85.2(\downarrow 2.1)
			SIPDO	92.1	73.2	85.1	87.5	98.0	88.0	87.3
386	387	Gemini-1.5-flash	CoT	70.4	68.3	85.5	90.1	94.0	66.8	79.2(\downarrow 3.7)
			APE	37.6	49.4	88.8	84.7	99.4	69.4	71.6(\downarrow 11.3)
			PromptAgent	67.4	70.3	81.6	86.3	94.2	67.9	78.0(\downarrow 4.9)
			SIPDO	77.3	68.9	87.0	92.3	98.4	73.2	82.9
389	390	Gemini-1.5-pro	CoT	81.8	59.1	82.6	92.8	98.9	61.5	79.5(\downarrow 3.9)
			APE	40.2	56.6	88.7	78.6	86.0	65.7	69.3(\downarrow 14.1)
			PromptAgent	73.6	58.3	83.8	72.6	98.4	74.2	76.8(\downarrow 6.6)
			SIPDO	79.3	64.3	89.3	91.3	98.0	78.3	83.4

393 Table 2: Results on BIG-Bench tasks across multiple LLMs. SIPDO consistently outperforms standard prompting baselines (CoT, APE, PromptAgent) across most tasks and models, demonstrating 394 generalization and effectiveness of the prompt optimization by synthetic data feedback.

398 4.3 RESULTS AND ANALYSIS

400 We tested SIPDO across various LLMs with temperature of 0.0 on all benchmarks, including BIG-Bench, FO- 401 LIO, PrOntoQA, ProofWriter, and three subjects from 402 MMLU. Specifically, we ran SIPDO on GPT-4o, GPT- 403 4o-mini, Gemini-1.5-flash, and Gemini-1.5-pro, so that 404 all synthetic-data calls and prompt refinements in result 405 were driven by the same model.

406 **MMLU.** We first evaluate SIPDO on three subjects from 407 the MMLU benchmark: Machine Learning, College Bi- 408 ology, and College Computer Science. As shown in Ta- 409 ble 1, SIPDO achieves the highest results in all three sub- 410 jects, while TextGrad and REVOLVE tie in the Biology 411 subject. Specifically, we set up the SIPDO pipeline using 412 the GPT-4o model, except for the GPT-4o-mini during the 413 testing phase, in order to provide greater insight into the 414 reasoning weaknesses of LLMs.

415 **BIG-Bench.** We then evaluate SIPDO on six BIG-Bench 416 tasks. As shown in Table 2, GPT-4o, GPT-4o-mini, and Gemini-1.5-flash demonstrate particularly 417 strong performance in Temporal Reasoning, Object Counting, 418 Penguins In a Table, and Causal Judgment. While Geometric Shapes exhibits comparable accuracy across GPT-4o and GPT-4o-mini, 419 SIPDO achieves the highest overall accuracy across all LLMs except for GPT-4o, trailing PromptAgent by only 0.1%, yet still demonstrating that LLMs benefit from synthetic data generation for 420 reasoning improvements, whereas other methods primarily rely on existing datasets. To further 421 illustrate the generated different difficulty data in Causal Judgment tasks as iteration and difficulty 422 increase, the actual logical turns display a monotonic trend in figure 2.

423 **FOLIO, PrOntoQA, and ProofWriter.** We further test 424 SIPDO on FOLIO, PrOntoQA, and ProofWriter, assessing 425 the methods’ ability to perform structured logical reasoning. As shown in 426 Table 3, SIPDO outperforms all approaches on FOLIO and PrOntoQA and achieves the highest 427 average accuracy. In PrOntoQA, SIPDO surpasses all methods, demonstrating its capability to 428 generate structured logical proofs. Similarly, for FOLIO, SIPDO outperforms Neuro-Symbolic, CoT, 429 and REVOLVE, further validating its effectiveness in formal logic inference.

430 While neuro-symbolic reasoning remains the best performer on ProofWriter, SIPDO achieves highly 431 competitive results on ProofWriter, trailing by only 0.4% on GPT-4o-mini and 2% on GPT-4o, un-

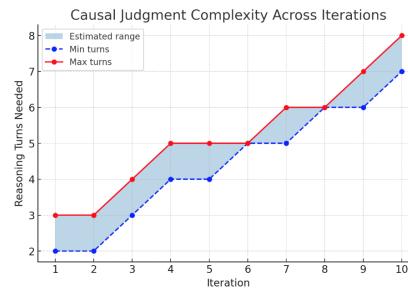


Figure 2: Generated BIG-Bench Causal Judgment task in different difficulties

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Tasks	GPT-4o					GPT-4o-mini				
	Vanilla	Neuro-S	CoT	REVOLVE	SIPDO	Baseline	Neuro-S	CoT	REVOLVE	SIPDO
ProofWriter	58.5	81.6	72.3	54.0	79.6	52.6	79.7	61.8	48.6	79.3
FOLIO	71.2	79.2	72.6	65.7	83.2 (↑ 4.0)	51.2	73.2	69.3	62.8	81.1 (↑ 7.9)
PrOntoQA	80.4	85.2	95.6	85.4	96.3 (↑ 0.7)	74.6	79.3	89.3	83.4	91.3 (↑ 2.0)
Average	70.0	82.0	80.2	68.4	86.4 (↑ 4.2)	59.5	77.4	73.5	64.9	83.9 (↑ 6.5)

Table 3: Performance(%) on ProofWriter, FOLIO, and PrOntoQA by Neuro-Symbolic, CoT, REVOLVE, SIPDO, and Baseline Prompting methods across GPT-4o and GPT-4o-mini.

Table 4: Accuracy (%) after removing the difficulty gradient. Numbers in parentheses show the absolute drop (↓) relative to the performance with difficulty gradient placed.

derscoring its strong adaptability to structured reasoning tasks. Crucially, unlike neuro-symbolic approaches that rely on predefined rule-based datasets, SIPDO is trained entirely on generated synthetic data, demonstrating the effectiveness of LLM-driven data augmentation for enhancing logical inference across diverse reasoning benchmarks. SIPDO outputs a revised prompt that surpasses baselines, validating its effectiveness for prompt design and performance gains. All generated prompts appear in Appendix A.

4.4 ABLATION STUDY

Difficulty Gradient. To assess the contribution of the difficulty gradient, we conduct an ablation study by comparing without difficulty level. As Table 4 shows, every BIG-Bench sub-task suffers when the difficulty gradient is absent. On average, GPT-4o loses 17.3% accuracy, while the weaker GPT-4o-mini drops 24.3%, confirming that smaller models depends even more on the difficulty gradient. The steepest declines appear on tasks Object Counting (40.9 % and 54.4 %) and Geometric Shapes (17.2 % and 35.1 %). Even comparatively simple tasks—Temporal Sequences and Epistemic Reasoning—still lose up to 6 %. These results indicate that within the OpenAI model family, the weaker model is more sensitive to the absence of a difficulty gradient and the benefit of a progressive difficulty schedule becomes more pronounced. Without this gradient, generated prompts tend to be shorter and easier, often failing to capture complex reasoning patterns (details in Appendix B).

One-Shot Extremes. We experimented with replacing the step-wise difficulty gradient by a one-shot extremes sampler that tells the generator to create the most unusual examples. On our synthetic suites this shortcut delivered no measurable gain. The “extreme” samples were either solved instantly or only slight perturbations of original cases, leaving the optimizer with no fresh errors to exploit. We suspect the idea will pay off in real-world corpora (e.g. financial statements) where genuine edge cases abound and can expose blind spots that our synthetic tasks do not capture.

