
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIPDO: CLOSED-LOOP PROMPT OPTIMIZATION VIA
SYNTHETIC DATA FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Prompt quality plays a critical role in the performance of large language mod-
els (LLMs), motivating a growing body of work on prompt optimization. Most
existing methods optimize prompts over a fixed dataset, assuming static input
distributions and offering limited support for iterative improvement. We intro-
duce SIPDO (Self-Improving Prompts through Data-Augmented Optimization),
a closed-loop framework for prompt learning that integrates synthetic data gen-
eration into the optimization process. SIPDO couples a synthetic data generator
with a prompt optimizer, where the generator produces new examples that reveal
current prompt weaknesses and the optimizer incrementally refines the prompt in
response. This feedback-driven loop enables systematic improvement of prompt
performance without assuming access to external supervision or new tasks. Ex-
periments across question answering and reasoning benchmarks show that SIPDO
outperforms standard prompt tuning methods, highlighting the value of integrating
data synthesis into prompt learning workflows.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance across a wide range of nat-
ural language tasks, including classification, question answering, and reasoning. However, their
output quality is highly sensitive to prompt design—small changes in phrasing, structure, or for-
matting can lead to significant variations in performance (He et al., 2024; Spiess et al., 2025). This
sensitivity has made prompt optimization a core challenge in adapting LLMs to downstream appli-
cations, where consistency and reliability are crucial. In domains such as healthcare and finance, the
inability to ensure stable, predictable performance makes prompt optimization more than a desirable
enhancement, but a critical necessity for reliable system deployment.

The core challenge of prompt optimization is multifaceted. Unlike traditional hyperparameter tun-
ing, the search space of prompts is discrete, non-differentiable, and vast. Small modifications to
prompts can have unpredictable effects on LLMs’ behavior, and the gradient-based methods that
typically power optimization in machine learning are not directly applicable. Furthermore, LLMs
often perform well on a fixed, curated test set, but their performance can deteriorate when faced
with novel linguistic variations, edge cases, or adversarial queries. This makes prompt optimization
particularly challenging, as a prompt that performs well in one scenario may fail when the input
distribution shifts, leading to issues such as catastrophic forgetting or fragile performance across
different contexts.

Prior work in prompt optimization has explored manual tuning, discrete search, and gradient-based
methods to improve model responses (Wang et al., 2023; Shin et al., 2020; Cui et al., 2024; Kwon
et al., 2024; Zhang et al., 2024). While effective in some settings, these approaches do not address
the dynamic nature of real-world inputs, where the input space evolves over time. As a result, they
can produce prompts that perform well on average but lack robustness when the input distribution
changes.

In contrast, data augmentation has long been used in supervised learning to improve model robust-
ness by exposing models to diverse training conditions (Mikołajczyk & Grochowski, 2018). In the
context of prompt learning, the ability of LLMs to generate high-quality synthetic data presents an
exciting opportunity to improve prompt optimization. However, existing prompt optimization meth-
ods do not leverage synthetic data in a dynamic, feedback-driven manner (Singh et al., 2023; Gilardi

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2023; Tang et al., 2023; Gao et al., 2023). Moreover, it is not sufficient to simply produce
more data; the challenge is to generate data that is purposeful and stressful that targets the current
failure modes of the prompt and provides a progressive challenge that helps guide its evolution.
The synthetic data must also be carefully crafted to ensure that it does not overwhelm the model
with trivially easy or overly difficult cases, but instead exposes latent weaknesses that need to be
addressed.

To address these challenges, we propose SIPDO (Self-Improving Prompts through Data-
Augmented Optimization), a closed-loop framework for prompt optimization that integrates syn-
thetic data generation directly into the learning process. SIPDO consists of two components: a Syn-
thetic Data Generator that produces inputs specifically designed to challenge the current prompt,
and a Prompt Optimizer that uses these examples to iteratively refine the prompt. This feedback
loop enables the prompt to evolve continuously over time, adapting to new, previously unseen in-
puts without requiring external supervision or the need to tune for each new scenario individually.
Particularly, SIPDO addresses the unique challenges of prompt optimization by transforming the
optimization process from a static, one-time procedure to a dynamic, self-adaptive learning loop.
This shift is critical for ensuring prompt robustness in the face of evolving input distributions.

Contributions. This paper makes the following contributions:

• We introduce a feedback-driven framework SIPDO that integrates synthetic data generation into
prompt optimization, providing a novel pathway for improving prompt robustness.

• We develop a method to construct synthetic examples that dynamically stress-test prompts, reveal-
ing failure modes and guiding refinement.

• We empirically demonstrate that augmenting prompt optimization with synthetic data improves
performance across multiple reasoning benchmarks, surpassing existing prompt tuning methods.

2 RELATED WORK

2.1 AUTOMATIC PROMPT ENGINEERING

Automatically discovering optimal prompts has become a key challenge in the era of large language
models (LLMs). Automatic Prompt Engineering (APE) employs optimization-based, generative,
and template-driven approaches. Optimization techniques include gradient-based search (Shin et al.,
2020), reinforcement learning (Ouyang et al., 2022; Kwon et al., 2024), and evolutionary algorithms
(Cui et al., 2024). Generative methods use models like GPT and Gemini to generate candidate
prompts, with StablePrompt (Kwon et al., 2024) optimizing prompts via reinforcement learning.
Additionally, PromptAgent (Wang et al., 2023) breaks down prompt creation into sub-goals, while
template-driven approaches, like fill-in-the-blank formats, ensure clarity (Chen et al., 2024). Recent
work has expanded on automatic prompt optimization techniques. AutoPDL (Spiess et al., 2025)
automates the discovery of optimal configurations for agents which successive halving to explore
the space of agentic and non-agentic prompting patterns. The sequential optimal learning approach
for automated prompt engineering (Wang et al., 2025) uses Bayesian regression and Knowledge-
Gradient policies to efficiently identify effective prompt features. Progressively Automatic Prompt
Optimization (Qu et al., 2025) introduces an evolution-based algorithm to optimize prompts for
visual classification tasks.

We propose a hybrid framework integrating LLM-driven rewriting with natural language feedback
(Pryzant et al., 2023), alongside self-reflection (Shinn et al., 2024) and planning (Wang et al., 2023),
enhancing prompt adaptability and precision.

2.2 DATA SYNTHESIS

Using large language models (LLMs) for data synthesis is a relatively new and rapidly evolving
approach. Recent advancements have shown that LLMs possess the capability to generate text with
fluency and quality comparable to human output (Li et al., 2023; Mukherjee et al., 2023; Eldan &
Li, 2023). For instance, prior work (Gao et al., 2023) has explored leveraging pre-trained language
models (PLMs) to generate task-specific text data that can be used to train and evaluate. Recent
work Magpie (Xu et al., 2024) leverages the auto-regressive nature of aligned LLMs to generate
high-quality instruction data. Additionally, Synthetic Text Generation for Training Large Language

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Starting from true data distribution S, the Data Generator(left) produces a synthetic
question-answer pair at difficulty level c. The Auto Prompt Optimizer(right) evaluates the cur-
rent prompt on this synthetic data via three sub-modules-error analysis, recommendation, and
refinement-and outputs a revised prompt. The revised prompt is tested on present failures and all
previously solved examples. If the prompt still makes errors, then return to the Auto Prompt Opti-
mizer for further refinement; if passes, move on to the next sample(with higher c). The cycle repeats
until no error remains or the budget is reached, yielding a self-improved prompt.

Models via Gradient Matching (Nguyen et al., 2025) proposes a novel approach to generate synthetic
text that matches the gradients of human data. However, these studies have not fully incorporated
advanced methodologies such as chain-of-thought (CoT) reasoning, in-context learning, or data
synthesis driven by prompts that integrate task descriptions and label information.

In this study, we systematically experimented with a range of techniques, including in-context learn-
ing and prompt-driven data synthesis, combining task descriptions and label information. Our results
show that these approaches generate high-quality synthetic data. By introducing a difficulty tier, we
further enhanced the data’s robustness and applicability. These findings demonstrate the potential of
combining advanced LLM capabilities with tailored prompting strategies to improve data synthesis
for prompt optimization.

3 METHOD

In this work, we introduce SIPDO, a two-agent system for optimizing prompts using data augmenta-
tion techniques. The workflow has two cooperating agents: (i) Data Generator creates synthetic data
with increasing difficulty levels to expose weaknesses in the prompt, and (ii) Auto Prompt Optimizer
iteratively analyzes errors and rewrites the prompt to maximize task performance. An overview of
SIPDO is shown in Fig 1.

Notation. We define the true data distribution as S, which governs input-label pairs (x, y) ∈ X ×
Y . Let N denote the size of an i.i.d. dataset drawn from S, denoted as {(xi, yi)}Ni=1 ∼ S. We
consider LLMs equipped with a prompt p ∈ P , and define its output function as f(p, x) ∈ Y .
Prediction accuracy is measured using a bounded surrogate loss L

(
f(p, x), y

)
, where L ∈ [0, 1].

We introduce a synthetic data generator defined by a distribution qψ(x̃, ỹ), parameterized by ψ ∈ Ψ,
which produces synthetic samples forming a dataset D = {(x̃i, ỹi)}Mi=1, where M is the number of
generated examples. To ensure that the synthetic labels remain realistic, we estimate the population
label prior with p∗(y) and use this to regularize the generator.

3.1 DATA GENERATOR

The Data Generator supplies fresh, well-targeted examples that expose the weakness by creating a
new synthetic-pair whose difficulty is designed beyond prompt’s current reach.

Sampling rule. The data generator first draws a target label ỹ ∼ p∗(y). By sampling a latent variable
z ∼ gϕ(z|S) that captures the structure of few-shot S, the decoder qψ produces x̃ = qψ(z, ỹ, c)
where c is a controlled difficulty tier.

Learning objective. The parameters ψ are learned by minimizing a hybrid objective that balances
the KL penalty and the bounded surrogate loss:

min
ψ

R(ψ) + λE(x̃,ỹ)∼qψ
[
L
(
f(p, x̃), y

)]
, (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Note that, we penalize deviations from the true label distribution using the Kullback–Leibler diver-
gence term R(ψ) = KL

(
qψ(y) ∥ p∗(y)

)
, scaled by a factor λ−1R(ψ) during training.

