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ABSTRACT

In modern non-convex optimization, more and more attention is drawn to zeroth-
order problems where the only available information is which set of model parame-
ters is better, without quantitative characteristics. The data in these problems can
be extremely noisy, and the models themselves are so complex that the standard
smoothness assumption fails to describe them. Motivated by these challenges, we
propose new zeroth-order methods to deal with generalized (Lo, L1)-smoothness
and severe heavy-tailed noise with bounded x-th moment. Using only comparisons
of function values at two different points, our MajorityVote-CompSGD method

achieves the first-known high probability bound O (% (éﬁ + %)) RS

(0, 2] for number of comparisons under symmetric independent noise. If function
values are available, our minibatch-CompSGD can converge to the desired aver-

. ~ K 3/2 3/2 2k—1 .
age gradient norm after O ( Ag -1 (% + dEiLl) T ) , k € (0, 2] function

evaluations. In addition, we provide convergence guarantees for Lipschitz noise,
parameter-free tunings and in expectation bounds with milder d dependence.

1 INTRODUCTION

In many practical optimization tasks, the computation of the function gradients is infeasible, for
instance, due to enormous sizes, non-differentiable function structure or lack of information. For such
scenarios, methods that operate only with function values or even comparisons of these values are an
active area of research (Nozawa et al., 2025; Jiang et al., 2024; Liu et al., 2024; Chen et al., 2024,
Yin et al., 2024; Tang et al., 2023; Ouyang et al., 2022). Although modern applications, especially
in deep learning, are known to exhibit heavy-tailed noise and very complex model structures, most
related works consider only simple model descriptions and bounded variance noise, or no noise at
all. This leaves an important practical problem without a proper theoretical framework. The goal of
this work is to bridge this gap by introducing a new robust and theoretically justified method that
uses only function values or their comparisons for optimization. We formally present the problem
statement (§1.1), review related works (§1.2), and detail our contributions (§1.3).

1.1 PROBLEM STATEMENT

Consider the following non-convex stochastic optimization problem:

min gea f(z) := Ee[f (2, )], )

where the random variable £ can only be sampled from an unknown distribution. The main goal is
to find a point with the smallest gradient norm. For example, in machine learning, f(x, &) can be
interpreted as a loss function on a sample ¢ (Shalev-Shwartz & Ben-David, 2014).

We consider two oracle types: the zeroth-order oracle which, for any two points =,y € R?, gives
their noisy function values f(z, ¢, ) and f(y, ¢, ), and the comparison oracle ¢(z, y,§ := {&;,§,})
which determines which noisy function value is larger:
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The realizations ¢, and &, can be both independent or depend on the points x, y. The comparison
oracle is natural for describing human decision-making (Lobanov et al., 2024). Given a choice
between two options, it is much easier to choose which option is better rather than estimate quantitive
difference. The stochasticity & describes a variety of decision makers and their random states. This
oracle is extensively used in Reinforcement Learning (RL) and Large Language Models (LLMs)
training via RL with human feedback (Ouyang et al., 2022; Wang et al., 2023; Tang et al., 2023).

(Lo, L1)-smoothness. In early theoretical works, deep learning models were described using a
standard smoothness assumption, namely, ||V f(x) — Vf(y)|2 < Lol|lz — y|l2, V2, y € R%. However,
anew generalized (L, L1)-smoothness condition was recently introduced in (Zhang et al., 2020b) to
characterize LLMs whose Hessian norm exhibits linear growth: | V2 f(x)||2 < Lo + L1 ||V f(2)]2.
The future works have extended this framework to only once differentiable functions and various
settings including cases with symmetric and asymmetric power norm growth (Chen et al., 2023) and
sub-quadratic polynomial growth (Li et al., 2023). Applications of the generalized smoothness can
be found not only in training of LLMs (Zhang et al., 2020a; Liu et al., 2023b), but in distributionally
robust optimization (Levy et al., 2020; Jin et al., 2021), multitask learning (Zhang et al., 2024),
federated learning (Liu et al., 2022), bilevel optimization (Hao et al.; Gong et al.) and other domains.

High probability bounds. The remarkable success of stochastic first-order methods for optimiz-
ing neural networks (Bottou, 2012; Kingma & Ba, 2014) has inspired extensive research into the
theoretical convergence properties of these methods under various noise assumptions. Early studies
(Nemirovski et al., 2009; Ghadimi & Lan, 2013; Bernstein et al., 2018a) derive complexity bounds in
expectation, typically under light-tailed noise such as sub-Gaussian or bounded variance (BV) noise.
However, given the high computational cost of training large deep learning models (Davis et al.,
2021), there is a growing interest in high-probability (HP) convergence guarantees (Sadiev et al.,
2023; Nguyen et al., 2023; Hiibler et al., 2024). Unlike bounds in expectation, which describe average
performance across multiple runs, HP bounds ensure convergence for individual runs with probability
atleast1 — 9,0 € SO, 1). Although Markov’s inequality can convert bounds in expectation into HP
bounds with extra 5 factor, the researchers strive to obtain bounds with tighter log % dependencies.

Heavy-tailed noise. Furthermore, recent studies indicate that mentioned BV assumption fails to
capture the noise characteristics in modern deep learning tasks. For instance, in Transformer models,
stochastic gradients often follow a heavy-tailed (HT) distribution (Simsekli et al., 2019; Zhang et al.,
2020b; Gurbuzbalaban et al., 2021). It means that the noise in function estimates has a bounded x-th
moment for some x € (1, 2]. In the zeroth-order optimization, two main types of corrupting noises
are considered: independent which corrupts each point x individually and Lipschitz which corrupts a
pair of points x, y together and decreases as these points become closer.

1.2 RELATED WORKS

Zeroth-order optimization has a rich history including both discrete and continuous classic approaches
such as Bayesian optimization (Shahriari et al., 2015; Balandat et al., 2020), Evolutionary algorithms
(Lei et al., 2025; Salimans et al., 2017), ellipsoid methods (Bland et al., 1981) etc. The most relevant
methods for optimizing non-convex smooth functions are based on finite-difference approximations.