5 CONCLUSION

We presented SIPDO, a data-centric framework that converts augmentation into a live feedback signal for prompt optimization. A generator creates progressively harder examples, and an auto-prompt optimizer uses them to expose and correct prompt weaknesses. This coupling produces consistent accuracy gains across diverse reasoning benchmarks, outperforming several leading baselines. Beyond these empirical results, SIPDO shows how data-generation strategies and prompt optimization can reinforce one another, linking ideas from curriculum learning and adaptive optimization with LLM practice. Further investigation on domain specific corpora such as financial filings and clinical notes and exploration of fully automated variants that refine prompts through continuous model feedback will clarify SIPDO’s broader value and extend its principles to new settings.

486 REFERENCES
487

488 Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation, 2020. URL <https://arxiv.org/abs/1907.10905>.

489

490 Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan. Prompt optimization in multi-step tasks (promst): Integrating human feedback and heuristic-based sampling, 2024. URL <https://arxiv.org/abs/2402.08702>.

491

492

493 Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley Malin, and Sricharan Kumar. Phseevo: Towards unified in-context prompt optimization for large language models. *arXiv preprint arXiv:2402.11347*, 2024.

494

495

496

497 Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith, Christopher De Sa, and Christopher Ré. A kernel theory of modern data augmentation, 2019. URL <https://arxiv.org/abs/1803.06084>.

498

499

500 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent english?, 2023. URL <https://arxiv.org/abs/2305.07759>.

501

502

503 Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation for efficient zero-shot learning, 2023. URL <https://arxiv.org/abs/2205.12679>.

504

505

506 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120, 2023.

507

508

509 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo, Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, An-song Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscinski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying, Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with first-order logic, 2024. URL <https://arxiv.org/abs/2209.00840>.

510

511

512

513

514

515

516 Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan. Does prompt formatting have any impact on llm performance?, 2024. URL <https://arxiv.org/abs/2411.10541>.

517

518

519

520 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

521

522

523 Minchan Kwon, Gaeun Kim, Jongsuk Kim, Haeil Lee, and Junmo Kim. Stableprompt: Automatic prompt tuning using reinforcement learning for large language models. *arXiv preprint arXiv:2410.07652*, 2024.

524

525

526 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making language models better reasoners with step-aware verifier. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5315–5333, 2023.

527

528

529

530

531 Xiaowen Ma, Chenyang Lin, Yao Zhang, Volker Tresp, and Yunpu Ma. Agentic neural networks: Self-evolving multi-agent systems via textual backpropagation. *arXiv preprint arXiv:2506.09046*, 2025.

532

533

534 Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep learning in image classification problem. In *2018 international interdisciplinary PhD workshop (IIPhDW)*, pp. 117–122. IEEE, 2018.

535

536

537

538 Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. *arXiv preprint arXiv:2306.02707*, 2023.

539

540 Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, and
 541 Baharan Mirzasoleiman. Synthetic text generation for training large language models via gradient
 542 matching, 2025. URL <https://arxiv.org/abs/2502.17607>.

543

544 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 545 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 546 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 547 27730–27744, 2022.

548 Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
 549 ing large language models with symbolic solvers for faithful logical reasoning. *arXiv preprint*
 550 *arXiv:2305.12295*, 2023.

551 Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
 552 prompt optimization with "gradient descent" and beam search, 2023. URL <https://arxiv.org/abs/2305.03495>.

553

554 Xiangyan Qu, Gaopeng Gou, Jiamin Zhuang, Jing Yu, Kun Song, Qihao Wang, Yili Li, and Gang
 555 Xiong. Proapo: Progressively automatic prompt optimization for visual classification, 2025. URL
 556 <https://arxiv.org/abs/2502.19844>.

557

558 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
 559 of chain-of-thought. *arXiv preprint arXiv:2210.01240*, 2022.

560

561 Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
 562 Eliciting knowledge from language models with automatically generated prompts, 2020. URL
 563 <https://arxiv.org/abs/2010.15980>.

564

565 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 566 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 567 *Systems*, 36, 2024.

568

569 Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
 570 Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
 571 for problem-solving with language models. *arXiv preprint arXiv:2312.06585*, 2023.

572

573 Claudio Spiess, Mandana Vaziri, Louis Mandel, and Martin Hirzel. Autopdl: Automatic prompt
 574 optimization for llm agents, 2025. URL <https://arxiv.org/abs/2504.04365>.

575

576 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 577 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 578 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 579 *arXiv:2206.04615*, 2022.

580

581 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 582 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 583 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

584

585 Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
 586 proofs, and abductive statements over natural language, 2021. URL <https://arxiv.org/abs/2012.13048>.

587

588 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 589 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv*
 590 *preprint arXiv:2310.13289*, 2023.

591

592 Haohan Wang, Zeyi Huang, Xindi Wu, and Eric Xing. Toward learning robust and invariant repre-
 593 sentations with alignment regularization and data augmentation. In *Proceedings of the 28th ACM*
 594 *SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1846–1856, 2022.

595

596 Shuyang Wang, Somayeh Moazeni, and Diego Klabjan. A sequential optimal learning approach to
 597 automated prompt engineering in large language models, 2025. URL <https://arxiv.org/abs/2501.03508>.

594 Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
595 Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
596 level prompt optimization. *arXiv preprint arXiv:2310.16427*, 2023.

597

598 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
599 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
600 nothing, 2024. URL <https://arxiv.org/abs/2406.08464>.

601

602 Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
603 James Zou. Textgrad: Automatic” differentiation” via text. *arXiv preprint arXiv:2406.07496*,
604 2024.

605

606 Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Hao-
607 han Wang. Revolve: Optimizing ai systems by tracking response evolution in textual optimization.
608 *arXiv preprint arXiv:2412.03092*, 2024.

609

610 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
611 and Jimmy Ba. Large language models are human-level prompt engineers. *arXiv preprint
arXiv:2211.01910*, 2022.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A OPTIMIZED PROMPTS FOR DIFFERENT TASKS

649
 650 In this section, we demonstrate optimized prompts by Chain-of-Thought (CoT), Automatic Prompt
 651 Engineering (APE), PromptAgent, and SIPDO with Accuracys respectively.
 652

653 Table 5: Comparison of Optimized Prompts for **Object Counting** task, including
 654 CoT, APE, PromptAgent, and SIPDO