Progressive difficulty. To address tasks of varying difficulty, we introduces a progressive difficulty
parameter c where c ∈ {1, ..., n} so that prompts could be tested on gradually more challenging
examples. This allows the prompts to progressively improve and generalize effectively across task
of increasing difficulty. Since qψ is conditioned on c, a single latent template (z, y) can therefore
yield n difficulty-aligned variants

{x̃(1), · · · , x̃(n)} = {qψ(z, y, 1), · · · , qψ(z, y, n)}

For curriculum generation, an ordered sequence c1 < · · · < cL is sampled and feeds the output of
the previous level back into the generator,

x̃(1) = qψ
(
z, y, c1

)
, x̃(2) = qψ

(
hϕ

(
x(1)

)
, y, c2

)
, . . . , x̃(L) = qψ

(
hϕ

(
x(L−1)

)
, y, cL

)
,

where hϕ is a summarizer that distills the previous sample into a new latent cue, allowing semantic
depth to accumulate across levels. The sequence c1 < c2 < · · · < cL guarantees monotone growth
of problem difficulty, providing a rich gradient of difficulty for the prompt to learn from.

3.2 AUTO PROMPT OPTIMIZER

After each new synthetic instance is calibrated, the Auto Prompt Optimizer probes the current
prompt, identifies the weaknesses, and repairs them before the next instance is drawn. This stage
builds a prompt that is both robust, suitable, and generalizable for specific tasks.

Accuracy score. At iteration t ∈ {1, . . . ,M}, the optimizer improves the current prompt p(t) using
the feedback collected from synthetic log Dt = {(x̃j , ỹj)}tj=1 ⊆ X × Y . For any prompt p and set
A ⊆ X × Y , we define

sA(p) =
1

|A|
∑

(x̃,ỹ)∈A

I
[
f(p, x̃) = ỹ

]
, (1)

I[·] is the indicator function that evaluates to 1 if the prompt’s output matches the target label, and 0
otherwise.

Step 1: Error analysis. We first evaluate p(t) on the whole set and collect the current error slice

E(t) =
{
(x̃, ỹ)∈D

∣∣ f(p(t), x̃) ̸= ỹ
}
.

If E(t) = ∅, the prompt already “covers” all unseen cases, therefore, we terminate and return
p∗ = p(t); otherwise, we proceed to the next step.

Step 2: Recommendation. A reflection module Rφ inspects E(t) and produces a textual-patch
suggesting how to modify the prompt: ∆(t) = Rφ

(
p(t), E(t)

)
. This summarizes why the prompt

failed and how it can be amended(e.g., clarify/revise instructions, drop distracting details).

Step 3: Targeted refinement. A prompt editor Uθ applies the patch ∆(t) to a revised prompt p̃(t) in
order to fix the current error: p̃(t) = Uθ

(
∆(t), p(t), E(t)

)
.

Local confirmation. We then test revised prompt p̃(t) only on the current errors: if sE(t)(p̃(t)) < 1,
some errors still remain. In this case, we make the revised prompt as new baseline prompt by setting
p(t) ← p̃(t), updating E(t), and repeating Step 2 to generate more sufficient patch ∆(t); otherwise,
proceed to global confirmation.

Global confirmation. Solving the local error slice is not enough-we must ensure that revised prompt
“covers” all seen cases. Therefore, we evaluate p̃(t) on the entire synthetic history collected seen so
far by sDt

(
p̃(t)

)
. During evaluation, if E(t) ̸= ∅ at any previous data, we treat them as new error

set and sent them back to step 2 with new E(t) to fix the current error. If E(t) = ∅, we accept the
revision, set p(t+1) = p̃(t), draw the next synthetic example, and restart from Step 1 until t =M .

Convergence guarantee. Because sD(p(t)) is non-decreasing and bounded above by 1, the pro-
cess stops at most M successful corrections or the user-chosen cap Tmax. The final output

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

p∗ = argmax0≤t≤T sD
(
p(t)

)
achieves perfect coverage (sDT (p

∗) = 1) whenever it is attain-
able within the budget.

By iteratively applying this feedback-driven process, it systematically refines prompts to improve
clarity, adaptability, and overall performance, making the framework highly generalizable across
tasks and domains.

3.3 THEORETICAL GUARANTEE

Since one of our goals in SIPDO is to demonstrate that, data augmentation, a popular branch of
performance improvement in deep learning, can also be used in prompt optimization context, we
aim to offer similiar performance guarantees as done in previous data augmentation literature (Wang
et al., 2022; Chen et al., 2020; Dao et al., 2019).

Assumptions. We first offer the assumptions that we need for the theoretical guarantees.

A1 (Label-preservation) For all ψ ∈ Ψ and for any (x, y), the generator’s conditional satisfies
Prqψ [ỹ = y | x̃ g← (x, y)] = 1.
We require the generator never flips the ground-truth label of the base example it is derived from
(it may, however, hallucinate novel inputs as long as their labels match the intended classes). In
practice, because LLMs sometimes assign unexpected labels, we first generate the label ỹ and then
sample x̃ conditioned on that label. For tasks and domains where producing valid synthetic data is
difficult, we apply a three-voter check: three expert agents independently verify each generated item
for label–input consistency and basic factual correctness.

A2 (Approximate maximizer). Let ψ⋆ = argmaxψ∈Ψ EqψL(f(p, x̃), ỹ) − λ−1R(ψ), The
inner-loop training of the generator attains a value at most ε below this supremum.
A perfect maximizer would be ideal but is infeasible; we only need the learned generator to be good
enough—within ε of optimal. The residual ε directly appears in the bound.

A3 (Uniform convergence). (Wang et al., 2022) For every prompt p, the empirical loss deviates
from its population counterpart by at most q(|P|, n, δ) with probability 1 − δ., where a standard

form of q(|P|, n, δ) is Õ
(√

log |P|+log(1/δ)
N

)
.

PAC(probably approximately correct) guarantee: empirical performance generalizes provided n is
large enough.

A4 (Alignment of risks). For any prompt p and generator ψ,
EqψL(f(p, x̃), ỹ) ≤ ESL(f(p, x), y) + λ−1R(ψ).

The KL penalty controls how far the generator may wander: if it manufactures rare-label outliers,
R(ψ) increases and the bound tightens. We can verify that qψ(y) is always absolutely-continuous
w.r.t. p∗(y); KL is then finite and the inequality follows from the classical Donsker–Varadhan
variational formula.

A5 (Surrogate link). The 0–1 loss is upper-bounded by the surrogate loss: 1{f(p, x) ̸= y} ≤
L(f(p, x), y).
This is needed in order to translate guarantees on the differentiable training loss to the classification
error(e.g. cross-entropy, hinge, logistic).

Theorem 3.1 Regularised Worst-case Data Generation. Under Assumptions A1-A5, for any
fixed prompt p ∈ P , with probability at least 1− δ over the draw of the training set, we have

sup
ψ∈Ψ

Eqψ1{f(p, x̃) ̸= ỹ}︸ ︷︷ ︸
population

worst-case error

≤ 1
n

n∑
i=1

L
(
f(p, xi), yi

)
︸ ︷︷ ︸

empirical risk

+ λ−1R(ψ⋆)︸ ︷︷ ︸
KL penalty of

hardest generator

+ ε+ q
(
|P|, n, δ

)
. (2)

Practical implication. The inequality states that if the empirical loss of the prompt is low, and no
generator can inflate that loss without paying a high KL tax, then even a hypothetically all-powerful
adversary (generator) cannot cause the prompt to misclassify more than the RHS. Selecting a larger λ
tightens the KL tax, thus lowering the worst-case error but potentially harming accuracy—precisely
the robustness–performance trade-off observed empirically in Experiments Section 4. In addition,
detailed proof of theorem can be found in Appendix E.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

MMLU Subject Method 1st
iteration

2nd
iteration

3rd
iteration

Final Result
(Comparative Acc.)

College Computer Science

TextGrad 85 88 86 89(↓ 4.0)
M-TextGrad 85 87 87 89(↓ 4.0)
REVOLVE 85 88 89 90(↓ 3.0)
SIPDO – – – 93

Machine Learning

TextGrad 84.8 87.5 82.1 88.4(↓ 5.4)
M-TextGrad 85.5 85.4 85.3 85.0(↓ 8.8)
REVOLVE 85.7 86.6 85.7 88.4(↓ 5.4)
ANN – – – 90.1(↓ 3.7)
SIPDO – – – 93.8

College Biology
TextGrad 95.1 97.2 95.1 96.5(↓ 0.0)
REVOLVE 96.5 96.1 97.2 96.5(↓ 0.0)
SIPDO – – – 96.5

Table 1: Results on MMLU Machine Learning, College Computer Science, and College Biology
subject by GPT-4o, demonstrating SIPDO’s effectiveness on different subjects

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We use following baseline methods are for comparison across the different datasets and benchmarks:
Chain of Thought (CoT) (Suzgun et al., 2022) guides models through explicit step-by-step reason-
ing; Automatic Prompt Engineer (APE) (Wang et al., 2023) refines prompts via Monte Carlo search
and model feedback; PromptAgent (Zhou et al., 2022) also uses Monte Carlo Tree Search to iter-
atively improve prompts; Neuro-Symbolic (Pan et al., 2023) converts LLM outputs into structured
forms for rule-based inference; TextGrad (Yuksekgonul et al., 2024) treats textual feedback as a
first-order gradient for prompt updates; Momentum-Enhanced TextGrad (Yuksekgonul et al., 2024)
adds momentum, enlarging updates when feedback aligns; REVOLVE (Zhang et al., 2024) adjusts
prompts using the trajectory of model responses as a second-order-style signal; and ANN (Ma et al.,
2025) models agent collaboration as a layered neural network.

We test SIPDO on five main datasets across reasoning tasks:

BIG-Bench. We include all 4689 instances from six BIG-Bench tasks: Penguins In a Table, Geo-
metric Shapes, Epistemic Reasoning, Object Counting, Temporal Sequences, and Causal Judgment
(Srivastava et al., 2022). For these tasks, SIPDO is compared to Chain of Thought (CoT) (Suzgun
et al., 2022), Automatic Prompt Engineer (APE) (Wang et al., 2023), and PromptAgent (Zhou et al.,
2022).

Logical Reasoning Tasks. To assess logical reasoning, we sample 600 examples from the depth-5
subset of ProofWriter with a balanced label distribution (Tafjord et al., 2021), use 204 test examples
from FOLIO that require first-order inference over short passages (Han et al., 2024), and select the
500 most challenging 5-hop scenarios from the fictional-character version of PrOntoQA (Saparov
& He, 2022). For these tasks, SIPDO is compared to Chain of Thought (CoT) (Suzgun et al., 2022),
Neuro-Symbolic (Pan et al., 2023), and REVOLVE (Zhang et al., 2024).