Zeroth-order finite-difference methods. These methods utilize explicit function values to approx-
imate gradient by a finite difference which is then plugged into the first-order methods (Nesterov,
2011; Ghadimi & Lan, 2013; Duchi et al., 2015; Shamir, 2017; Gasnikov et al., 2022). The gradient
estimate g, (x, e) with the arbitrary smoothing parameter 7 is built on a random direction e sampled
from the unit Euclidean sphere:

gr(z,€) = d(f(z +7e,&1) — f(x —7€,6)) - e/(27). Q)

For non-convex functions under Lipschitz BV noise, it is enough to use SGD with gradient estimate
(3) (ZO-SGD) and sample e to obtain the rates O(de~*) in expectation (Ghadimi & Lan, 2013). To
cope with HT noise, the authors of (Kornilov et al., 2023; 2024) use more robust SGD with clipping
of heavy-tailed gradient estimates (ZO-ClipSGD) and obtain HP bounds for convex functions. For
independent noise, there exists a series of works dedicated to smoothed-based methods with Decision-
Dependent Distributions, achieving rates O(d?c~%) (Liu et al., 2023a) (for bounded optimized
functions) and O(d?¢~*) (Hikima et al., 2025). Under (Lg, L )-smoothness, only paper (Lobanov &
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Gasnikov, 2025) provides the linear bounds in expectation for the zeroth-order convex setup. The
authors also observe considerable convergence boost for functions with Ly ~ 0.

There exist even more challenging optimization problems in which only comparisons of function
values are available. For these problems, the methods with a comparison oracle (2) come in handy.

Comparison-based methods. These methods use only comparisons without direct function evalua-
tions. They find the minimal point among the observed ones following random directions. The most
common instance is Stochastic Three Points (STP) method (Bergou et al., 2020) and its variation
with momentum (SMTP) (Gorbunov et al., 2020). For the current iteration x*, it takes a random
direction e* with stepsize 7 and goes along it where the function value is smaller (or stays):

2P = argmin{ f ("), f(z* + yeb), f(2* — yreM)}.

In these works, the methods are analysed for non-convex functions without any noise. In (Bouch-
erouite et al., 2024), the authors work with sum-type functions and stochastic mini-batches. They
prove sample complexity O(d3s~%) in expectation for STP under independent BV noise in function
estimates, but with huge batch sizes O(d?c~*). In (Saha et al., 2021), the authors consider a indepen-
dent noisy comparison oracle where noise is introduced as a fixed probability of receiving a wrong
sign during the comparison. They restate STP via the sign operator and at each iteration repeated
Bernoulli trials with comparisons to ensure the sign correctness with high confidence. The authors
obtain HP bounds, but only for convex and strongly-convex functions.

We highlight the ZO-SignSGD method (Bernstein et al., 2018a;b; Liu et al., 2019a) which belongs to
both method groups simultaneously. It takes only the signs of gradient estimates (3). For the current
iteration z* and direction e”, its update step is:

P =k — oy sign((f(a* el &) = fah - et 6)) - eh). )
The sign operator from this update step can be computed by comparison oracle without direct function

values. For non-convex sum-type functions with Lipschitz bounded noise, the authors of (Liu et al.,
2019a) prove the zeroth-order sample complexity O(d?c~4).

In (Lobanov et al., 2024), the authors propose OrderRCD method which is combination of Coordinate
Gradient Descent and the search for the steepest stepsizes using the golden ration method, which
requires only comparisons. In (Tang et al., 2023), a comparison oracle is used to build a ranking-based
gradient estimate over random directions, which then is plugged into GD.

All the previous non-convex results for zeroth-order and comparison-based methods are proved
under standard L,-smoothness and mostly under BV noise. Meanwhile, real-world applications
motivate to use more general assumptions on smoothness and noise, as we do in this paper.

1.3 CONTRIBUTIONS

Theory. We derive the first-known high probability convergence bounds for non-convex zeroth-
order optimization under generalized (L, L;)-smoothness and HT independent or Lipschitz
noise. For standard smoothness, these results are new as well. See Section 2.

We propose our robust MajorityVote-CompSGD (Algorithm 2) that uses only function comparisons
for optimization. To achieve accuracy ¢ in average ¢»-gradient norm, it needs the following number
of comparisons under independent symmetric noise (A = f(z') — f*, d — dimensionality and x, &
— bounded moment power and value, Theorem 1):

) k€ (0,2].

- ((ALd3 ALyd? 1 243 Lo\
O(( 12“!‘ 22>|\2+U2<L1+0>
g E K & E

For zeroth-order oracle where function values are available, we present our minibatch-CompSGD
(Algorithm 3) that under any independent noise has complexity (Theorem 2):

- [ (AL, d> ALyd? ds Lo\ \ ™ *
0 < — + = ) 1+<0 <L1+O> k€ (1,2].
E & E &

Moreover, we provide convergence guarantees for Lipschitz noise, parameter-free algorithms tunings
and in expectation bounds with milder d dependence in the corresponding theorems.
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Experiments. To validate our theoretical findings in real-world scenarios with heavy-tailed noise,
we evaluate sign-based methods on the fine-tuning of Transformer models, demonstrating their
effectiveness in both NLP classification and image generation tasks. See Section 3.

2 HIGH PROBABILITY BOUNDS FOR COMPARISON AND ZEROTH-ORDER
ORACLES UNDER HEAVY-TAILED NOISE AND GENERALIZED SMOOTHNESS

We begin this section by introducing the necessary assumptions (§2.1) and the backbone method
CompSGD (Alg. 1, §2.2). Then we propose our MajorityVote-CompSGD (Alg. 2, §2.3) method
for comparison oracle (2) to optimize (Lg, L1 )-smooth non-convex functions corrupted by symmetric
and unimodal HT noise. We prove its HP convergence guarantees for the best parameters and also
for parameter-agnostic tuning. In addition, for classic zeroth-order optimization with available
function values, we propose minibatch-CompSGD (Alg. 3, §2.5) under HT noise without symmetry
assumption. We discuss and compare our methods with related works in §2.4 and §2.6, respectively.

2.1 ASSUMPTIONS

We use the following assumptions on the objective function f(-) and noisy function estimates f (-, ).
Assumption 1 (Lower bound). The objective function f is lower bounded by f* > —oc.

Assumption 2 ((Lg, L;)-smoothness). The objective function f is differentiable and (symmetrically)
(Lo, Ly)-smooth, i.e., for the non-negative constants (Lo, L1) and x,y € R, it holds

IVf(x) = VI < (Lo + L1 sup uefa,y V. ()] =yl ®)
For examples of (Lg, L1 )-smooth functions and its basic properties, we refer reader to Appendix A.1.