656 Approach	657 Optimized Prompt	658 Accuracy
659 CoT	660 Your task is to count the total number of objects mentioned in the question. Follow 661 these simple steps to ensure accurate counting: 662 **Steps to Follow:** 1. **Identify Items** : Read the question carefully and list all 663 objects mentioned. 2. **Count Quantities** : For each item, check if a quantity is 664 provided. If no quantity is mentioned, assume it is one. 3. **Add Totals** : Add up 665 the quantities of all items to calculate the total count. 4. **Verify the Total** : Double- 666 check to ensure no item is missed or counted twice. 667 **Example:** - Question: "Count the apples, oranges, and bananas. There are 2 apples, 668 1 orange, and 3 bananas." - Step 1: Identify items: apples, oranges, bananas. - Step 2: 669 Count quantities: 2 apples, 1 orange, 3 bananas. - Step 3: Add totals: $2 + 1 + 3 = 6$. - 670 Step 4: Verify: All items are accounted for, total is 6. - **Output** : "The total count is 671 6." 672 Use this step-by-step method for every question to ensure accurate and clear results. 673 Calculate the overall total of all items even those spoken in groups.	674 0.928
675 APE	676	677 0.863
678 PromptAgent	679 Carefully examine the provided information. Identify and catalog each mentioned item, 680 ensuring that explicitly stated quantities are accurately recorded. If no quantity is spec- 681 ified for an item, assume it as a single unit. However, for items with defined quantities, 682 count each unit separately and include it in the total. If collective terms or categories 683 are mentioned, break them down into their individual components and associate each 684 with its stated count. When computing the total for such categories, ensure that the sum 685 reflects all individual units rather than just the number of groups or types. Each item 686 should be counted independently, but related items belonging to a common category 687 should be grouped together, with their specific quantities contributing precisely to the 688 final total. Avoid assumptions regarding the classification or nature of items—adhere to 689 standard, widely accepted definitions. Finally, summarize the count by explicitly listing 690 the quantity of each identified item or category, and provide a comprehensive total of 691 individual units rather than just category counts, unless otherwise specified.	692 0.882
693 SPIDO	694 Task Requirements: 695 The task involves counting the total number of objects listed in a question. Each distinct 696 object should be considered as part of the total count, regardless of its type or variation. 697 The output should be formatted correctly as specified. Problem Rule Application: 698 Identify all items listed in the question. Count each item exactly once, regardless of 699 type, to determine the total number of objects. Ensure accuracy by verifying that all 700 listed items have been included in the final count. Provide the final result in the re- 701 quired format: The number should be presented in both word form and numerical form, 702 separated by a comma (e.g., "nine, 9"). No extra symbols, characters, or explanations 703 should be included. Judgment Criteria: (Strictly follow these rules) 704 Complete Identification: 705 Extract and recognize all objects in the given list. Do not overlook any item mentioned 706 in the question. Accurate Counting: 707 Each item must be counted exactly once. Ensure no items are omitted or double- 708 counted. Verification Process: 709 Double-check the list to confirm that all objects are included. Cross-verify the final 710 count to avoid errors.	711 0.923

694
 695
 696
 697
 698
 699
 700
 701

702
 703
 704
 Table 6: Comparison of Optimized Prompts for **Penguins In A Table** task, in-
 cluding CoT, APE, PromptAgent, and SIPDO

705 Approach	706 Optimized Prompt	707 Accuracy
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 CoT	<p>You are tasked with answering questions about a table of penguins and their attributes. Use step-by-step reasoning to ensure accuracy in calculations and comparisons. The table is as follows: “ Name, Age, Height (cm), Weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 ”</p> <p>**Reasoning Steps for Each Question:** 1. Identify the target attribute (age, height, or weight) and the type of operation (comparison, ranking, filtering). 2. Extract the relevant rows or columns based on the question’s requirements. 3. Perform the required operation step-by-step using the extracted data. 4. Clearly summarize the answer based on the operation’s result.</p> <p>Example Workflow: - Question: "Who is the tallest penguin?" - Step 1: Identify the target attribute: Height. - Step 2: Extract the height values and corresponding names: [(Louis, 50), (Bernard, 80), (Vincent, 60), (Gwen, 70)]. - Step 3: Find the maximum height: Bernard (80 cm). - Step 4: Output the result: "Bernard is the tallest penguin with a height of 80 cm."</p> <p>Follow this workflow for every question to ensure clarity and correctness.</p>	0.818
APE	Carefully scrutinize the provided table or tables. Understand the query in relation to the information given. Pinpoint the pertinent data and carry out the vital computations or comparisons to determine the right answer from the given choices.	0.848
PromptAgent	<p>Answer questions about a table of penguins and their attributes, considering both the penguin table and any additional relevant tables. Please provide step-by-step reasoning for your answers, and ensure to clarify any criteria used for filtering or sorting data. Here is a table where the first line is a header and each subsequent line is a penguin: name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15</p> <p>For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm. What is the name of the last penguin sorted by alphabetic order? Options: (A) Louis (B) Bernard (C) Vincent (D) Gwen (E) James</p> <p>**Instructions**: 1. List the names of the penguins. 2. Sort the names alphabetically and present the sorted list clearly. 3. Identify the last name in the sorted list and indicate the corresponding option letter from the provided options. 4. If the last name does not match any of the options, select the name that is closest to the last name in the original list of penguins.</p> <p>At the end, show the answer option bracketed between <code>!answer_i</code> and <code>!/answer_i</code>.</p>	0.961
SIPDO	<p>Answer questions about a dynamic, comprehensive table of penguins and their attributes that allows penguins and other animals to be added and removed. Perform calculations and comparisons based on the questions asked. Read the question carefully to determine which attribute is being compared (age, height, weight). When comparing an attribute, extract the name and that attribute, and then compare, ignoring the other attributes. Ensure the extracted value is from the correct column corresponding to the requested attribute. When using the table, align the data so that the first number is age, the second is height, and the third is weight. Understand the question correctly, find the key words from it, and then perform calculations or comparisons based on the key words</p> <p>The current table is as follows:</p> <p>Name, Age, Height (cm), Weight (kg)</p> <p>Louis, 7, 50, 11</p> <p>Bernard, 5, 80, 13</p> <p>Vincent, 9, 60, 11</p> <p>Gwen, 8, 70, 15</p> <p>**Question Rules to Apply:**</p> <ul style="list-style-type: none"> - Identify the rows or columns that meet the specified conditions. - Retrieve the value of the required attribute from the identified rows or columns. <p>When we modify this table (by adding new penguins or removing existing penguins or adding giraffes), we first confirm whether the information we added is a penguin or a giraffe, and then solve the problem of comparing, ranking, and filtering based on attributes between penguins or giraffes, depending on the problem.</p>	0.964

756
757
758Table 7: Comparison of Optimized Prompts for **Geometric Shapes task**, including CoT, APE, PromptAgent, and SIPDO

759 Approach	Optimized Prompt	760 Accuracy
761 CoT	<p>Your task is to identify the geometric shape represented by the given SVG path data.</p> <p>Follow these steps to ensure accuracy:</p> <p>**Steps to Identify the Shape:** 1. **Check for 'A' Instructions**: – If the path contains 'A', determine: • **Circle**: 2 or more 'A' instructions. • **Sector**: 1 'A' instruction. 2. **Count 'L' Instructions**: – If there are no 'A' instructions, count the 'L' instructions to determine the polygon's shape: • **Line**: 2 'L'. • **Triangle**: 3 'L'. • **Rectangle**: 4 'L'. • **Pentagon**: 5 'L'. • **Hexagon**: 6 'L'. • **Heptagon**: 7 'L'. • **Octagon**: 8 'L'. • **Kite**: 4 'L'. 3. **Provide the Shape Name**: Output only the name of the shape (e.g., "circle", "triangle", "hexagon").</p> <p>**Example:** – Input: "M 10 10 L 20 10 L 20 20 L 10 20 Z" – Step 1: No 'A' instructions. – Step 2: Count 'L' instructions: 4 'L'. – Step 3: Shape is a **Rectangle**.</p> <p>– **Output**: "rectangle".</p> <p>Use this step-by-step process for all inputs to determine the correct shape.</p>	0.791
771 APE	<p>Determine the shape each SVG path element is drawing, then pair it with the corresponding letter from the available choices. In this case, C symbolizes hexagon, G is for pentagon, I signifies sector, and B stands for heptagon.</p>	0.650