MMLU (Massive Multitask Language Understanding). To test expert-level factual knowledge
and problem solving in LLMs, we evaluate on MMLU (Hendrycks et al., 2020), focusing on college-
level subject areas: Biology (114 instances), Computer Science (100 instances), and Machine Learn-
ing (112 instances). For this benchmark, SIPDO is compared with TextGrad (Yuksekgonul et al.,
2024), REVOLVE (Zhang et al., 2024), and ANN (Ma et al., 2025).

4.2 IMPLEMENTATION

Data Generation and Prompt Improvements. We specify a maximum level c and data generated
with level of difficulties in prior iterations so that model is aware of the difficulty level of each

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

previous example. To illustrate this, we provide a detailed example of generating a Causal Judgment
QA pair from BIG-Bench below.

Causal Judgment Prompt Template

[System Input]:

You are an expert in generating logical causal-attribute questions and answers. Your task is to generate
one pair of causal attributions or causation. One is a causation statement, and another is a non-causation
statement.

[User Input]:

Guidelines:
1. Make sure that the data generated is different.
2. Use clear and direct words in the question, avoiding overly complex phrasing, trickiness, or ambiguity.
3. Do not make the logic in the statement overly complicated; the statement and question should be

understood at a fair level.
4. Be creative and diverse. Only follow the logic and flow of the given examples, but be creative and

diverse with the content and not limited to the given example.
5. Only one data instance needs to be generated each time.
6. Generate only one output: the generated content should strictly follow the output format from the

examples below.
7. Difficulty should increase with each iteration with total difficulty level: {max difficulty level} (current

difficulty level: {c}).
8. Make sure the generated data is sufficient and robust without any errors, especially logic.
9. The generated samples are suppose to challenge the model’s ability to reason and answer the question

correctly.

Past generated samples: {Generated data with difficulty}

Below are the Examples with expected data format:
{True Data 1}
{True Data 2}

We set the difficulty budget at c = 10 for all benchmarks except Penguins In a Table and Geomet-
ric Shapes from BIG-Bench, where c = 25 accommodates their complex reasoning. The number
of training iterations is tied to the difficulty level, with t = c to ensure progressively harder sam-
ples. The model temperature is set to 0.5 for data generation to maintain coherence. We fix the
target label ỹ and prompt the model to generate a matching question for data validity. For chal-
lenging MMLU benchmarks, three expert agents review each generated item, and only those with
unanimous approval are passed to the auto-prompter. This minimizes hallucinations and ensures ac-
curate question–answer pairs. Examples of synthetic BIG-Bench Causal Judgment data at different
difficulty levels are shown in Appendix D.

For further prompt optimization, we set the model temperature to 0.0 during error analysis and im-
provement steps to ensure deterministic, high-quality outputs. However, we use a higher temperature
of 0.7 for generating recommendations, which encourages the model to produce more diverse and
creative suggestions. This combination stabilizes the error analysis and prompt improvement phases
while simultaneously enhancing the breadth and quality of recommendations. The full prompt-
improvement process for BIG-Bench Penguins In a Table is in Appendix C.

Geometric Data Generation. Constructing complex or irregular shapes exceeds the limits of few-
shot methods, so we introduce three safeguards for SVG path generation in the geometry task: (1)
precision normalization—each coordinate is rounded to two decimal places, preventing floating-
point drift that makes downstream parsers miscount line (L) and arc (A) commands; (2) template-
guided retrieval—a retriever selects an SVG path template whose instruction pattern matches the
target shape (e.g., “4 L” for a rectangle, “1 A” for a sector), and the generator perturbs only
the vertex coordinates, ensuring syntactic correctness while adding variety; (3) reverse-generation
check—because the shape label is known in advance, a rule-based decoder parses the generated path,
tallies L/A commands, and rejects any sample whose inferred label disagrees. Examples appear in
Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Method
Accuracy (%) Avg. Acc. (%)

(Comparative Acc.)Penguins Geome. Epistemic Obj. Count Temporal Causal

GPT-4o

CoT 79.8 79.1 79.3 85.2 98.0 67.8 81.5(↓ 7.6)
APE 84.8 65.3 84.8 86.0 99.2 74.0 82.4(↓ 6.7)

PromptAgent 96.1 83.0 91.6 88.2 98.4 77.8 89.2(↑ 0.1)
SIPDO 96.4 82.2 86.3 91.1 99.3 79.0 89.1

GPT-4o-mini

CoT 75.8 68.6 85.2 81.5 94.9 63.6 78.3(↓ 9.0)
APE 83.7 44.5 81.6 86.3 97.2 75.6 78.2(↓ 9.1)

PromptAgent 89.8 72.0 86.0 84.3 94.6 84.6 85.2(↓ 2.1)
SIPDO 92.1 73.2 85.1 87.5 98.0 88.0 87.3

Gemini-1.5-flash

CoT 70.4 68.3 85.5 90.1 94.0 66.8 79.2(↓ 3.7)
APE 37.6 49.4 88.8 84.7 99.4 69.4 71.6(↓ 11.3)

PromptAgent 67.4 70.3 81.6 86.3 94.2 67.9 78.0(↓ 4.9)
SIPDO 77.3 68.9 87.0 92.3 98.4 73.2 82.9

Gemini-1.5-pro

CoT 81.8 59.1 82.6 92.8 98.9 61.5 79.5(↓ 3.9)
APE 40.2 56.6 88.7 78.6 86.0 65.7 69.3(↓ 14.1)

PromptAgent 73.6 58.3 83.8 72.6 98.4 74.2 76.8(↓ 6.6)
SIPDO 79.3 64.3 89.3 91.3 98.0 78.3 83.4

Table 2: Results on BIG-Bench tasks across multiple LLMs. SIPDO consistently outperforms stan-
dard prompting baselines (CoT, APE, PromptAgent) across most tasks and models, demonstrating
generalization and effectiveness of the prompt optimization by synthetic data feedback.

4.3 RESULTS AND ANALYSIS

Figure 2: Generated BIG-Bench Causal
Judgment task in different difficulties

We tested SIPDO across various LLMs with tempera-
ture of 0.0 on all benchmarks, including BIG-Bench, FO-
LIO, PrOntoQA, ProofWriter, and three subjects from
MMLU. Specifically, we ran SIPDO on GPT-4o, GPT-
4o-mini, Gemini-1.5-flash, and Gemini-1.5-pro, so that
all synthetic-data calls and prompt refinements in result
were driven by the same model.

MMLU. We first evaluate SIPDO on three subjects from
the MMLU benchmark: Machine Learning, College Bi-
ology, and College Computer Science. As shown in Ta-
ble 1, SIPDO achieves the highest results in all three sub-
jects, while TextGrad and REVOLVE tie in the Biology
subject. Specifically, we set up the SIPDO pipeline using
the GPT-4o model, except for the GPT-4o-mini during the
testing phase, in order to provide greater insight into the
reasoning weaknesses of LLMs.

BIG-Bench. We then evaluate SIPDO on six BIG-Bench
tasks As shown in Table 2, GPT-4o, GPT-4o-mini, and Gemini-1.5-flash demonstrate particularly
strong performance in Temporal Reasoning, Object Counting, Penguins In a Table, and Causal
Judgment. While Geometric Shapes exhibits comparable accuracy across GPT-4o and GPT-4o-mini,
SIPDO achieves the highest overall accuracy across all LLMs except for GPT-4o, trailing Promp-
tAgent by only 0.1%, yet still demonstrating that LLMs benefit from synthetic data generation for
reasoning improvements, whereas other methods primarily rely on existing datasets. To further il-
lustrate the generated different difficulty data in Causal Judgment tasks as iteration and difficulty
increase, the actual logical turns display a monotonic trend in figure 2.

FOLIO, PrOntoQA, and ProofWriter. We further test SIPDO on FOLIO, PrOntoQA, and
ProofWriter, assessing the methods’ ability to perform structured logical reasoning. As shown in
Table 3, SIPDO outperforms all approaches on FOLIO and PrOntoQA and achieves the highest
average accuracy. In PrOntoQA, SIPDO surpasses all methods, demonstrating its capability to gen-
erate structured logical proofs. Similarly, for FOLIO, SIPDO outperforms Neuro-Symbolic, CoT,
and REVOLVE, further validating its effectiveness in formal logic inference.

While neuro-symbolic reasoning remains the best performer on ProofWriter, SIPDO achieves highly
competitive results on ProofWriter, trailing by only 0.4% on GPT-4o-mini and 2% on GPT-4o, un-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPT-4o GPT-4o-mini
Tasks Vanilla Neuro-S CoT REVOLVE SIPDO Baseline Neuro-S CoT REVOLVE SIPDO

ProofWriter 58.5 81.6 72.3 54.0 79.6 52.6 79.7 61.8 48.6 79.3
FOLIO 71.2 79.2 72.6 65.7 83.2(↑ 4.0) 51.2 73.2 69.3 62.8 81.1(↑ 7.9)
PrOntoQA 80.4 85.2 95.6 85.4 96.3(↑ 0.7) 74.6 79.3 89.3 83.4 91.3(↑ 2.0)

Average 70.0 82.0 80.2 68.4 86.4(↑ 4.2) 59.5 77.4 73.5 64.9 83.9(↑ 6.5)

Table 3: Performance(%) on ProofWriter, FOLIO, and PrOntoQA by Neuro-Symbolic, CoT, RE-
VOLVE, SIPDO, and Baseline Prompting methods across GPT-4o and GPT-4o-mini.

Model PENGUINS GEOME. EPISTEMIC OBJ.CNT. TEMPORAL CAUSAL Avg.

GPT-4o 73.2
(↓ 24.1%)

68.1
(↓ 17.2%)

81.9
(↓ 5.1%)

53.8
(↓ 40.9%)

97.0
(↓ 2.3%)

68.4
(↓ 13.4%)

73.7
(↓ 17.3%)

GPT-4o-
mini

69.6
(↓ 24.4%)

47.5
(↓ 35.1%)

80.0
(↓ 6.0%)

39.9
(↓ 54.4%)

92.1
(↓ 6.0%)

67.4
(↓ 23.4%)

66.1
(↓ 24.3%)

Table 4: Accuracy (%) after removing the difficulty gradient. Numbers in parentheses show the
absolute drop (↓) relative to the performance with difficulty gradient placed.

derscoring its strong adaptability to structured reasoning tasks. Crucially, unlike neuro-symbolic
approaches that rely on predefined rule-based datasets, SIPDO is trained entirely on generated syn-
thetic data, demonstrating the effectiveness of LLM-driven data augmentation for enhancing logical
inference across diverse reasoning benchmarks. SIPDO outputs a revised prompt that surpasses
baselines, validating its effectiveness for prompt design and performance gains. All generated
prompts appear in Appendix A.