Assumption 3 (Heavy-tailed noise in function estimates). For two points =,y € R?, the stochastic
difference f(x,&;) — f(y,&,) is unbiased estimate of the true difference f(x) — f(y):

Egm-,&y [f(xagz) - f(y7£y)} = f(IL') - f(y)7

and satisfies one of the conditions below for o > 0 and € (1, 2]:
1. independent noise: B¢, ¢ [|f(z,&) — f(y,&) — (f(z) — f(y)|"] < o®, VaeRY

2. Lipschitz noise: E¢, ¢ [|f(2, &) — f(y,&) — (f(z)— fW)|*] < o%|lz—yll5, Vo eR™

The example of independent HT noise is the estimate f(x, £) corrupted at each point by independent
heavy-tailed noise £ with bounded x-th moment: f(z,&) := f(x) + £. As instance of Lipschitz HT
noise, one can use estimate f(z,¢) := f(x) + (z,£) where £ - is d-dimensional HT noise. For a

sum-type function f(z) = & Zfil fi(x) with £ denoting a random batch I from {1,..., K}, the
estimate is f(z,&) = ﬁ > icr Ji(x). In this case, the oracle gives the same  realization (batch) for

two points. This estimate can satisfy both independent and Lipschitz noise assumptions depending
on function properties (Boucherouite et al., 2024; Liu et al., 2019a).

Random directions. Usually zeroth-order methods first explore function changes along some
random directions sampled from the chosen set D and then make next step. This set should be wide
enough to capture the full information about function changes, thus, we assume the following.

Assumption 4 (Random directions). The set of random directions D C R¢ satisfies:
1. There exist anorm || - ||, p € [1,2] and a constant v, € (0, 1], such that for all g € R4:
Eeenl{g, €}l = apllgllp-

2. Forall e € D, the norms |le|l2 < 1, |le[|, < 1,1 + = =1

In our paper, we consider the following instances of D and provide explicit constants (Bergou et al.,
2020, Lemma 3.4) for them:

1. Uniform distribution on the unit Euclidean sphere S§ := {e, |le|2 = 1},p = 2,a,, =
The spheres of radius r < 1 are feasible too.

V2rd®

2. Uniform distribution on standard basic vectors {e1,...,eq},p =1, 05 = é.
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2.2 CONVERGENCE PROPERTIES OF THE BACKBONE METHOD CompSGD

In (Lobanov et al., 2024), the authors propose a nameless procedure for the comparison oracle. For
the current point ¥, it takes a random direction e* scaled by stepsize 7, and goes along it where
noisy function value is smaller, i.e.,

aF T = ab — - sign(f (2" + et €)= fa® — et €0)) e

If value f(z* — ek, &) is smaller than f(x* 4 vxe, &, ), then sign equals to 1 and z

k — ek, Otherwise, the point z¥T1 = ¥ — 4,.e” is chosen. We name it CompSGD (Alg. 1) and
prove the following lemma on its convergence.

k

k1 _

Algorithm 1 CompSGD

Input: Starting point z! € R%, number of iterations 7', stepsizes {Vk}le;
1: fork=1,...,T do
2:  Sample direction e* and noise & k.
3 ¢F = sign [f(aF +yper, &8)— faF —ypek, EF)];
4 gFtl =gk gk ek
5: end for
Output: uniformly random point from {z!,... 27} ;

Lemma 1 (CompSGD Convergence Lemma). Consider lower-bounded (Lg, Ly )-smooth function
f (As. 1, 2), random directions (As. 4) and HT function estimates oy, (As. 3). Then Alg. 1 after
T iterations starting with A := f(z') — f* and non-increasing stepsizes v < ©3/(48L,d7 ? log 1)
achieves with probability at least 1 — §:

1 1
48dr 2 1
kaIIVf )lp < 8A+432L¢ Z’Yk +64Zok+ (MlIVf(zh)llp+CrLo) log(5)-
k=1 k=1 “p
(6)
k=1
where &), = oy, for independent noise and &y, = 0}, for Lipschitz noise, Cr := max v - Y Yr.
kel,T =1

The proof is located in Appendix A.3. Remarkably, the only effect that comes from the constant L
in bound (6) is the restriction of the maximal possible stepsize vy < »/ (48L1dP "2 log 1). For this
reason, in case of small L¢, our methods can achieve faster convergence using large stepsizes instead
of decreasing ones under standard smoothness.

Noise robustness. CompSGD can handle heavy-tailed noise since it implicitly normalizes the
finite-difference gradient approximation (3) using only function comparisons. As shown in recent
works (Hiibler et al., 2024; Liu & Zhou, 2024), normalization eliminates heavy tails, but only until
some fixed noise level. For Lipschitz noise, the bound (6) resembles the similar convergence bounds
for the normalized first-order methods and requires o ~ £. However, for independent noise, it has
worse dependence on oy, since it is not multiplied by 7. Thus, in order to achieve accuracy ¢, the
noise o}, must not exceed o), ~ £2.

2.3 MajorityVote-CompSGD: ROBUST METHOD FOR COMPARISON ORACLE

For comparison oracle, we cannot use popular batching to lower the noise since it requires summing
the explicit function values with are not available with this oracle. Fortunately, there exists the method
to aggregate the signs of differences of function estimates without its direct calculation. At this point,
we propose our novel MajorityVote-CompSGD (Algorithm 2) which reduces noise level via the
majority voting (Bernstein et al., 2018b) over comparison signs. Our method chooses positive or
negative direction along the random vector e” based on the majority of votes after several trials.

Additional noise assumption. The majority voting demonstrates great performance in distributed
optimization (Bernstein et al., 2018b; Jin et al., 2020). In order to be effective, it must decrease prob-
ability P {sign(f(xkqt’ykek) — f(a¥ —v,ef)) # sign {Zﬁl gbe with the growth of M. However,
it does not hold true for some very skewed noise distributions which sign from mean differs from mean
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Algorithm 2 MajorityVote-CompSGD

Input: Starting point z! € R?, number of iterations 7', stepsizes {4 }7_,, batchsizes { M} }1_,.
1: fork=1,...,T do
2: Sample direction €* and noises {£F} 2% ;
3 ¢ =sign [f(aF+yret, eF )—f(ﬂ?k—%ek,iff_)] ;
4: gkt =gk — 5, - sign (ZM’“ qbk>
5: end for
Output: uniformly random point from {z!,... 27} .

of signs. Choosing the most frequent value from the sign sequence {¢¥} | is actually M Bernoulli
trials. In these trials, the probability of choosing a correct answer grows only if the probability of
failure for each i less than 1 3. ie, P [s'ign(f(x'k—kmek) - f(xk—’Ykek)) #oF] < 3.Viel, M.
For example, this condition is satisfied if the noise for each i is unimodal and symmetric. We use this
assumption in our paper, but other assumptions from (Safaryan & Richtarik, 2021) are valid as well.