*Continued on next page*774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 7: Comparison of Optimized Prompts for **Geometric Shapes task** (continued)

Approach	Optimized Prompt	Accuracy
PromptAgent	<p>Analyze the SVG path data to identify the geometric shape it represents. Follow these comprehensive and refined steps to ensure accurate identification:</p> <ol style="list-style-type: none"> **Holistic Path Closure**: Determine if the path forms a closed shape by checking if the last point connects back to the starting point. If multiple 'M' commands are present, analyze the segments collectively to identify any closed loops. Treat the entire path as a single entity for thorough analysis. **Segment and Side Analysis**: Identify the types of segments used in the path: <ul style="list-style-type: none"> **Line Segments**: Count the number of distinct line segments to determine the number of sides. Ensure accurate counting by considering all segments collectively. **Arc Segments**: For paths using the 'A' command, note that these represent elliptical arcs. Pay attention to the parameters to distinguish between circles and ellipses. **In-depth Geometric Properties**: For line segments, analyze the relative lengths of sides and angles between them. Consider properties such as parallel sides, equal side lengths, and right angles to distinguish between different types of polygons. Evaluate the overall shape formed by all segments. For arc segments, examine the parameters of the 'A' command: <ul style="list-style-type: none"> Check if the radii are equal, which indicates a circle. If the radii differ, consider the shape as an ellipse. **Shape Identification and Classification**: Use the geometric properties to classify the shape: <ul style="list-style-type: none"> For polygons, identify specific types like rectangles, kites, and trapezoids based on their properties. Pay special attention to the number of sides and the relationships between them. Consider the entire path as a single shape to ensure accurate classification. For arcs, determine if the shape is a circle or an ellipse based on the radii. **Options Selection and Interpretation**: Choose the most appropriate shape from the given options. Consider multiple interpretations of the path data, especially when multiple 'M' commands are present, to ensure accurate classification. If the path represents multiple shapes, prioritize the most complex or relevant shape. **Ambiguity Resolution**: In cases where the path data could represent multiple shapes, provide a rationale for selecting the most complex or relevant shape. Consider the context and any additional information that might influence the classification. **Visual Verification**: If possible, visualize the path to confirm the identified shape. This step can help resolve any remaining ambiguities and ensure the accuracy of the classification. **Iterative Refinement**: If the initial classification is uncertain, revisit the analysis steps to refine the identification. Consider alternative interpretations and re-evaluate the geometric properties. **Contextual Considerations**: Take into account any contextual information or additional data that might influence the shape classification, especially in ambiguous cases. <p>Provide your answer by selecting the correct option and enclosing it within '<code>answer_c</code>' and '<code>/answer_c</code>' tags.</p> <p>**Example** – SVG Path: <code>'path d="M 8.10,55.86 L 1.74,25.57 L 12.08,23.40 L 18.44,53.69 L 8.10,55.86'"</code> Analysis: The path forms a closed quadrilateral with opposite sides parallel and equal, indicating a rectangle. Answer: <code>'answer_cH/answer_c'</code></p> <p>– SVG Path: <code>'path d="M 16.33,5.98 A 8.87,8.87 275.02 1,0 14.78,23.64 A 8.87,8.87 275.02 1,0 16.33,5.98'"</code> Analysis: The path uses elliptical arcs with equal radii, forming a closed loop, indicating a circle. Answer: <code>'answer_cA/answer_c'</code></p>	0.830

Continued on next page

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864

865
866
Table 7: Comparison of Optimized Prompts for **Geometric Shapes task** (con-
tinued)

867

Approach	Optimized Prompt	Accuracy
SIPDO	<p>Given the following SVG path data: “input” and options, identify the geometric shape it represents and provide ONLY the name of the shape as the ‘target’.</p> <p>Task Requirements: 1. Count the instructions in the SVG path 2. Judge the shape of the graphic according to the judgment criteria 3. Provide the exact name of the shape as output.</p> <p>You need to count how many instructions L are in the SVG path:</p> <p>Problem Rule Application: 1. Visualize the path data to understand the overall structure. 2. Find out whether there is instruction A in the instruction. If so, determine whether it is a circle or a sector according to the number of instructions A. If not, determine how many sides it is 3. For polygons, pay attention to the number of edges to identify the shape. The following are the number of instructions corresponding to different shapes: - triangle: 3 L - rectangle: 4 L - hexagon: 6 L - pentagon: 5 L - octagon: 8 L - heptagon: 7 L - kite: 4 L - line: 2 L - circle: 2 or more A - sector: 1 A</p> <p>Judgment criteria: (Please strictly abide by this rule) – No need to pay attention to “M” instructions – !! First identify whether there is an instruction “A” in the SVG path. If so, first determine whether it is a circle or a sector. – !! If there is no instruction “A”, determine the number of sides of the polygon based on the instruction “L”. A polygon with n sides requires n “L” instructions. (Please strictly abide by this rule)</p>	0.822

884

885

886

887

888
Table 8: Comparison of Optimized Prompts for **Causal Judgment tasks**, includ-
ing CoT, APE, PromptAgent, and SIPDO

889

Approach	Optimized Prompt	Accuracy
CoT	<p>Task: Respond to inquiries about causal attribution by identifying the key causes and their contributions to the outcome. Follow the steps below to ensure accurate and clear reasoning:</p> <p>Steps to Analyze Causation: 1. Identify Key Entities: Read the question carefully and highlight the specific entities or factors being discussed. 2. Determine Relevant Causes: Analyze the context to identify immediate and incidental causes contributing to the outcome. - Immediate causes: Directly lead to the outcome. - Incidental causes: Indirectly influence the outcome but may still contribute. 3. Evaluate Interactions: Consider how multiple causes might interact to produce the observed effect (e.g., synergy or independent contributions). 4. Provide the Answer: Clearly state the primary and secondary causes, as well as their roles in creating the outcome. Avoid unsupported assumptions.</p> <p>Use this structured reasoning approach to analyze each inquiry and provide a clear and logical explanation.</p>	0.678
APE	<p>For each situation, decide if the result was caused deliberately or not. If the individual or party behind the event was aware of the potential result and chose to go ahead, select ‘Yes’. If they didn’t intend the result to happen, even if they knew it could possibly occur, select ‘No’.</p>	0.756

905

906

907

908

909

910

911

912

913

914

915

916

917

(Continued on next page)

918

(Continued from previous page)