4.4 ABLATION STUDY

Difficulty Gradient. To assess the contribution of the difficulty gradient, we conduct an ablation
study by comparing without difficulty level. As Table 4 shows, every BIG-Bench sub-task suffers
when the difficulty gradient is absent. On average, GPT-4o loses 17.3% accuracy, while the weaker
GPT-4o-mini drops 24.3%, confirming that smaller models depends even more on the difficulty
gradient. The steepest declines appear on tasks Object Counting (40.9 % and 54.4 %) and Geometric
Shapes (17.2 % and 35.1 %). Even comparatively simple tasks—Temporal Sequences and Epistemic
Reasoning—still lose up to 6 %. These results indicate that within the OpenAI model family, the
weaker model is more sensitive to the absence of a difficulty gradient and the benefit of a progressive
difficulty schedule becomes more pronounced. Without this gradient, generated prompts tend to be
shorter and easier, often failing to capture complex reasoning patterns (details in Appendix B).

One-Shot Extremes. We experimented with replacing the step-wise difficulty gradient by a one-
shot extremes sampler that tells the generator to create the most unusual examples. On our synthetic
suites this shortcut delivered no measurable gain. The “extreme” samples were either solved in-
stantly or only slight perturbations of original cases, leaving the optimizer with no fresh errors to
exploit. We suspect the idea will pay off in real-world corpora (e.g. financial statements) where
genuine edge cases abound and can expose blind spots that our synthetic tasks do not capture.

5 CONCLUSION

We presented SIPDO, a data-centric framework that converts augmentation into a live feedback sig-
nal for prompt optimization. A generator creates progressively harder examples, and an auto-prompt
optimizer uses them to expose and correct prompt weaknesses. This coupling produces consistent
accuracy gains across diverse reasoning benchmarks, outperforming several leading baselines. Be-
yond these empirical results, SIPDO shows how data-generation strategies and prompt optimization
can reinforce one another, linking ideas from curriculum learning and adaptive optimization with
LLM practice. Further investigation on domain specific corpora such as financial filings and clini-
cal notes and exploration of fully automated variants that refine prompts through continuous model
feedback will clarify SIPDO’s broader value and extend its principles to new settings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmenta-
tion, 2020. URL https://arxiv.org/abs/1907.10905.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan. Prompt opti-
mization in multi-step tasks (promst): Integrating human feedback and heuristic-based sampling,
2024. URL https://arxiv.org/abs/2402.08702.

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley Malin, and
Sricharan Kumar. Phaseevo: Towards unified in-context prompt optimization for large language
models. arXiv preprint arXiv:2402.11347, 2024.

Tri Dao, Albert Gu, Alexander J. Ratner, Virginia Smith, Christopher De Sa, and Christopher Ré. A
kernel theory of modern data augmentation, 2019. URL https://arxiv.org/abs/1803.
06084.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english?, 2023. URL https://arxiv.org/abs/2305.07759.

Jiahui Gao, Renjie Pi, Yong Lin, Hang Xu, Jiacheng Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan
Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation for efficient zero-
shot learning, 2023. URL https://arxiv.org/abs/2205.12679.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-
annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120, 2023.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,
Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, An-
song Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscin-
ski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying,
Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with first-order logic,
2024. URL https://arxiv.org/abs/2209.00840.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance?, 2024. URL https://arxiv.
org/abs/2411.10541.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Minchan Kwon, Gaeun Kim, Jongsuk Kim, Haeil Lee, and Junmo Kim. Stableprompt: Auto-
matic prompt tuning using reinforcement learning for large language models. arXiv preprint
arXiv:2410.07652, 2024.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–
5333, 2023.

Xiaowen Ma, Chenyang Lin, Yao Zhang, Volker Tresp, and Yunpu Ma. Agentic neural networks:
Self-evolving multi-agent systems via textual backpropagation. arXiv preprint arXiv:2506.09046,
2025.

Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep learning in
image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW),
pp. 117–122. IEEE, 2018.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv
preprint arXiv:2306.02707, 2023.

10

https://arxiv.org/abs/1907.10905
https://arxiv.org/abs/2402.08702
https://arxiv.org/abs/1803.06084
https://arxiv.org/abs/1803.06084
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2205.12679
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2411.10541
https://arxiv.org/abs/2411.10541

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dang Nguyen, Zeman Li, Mohammadhossein Bateni, Vahab Mirrokni, Meisam Razaviyayn, and
Baharan Mirzasoleiman. Synthetic text generation for training large language models via gradient
matching, 2025. URL https://arxiv.org/abs/2502.17607.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with ”gradient descent” and beam search, 2023. URL https://arxiv.
org/abs/2305.03495.

Xiangyan Qu, Gaopeng Gou, Jiamin Zhuang, Jing Yu, Kun Song, Qihao Wang, Yili Li, and Gang
Xiong. Proapo: Progressively automatic prompt optimization for visual classification, 2025. URL
https://arxiv.org/abs/2502.19844.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts, 2020. URL
https://arxiv.org/abs/2010.15980.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Claudio Spiess, Mandana Vaziri, Louis Mandel, and Martin Hirzel. Autopdl: Automatic prompt
optimization for llm agents, 2025. URL https://arxiv.org/abs/2504.04365.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
proofs, and abductive statements over natural language, 2021. URL https://arxiv.org/
abs/2012.13048.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. arXiv
preprint arXiv:2310.13289, 2023.

Haohan Wang, Zeyi Huang, Xindi Wu, and Eric Xing. Toward learning robust and invariant repre-
sentations with alignment regularization and data augmentation. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1846–1856, 2022.

Shuyang Wang, Somayeh Moazeni, and Diego Klabjan. A sequential optimal learning approach to
automated prompt engineering in large language models, 2025. URL https://arxiv.org/
abs/2501.03508.

11

https://arxiv.org/abs/2502.17607
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2502.19844
https://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2504.04365
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2012.13048
https://arxiv.org/abs/2501.03508
https://arxiv.org/abs/2501.03508

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. arXiv preprint arXiv:2310.16427, 2023.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic” differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

Peiyan Zhang, Haibo Jin, Leyang Hu, Xinnuo Li, Liying Kang, Man Luo, Yangqiu Song, and Hao-
han Wang. Revolve: Optimizing ai systems by tracking response evolution in textual optimization.
arXiv preprint arXiv:2412.03092, 2024.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

12

https://arxiv.org/abs/2406.08464

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A OPTIMZED PROMPTS FOR DIFFERENT TASKS

In this section, we demonstrate optimized prompts by Chain-of-Thought (CoT), Automatic Prompt
Engineering (APE), PromptAgent, and SIPDO with Accuracys respectively.

Table 5: Comparison of Optimized Prompts for Object Counting task, including
CoT, APE, PromptAgent, and SIPDO

Approach Optimized Prompt Accuracy

CoT Your task is to count the total number of objects mentioned in the question. Follow
these simple steps to ensure accurate counting:
Steps to Follow: 1. **Identify Items**: Read the question carefully and list all
objects mentioned. 2. **Count Quantities**: For each item, check if a quantity is
provided. If no quantity is mentioned, assume it is one. 3. **Add Totals**: Add up
the quantities of all items to calculate the total count. 4. **Verify the Total**: Double-
check to ensure no item is missed or counted twice.
Example: - Question: ”Count the apples, oranges, and bananas. There are 2 apples,
1 orange, and 3 bananas.” - Step 1: Identify items: apples, oranges, bananas. - Step 2:
Count quantities: 2 apples, 1 orange, 3 bananas. - Step 3: Add totals: 2 + 1 + 3 = 6. -
Step 4: Verify: All items are accounted for, total is 6. - **Output**: ”The total count is
6.”
Use this step-by-step method for every question to ensure accurate and clear results.

0.928

APE Calculate the overall total of all items even those spoken in groups. 0.863
PromptAgent Carefully examine the provided information. Identify and catalog each mentioned item,

ensuring that explicitly stated quantities are accurately recorded. If no quantity is spec-
ified for an item, assume it as a single unit. However, for items with defined quantities,
count each unit separately and include it in the total. If collective terms or categories
are mentioned, break them down into their individual components and associate each
with its stated count. When computing the total for such categories, ensure that the sum
reflects all individual units rather than just the number of groups or types. Each item
should be counted independently, but related items belonging to a common category
should be grouped together, with their specific quantities contributing precisely to the
final total. Avoid assumptions regarding the classification or nature of items—adhere to
standard, widely accepted definitions. Finally, summarize the count by explicitly listing
the quantity of each identified item or category, and provide a comprehensive total of
individual units rather than just category counts, unless otherwise specified.

0.882

SPIDO Task Requirements:
The task involves counting the total number of objects listed in a question. Each distinct
object should be considered as part of the total count, regardless of its type or variation.
The output should be formatted correctly as specified. Problem Rule Application:
Identify all items listed in the question. Count each item exactly once, regardless of
type, to determine the total number of objects. Ensure accuracy by verifying that all
listed items have been included in the final count. Provide the final result in the re-
quired format: The number should be presented in both word form and numerical form,
separated by a comma (e.g., ”nine, 9”). No extra symbols, characters, or explanations
should be included. Judgment Criteria: (Strictly follow these rules)
Complete Identification:
Extract and recognize all objects in the given list. Do not overlook any item mentioned
in the question. Accurate Counting:
Each item must be counted exactly once. Ensure no items are omitted or double-
counted. Verification Process:
Double-check the list to confirm that all objects are included. Cross-verify the final
count to avoid errors.

0.923

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Comparison of Optimized Prompts for Penguins In A Table task, in-
cluding CoT, APE, PromptAgent, and SIPDO

Approach Optimized Prompt Accuracy

CoT You are tasked with answering questions about a table of penguins and their attributes.
Use step-by-step reasoning to ensure accuracy in calculations and comparisons.
The table is as follows: “‘ Name, Age, Height (cm), Weight (kg) Louis, 7, 50, 11
Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 “‘
Reasoning Steps for Each Question: 1. Identify the target attribute (age, height,
or weight) and the type of operation (comparison, ranking, filtering). 2. Extract the
relevant rows or columns based on the question’s requirements. 3. Perform the required
operation step-by-step using the extracted data. 4. Clearly summarize the answer based
on the operation’s result.
Example Workflow: - Question: ”Who is the tallest penguin?” - Step 1: Identify the
target attribute: Height. - Step 2: Extract the height values and corresponding names:
[(Louis, 50), (Bernard, 80), (Vincent, 60), (Gwen, 70)]. - Step 3: Find the maximum
height: Bernard (80 cm). - Step 4: Output the result: ”Bernard is the tallest penguin
with a height of 80 cm.”
Follow this workflow for every question to ensure clarity and correctness.