Theorem 1 (HP complexity for MajorityVote-CompSGD, independent noise). Consider lower-
bounded (Lg, L1 )-smooth function f (As. 1, 2), random directions with o, (As. 4) and function
estimates with HT independent, unimodal and symmetric noise > 0 (As. 3). Then Alg. 2 requires

comparison number N to achieve - 25:1 IV f(zi)|lp < € with probability at least 1 — § for:

5.p o?
Optimal tuning: T = O(AL )»'Yk = migka = max{%‘),(%y}fore > % and
ALYP o
T = O(ageg),’yk— 32TL5P’Mk_maX{1nL207(4 T) }fO e < 4Lo:
ALYP  ALYP\ |1 o2 L5 4
N=0 31 + 302 =1t 53 Ljp"' ) (N
ape ape K ape

where A = f(z1) — f*7Lg’p = Lod%*% 10g(%) L lep 3 log(%)

The proof is located in Appendix A.6. The results for Lipschitz noise are presented in Appendix
A.7. If functions and noise parameters are unknown we propose parameter-free tuning in Theorem 4,
Appendix A.6. It achieves the same dependencies on ¢, but worsens A, Lo, L1, o-depending factors.

Two-stage convergence bounds. From Theorem 1, we can clearly distinguish two phases of algo-
rithm convergence: fast initial phase with rate O (5’3 ) before threshold £ > 4Lo/L, and substantially
slower one with rate O (5’6) after. In case of Ly =~ 0 (e.g. for logistic regression (Gorbunov et al.,
2024) and deep neural networks (Zhang et al., 2020a)), MajorityVote-CompSGD runs in the fast
regime the whole time and can work with large constant stepsizes.

2.4 MajorityVote-CompSGD DISCUSSION

Choice of random directions set. Note that the choice of set D affects both the coefficient o, and
the optimized ¢,-norm. For example, the Euclidean sphere, in comparison with the standard basis,
has v/d times larger o, but induces a smaller />-norm. In practice, neural networks’ gradients are
dense (see experiments from (Bernstein et al., 2018a)), and their norms are related by ||V f(z)||1 ~
Vd||V f(x)||2. Hence, the ¢;-accuracy ' can be larger, around ¢’ ~ ¢ - v/d. Nevertheless, the
Euclidean sphere is preferable for our methods, since «, has more weight in our bounds.

9/2
d dependence. For the Euclidean sphere, the bound in (7) is O( HQ L —i— 4 ) Compared to the

prior works (§2.6), its dependence on ¢ is standard for the BV noise. However, the d®/? factor is one
of the largest. We emphasize that this factor only appears in high-probability bounds, which offer
an additional guarantees for the solutions. Like prior works, we also prove in expectation bounds
(Theorem 8, Appendix A.9), where the dependence on d is considerably lower and compatible:

s, s, 5p\ 2
vool (ART AL |1 0?1y o(PL, eIy
ozga al%sQ K2 a;‘;az 1 € Kk2eb  K2e3
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Optimality under standard smoothness. In this paragraph, we assume that D is the Euclidean
sphere and L; = 0. In the deterministic case o = 0, our in expectation bound becomes O(Lo/<?)
and exactly matches the bounds from the previous works (Bergou et al., 2020; Tang et al., 2023;
Lobanov et al., 2024). Moreover, it matches the optimal bound for the deterministic zeroth-order
optimization (Nemirovskij & Yudin, 1983). Our HP threshold on noise o ~ €2 from (7) is the same
as the threshold for the adversarial noise from OrderRCD (Lobanov et al., 2024) or for batched
variance from STP with batching (Boucherouite et al., 2024).

CompSGD proofs from (Lobanov et al., 2024). Although CompSGD iteration is proposed in
(Lobanov et al., 2024), the authors prove only asymptotic convergence with parameters depending on
the solution. We demonstrate in Lemma 1 and experiments from Section 3.2 that vanilla CompSGD
without noise reduction cannot achieve accuracies lower than noise . For this reason, we propose
effective majority voting modification (Alg. 2) which converges non-asymptotically (Theorem 1).

HP results from (Saha et al., 2021). The noisy comparison oracle and noise reduction scheme from
(Saha et al., 2021) are similar to ours. However, all results from (Saha et al., 2021) are proved for the
convex functions, and we prove it for the non-convex ones. The authors used a non-trivial assumption:
for some constant v € (0, 1/2)

Pe [¢(z,y,€) # sign(f(2) — f(y))] < /2 — v, Yo,y € RY. ®)
We would like to highlight that our Assumption 3 is much weaker and general, since (8) can fail even
under BV noise as difference f(x) — f(y) goes to zero. In our proofs, we show that

Pe [¢(z,y, &) #sign(f () = f(Y))] < 711 @)l
Thus, in the vicinity of the stationary point where the changes of the function are small or under large
o, the required condition (8) cannot hold.

2.5 minibatch-CompSGD: ROBUST METHOD FOR FUNCTION VALUE ORACLE

In this section, we adopt our backbone method CompSGD to zeroth-order optimization, where
function values are available or one can batch function values at two points before its direct comparison
(e.g. with sum-type objective function), and build minibatch-CompSGD (Algorithm 3).

Algorithm 3 minibatch-CompSGD

Input: Starting point 2! € R?, number of iterations 7', stepsizes {7y }+__,, batchsizes { B }71_,.
I: fork=1,...,T do
2:  Sample a random direction e* and {¢F i}l 1
30 Setaht = ah — gy sign(02 f(ah et €L ) — 02 fah — et ) - ek
4: end for

Output: uniformly random point from {z!,... 27} .