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Approach	Optimized Prompt	Accuracy
PromptAgent	<p>When addressing questions about causal attribution, ensure a comprehensive analysis by considering both individual and collective actions that contribute to an outcome. Clearly differentiate between necessary and sufficient causes, and recognize that multiple causes can simultaneously contribute to an outcome. Emphasize the importance of understanding both general and specific intentions, especially when outcomes are unintended. Define "intentional" actions as those where the actor or group had control over maintaining or altering the conditions necessary for the outcome, even if the specific result was not desired. Address scenarios where unintended consequences arise from intentional actions, and provide answers that reflect a nuanced understanding of how different elements interact to produce a result. Use diverse examples to illustrate key concepts like "direct causation," "simultaneity," and "unintended consequences," ensuring a balanced consideration of necessary and sufficient causes. Simplify complex scenarios by breaking them down into clear, manageable components, and provide definitions or examples of key terms to guide your analysis. Additionally, clarify definitions of key terms such as "necessary," "sufficient," "intentional," and "unintended consequences" to ensure precise understanding. Highlight the importance of interactions between multiple causes, especially in complex scenarios, and offer strategies for analyzing scenarios where simultaneity is crucial. Explore the nuances of intentional actions and unintended consequences more deeply, and encourage the use of diverse examples to illustrate different aspects of causation. Pay special attention to the role of individual actions in maintaining necessary conditions and the distinction between collective and individual causation. Emphasize that in collective decision-making, the outcome can be intentional if it aligns with the group's goals, even if individual members disagree. Reinforce the distinction between necessary and sufficient causes, ensuring the model understands that necessary causes alone do not determine the outcome. Clarify that following a protocol does not remove intentionality if the outcome aligns with organizational priorities. Highlight that intentionality can be attributed if the outcome was a foreseeable consequence of the action, regardless of individual opposition.</p>	0.846
SIPDO	<p>Task Requirements Determine whether a given event (cause) directly leads to another event (effect). Assess the causal relationship based on logical reasoning, ensuring a clear and definitive answer. The final output must be only "Yes" or "No", strictly adhering to the required format. Problem Rule Application Identify the cause and effect within the question. Assess necessity: Determine if the cause is essential for the effect to occur. Evaluate causation: If the cause did not happen, would the effect still occur? If the effect only happens when the cause is present, then the cause directly leads to the effect. If the effect can still happen independently, then the relationship is not causal. Judgment Criteria Direct Causation: If the cause directly leads to the effect and is a necessary condition, answer "Yes". If the effect would not have occurred without the cause, answer "Yes". Example: "Dropping a glass caused it to shatter." → Yes. No Direct Causation: If the effect can occur without the cause, answer "No". If the cause is only correlated but not necessary, answer "No". Example: "Wearing a red shirt caused the stock market to rise." → No. Verification Process: Check whether the absence of the cause results in the absence of the effect. Ensure logical consistency in the causal assessment.</p>	0.880

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 9: Comparison of Optimized Prompts for **Epistemic task**, including CoT, APE, PromptAgent, and SIPDO

Approach	Optimized Prompt	Accuracy
CoT	<p>Task: Analyze the logical relationship between a given premise and hypothesis. Your goal is to determine if the premise guarantees the truth of the hypothesis. Choose one of the following answers: 'entailment' or 'non-entailment'.</p> <p>**Steps to Follow:** 1. **Understand the Premise and Hypothesis**: Carefully read the premise and hypothesis to identify the key information in both statements. 2. **Analyze the Logical Relationship**: Determine whether the information in the premise confirms the truth of the hypothesis. - If the premise logically supports and guarantees the hypothesis, choose 'entailment'. - If the premise does not confirm the hypothesis, or if there is uncertainty, choose 'non-entailment'. 3. **Provide the Answer**: Based on your analysis, output the correct answer ('entailment' or 'non-entailment').</p> <p>Use this step-by-step approach for all premise and hypothesis pairs to ensure accurate reasoning.</p>	0.855
APE	<p>Determine whether the hypothesis is directly implied by the premise or not. If the premise's statement is a direct claim or conviction of the individual mentioned in the hypothesis, choose 'entailment'. However, if the premise is formed on the belief or supposition of someone other than the subject in the hypothesis, opt for 'non-entailment'.</p>	0.888
PromptAgent	<p>Determine the relationship between two sentences by evaluating whether the first sentence provides direct or logically implied evidence for the second. Choose from the options 'entailment' or 'non-entailment'.</p> <p>Consider the following: - **Entailment**: The first sentence directly or through logical implication confirms the truth of the second sentence, even if it involves a chain of beliefs or perceptions, as long as the chain logically supports the hypothesis. - **Non-entailment**: The first sentence does not confirm the truth of the second sentence, often involving unsupported assumptions, beliefs, or suspicions that do not logically lead to the hypothesis.</p> <p>Guidelines for Analysis: 1. **Clarify Belief Chains and Logical Implications**: Understand how belief chains work and when they logically support the hypothesis. Pay attention to verbs indicating beliefs, assumptions, or suspicions (e.g., "thinks," "assumes," "suspects") versus those indicating direct evidence (e.g., "learns," "knows," "remembers"). Consider how these verbs interact in belief chains and what they imply about the subject's own beliefs. 2. **Evaluate Direct and Implied Evidence**: Determine if the premise provides direct or logically implied evidence for the hypothesis, considering how belief chains can logically support the hypothesis. Recognize that indirect beliefs about another person's recognition can imply one's own belief about a situation, especially when the belief chain is logical and straightforward. 3. **Consider Perspective and Source of Information**: Note any differences in perspective or source of information (e.g., who remembers or assumes something) and how these perspectives contribute to the logical implication of the hypothesis. 4. **Conduct a Comprehensive Analysis**: Use a step-by-step approach to ensure all relevant details and logical implications are considered in the analysis. Balance the emphasis on direct evidence with the recognition of logical implications from indirect beliefs.</p> <p>Example: Premise: "Charlotte thinks that Richard recognizes that a boy is standing in a pool getting splashed with water." Hypothesis: "Charlotte thinks that a boy is standing in a pool getting splashed with water." Options: (A) entailment (B) non-entailment</p> <p>Analysis: 1. **Understanding the Premise**: The premise indicates that Charlotte thinks Richard recognizes a specific situation involving a boy in a pool. 2. **Understanding the Hypothesis**: The hypothesis states that Charlotte thinks a boy is in a pool getting splashed with water. 3. **Assessing the Relationship**: The premise implies that Charlotte has a belief about the situation (through Richard's recognition), which logically supports the hypothesis. Charlotte's belief about Richard's recognition suggests she also believes in the situation's occurrence. 4. **Conclusion**: The relationship is one of entailment because Charlotte's belief about Richard's recognition logically implies her belief in the situation.</p> <p>Therefore, the correct answer is:</p> <p><answer>A</answer></p> <p>Identify the relation between the following premises and hypotheses, choosing from the options 'entailment' or 'non-entailment'. At the end, show the answer option bracketed between <answer> and </answer>.</p>	0.916

(Continued on next page)

(Continued from previous page)		
Approach	Optimized Prompt	Accuracy
SIPDO	<p>Task Requirements:</p> <p>Analyze a given premise (primary sentence) and determine whether it fully supports the truth of a hypothesis (subsequent sentence). Classify the relationship as either "Entailment" or "Non-Entailment" based on the logical and factual connections between the two. Provide the classification only as the final output. Problem Rule Application:</p> <p>Entailment:</p> <p>The premise explicitly confirms the hypothesis with clear, direct evidence. No additional information, assumptions, or interpretations are required to validate the hypothesis. Non-Entailment:</p> <p>The premise does not fully or explicitly confirm the hypothesis. If there is ambiguity, uncertainty, or missing logical links, label it as Non-Entailment. Judgment Criteria: (Strictly follow these rules)</p> <p>Language of Uncertainty:</p> <p>Words like "assumes," "believes," "thinks," "feels," "suspects" indicate subjectivity and should not be considered definitive proof. These terms suggest a possibility rather than an explicit factual connection. Specific vs. General Statements:</p> <p>A specific premise (e.g., mentioning a "full face mask") does not necessarily contradict a general hypothesis (e.g., referencing a "mask" in general). However, if the premise is too general to confirm the specific claim, classify as Non-Entailment. Objective Reasoning:</p> <p>Only use the logical and factual ties within the given statements. Do not rely on external knowledge, assumptions, or interpretations unless directly supported by the premise.</p> <p>Decision Process:</p> <p>Determine whether the premise fully supports the hypothesis without needing extra inference → Entailment. If the premise only partially supports or fails to confirm the hypothesis → Non-Entailment.</p>	0.893

Table 10: Comparison of Optimized Prompts for **Temporal task** including CoT, APE, PromptAgent, and SIPDO.