0.818

APE Carefully scrutinize the provided table or tables. Understand the query in relation to the
information given. Pinpoint the pertinent data and carry out the vital computations or
comparisons to determine the right answer from the given choices.

0.848

PromptAgent Answer questions about a table of penguins and their attributes, considering both the
penguin table and any additional relevant tables. Please provide step-by-step reasoning
for your answers, and ensure to clarify any criteria used for filtering or sorting data.
Here is a table where the first line is a header and each subsequent line is a penguin:
name, age, height (cm), weight (kg) Louis, 7, 50, 11 Bernard, 5, 80, 13 Vincent, 9, 60,
11 Gwen, 8, 70, 15
For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of Bernard
is 80 cm. What is the name of the last penguin sorted by alphabetic order? Options: (A)
Louis (B) Bernard (C) Vincent (D) Gwen (E) James
Instructions: 1. List the names of the penguins. 2. Sort the names alphabetically
and present the sorted list clearly. 3. Identify the last name in the sorted list and indicate
the corresponding option letter from the provided options. 4. If the last name does not
match any of the options, select the name that is closest to the last name in the original
list of penguins.
At the end, show the answer option bracketed between ¡answer¿ and ¡/answer¿.

0.961

SIPDO Answer questions about a dynamic, comprehensive table of penguins and their attributes
that allows penguins and other animals to be added and removed. Perform calculations
and comparisons based on the questions asked. Read the question carefully to determine
which attribute is being compared (age, height, weight). When comparing an attribute,
extract the name and that attribute, and then compare, ignoring the other attributes.
Ensure the extracted value is from the correct column corresponding to the requested
attribute. When using the table, align the data so that the first number is age, the second
is height, and the third is weight. Understand the question correctly, find the key words
from it, and then perform calculations or comparisons based on the key words
The current table is as follows:
Name, Age, Height (cm), Weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15
Question Rules to Apply:
- Identify the rows or columns that meet the specified conditions.
- Retrieve the value of the required attribute from the identified rows or columns.
When we modify this table (by adding new penguins or removing existing penguins
or adding giraffes), we first confirm whether the information we added is a penguin
or a giraffe, and then solve the problem of comparing, ranking, and filtering based on
attributes between penguins or giraffes, depending on the problem.

0.964

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Optimized Prompts for Geometric Shapes task, includ-
ing CoT, APE, PromptAgent, and SIPDO

Approach Optimized Prompt Accuracy

CoT Your task is to identify the geometric shape represented by the given SVG path data.
Follow these steps to ensure accuracy:
Steps to Identify the Shape: 1. **Check for ‘A’ Instructions**: – If the path con-
tains ‘A’, determine: • **Circle**: 2 or more ‘A’ instructions. • **Sector**: 1 ‘A’
instruction. 2. **Count ‘L’ Instructions**: – If there are no ‘A’ instructions, count
the ‘L’ instructions to determine the polygon’s shape: • **Line**: 2 ‘L’. • **Trian-
gle**: 3 ‘L’. • **Rectangle**: 4 ‘L’. • **Pentagon**: 5 ‘L’. • **Hexagon**: 6 ‘L’. •
Heptagon: 7 ‘L’. • **Octagon**: 8 ‘L’. • **Kite**: 4 ‘L’. 3. **Provide the Shape
Name**: Output only the name of the shape (e.g., “circle”, “triangle”, “hexagon”).
Example: – Input: ‘”M 10 10 L 20 10 L 20 20 L 10 20 Z”‘ – Step 1: No ‘A’
instructions. – Step 2: Count ‘L’ instructions: 4 ‘L’. – Step 3: Shape is a **Rectangle**.
– **Output**: “rectangle”.
Use this step-by-step process for all inputs to determine the correct shape.

0.791

APE Determine the shape each SVG path element is drawing, then pair it with the corre-
sponding letter from the available choices. In this case, C symbolizes hexagon, G is for
pentagon, I signifies sector, and B stands for heptagon.

0.650

Continued on next page

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Optimized Prompts for Geometric Shapes task (con-
tinued)

Approach Optimized Prompt Accuracy

PromptAgent Analyze the SVG path data to identify the geometric shape it represents. Follow these
comprehensive and refined steps to ensure accurate identification:
1. **Holistic Path Closure**: Determine if the path forms a closed shape by check-
ing if the last point connects back to the starting point. If multiple ‘M‘ commands are
present, analyze the segments collectively to identify any closed loops. Treat the entire
path as a single entity for thorough analysis. 2. **Segment and Side Analysis**: Iden-
tify the types of segments used in the path: – **Line Segments**: Count the number
of distinct line segments to determine the number of sides. Ensure accurate counting
by considering all segments collectively. – **Arc Segments**: For paths using the ‘A‘
command, note that these represent elliptical arcs. Pay attention to the parameters to
distinguish between circles and ellipses. 3. **In-depth Geometric Properties**: – For
line segments, analyze the relative lengths of sides and angles between them. Consider
properties such as parallel sides, equal side lengths, and right angles to distinguish be-
tween different types of polygons. Evaluate the overall shape formed by all segments.
– For arc segments, examine the parameters of the ‘A‘ command: • Check if the radii
are equal, which indicates a circle. • If the radii differ, consider the shape as an el-
lipse. 4. **Shape Identification and Classification**: Use the geometric properties to
classify the shape: – For polygons, identify specific types like rectangles, kites, and
trapezoids based on their properties. Pay special attention to the number of sides and
the relationships between them. Consider the entire path as a single shape to ensure
accurate classification. – For arcs, determine if the shape is a circle or an ellipse based
on the radii. 5. **Options Selection and Interpretation**: Choose the most appropri-
ate shape from the given options. Consider multiple interpretations of the path data,
especially when multiple ‘M‘ commands are present, to ensure accurate classification.
If the path represents multiple shapes, prioritize the most complex or relevant shape.
6. **Ambiguity Resolution**: In cases where the path data could represent multiple
shapes, provide a rationale for selecting the most complex or relevant shape. Consider
the context and any additional information that might influence the classification. 7.
Visual Verification: If possible, visualize the path to confirm the identified shape.
This step can help resolve any remaining ambiguities and ensure the accuracy of the
classification. 8. **Iterative Refinement**: If the initial classification is uncertain, re-
visit the analysis steps to refine the identification. Consider alternative interpretations
and re-evaluate the geometric properties. 9. **Contextual Considerations**: Take into
account any contextual information or additional data that might influence the shape
classification, especially in ambiguous cases.
Provide your answer by selecting the correct option and enclosing it within ‘¡answer¿‘
and ‘¡/answer¿‘ tags.
Example: – SVG Path: ‘path d=”M 8.10,55.86 L 1.74,25.57 L 12.08,23.40 L
18.44,53.69 L 8.10,55.86”‘ Analysis: The path forms a closed quadrilateral with op-
posite sides parallel and equal, indicating a rectangle. Answer: ‘¡answer¿H¡/answer¿‘
– SVG Path: ‘path d=”M 16.33,5.98 A 8.87,8.87 275.02 1,0 14.78,23.64 A 8.87,8.87
275.02 1,0 16.33,5.98”/‘ Analysis: The path uses elliptical arcs with equal radii, form-
ing a closed loop, indicating a circle. Answer: ‘¡answer¿A¡/answer¿‘

0.830

Continued on next page

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Comparison of Optimized Prompts for Geometric Shapes task (con-
tinued)

Approach Optimized Prompt Accuracy

SIPDO Given the following SVG path data: “input” and options, identify the geometric shape
it represents and provide **ONLY** the name of the shape as the ‘target’.
Task Requirements: 1. Count the instructions in the SVG path 2. Judge the shape
of the graphic according to the judgment criteria 3. Provide the exact name of the shape
as output.
You need to count how many instructions **L** are in the SVG path:
Problem Rule Application: 1. Visualize the path data to understand the overall
structure. 2. Find out whether there is instruction **A** in the instruction. If so, deter-
mine whether it is a circle or a sector according to the number of instructions **A**.
If not, determine how many sides it is 3. For polygons, pay attention to the number of
edges to identify the shape. The following are the number of instructions correspond-
ing to different shapes: – **triangle**: 3 L – **rectangle**: 4 L – **hexagon**: 6
L – **pentagon**: 5 L – **octagon**: 8 L – **heptagon**: 7 L – **kite**: 4 L –
line: 2 L – **circle**: 2 or more A – **sector**: 1 A
Judgment criteria: (Please strictly abide by this rule) – No need to pay attention to
“M” instructions – !! First identify whether there is an instruction “A” in the SVG path.
If so, first determine whether it is a circle or a sector. – !! If there is no instruction “A”,
determine the number of sides of the polygon based on the instruction “L”. A polygon
with *n* sides requires *n* “L” instructions. (Please strictly abide by this rule)

0.822

Table 8: Comparison of Optimized Prompts for Causal Judgment tasks, includ-
ing CoT, APE, PromptAgent, and SIPDO

Approach Optimized Prompt Accuracy

CoT Task: Respond to inquiries about causal attribution by identifying the key causes and
their contributions to the outcome. Follow the steps below to ensure accurate and clear
reasoning:
Steps to Analyze Causation: 1. **Identify Key Entities**: Read the question care-
fully and highlight the specific entities or factors being discussed. 2. **Determine
Relevant Causes**: Analyze the context to identify immediate and incidental causes
contributing to the outcome. - Immediate causes: Directly lead to the outcome. - Inci-
dental causes: Indirectly influence the outcome but may still contribute. 3. **Evaluate
Interactions**: Consider how multiple causes might interact to produce the observed
effect (e.g., synergy or independent contributions). 4. **Provide the Answer**: Clearly
state the primary and secondary causes, as well as their roles in creating the outcome.
Avoid unsupported assumptions.
Use this structured reasoning approach to analyze each inquiry and provide a clear and
logical explanation.