Theorem 2 (HP complexity for minibatch-CompSGD). Consider lower-bounded (Lg, L1)-smooth
function f (As. 1, 2), random directions (As. 4) and HT function estimates € (1,2] (As. 3). Then

Alg. 3 requires N function calls to achieve - Zle IV f(zx)|p < € with probability at least 1 — 0:
ALSP a? -
31 )77/4::48[/71:51”316:11’1&)({1 (4 T) }for

e> 4L° andT = O(W) s Ve = \/32TL°P’B”C —maX{l (4ZT)ﬁ}for5§ %

A L&P L d,p
N — O — <L(1ssp + 0) 1 + ( (L&;D + 0 >> ,
Oép€ IS Oépc‘? £

Optimal tuning, independent noise: T = O (

1

Adi 2 L
N=0 < 3 (L1 + O)
Oép€ &
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where A = f(z1) — f*,Lg’p = Lod? % log s, LOP = Lidr 7 log 1/s.

The proof is located in Appendices A.4 and A.5. Parameter-free tuning for minibatch-CompSGD
can be done only under Lipschitz noise (Theorem 3, Appendix A.4). We also provide in expectation
bounds for minibatch-CompSGD with weaker d dependence in (Theorem 7, Appendix A.8).

2.6 minibatch-CompSGD DIisCcUSSION

Related works. For a fair comparison with other methods, we use our in expectation bounds in
Theorem 7 under BV noise x = 2 and standard smoothness L; = 0, namely, minibatch-CompSGD
on D = S¢ achieves rates O(d®c~%) and O(d?s~*) for independent and Lipschitz noises. Under
the same assumptions and independent noise, STP with minibatching achieves a rate O(d?c %), the
same as ours. The methods with Decision-Dependent Distributions achieve rates O(d*e~°) (Liu et al.,
2023a) (for bounded optimized functions) and O(d35_6) (Hikima et al., 2025). When corrupting
noise is Lipschitz, ZO-SignSGD achieves O(d?c~*) and ZO-SGD - O(de~*). To sum up, our rates
have the same € dependence and are competitive in terms of d factors.

Optimality. Under Lipschitz noise, our high-probability rates (without d factors) match the optimal
rates for non-convex first-order optimization (Zhang et al., 2020b) when L; = 0. For the case Ly # 0,
they match the best-known first-order bounds, namely, for SGD with normalization (Liu & Zhou,
2024). To the best of our knowledge, no lower bounds exist for generalized smoothness.

Technical novelty. The proof techniques in our theoretical analysis for all methods are completely
different from the standard proofs for finite-difference methods. Usually zeroth-order methods take
already established convergence of a first-order method and apply it to the abstract smoothed function
for which gradient estimate (3) is the unbiased estimator. The chosen first-order method itself does
not mean much, while the properties of the smoothed function are adjusted and proved to fit the base
method. Our proof is based only on the direct structure of CompSGD method and the following
HP properties. It allows us to work under much weaker assumptions, since we do not adjust to the
base method. For example, the proof for ZO-SignSGD with majority voting requires the difference
[f(z+Te,&) — f(x — Te, §)]e to be symmetric for both £ and e (what is very strict), while we only
need symmetry of the noisy function estimates.

3 EXPERIMENTS

In this section, we present experimental results for the comparison-based and zeroth-order methods
from Section 2. To demonstrate their effectiveness, we focus mainly on language (§3.1) and diffusion
(§3.3) models fine-tuning. This choice is motivated by two factors: first, these tasks are known to
exhibit heavy-tailed noise (Zhang et al., 2020b) and generalized smoothness (Zhang et al., 2020a; Liu
et al., 2023b) characteristics, and second, they represent an important real-world application domain.

3.1 minibatch-CompSGD oN ROBERTA FINE-TUNING

First, we consider a zeroth-order language model fine-tuning. Following MeZO (Malladi et al.,
2023a), we evaluate our method on classification fine-tuning tasks, specifically SST-2, SST-5 (Socher
etal., 2013), SNLI (Bowman et al., 2015), MNLI (Williams et al., 2017) and RTE, TREC (Voorhees &
Tice, 2000), on the RoOBERTa-large model with £ = 16 (Liu et al., 2019b). We employ the established
few-shot prediction setting (Malladi et al., 2023b; Gao et al., 2020a). See details in Appendix B.1.

We compare minibatch-CompSGD Algorithm 3 with the pre-trained model without fine-tuning
(Zero-shot) and the original MeZO version. As demonstrated in Table 1, the sign-based method
outperforms its non-sign counterpart.

Table 1: Accuracy of RoBERTa-large (350M params) fine-tuned on different tasks. Higher is better.

Method | SST-2 SST-5 SNLI MNLI RTE TREC
minibatch-CompSGD | 91.9 46.7 69.6 63.8 65.7 77.2
MeZO | 91.7 45.5 68.5 58.7 64.0 76.9
Zero-shot | 79.0 35.5 50.2 48.8 51.4 32.0
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3.2 MajorityVote-CompSGD FOR ACCURACY MAXIMIZATION

Second, we simulate the zeroth-order environment with comparison oracles as follows. We take the
prediction accuracy of the linear model on the training dataset as the objective:

f(l’) = (]_ — Acc (ynainv Sign (m) - )) '

As training data, we consider classification tasks from LibSVM (Chang & Lin, 2011): mushrooms,
phishing, a9a. In Figure 1, we provide the dynamics of accuracy on the test dataset for our
methods and for several baselines that also consider the comparison oracle: OrderRCD (Lobanov
etal., 2024), STP (Bergou et al., 2020) and SMTP (Gorbunov et al., 2019). In all cases, MajotityVote-
CompSGD outperforms baselines and Comp-SGD is either on par with them or better.

A9A

Mushrooms Phishing
¥ - T - +

- - - > o—— ] 0.90 -
e O T I N
- — » e S o S

. :/“’M 085 T e == 076 pla
7 . e ; |

e
©
S

o
@
@

~,

\“(

o
S
3

{4 — 0.80
/ - N / + CompsGD >
/ — OrderRcD So72
( If — sTP <
I f + MajorityVote-CompSGD L
- g
— sMTP 0.70

Accuracy
e
®
g

urac
°
S
el

o
S
&

- Compscd | [~ + CompseD
o0 |/ = orieren 0.65 ’\ " 068 = Grawnco
e

] —— STP
0.65 +~ MajorityVote-CompSGD 0.60 o 0.66 + MajorityVote-CompSGD
sMTP

- e A

1000 0 200 400 600 800 1000

0 200 400 600 800 1000 0 200 400 600 800
Oracle calls

Oracle calls Oracle calls

Figure 1: Performance of zeroth-order methods with comparison oracle on LibSVM datasets.