Approach	Optimized Prompt	Accuracy
CoT	<p>Your task is to determine the available time slot for an event, based on a schedule of occupied times. Follow these steps to ensure accuracy:</p> <p>**Steps to Identify Free Time Slots:** 1. **List Occupied Periods**: Organize all occupied time slots in chronological order. 2. **Find Gaps**: Identify gaps between the occupied periods where no activities are scheduled. 3. **Check Constraints**: Ensure that the free time slots fall within operational constraints (e.g., facility closing times). 4. **Select the Slot**: Choose the correct free time slot that satisfies all criteria.</p> <p>**Output Result Format:** - Present the selected free time slot in a clear format, such as "Xpm to Ypm" or "Xam to Yam".</p> <p>Use this step-by-step method to ensure that the identified time slot is accurate and does not overlap with any occupied periods.</p>	0.989
APE	<p>Identify the period when the individual was unnoticed and had the possibility to visit the specified place before its closing time.</p>	0.994

(Continued on next page)

1080	<i>(Continued from previous page)</i>	
1081 Approach	1082 Optimized Prompt	1083 Accuracy
PromptAgent	<p>Analyze the timeline of events to determine possible time frames during which certain events could have occurred, even if they were not explicitly observed. Start by constructing a comprehensive timeline, clearly listing all observed and unobserved time slots. Identify gaps where the subject is unobserved, ensuring these gaps fit within any given constraints, such as opening and closing times. Emphasize the importance of constraints by verifying them after identifying potential gaps. Use a step-by-step reasoning approach to systematically evaluate all available information, and include a final review to check for potential errors or overlooked details before finalizing the answer. Define key terms like "unobserved" and "constraints" to ensure clarity in the task requirements. Provide examples to illustrate the reasoning process and expected output format, guiding the model in analyzing timelines and identifying possible time frames for unobserved events. Additionally, incorporate a checklist to ensure all steps are followed, and highlight common pitfalls to avoid during the analysis. Finally, include a summary of the reasoning process to reinforce understanding and ensure the model's conclusions are well-supported.</p> <p>To further enhance the model's performance, include additional examples that cover a wider range of scenarios and constraints, such as overlapping time slots or multiple constraints. Provide explicit guidance on handling complex constraints and ambiguous information. Incorporate interactive feedback mechanisms to help the model learn from mistakes and improve over time. Ensure the prompt is concise and focused, avoiding unnecessary repetition while maintaining clarity and comprehensiveness. Additionally, introduce a section for handling exceptions or unusual cases, offering strategies for dealing with incomplete or conflicting data. This will help the model adapt to a broader range of real-world scenarios and improve its robustness in timeline analysis tasks.</p>	0.984
SIPDO	<p>**Task Requirements:** Determine the possible time period during which an event could have occurred, based on a detailed schedule of occupied times. Your goal is to identify the correct time slot that fits all the provided criteria without any overlap.</p> <p>**Problem Rule Explanation:** 1. Analyze the schedule to identify all time slots during which the person is occupied. 2. Determine the available time slots by identifying gaps between these occupied periods. 3. Consider any additional constraints, such as closing times, that may limit the available time slots.</p> <p>**Problem Rule Application:** - List all the occupied time slots chronologically. - Identify gaps between these occupied slots where the person is free. - Ensure that the free time slots do not conflict with constraints like closing times.</p> <p>**Result Verification:** - Confirm that the identified time slot is completely free and adheres to any constraints. - Double-check against all occupied periods to ensure there is no overlap. - Avoid selecting time slots that are partially occupied or overlap with any scheduled activities.</p> <p>**Output Result Format:** - Present the correct time slot in a straightforward manner, using the format "Xpm to Ypm" or "Xam to Yam" as appropriate. - Ensure the output is clear and free of any extraneous symbols or text.</p> <p>**Common Mistakes to Avoid:** - Do not include time slots that extend beyond the closing time of the facility. - Avoid selecting time slots that overlap with any scheduled activities. - Ensure the selected time slot is entirely free and does not partially overlap with any occupied period.</p> <p>**General Rules and Analysis:** - Identify all occupied periods and list them chronologically. - Look for gaps between these periods where the person is not scheduled for any activity. - Verify that these gaps fall within any operational constraints, such as closing times. - Ensure the selected time slot is entirely free and does not overlap with any occupied periods.</p> <p>By following these guidelines, you can accurately determine the available time slot for the event in question. Avoid errors by ensuring that the selected time slot is entirely free and does not overlap with any occupied periods.</p>	0.993

1127
1128
1129
1130
1131
1132
1133

1134

1135 **B OPTIMIZED PROMPTS WITHOUT DIFFICULTY SCALING IN SYNTHETIC**

1136 **DATA**

1137 Table 11: Optimized Prompts Without Difficulty Scaling in Synthetic Data

1139 Tasks	1140 Optimized Prompt	1141 Accuracy
1142 Penguins	<p>You are provided with two tables containing data about penguins and giraffes. Your task is to focus solely on the giraffe data to answer a specific question regarding the tallest giraffe.</p> <p>**Penguin Data:**</p> <p>— Name — Age — Height (cm) — Weight (kg) — — Louis — 7 — 50 — 11 — Bernard — 5 — 80 — 13 — Vincent — 9 — 60 — 11 — Gwen — 8 — 70 — 15 — James — 12 — 90 — 12 —</p> <p>**Giraffe Data:**</p> <p>— Name — Age — Height (cm) — Weight (kg) — — Jody — 5 — 430 — 620 — Gladys — 10 — 420 — 590 — Marian — 2 — 310 — 410 — Donna — 9 — 440 — 650 —</p> <p>**Task Requirements:** 1. Identify the tallest giraffe based on the height provided in the Giraffe Data table. 2. Provide the weight of the tallest giraffe in kilograms.</p> <p>**Problem Rule Explanation:** - Review the height values for each giraffe listed in the Giraffe Data table. - Compare these height values to determine which giraffe is the tallest.</p> <p>**Problem Rule Application:** - Examine the height values for the giraffes: - Jody: 430 cm - Gladys: 420 cm - Marian: 310 cm - Donna: 440 cm - Identify that Donna is the tallest giraffe at 440 cm. - Retrieve the corresponding weight of Donna, which is 650 kg.</p> <p>**Result Verification:** - Ensure that you have considered all entries in the Giraffe Data table. - Confirm that the weight you provide corresponds to the giraffe identified as the tallest.</p> <p>**Output Result Format:** - Provide your answer in the following format: - "Weight of the tallest giraffe: [Weight in kg]"</p> <p>—</p> <p>**Example Output:** - "Weight of the tallest giraffe: 650"</p>	0.732
1164 Geometry	<p>— Given the following input: "input", you must provide ONLY the correct value for the 'target'.</p> <p>**Rules:** 1. Do NOT provide any explanations. 2. Do NOT provide any sentences, text, or words other than the 'target' value. 3. The answer must be the exact value contained in the "target" and any unauthorized additions are prohibited.</p>	0.681
1168 Object Counting	<p>**Task Requirements:** - Determine the total number of fruits by accurately identifying and counting each type listed in the question.</p> <p>**Problem Rule Explanation:** - The task involves listing and counting each fruit mentioned. - Each fruit should be counted as one unless a specific quantity is provided.</p> <p>**Problem Rule Application:** - Carefully read through the list to identify all items that are fruits. - Count each fruit once unless otherwise specified with a different quantity. - Avoid including any non-fruit items or miscounting due to misinterpretation of the list.</p> <p>**Result Verification:** - Re-examine the list to ensure all fruits have been correctly identified and counted. - Verify that the total count reflects only the fruits listed, with no errors in inclusion or exclusion.</p> <p>**Output Result Format:** - Provide the total number of fruits in both word and numeral forms, such as: ["ten", "10"]. - Ensure the output is clear and free from special symbols or formatting errors."</p>	0.538