0.678

APE For each situation, decide if the result was caused deliberately or not. If the individual
or party behind the event was aware of the potential result and chose to go ahead, select
’Yes’. If they didn’t intend the result to happen, even if they knew it could possibly
occur, select ’No’.

0.756

(Continued on next page)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(Continued from previous page)

Approach Optimized Prompt Accuracy

PromptAgent When addressing questions about causal attribution, ensure a comprehensive analysis
by considering both individual and collective actions that contribute to an outcome.
Clearly differentiate between necessary and sufficient causes, and recognize that mul-
tiple causes can simultaneously contribute to an outcome. Emphasize the importance
of understanding both general and specific intentions, especially when outcomes are
unintended. Define ”intentional” actions as those where the actor or group had control
over maintaining or altering the conditions necessary for the outcome, even if the spe-
cific result was not desired. Address scenarios where unintended consequences arise
from intentional actions, and provide answers that reflect a nuanced understanding of
how different elements interact to produce a result. Use diverse examples to illustrate
key concepts like ”direct causation,” ”simultaneity,” and ”unintended consequences,”
ensuring a balanced consideration of necessary and sufficient causes. Simplify com-
plex scenarios by breaking them down into clear, manageable components, and provide
definitions or examples of key terms to guide your analysis. Additionally, clarify def-
initions of key terms such as ”necessary,” ”sufficient,” ”intentional,” and ”unintended
consequences” to ensure precise understanding. Highlight the importance of interac-
tions between multiple causes, especially in complex scenarios, and offer strategies for
analyzing scenarios where simultaneity is crucial. Explore the nuances of intentional
actions and unintended consequences more deeply, and encourage the use of diverse
examples to illustrate different aspects of causation. Pay special attention to the role of
individual actions in maintaining necessary conditions and the distinction between col-
lective and individual causation. Emphasize that in collective decision-making, the out-
come can be intentional if it aligns with the group’s goals, even if individual members
disagree. Reinforce the distinction between necessary and sufficient causes, ensuring
the model understands that necessary causes alone do not determine the outcome. Clar-
ify that following a protocol does not remove intentionality if the outcome aligns with
organizational priorities. Highlight that intentionality can be attributed if the outcome
was a foreseeable consequence of the action, regardless of individual opposition.

0.846

SIPDO Task Requirements Determine whether a given event (cause) directly leads to another
event (effect). Assess the causal relationship based on logical reasoning, ensuring a
clear and definitive answer. The final output must be only ”Yes” or ”No”, strictly ad-
hering to the required format. Problem Rule Application Identify the cause and effect
within the question. Assess necessity: Determine if the cause is essential for the effect
to occur. Evaluate causation: If the cause did not happen, would the effect still occur?
If the effect only happens when the cause is present, then the cause directly leads to the
effect. If the effect can still happen independently, then the relationship is not causal.
Judgment Criteria Direct Causation: If the cause directly leads to the effect and is a
necessary condition, answer ”Yes”. If the effect would not have occurred without the
cause, answer ”Yes”. Example: ”Dropping a glass caused it to shatter.” → Yes. No
Direct Causation: If the effect can occur without the cause, answer ”No”. If the cause is
only correlated but not necessary, answer ”No”. Example: ”Wearing a red shirt caused
the stock market to rise.” → No. Verification Process: Check whether the absence of
the cause results in the absence of the effect. Ensure logical consistency in the causal
assessment.

0.880

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Comparison of Optimized Prompts for Epistemic task, including CoT,
APE, PromptAgent, and SIPDO

Approach Optimized Prompt Accuracy

CoT Task: Analyze the logical relationship between a given premise and hypothesis. Your
goal is to determine if the premise guarantees the truth of the hypothesis. Choose one
of the following answers: ’entailment’ or ’non-entailment’.
Steps to Follow: 1. **Understand the Premise and Hypothesis**: Carefully read
the premise and hypothesis to identify the key information in both statements. 2. **An-
alyze the Logical Relationship**: Determine whether the information in the premise
confirms the truth of the hypothesis. - If the premise logically supports and guarantees
the hypothesis, choose ’entailment’. - If the premise does not confirm the hypothesis,
or if there is uncertainty, choose ’non-entailment’. 3. **Provide the Answer**: Based
on your analysis, output the correct answer (’entailment’ or ’non-entailment’).
Use this step-by-step approach for all premise and hypothesis pairs to ensure accurate
reasoning.

0.855

APE Determine whether the hypothesis is directly implied by the premise or not. If the
premise’s statement is a direct claim or conviction of the individual mentioned in the
hypothesis, choose ’entailment’. However, if the premise is formed on the belief or sup-
position of someone other than the subject in the hypothesis, opt for ’non-entailment’.

0.888

PromptAgent Determine the relationship between two sentences by evaluating whether the first sen-
tence provides direct or logically implied evidence for the second. Choose from the
options ’entailment’ or ’non-entailment’.
Consider the following: - **Entailment**: The first sentence directly or through logical
implication confirms the truth of the second sentence, even if it involves a chain of
beliefs or perceptions, as long as the chain logically supports the hypothesis. - **Non-
entailment**: The first sentence does not confirm the truth of the second sentence, often
involving unsupported assumptions, beliefs, or suspicions that do not logically lead to
the hypothesis.
Guidelines for Analysis: 1. **Clarify Belief Chains and Logical Implications**: Un-
derstand how belief chains work and when they logically support the hypothesis. Pay
attention to verbs indicating beliefs, assumptions, or suspicions (e.g., ”thinks,” ”as-
sumes,” ”suspects”) versus those indicating direct evidence (e.g., ”learns,” ”knows,”
”remembers”). Consider how these verbs interact in belief chains and what they imply
about the subject’s own beliefs. 2. **Evaluate Direct and Implied Evidence**: De-
termine if the premise provides direct or logically implied evidence for the hypothesis,
considering how belief chains can logically support the hypothesis. Recognize that in-
direct beliefs about another person’s recognition can imply one’s own belief about a
situation, especially when the belief chain is logical and straightforward. 3. **Consider
Perspective and Source of Information**: Note any differences in perspective or source
of information (e.g., who remembers or assumes something) and how these perspectives
contribute to the logical implication of the hypothesis. 4. **Conduct a Comprehensive
Analysis**: Use a step-by-step approach to ensure all relevant details and logical im-
plications are considered in the analysis. Balance the emphasis on direct evidence with
the recognition of logical implications from indirect beliefs.
Example: Premise: ”Charlotte thinks that Richard recognizes that a boy is standing in a
pool getting splashed with water.” Hypothesis: ”Charlotte thinks that a boy is standing
in a pool getting splashed with water.” Options: (A) entailment (B) non-entailment
Analysis: 1. **Understanding the Premise**: The premise indicates that Charlotte
thinks Richard recognizes a specific situation involving a boy in a pool. 2. **Under-
standing the Hypothesis**: The hypothesis states that Charlotte thinks a boy is in a
pool getting splashed with water. 3. **Assessing the Relationship**: The premise
implies that Charlotte has a belief about the situation (through Richard’s recognition),
which logically supports the hypothesis. Charlotte’s belief about Richard’s recognition
suggests she also believes in the situation’s occurrence. 4. **Conclusion**: The re-
lationship is one of entailment because Charlotte’s belief about Richard’s recognition
logically implies her belief in the situation.
Therefore, the correct answer is:
<answer>A</answer>
Identify the relation between the following premises and hypotheses, choosing from the
options ’entailment’ or ’non-entailment’. At the end, show the answer option bracketed
between <answer> and </answer>.

0.916

(Continued on next page)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(Continued from previous page)

Approach Optimized Prompt Accuracy

SIPDO Task Requirements:
Analyze a given premise (primary sentence) and determine whether it fully supports the
truth of a hypothesis (subsequent sentence). Classify the relationship as either ”Entail-
ment” or ”Non-Entailment” based on the logical and factual connections between the
two. Provide the classification only as the final output. Problem Rule Application:
Entailment:
The premise explicitly confirms the hypothesis with clear, direct evidence. No addi-
tional information, assumptions, or interpretations are required to validate the hypothe-
sis. Non-Entailment:
The premise does not fully or explicitly confirm the hypothesis. If there is ambiguity,
uncertainty, or missing logical links, label it as Non-Entailment. Judgment Criteria:
(Strictly follow these rules)
Language of Uncertainty:
Words like ”assumes,” ”believes,” ”thinks,” ”feels,” ”suspects” indicate subjectivity and
should not be considered definitive proof. These terms suggest a possibility rather than
an explicit factual connection. Specific vs. General Statements:
A specific premise (e.g., mentioning a “full face mask”) does not necessarily contradict
a general hypothesis (e.g., referencing a “mask” in general). However, if the premise is
too general to confirm the specific claim, classify as Non-Entailment. Objective Rea-
soning:
Only use the logical and factual ties within the given statements. Do not rely on external
knowledge, assumptions, or interpretations unless directly supported by the premise.
Decision Process:
Determine whether the premise fully supports the hypothesis without needing extra
inference → Entailment. If the premise only partially supports or fails to confirm the
hypothesis → Non-Entailment.

0.893

Table 10: Comparison of Optimized Prompts for Temporal task including CoT,
APE, PromptAgent, and SIPDO.

Approach Optimized Prompt Accuracy

CoT Your task is to determine the available time slot for an event, based on a schedule of
occupied times. Follow these steps to ensure accuracy:
Steps to Identify Free Time Slots: 1. **List Occupied Periods**: Organize all
occupied time slots in chronological order. 2. **Find Gaps**: Identify gaps between
the occupied periods where no activities are scheduled. 3. **Check Constraints**:
Ensure that the free time slots fall within operational constraints (e.g., facility closing
times). 4. **Select the Slot**: Choose the correct free time slot that satisfies all criteria.
Output Result Format: - Present the selected free time slot in a clear format, such
as ”Xpm to Ypm” or ”Xam to Yam”.
Use this step-by-step method to ensure that the identified time slot is accurate and does
not overlap with any occupied periods.

0.989

APE Identify the period when the individual was unnoticed and had the possibility to visit
the specified place before its closing time.