3.3 MajorityVote-CompSGD ON DIFFUSION MODELS FINE-TUNING

In this section, we are interested in solving the following problem: suppose that we have an image
generative model; our goal is to add to its output new complex features/attributes through fine-tuning
using only a comparison oracle. This setting covers a scenario in which a person can customize a
model simply by selecting a preferred image. In our experiments, we simulate this human feedback
with the feedback from Gemini-2.0-flash (Team, 2025).

The basic model considered is pre-trained Stable Diffusion v2.0 (Rombach et al., 2022) (dreamlike-
art/dreamlike-photoreal-2.0). Since we use the model pre-trained for generating photorealistic faces,
we consider freckles and green eyes as the target features. The validation is done in the following
way: we generate 100 images with pre-trained model and 100 images with fine-tuned model and ask
LLM-as-a-judge (Zheng et al., 2023) to score each set. To properly score the generated images, we
use the two-metric scoring system: basic metrics and draw resolution. That is, image score is based
on the explicit presence of target attributes, and priority is given to images with neutral backgrounds
or without artificial colour distortion (see the corresponding prompts in Appendix C).

We fine-tune U-Net of Stable Diffusion using MajorityVote-CompSGD for T' = 80 iterations with
M), = 3 and cosine annealing learning rate schedule with v,,,x = 0.05. We choose between two
generated images using Gemini-2.0-flash (see the corresponding prompt in Appendix C).

As a result, we observe that pre-trained model achieves 32/100 notional units, while our fine-tuned
model scores 84/100, indicating that even with that simple procedure it is possible to add significant
features to the models output. We also provide corresponding images in Figure 2.

Figure 2: The images generated by the pre-trained model (left) and fine-tuned model (right).
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A THEORETICAL DETAILS AND PROOFS

A.l (Lo, L1)-SMOOTHNESS

Standard L-smoothness assumes that the gradient of a function is globally Lipschitz continuous.
However, this condition can be too restrictive in practice. Many functions arising in optimization,
especially in Machine Learning and statistics, either do not satisfy L-smoothness or satisfy it with a
very large constant L, leading to overly pessimistic theoretical guarantees. (Lg, L1 )-smoothness
(Assumption 2) is weaker than L-smoothness and allows finer control over the smoothness behavior
of functions with rapidly growing curvature in regions where the gradient is large.

Importantly, many functions satisfy (Lg, L1 )-smoothness with significantly smaller constants Lo and
L, compared to the L required for global Lipschitz smoothness. As a result, optimization algorithms
tailored for (Lo, L1)-smooth functions can achieve better convergence guarantees, especially in
settings involving large gradients or heavy-tailed noise. The examples of practically used (Lo, L1)-
smooth functions include:

Example 1 (Power of Norm). Let f(x) = ||x||?", where n is a positive integer. Then, f(x) is convex
and (2n,2n — 1)-smooth. Moreover, f(x) is not L-smooth for n > 2 and any L > 0.

Example 2 (Exponent of the Inner Product). Function f(x) = exp(a' x) for some a € R? is convex,
(0, ||la||)-smooth, but not L-smooth for a # 0 and any L > 0.

Example 3 (Logistic Function). Consider logistic function: f(z) = log (1 + exp(—a'z)), where
a € R%is some vector. It is known that this function is L-smooth and convex with L = ||a||?. However,
one can show that f is also (Lo, Ly)-smooth with Lo = 0 and Ly = ||a||. For ||a]| > 1, both Ly and
L1 are much smaller than L.

Example 4 (Quadratic Function with Linear Term.). Let f(z) = %xTAx +b"x, where A € R¥*4 g

symmetric positive semi-definite, and b € R%. Then f is convex and (Ly,0)-smooth with Ly = || A||.
This function is also L-smooth with the same L, but here (L1 = 0) shows the gradient is Lipschitz
regardless of gradient size.

The condition of (L, L1)-smoothness from Assumption 2 can be formulated in terms of inequalities
without sup operator, similar to the case of standard smoothness.

Lemma 2 ((Lg, L1 )-Smoothness properties. (Gorbunov et al., 2024)). For (Lg, L1)-smooth function
fand x,y € R?, it holds

IVf(x) = VFiw)ll2 < (Lo + LillV f (y)ll2) exp(Lallz = yll2) ||z — yll2,

F) = f(@) — (Vf(a)y —a) < 20t L1||2Vf(x)llz

exp(La|lz — yll2) |z — yl3- ©

A.2 TECHNICAL LEMMAS AND PROPOSITIONS

We use the following facts from the linear algebra and convex analysis (Boyd, 2004):

Proposition 1 (Norm Relation). For two norms £, and £q with 1 < p < q < 2, the following relation
holds true:

1_1
lzllg < llelly < d»~slzlly, Vo €R7 (10)

Proposition 2 (Jensen’s Inequality). For scalar random variable & with bounded k-th moment
K € (1, 2], the following inequality holds true:

E[l¢]] < (E[¢]*])" . (1)

Proposition 3 (Markov’s Inequality). For scalar random variable & with bounded first moment, the
following inequality holds true for any a > 0:

E[j¢])

P(¢ - Blgll > a) < =

12)

To prove the HP bounds with the logarithmic dependence, we use the following measure concentration
result (see, for example, (Li & Orabona, 2020, Lemma 1).

16
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Lemma 3 (Measure Concentration Lemma). Let {Dk}gz1 be a martingale difference sequence
(MDS), i.e., E[Dy|Dj.—1, .. Dl] = 0forall k € 1,T. Furthermore, for each k € 1,T, there exists

positive o, € R, s.t. E [exp ( ) \k} < e. Then the following probability bound holds true:

YA > 0,6 € ( (ZDk< /\Zak+ log1/5)>>1— (13)

To control error reduction during batching, we use the following batching lemma for HT variables.
Its modern proof for d = 1 was proposed in (Cherapanamjeri et al., 2022, Lemma 4.2) and then
generalized for the multidimensional case in (Kornilov et al., 2024; Hiibler et al., 2024).