1179 (Continued on next page)

1180

1181

1182

1183

1184

1185

1186

1187

<i>(Continued from previous page)</i>		
1188	1189	1190
1191	1192	1193
1194	1195	1196
1197	1198	1199
1199	1200	1201
1200	1201	1202
1201	1202	1203
1202	1203	1204
1203	1204	1205
1204	1205	1206
1205	1206	1207
1206	1207	1208
1207	1208	1209
1208	1209	1210
1209	1210	1211
1210	1211	1212
1211	1212	1213
1212	1213	1214
1213	1214	1215
1214	1215	1216
1215	1216	1217
1216	1217	1218
1217	1218	1219
1218	1219	1220
1219	1220	1221
1220	1221	1222
1221	1222	1223
1222	1223	1224
1223	1224	1225
1224	1225	1226
1225	1226	1227
1226	1227	1228
1227	1228	1229
1228	1229	1230
1229	1230	1231
1230	1231	1232
1231	1232	1233
1232	1233	1234
1233	1234	1235
1234	1235	1236
1235	1236	1237
1236	1237	1238
1237	1238	1239
1238	1239	1240
1239	1240	1241

1242 C SELF-IMPROVEMENT PROMPT TEMPLATES
12431244
1245
1246 We provide an example of a self-improvement prompt template in the BIG-Bench Penguins In a Table task:
1247 Error analysis, Improvement recommendations, and prompt refinement.
1248
1249
1250
12511252 **Error Analysis Prompt Template**
12531254 You are an expert at analysing why LLM answer is wrong in Penguins in a table reasoning task.
12551256 Your task is to give a concise and general description of the reasoning mistake from the current
1257 prompt that caused the mistake with the provided question, generated answer, ground truth, and current
1258 prompt below:
12591260 Question :{synthetic question}
1261 Model generated answer: {LLM generated answer}
1262 Ground truth: {true answer}
1263 Current prompt: {current prompt}1264
1265 1. **Misinterpretation of the Question:** The model may have misinterpreted the question, focusing on
1266 the structure of the data rather than the specific request for the height of the tallest penguin. This could
1267 lead to confusion and an irrelevant answer.
1268
1269 2. **Inattention to Numerical Data:** The model might have overlooked the numerical values provided in
1270 the table, failing to recognize that it needed to compare the heights of the penguins to determine the
1271 tallest one.
1272
1273 3. **Irrelevant Output Generation:** The answer "rectangle" does not relate to the context of the
1274 question. This suggests that the model may have generated a response based on unrelated patterns or
1275 associations rather than the specific data presented.
1276
1277 4. **Lack of Contextual Understanding:** The model may not have fully grasped the context of the data
1278 table, leading to a failure in recognizing that the question was asking for a specific value derived from
1279 the table.
1280
1281 5. **Failure to Process Tabular Data:** The model might struggle with processing tabular data effectively,
1282 which can lead to incorrect conclusions or irrelevant outputs when asked to analyze such formats.1283 **Improvement Recommendation Prompt Template**1284 You are an expert in giving recommendations for optimizing current prompts. The goal is to output
1285 reasonable and decent suggestions on how to revise the current prompt to solve the encountered issue.
12861287 Question :{synthetic question}
1288 Model generated answer: {LLM generated answer}
1289 Ground truth: {true answer}
1290 Current prompt: {current prompt}
1291 Generated error analysis: {error analysis from previous step}1292 Some recommendation examples in Penguins In A Table task(But don't be limited to these):
1293 - Clarify the question to emphasize the need for numerical comparison.
1294 - Provide explicit instructions to focus on extracting specific values from the data.
1295 - Ensure the model is trained to recognize and process tabular data more effectively.
1296 - Avoid ambiguity in the question to prevent misinterpretation of the request.

1296

Prompt Refinement Template

1297

1298

You are an expert in revising prompt engineering and refinement in tables related to reasoning tasks.

1299

1300

Goal: Create a revised prompt that fixes the failure without overfitting – keep it generic.

1301

Question :{synthetic question}

1302

Model generated answer: {LLM generated answer}

1303

Ground truth: {true answer}

1304

Current prompt: {current prompt}

1305

Refinement recommendation: {recommendation from previous step}

1306

Tasks:

- Give a better prompt, which can avoid all the problems that have occurred.
- Summarize the logic based on the question and correct answer, and summarize the mistakes that should be avoided based on the question and generated wrong answer.
- Do not modify the prompt based on the specific problem, but modify the prompt based on the cause of the error. The modified prompt should be able to give some regular hints and logical revisions.
- You should specify the output format according to the correct answer. The output should not contain any special symbols.
- You can summarize the characteristics of each option and reverse the answer based on the characteristics.
- It can analyze the general rules of the problem, which helps the model understand how the problem is solved.
- Prompts should be planned according to the following categories: task requirements, problem rule explanation, problem rule application, result verification, and output result format.

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
1351 **D EXAMPLES OF GENERATED DATA**
1352
1353

Table 12: Examples of Generated Data for BIG-Bench tasks

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	Tasks	Generated Data
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Causal Judgment	Question: In a small town, there is a bakery that makes the best pastries. Every morning, the bakery opens at 7:00 am, and a line of customers forms outside. The bakery owner has a rule that only one person can enter at a time to maintain order. One day, two customers, Alice and Bob, arrive at the same time. Alice follows the rule and waits outside, but Bob ignores the rule and enters the bakery while another customer is still inside. The bakery becomes overcrowded, and a shelf of pastries falls over, ruining the day's batch. Did Bob cause the pastries to be ruined? Answer: Yes
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Geometry	Question: This SVG path element <path d="M 50.00,30.00 L 66.18,35.09 L 72.45,50.00 L 66.18,64.91 L 50.00,70.00 L 33.82,64.91 L 27.55,50.00 L 33.82,35.09 L 50.00,30.00"/> Answer: Polygon
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Object Counting	Question: I have two violins, a drum, a piano, a flute, and a trumpet. Additionally, I have a cat, a rabbit, a dog, a chicken, and a goat. How many musical instruments do I have? Answer: 4
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Epistemic	Question: Premise: Olivia suspects that Ethan recognizes that a group of musicians gather in a park, tuning their instruments as the sun sets behind the city skyline. Hypothesis: Ethan recognizes that a group of musicians gather in a park, tuning their instruments as the sun sets behind the city skyline. Answer: non-entailment
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Temporal	Question: Today, Alex attended several events. Between what times could he have gone to the gym? We know that: Alex had breakfast at 8am. He attended a meeting from 9am to 11am. He was seen at the art gallery from 11am to 1pm. He had lunch with friends from 1pm to 2pm. He was at the cinema from 2pm to 4pm. He visited his grandmother from 4pm to 6pm. The gym closes at 10pm. Between what times could Alex have gone to the gym? 12pm to 1pm, 9am to 10am, 6pm to 10pm, 4pm to 5pm Answer: 6pm to 10pm
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Penguins	Question: Here is a table where the first line is a header and each subsequent line is a penguin: name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15. For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard is 80 cm. Which is the youngest penguin?? Answer: Bernard