0.994

(Continued on next page)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(Continued from previous page)

Approach Optimized Prompt Accuracy

PromptAgent Analyze the timeline of events to determine possible time frames during which certain
events could have occurred, even if they were not explicitly observed. Start by con-
structing a comprehensive timeline, clearly listing all observed and unobserved time
slots. Identify gaps where the subject is unobserved, ensuring these gaps fit within any
given constraints, such as opening and closing times. Emphasize the importance of
constraints by verifying them after identifying potential gaps. Use a step-by-step rea-
soning approach to systematically evaluate all available information, and include a final
review to check for potential errors or overlooked details before finalizing the answer.
Define key terms like ”unobserved” and ”constraints” to ensure clarity in the task re-
quirements. Provide examples to illustrate the reasoning process and expected output
format, guiding the model in analyzing timelines and identifying possible time frames
for unobserved events. Additionally, incorporate a checklist to ensure all steps are fol-
lowed, and highlight common pitfalls to avoid during the analysis. Finally, include a
summary of the reasoning process to reinforce understanding and ensure the model’s
conclusions are well-supported.
To further enhance the model’s performance, include additional examples that cover
a wider range of scenarios and constraints, such as overlapping time slots or multiple
constraints. Provide explicit guidance on handling complex constraints and ambiguous
information. Incorporate interactive feedback mechanisms to help the model learn from
mistakes and improve over time. Ensure the prompt is concise and focused, avoiding
unnecessary repetition while maintaining clarity and comprehensiveness. Additionally,
introduce a section for handling exceptions or unusual cases, offering strategies for
dealing with incomplete or conflicting data. This will help the model adapt to a broader
range of real-world scenarios and improve its robustness in timeline analysis tasks.

0.984

SIPDO **Task Requirements:** Determine the possible time period during which an event
could have occurred, based on a detailed schedule of occupied times. Your goal is to
identify the correct time slot that fits all the provided criteria without any overlap.
Problem Rule Explanation: 1. Analyze the schedule to identify all time slots during
which the person is occupied. 2. Determine the available time slots by identifying gaps
between these occupied periods. 3. Consider any additional constraints, such as closing
times, that may limit the available time slots.
Problem Rule Application: - List all the occupied time slots chronologically. -
Identify gaps between these occupied slots where the person is free. - Ensure that the
free time slots do not conflict with constraints like closing times.
Result Verification: - Confirm that the identified time slot is completely free and
adheres to any constraints. - Double-check against all occupied periods to ensure there
is no overlap. - Avoid selecting time slots that are partially occupied or overlap with
any scheduled activities.
Output Result Format: - Present the correct time slot in a straightforward manner,
using the format ”Xpm to Ypm” or ”Xam to Yam” as appropriate. - Ensure the output
is clear and free of any extraneous symbols or text.
Common Mistakes to Avoid: - Do not include time slots that extend beyond the
closing time of the facility. - Avoid selecting time slots that overlap with any scheduled
activities. - Ensure the selected time slot is entirely free and does not partially overlap
with any occupied period.
General Rules and Analysis: - Identify all occupied periods and list them chrono-
logically. - Look for gaps between these periods where the person is not scheduled for
any activity. - Verify that these gaps fall within any operational constraints, such as
closing times. - Ensure the selected time slot is entirely free and does not overlap with
any occupied periods.
By following these guidelines, you can accurately determine the available time slot for
the event in question. Avoid errors by ensuring that the selected time slot is entirely free
and does not overlap with any occupied periods.

0.993

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B OPTIMIZED PROMPTS WITHOUT DIFFICULTY SCALING IN SYNTHETIC
DATA

Table 11: Optimized Prompts Without Difficulty Scaling in Synthetic Data

Tasks Optimized Prompt Accuracy

Penguins You are provided with two tables containing data about penguins and giraffes. Your task
is to focus solely on the giraffe data to answer a specific question regarding the tallest
giraffe.
Penguin Data:
— Name — Age — Height (cm) — Weight (kg) — ————-——–—————–——
———-— — Louis — 7 — 50 — 11 — — Bernard — 5 — 80 — 13 — — Vincent
— 9 — 60 — 11 — — Gwen — 8 — 70 — 15 — — James — 12 — 90 — 12 —
Giraffe Data:
— Name — Age — Height (cm) — Weight (kg) — ———–——–—————–——
———-— — Jody — 5 — 430 — 620 — — Gladys — 10 — 420 — 590 — — Marian
— 2 — 310 — 410 — — Donna — 9 — 440 — 650 —
Task Requirements: 1. Identify the tallest giraffe based on the height provided in
the Giraffe Data table. 2. Provide the weight of the tallest giraffe in kilograms.
Problem Rule Explanation: - Review the height values for each giraffe listed in
the Giraffe Data table. - Compare these height values to determine which giraffe is the
tallest.
Problem Rule Application: - Examine the height values for the giraffes: - Jody:
430 cm - Gladys: 420 cm - Marian: 310 cm - Donna: 440 cm - Identify that Donna is
the tallest giraffe at 440 cm. - Retrieve the corresponding weight of Donna, which is
650 kg.
Result Verification: - Ensure that you have considered all entries in the Giraffe
Data table. - Confirm that the weight you provide corresponds to the giraffe identified
as the tallest.
Output Result Format: - Provide your answer in the following format: - ”Weight
of the tallest giraffe: [Weight in kg]”
—
Example Output: - ”Weight of the tallest giraffe: 650”
—

0.732

Geometry ” Given the following input: ””input””, you must provide ONLY the correct value for
the ’target’.
Rules: 1. Do NOT provide any explanations. 2. Do NOT provide any sentences,
text, or words other than the ’target’ value. 3. The answer must be the exact value
contained in the ””target”” and any unauthorized additions are prohibited.”

0.681

Object Counting ”**Task Requirements:** - Determine the total number of fruits by accurately identify-
ing and counting each type listed in the question.
Problem Rule Explanation: - The task involves listing and counting each fruit men-
tioned. - Each fruit should be counted as one unless a specific quantity is provided.
Problem Rule Application: - Carefully read through the list to identify all items that
are fruits. - Count each fruit once unless otherwise specified with a different quantity. -
Avoid including any non-fruit items or miscounting due to misinterpretation of the list.
Result Verification: - Re-examine the list to ensure all fruits have been correctly
identified and counted. - Verify that the total count reflects only the fruits listed, with
no errors in inclusion or exclusion.
Output Result Format: - Provide the total number of fruits in both word and nu-
meral forms, such as: [””ten””, ””10””]. - Ensure the output is clear and free from
special symbols or formatting errors.”

0.538

(Continued on next page)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(Continued from previous page)

Tasks Optimized Prompt Accuracy

Causal Judgment Analyze the scenario to determine if the described action directly caused the outcome.
Provide a definitive ’Yes’ or ’No’ answer based on a logical assessment of the causal
relationship as described in the scenario.
Problem Rule Explanation: A causal relationship exists when an action directly
leads to an outcome without other factors influencing the result. The outcome should
not occur without the action. Avoid assumptions and base your analysis solely on the
information provided.
Problem Rule Application: - Identify the key action and the resulting outcome
within the scenario. - Determine if the outcome is a direct result of the action, ensuring
no additional factors are at play. - Evaluate whether the outcome would still occur
without the initial action, focusing on the explicit roles, responsibilities, and conditions
mentioned. - Avoid external assumptions and concentrate on the details provided in the
scenario.
Result Verification: - Confirm that the action directly causes the outcome, with no
interference from other factors. - Ensure the outcome logically follows from the action,
considering the context and rules provided. - Review the scenario for any overlooked
details that could affect the causal link, ensuring a comprehensive analysis.
Output Result Format: - Answer ’Yes’ if the action directly causes the outcome,
with the outcome being a direct consequence of the action. - Answer ’No’ if there is no
direct causal relationship or if other factors could have contributed to the outcome.

0.684

Temporal **Task Requirements:** Determine the available time slots for an unscheduled activity
within a given daily schedule, ensuring these slots do not conflict with scheduled events
and comply with any facility operating hours.
Problem Rule Explanation: 1. Review the entire schedule to identify all events
and their specific time frames. 2. Identify gaps between these events or after the last
scheduled event to find potential time slots for the unscheduled activity. 3. Consider
any additional constraints, such as facility operating hours, to ensure the proposed time
slot is feasible.
Problem Rule Application: - List all scheduled events with their respective time
frames. - Identify gaps between these events or available time after the last scheduled
event. - Ensure that the identified time slots comply with any additional constraints, like
facility operating hours.
Result Verification: - Confirm that the identified time slots do not overlap with any
scheduled events. - Verify that the time slots fall within the facility’s operating hours.
Output Result Format: Present the time range in a clear and concise format, such
as ”Xpm to Ypm” or ”Xam to Yam”, ensuring clarity and precision.
Example Application: Given the schedule: - Breakfast: 8am to 9am - Business
meeting: 9am to 11am - Art gallery: 11am to 1pm - Lunch: 1pm to 2pm - Cinema: 3pm
to 5pm - Dinner party: 6pm to 8pm - Gym closes at 10pm
Determine the available time for the gym: - Identify the gaps: 5pm to 6pm and 8pm to
10pm. - Ensure these time slots do not overlap with scheduled events and are within the
gym’s operating hours. - The correct answer is ”5pm to 6pm” and ”8pm to 10pm”, as
they fit within the gym’s operating hours and do not overlap with any scheduled events.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C SELF-IMPROVEMENT PROMPT TEMPLATES

We provide an example of a self-improvement prompt template in the BIG-Bench Penguins In a Table task:
Error analysis, Improvement recommendations, and prompt refinement.

Error Analysis Prompt Template

You are an expert at analysing why LLM answer is wrong in Penguins in a table reasoning task.

Your task is to give a concise and general description of the reasoning mistake from the current
prompt that caused the mistake with the provided question, generated answer, ground truth, and current
prompt below:
Question :{synthetic question}
Model generated answer: {LLM generated answer}
Ground truth: {true answer}
Current prompt: {current prompt}

1. Misinterpretation of the Question: The model may have misinterpreted the question, focusing on
the structure of the data rather than the specific request for the height of the tallest penguin. This could
lead to confusion and an irrelevant answer.

2. Inattention to Numerical Data: The model might have overlooked the numerical values provided in
the table, failing to recognize that it needed to compare the heights of the penguins to determine the
tallest one.

3. Irrelevant Output Generation: The answer ”rectangle” does not relate to the context of the
question. This suggests that the model may have generated a response based on unrelated patterns or
associations rather than the specific data presented.

4. Lack of Contextual Understanding: The model may not have fully grasped the context of the data
table, leading to a failure in recognizing that the question was asking for a specific value derived from
the table.

5. Failure to Process Tabular Data: The model might struggle with processing tabular data effectively,
which can lead to incorrect conclusions or irrelevant outputs when asked to analyze such formats.

Improvement Recommendation Prompt Template

You are an expert in giving recommendations for optimizing current prompts. The goal is to output
reasonable and decent suggestions on how to revise the current prompt to solve the encountered issue.