Lemma 4 (HT Batching Lemma). Let s € (1,2], and X1, ..., Xp € R? be a martingale difference
sequence (MDS), i.e., E[X;|X;_1,...,X1] = 0foralli € 1, B. If all variables X; have bounded
k—th moment, i.e., E[|| X;||5] < 400, then the following bound holds true

BZX

< 5 ZE 1157 (14)

A.3 PROOF OF CompSGD CONVERGENCE LEMMA 1

Proof. Consider the k-th step of CompSGD. We use smoothness of function f (Lemma 2) to
estimate:

Lo+ L1 V£ (a")]2

PG FR) < (VA ) 4 VIER o1 — o o) a1
= s et &) — [~ et €5) - (VF(at),
v Lot BT o, o et
dst sigm(Ft et €4)  fat et b)) (VM)
- -V
= VG vt
k
+ LO+L1H2Vf(x Mo )2

Let us choose v, < 4i1 < 4L , then we have Lq7ygexp(L1yg) < % and |V f(zF)||]2 <

V£ (2*)],:

sign(f(z* + ek, &8) — f(ah —pet, &8)) - (Vf(2F), e*)
IV f(z®)],

fF@M) — @) < m

Lovi . ol VS (@M)lp
+ .
2 8
Consequently, after summing 7" steps, we obtain

+

ien(f(x b ".E8)) (V). et
Zw [Sg MLt é;(mk)n%e e )’e>*% V@Ol <
k=1 i
T
f) — fat) + 2SR 1o
k=1

i k k —Yk€ k " e
Next, we deal with terms ¢y, := 2E2/ (& 7k & )l‘é;zk)]k SN !,y = E[p|2*] and
P

Dy, := =i (. — Vi) [V f (2%)]|p- The terms ¢y, are bounded with |¢x| < 1 due to Cauchy—Schwarz

inequality :

sign(f(a* + e, €4) — (@ — ek, €8)) - (V). h)| _ [(VF(ah). et
ZICaIP = V@R,

|px| =

17

V£ (2

k As.4
< ek, £ 1.
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We note that Dy, is a martingale difference sequence (E[Dy|Dy_1, ..., D1] = 0) satisfying the

inequality , ( -
Dy ) ( Px — Vi )
exp| —s5 =275 | =exp| ———— ) <e
<4V£||Vf(x’“)||§ 4

Applying Measure Concentration Lemma 3 to the sequence Dy, with o2 = 42|V f(z*) 12, we derive
the bound for all A > 0 with probability at least 1 — 9 :

T I T
Sk (9 = BRIVI @)y — %) IVF )y < A+ 225707 + 5 log(1s)
k=1 k=1

We use norm relation (10) and (Lg, L1 )-smoothness (Lemma 2) to estimate maximum gradient norm
forallke2,T+1:

IV £ (), /d7 2

< VFER2 S V() = VEE) + V)2
< |VFEY) = VEETD 2+ VA2
<
<

(Lo + L1 ||V £ (2" ) [l2) exp(La[lz* — 271 [2)[l2* — 2" Hl2 + [V (2" 1)l
(Lo + L[|V (2" )|l2) exp(Livi) e + |V £ (2" 1)z
2
At this point, we take v < ;f; to obtain
48L1dP 2log%
11 Q|| V f(zF 1)l
IV f @) p/dr 7 < 2Lm+pf + (V)
48d» log5
-— az [V ()2
< 2L, Vi)l
Z_: ; 48d7_% log 5 * )
IIVf(xT)IIp
< 2L L Vf ;
OZ Z48d élogé +IVFEh,

< 0|V S (a7 ||

WV, < 2Lodi™ %Zw il o

T=1

L dr i [V F ) -

Since stepsizes -y are non-increasing, we have

Z V(@ )Ilp<§%aillvf(f)llp

481og —  48logy

k Ly S,
Wl VI @)l < 2Lod? ™% -y Y+ Y T
T=1 T=1 065

T_1 o
6dP "2 (1| Vf(zY)llp+2k11

2V (@) -

Hence, the choice \ =

p%HW(N}Hp . yields with probability at

4&”7 2 log 1 5

least 1 — §:

T
> (v - 2 -2 - 2) Vi |\p<A+fZ R+
k=1

L

1
2

IV f(z")|l2 + CrLo)log(Ys), (17)

k=1
where O := max ;- Y. 7, and 7; := max ;. Next, we estimate the term ||V f (2*)|| ,:
kel, T =1 kel,T

Eeor [sign(f(z* + ype®, &) — f(z* — e, €8)) - (Vf(a"),eF)] = B [(V (%), e"))|
Eor [2 - Pe [sign(f(z" + ek, &8) — f(a* — ek, &) # sign((Vf(2), e))] - (V f(z"),e")]] .

We consider two cases to deal with probability over &: [(V f(z%),e*)| > 2y, Lo + ||V f(2%) | ,,/8
and [(V f(2*), €*)| < 29 Lo + 0|V f (%) /8.

18
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Case |(V f(2¥),e")| < 29k Lo + ||V f (") /8
Eeor  [sign(f(z" + ek, &h) — f(a® — ek, €8)) - (Vf(aF),e")] > —Ea[[(V ("), e")]]

> BV, ) - Lo — ap Ll A

Ta
S|V A"y — Lo
Case [(V f(2"),e")| > 2y Lo + ap ||V f (2*)]|,/8:
We change sign operators to equivalent ones denoting 6% := f(2* + yze*, ¢ ﬁ) — f(a* + ~,e*) and
OF = f(a® — ¥, 8) — f(a® — yieh):
sign(f(a* + e, &5) — f(@* — e, €8)) # sign((V/(2*),€"))
)

sign(f (2" +ye®) = fa* —e’) + 05 —05) £ sign(2y - (Vf(2"), e")).

Further, we can bound probability by considering larger number of cases:

Pe  [sign(f(z" + e’ &5) — f(a" —ne, €8)) # sign((Vf ("), e"))] (18)
= P [sign(f(a" +we®) — f(a* —yue?) + 05 — 6% ) £ sign(2y - (Vf ("), e"))]

< Pe [|f(2* 4 e®) — f(a* —we®) + 05 — 08 — 2y, - (Vf(a¥),€")] > 29 - [(Vf ("), €")]]

< Pe [|f (2" + yret) — faF —pe®) — 29 - <Vf( "), e+ |9k — 08| > 29, - [(V(2"),€")]] .