Table 13: Examples of Generated Causal Judgement Data for BIG-Bench tasks

Difficulty Level/Iteration	Generated Data
1	In a small town, there is a bakery known for its delicious pastries. The bakery owner, Mr. Thompson, has a strict policy that only his trained staff can bake the pastries. However, one day, a customer named Sarah, who has some baking experience, decides to sneak into the kitchen while the staff is busy. She bakes a batch of pastries without permission. The next morning, Mr. Thompson discovers that the pastries are not up to his usual standards. Did Sarah cause the pastries to be of poor quality?
2	In a bustling restaurant, the head chef, Chef Maria, has a rule that only she and her sous chefs are allowed to create new dishes. One evening, a waiter named Tom, who has a passion for cooking, decides to experiment and prepares a new dish during a slow shift. The next day, Chef Maria tastes the dish and finds it lacks flavor and presentation. Did Tom cause the dish to be of poor quality?
3	In a high-tech company, the lead engineer, Ms. Johnson, has a strict protocol that only certified technicians are allowed to perform software updates on the main server. One afternoon, a junior intern named Alex, eager to impress, decides to bypass the protocol and updates the software without authorization. The next day, the server experiences significant downtime due to compatibility issues. Did Alex cause the server downtime?
4	In a prestigious university, the dean, Dr. Roberts, has a clear policy that only faculty members are allowed to supervise student research projects. However, a graduate student named Emily, frustrated with the slow progress of her project, decides to take matters into her own hands and conducts an experiment without faculty approval. When the results are presented, they are deemed unreliable and flawed. Did Emily cause the research results to be unreliable?
5	In a renowned art gallery, the curator, Ms. Patel, has a strict guideline that only professional artists can submit their work for exhibition. One day, a passionate art student named Jake, feeling confident in his skills, sneaks in his painting and hangs it on the wall without permission. When the exhibition opens, visitors notice that Jake's painting lacks the finesse and depth of the other artworks. Did Jake cause the negative reception of his painting?
6	In a large corporate office, the HR manager, Ms. Lee, has a strict policy that only trained personnel are allowed to conduct interviews for new hires. One day, a receptionist named Mark, eager to help, decides to conduct an interview for a candidate without permission. The next day, during the hiring meeting, it becomes clear that the candidate is not a good fit for the company culture. Did Mark cause the poor hiring decision?
7	In a cutting-edge research lab, the lead scientist, Dr. Nguyen, has a strict rule that only authorized researchers can handle the sensitive equipment. One afternoon, a visiting scholar named Rachel, excited to contribute, decides to use the equipment without permission. The next day, Dr. Nguyen discovers that the data collected is corrupted and unusable. Did Rachel cause the data corruption?
8	In a competitive publishing house, the editor-in-chief, Ms. Carter, has a strict policy that only experienced editors can approve manuscripts for publication. One day, a new intern named David, eager to make a mark, decides to approve a manuscript without consulting anyone. When the book is published, it is filled with errors and inconsistencies. Did David cause the poor quality of the published book?
9	In a prestigious law firm, the managing partner, Mr. Stevens, has a strict rule that only licensed attorneys can represent clients in court. One day, a paralegal named Lisa, wanting to prove her capabilities, decides to represent a client during a hearing without authorization. The next day, the judge dismisses the case due to Lisa's lack of legal knowledge and experience. Did Lisa cause the dismissal of the case?
10	In a leading aerospace company, the project director, Mr. Carter, has a strict rule that only certified engineers can work on the aircraft design. However, his enthusiastic neighbor, Jake, who has no formal training, often offers unsolicited advice on the design process. One day, Jake manages to convince Mr. Carter to incorporate a design feature he believes will improve aerodynamics. Unfortunately, the feature is flawed and leads to a critical failure during a test flight, resulting in the loss of the prototype. Did Jake cause the failure of the prototype?

1458 E DETAILED PROOF OF THEOREM 3.3
14591460 **1. Surrogate domination.** Because the surrogate loss upper-bounds the 0–1 loss point-wise,
1461

1462
$$\sup_{\psi \in \Psi} \mathbb{E}_{q_\psi} [\mathbb{1}\{f(p, \tilde{x}) \neq \tilde{y}\}] \leq \sup_{\psi \in \Psi} \mathbb{E}_{q_\psi} [L(f(p, \tilde{x}), \tilde{y})] = \sup_{\psi \in \Psi} J(\psi),$$

1463

1464 where we abbreviated $J(\psi) := \mathbb{E}_{q_\psi} L(f(p, \tilde{x}), \tilde{y})$.
14651466 **2. Reduce to the near-optimal generator.** Let ψ^* be any generator that ε -maximises the regularised
1467 objective,

1468
$$\psi^* = \arg \max_{\psi \in \Psi} \left\{ J(\psi) - \lambda^{-1} R(\psi) \right\} \quad \text{s.t.} \quad J(\psi^*) - \lambda^{-1} R(\psi^*) \geq \sup_{\psi \in \Psi} (J(\psi) - \lambda^{-1} R(\psi)) - \varepsilon.$$

1469

1470 Rearranging, $J(\psi) \leq J(\psi^*) + \lambda^{-1}(R(\psi) - R(\psi^*)) + \varepsilon$ for every ψ , hence
1471

1472
$$\sup_{\psi \in \Psi} J(\psi) \leq J(\psi^*) + \varepsilon.$$

1473

1474 **3. Bound the hard generator via KL.** Applying the risk-alignment inequality to ψ^* ,
1475

1476
$$J(\psi^*) \leq \mathbb{E}_{(x, y) \sim P} L(f(p, x), y) + \lambda^{-1} R(\psi^*).$$

1477

1478 **4. Sample–population substitution.** With probability at least $1 - \delta$ over the draw of the training set,
1479

1480
$$\mathbb{E}_{(x, y) \sim P} L(f(p, x), y) \leq \frac{1}{n} \sum_{i=1}^n L(f(p, x_i), y_i) + q(|\mathcal{P}|, n, \delta).$$

1481

1482 **Combine.** Chaining 1-4 we obtain
1483

1484
$$\sup_{\psi \in \Psi} \mathbb{E}_{q_\psi} \mathbb{1}\{f(p, \tilde{x}) \neq \tilde{y}\} \leq \frac{1}{n} \sum_{i=1}^n L(f(p, x_i), y_i) + \lambda^{-1} R(\psi^*) + \varepsilon + q(|\mathcal{P}|, n, \delta),$$

1485

1486 which is exactly the bound claimed in Theorem 3.3. □
1487