Question :{synthetic question}
Model generated answer: {LLM generated answer}
Ground truth: {true answer}
Current prompt: {current prompt}
Generated error analysis: {error analysis from previous step}

Some recommendation examples in Penguins In A Table task(But don’t be limited to these):
- Clarify the question to emphasize the need for numerical comparison.
- Provide explicit instructions to focus on extracting specific values from the data.
- Ensure the model is trained to recognize and process tabular data more effectively.
- Avoid ambiguity in the question to prevent misinterpretation of the request.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt Refinement Template

You are an expert in revising prompt engineering and refinement in tables related to reasoning tasks.

Goal: Create a revised prompt that fixes the failure without overfitting – keep it generic.
Question :{synthetic question}
Model generated answer: {LLM generated answer}
Ground truth: {true answer}
Current prompt: {current prompt}
Refinement recommendation: {recommendation from previous step}

Tasks:
- Give a better prompt, which can avoid all the problems that have occurred.
- Summarize the logic based on the question and correct answer, and summarize the mistakes that should
be avoided based on the question and generated wrong answer.
- Do not modify the prompt based on the specific problem, but modify the prompt based on the cause of
the error. The modified prompt should be able to give some regular hints and logical revisions.
- You should specify the output format according to the correct answer. The output should not contain
any special symbols.
- You can summarize the characteristics of each option and reverse the answer based on the characteristics.
- It can analyze the general rules of the problem, which helps the model understand how the problem is
solved.
- Prompts should be planned according to the following categories: task requirements, problem rule
explanation, problem rule application, result verification, and output result format.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D EXAMPLES OF GENERATED DATA

Table 12: Examples of Generated Data for BIG-Bench tasks

Tasks Generated Data

Causal Judgment Question: In a small town, there is a bakery that makes the best pastries. Every morning,
the bakery opens at 7:00 am, and a line of customers forms outside. The bakery owner
has a rule that only one person can enter at a time to maintain order. One day, two
customers, Alice and Bob, arrive at the same time. Alice follows the rule and waits
outside, but Bob ignores the rule and enters the bakery while another customer is still
inside. The bakery becomes overcrowded, and a shelf of pastries falls over, ruining the
day’s batch. Did Bob cause the pastries to be ruined?
Answer: Yes

Geometry Question:This SVG path element <path d="M 50.00,30.00 L
66.18,35.09 L 72.45,50.00 L 66.18,64.91 L 50.00,70.00 L
33.82,64.91 L 27.55,50.00 L 33.82,35.09 L 50.00,30.00"/>
Answer: Polygon

Object Counting Question: I have two violins, a drum, a piano, a flute, and a trumpet. Additionally, I
have a cat, a rabbit, a dog, a chicken, and a goat. How many musical instruments do I
have?
Answer: 4

Epistemic Question: Premise: Olivia suspects that Ethan recognizes that a group of musicians
gather in a park, tuning their instruments as the sun sets behind the city skyline. Hy-
pothesis: Ethan recognizes that a group of musicians gather in a park, tuning their
instruments as the sun sets behind the city skyline.
Answer: non-entailment

Temporal Question:Today, Alex attended several events. Between what times could he have gone
to the gym? We know that: Alex had breakfast at 8am. He attended a meeting from 9am
to 11am. He was seen at the art gallery from 11am to 1pm. He had lunch with friends
from 1pm to 2pm. He was at the cinema from 2pm to 4pm. He visited his grandmother
from 4pm to 6pm. The gym closes at 10pm. Between what times could Alex have gone
to the gym? 12pm to 1pm, 9am to 10am, 6pm to 10pm, 4pm to 5pm
Answer: 6pm to 10pm

Penguins Question: Here is a table where the first line is a header and each subsequent line is a
penguin: name, age, height (cm), weight (kg)
Louis, 7, 50, 11
Bernard, 5, 80, 13
Vincent, 9, 60, 11
Gwen, 8, 70, 15. For example: the age of Louis is 7, the weight of Gwen is 15 kg, the
height of Bernard is 80 cm. Which is the youngest penguin??
Answer: Bernard

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 13: Examples of Generated Causal Judgement Data for BIG-Bench tasks

Difficulty Level/Iteration Generated Data

1 In a small town, there is a bakery known for its delicious pastries. The bakery owner,
Mr. Thompson, has a strict policy that only his trained staff can bake the pastries.
However, one day, a customer named Sarah, who has some baking experience, decides
to sneak into the kitchen while the staff is busy. She bakes a batch of pastries without
permission. The next morning, Mr. Thompson discovers that the pastries are not up to
his usual standards. Did Sarah cause the pastries to be of poor quality?

2 In a bustling restaurant, the head chef, Chef Maria, has a rule that only she and her sous
chefs are allowed to create new dishes. One evening, a waiter named Tom, who has a
passion for cooking, decides to experiment and prepares a new dish during a slow shift.
The next day, Chef Maria tastes the dish and finds it lacks flavor and presentation. Did
Tom cause the dish to be of poor quality

3 In a high-tech company, the lead engineer, Ms. Johnson, has a strict protocol that only
certified technicians are allowed to perform software updates on the main server. One
afternoon, a junior intern named Alex, eager to impress, decides to bypass the protocol
and updates the software without authorization. The next day, the server experiences
significant downtime due to compatibility issues. Did Alex cause the server downtime?

4 In a prestigious university, the dean, Dr. Roberts, has a clear policy that only fac-
ulty members are allowed to supervise student research projects. However, a graduate
student named Emily, frustrated with the slow progress of her project, decides to take
matters into her own hands and conducts an experiment without faculty approval. When
the results are presented, they are deemed unreliable and flawed. Did Emily cause the
research results to be unreliable?

5 In a renowned art gallery, the curator, Ms. Patel, has a strict guideline that only pro-
fessional artists can submit their work for exhibition. One day, a passionate art student
named Jake, feeling confident in his skills, sneaks in his painting and hangs it on the
wall without permission. When the exhibition opens, visitors notice that Jake’s painting
lacks the finesse and depth of the other artworks. Did Jake cause the negative reception
of his painting?

6 In a large corporate office, the HR manager, Ms. Lee, has a strict policy that only trained
personnel are allowed to conduct interviews for new hires. One day, a receptionist
named Mark, eager to help, decides to conduct an interview for a candidate without
permission. The next day, during the hiring meeting, it becomes clear that the candidate
is not a good fit for the company culture. Did Mark cause the poor hiring decision?

7 In a cutting-edge research lab, the lead scientist, Dr. Nguyen, has a strict rule that only
authorized researchers can handle the sensitive equipment. One afternoon, a visiting
scholar named Rachel, excited to contribute, decides to use the equipment without per-
mission. The next day, Dr. Nguyen discovers that the data collected is corrupted and
unusable. Did Rachel cause the data corruption?

8 In a competitive publishing house, the editor-in-chief, Ms. Carter, has a strict policy that
only experienced editors can approve manuscripts for publication. One day, a new intern
named David, eager to make a mark, decides to approve a manuscript without consulting
anyone. When the book is published, it is filled with errors and inconsistencies. Did
David cause the poor quality of the published book?

9 In a prestigious law firm, the managing partner, Mr. Stevens, has a strict rule that only
licensed attorneys can represent clients in court. One day, a paralegal named Lisa,
wanting to prove her capabilities, decides to represent a client during a hearing without
authorization. The next day, the judge dismisses the case due to Lisa’s lack of legal
knowledge and experience. Did Lisa cause the dismissal of the case?

10 In a leading aerospace company, the project director, Mr. Carter, has a strict rule that
only certified engineers can work on the aircraft design. However, his enthusiastic
neighbor, Jake, who has no formal training, often offers unsolicited advice on the design
process. One day, Jake manages to convince Mr. Carter to incorporate a design feature
he believes will improve aerodynamics. Unfortunately, the feature is flawed and leads
to a critical failure during a test flight, resulting in the loss of the prototype. Did Jake
cause the failure of the prototype?

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E DETAILED PROOF OF THEOREM 3.3

1. Surrogate domination. Because the surrogate loss upper-bounds the 0–1 loss point-wise,

sup
ψ∈Ψ

Eqψ
[
1{f(p, x̃) ̸= ỹ}

]
≤ sup

ψ∈Ψ
Eqψ

[
L
(
f(p, x̃), ỹ

)]
= sup

ψ∈Ψ
J(ψ),

where we abbreviated J(ψ) :=EqψL
(
f(p, x̃), ỹ

)
.

2. Reduce to the near-optimal generator. Let ψ⋆ be any generator that ε-maximises the regularised
objective,

ψ⋆ = argmax
ψ∈Ψ

{
J(ψ)− λ−1R(ψ)

}
s.t. J(ψ⋆)− λ−1R(ψ⋆) ≥ sup

ψ∈Ψ

(
J(ψ)− λ−1R(ψ)

)
− ε.

Rearranging, J(ψ) ≤ J(ψ⋆) + λ−1
(
R(ψ)−R(ψ⋆)

)
+ ε for every ψ, hence

sup
ψ∈Ψ

J(ψ) ≤ J(ψ⋆) + ε.

3. Bound the hard generator via KL. Applying the risk-alignment inequality to ψ⋆,

J(ψ⋆) ≤ E(x,y)∼PL
(
f(p, x), y

)
+ λ−1R(ψ⋆).

4. Sample–population substitution. With probability at least 1− δ over the draw of the training set,

E(x,y)∼PL
(
f(p, x), y

)
≤ 1

n

n∑
i=1

L
(
f(p, xi), yi

)
+ q

(
|P|, n, δ

)
.

Combine. Chaining 1-4 we obtain

sup
ψ∈Ψ

Eqψ1{f(p, x̃) ̸= ỹ} ≤ 1

n

n∑
i=1

L
(
f(p, xi), yi

)
+ λ−1R(ψ⋆) + ε + q

(
|P|, n, δ

)
,

which is exactly the bound claimed in Theorem 3.3. □

28

	Introduction
	Related Work
	Automatic Prompt Engineering
	Data Synthesis

	Method
	Data Generator
	Auto Prompt Optimizer
	Theoretical Guarantee

	Experiments
	Experimental Setup
	Implementation
	Results and Analysis
	Ablation Study

	Conclusion
	Optimzed Prompts for different tasks
	Optimized Prompts Without Difficulty Scaling in Synthetic Data
	Self-improvement Prompt templates
	Examples of Generated Data
	Detailed proof of Theorem 3.3