We apply Smoothness Lemma 2 and choose v, <

Lo+ L1||Vf xk 9
”2 C exp(Lui e o e

2Lo7; + ap ||V f (@) | pe /8-

IN

2.

|F (2" + ye®) — f(a* — ee®) — 2y, - (Vf(ah), ek>|

IN

We continue to estimate the probability:
Pe  [If(a" +we®) = fa* —e®) =2y (Vf ("), e + (05 — 05| > 29 - [(V (), )]

< P [2Lovj + ey ||V (") |lp/4+ 165 — 65] > 29 - [(Vf(*), €°)]] . (19)
Since we consider the case |[(V f(z*),e*)| > 2y, Lo + a, ||V f(2*)||,/8, we bound
19 < Pl KA R + 185 — 65] > 2 |(V ), )]
< Pefl6h - 05 = (V") eh)]]
Markov ineq.(12): ]EE“QL‘?F — 911”
< ) (20)
Ve [(Vf(aF), eF)|

In case of independent noise, E¢[|6% — 6% |] is simply bounded by the constant o, and 5, = 0. In
case of Lipschitz noise, E¢[|0% — 6% ] < o4 ||2yx€”||2 = 2047« and 6 = 2047 Finally, we obtain
the bound
Ec o [sign(f(z" + yue®, €F) — f(a® —ye®, €8)) - (Vf(ah),e")] > Eet|(Vf(2"),e")] - .
As. 4 40,
> oV, - —-
Yk
Combining two cases together, we get that ¢ ||V f (z*)|], > 7';“7 IV f(@®)||, — 4y Lo — 4"’“ , and
the bound follows from (17)

T
4Lovk
fZ%cIIVf My < 7+7Z% o +4Za
o k=1 Ap k=1 P
6d7_7
+ IV £z, + CrLo) log(1/s).

Thus,we obtain the desired bound:

%Z%HVf My < A+8L027k+420k+6d

k=1 k=1

1

1
2

IVl + CrLo) log(5).

O
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A.4 PROOF OF minibatch-CompSGD COMPLEXITY THEOREM 2, INDEPENDENT NOISE

Proof. Due to Batching Lemma 4, we can estimate the k—th moment of the batched estimate by:
20

We start with CompSGD Convergence Lemma 1. Plugging in constant stepsizes and batchsizes

Y& = v, Cr = T2, 1 = ~ and dividing both sides by D“’T'Y yields the bound:
1 1
SA 11 Loy 320 48d7 "2 ||V f(z1)]|2 1
= Vf(z <7+64d log(1/s — + log(=).
le Mo < 70— DR T 5)
2D

The T dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence and prove convergence bounds
for parameter-free tuning.

2
4L° : Choosing the largest possible v = 75, we bound the term:

Optimal tuning, ¢ > T 1
484d» 2L

11 Ldy 64 Lo _ €
64dr 200 < — 2 < -,
az ~ 48 L —2
The bound (21) becomes:
1
51213 dr 7z [A 4o €
: IIVf I e
Choosing B such that T <z=DB= { (2¢L) } we only need to bound
1 1_1
1024L3d7 2 A _e T—0 AL{d» 2 .
o T~ 2 e

The final sample complexity is

NoT.poo AU (oridi )
age

Optimal tuning, ¢ < %: Choosing B such that A;gll < 1 = B =max {1, (2¢L) = } we
transform the bound (21) into

2A L L)
Z IV < 72— +64dr T 0 < ¢
’7 [0

Using v = SszEZP; -, we obtain
2A oy ALSdr >
+6adrE 0L — 16 [ 2RO <
Tayy ap aT

1 1

. . . Sgp 2 . o

Hence, required number of iterations 7' = O <ALa°3fl;> and the final comparison complexity is
P

K

P Sqr=3\ " "
N_T.po AL H(a%d)

Q%EQ af;aQ
We also notice that v = A< 22— for this number of iterations and £ < 4L°. O

11 =
32T L3dr 2 48d» 2 L3

20
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A.5 PROOF OF minibatch-CompSGD COMPLEXITY THEOREM 2, LIPSCHITZ NOISE

The proof of Theorem 2 in case of Lipschitz noise is divided into two parts: for finite horizon with
optimal tuning below and for infinite horizon with parameter-free tuning (Theorem 3).

Proof. Due to Batching Lemma 4, we can estimate the ~—th moment of the batched estimate by:
20

k=1
B~
We start with CompSGD Convergence Lemma 1. Plugging in constant stepsizes and batchsizes
=7 Cr=T7,7=

o <

8A 11 Loy 320 A8dr 2|V f(aV)]2, 1

— < e 4 log(1 log(=).
ZHW Mo +6d o og(1/s) + %B%w Ta? 0g(5)
(22)

The T' dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence.

2
Optimal tuning, ¢ > ‘%—10: Choosing the largest possible v = fijs we bound the term:
48d» 2 LS
paab-3 107 L B Lo £
al 48 Ly — 2
The bound (22) becomes:
512L5d7 2 A 40 e
fZIIVf W< =2 — 2 2

3
ap T (XpB K

Choosing B such that <¢e/4 = B = max {1 (16—0) ~ } we only need to bound

apB = ape

512L‘15d1 %A £ AL{dr 2

S T Ao ) e iy
o T~ 4 aze

The final sample complexity is

1

) %—5 =1
N:T-BzO(Angl[H—(U) D
e ape

<e/d=B= max{l, ((lfi_)ﬂ},

Optimal tuning, ¢ < “£2: Choosing B such that

OzpB &
we transform the bound (22) into

2A 11 gy
TZIIVf < g + 6405570 <o

Using v = %, we obtain
32TLdP

2A 11 Ly
+64dr "2 0 =16y — 2 —— <.
Tapﬂy ’ oz T = c

Hence, required number of iterations 7' = O (ALa;f p2 ) and the final comparison complexity is

. «
We also notice that v = A< 21— for this number of iterations and £ < 4L° O
32T LidP 48d» 2 L3
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Theorem 3 (HP complexity for minibatch-CompSGD, infinite horizon, Lipschitz noise). Con-

sider lower-bounded (L, L1 )-smooth function f (As. 1, 2) and HT Lipschitz function estimates

K € (1,2] (As. 3). Then Alg. 3 requires the sample complexity N to achieve min ||V f(z*)||, <e
kel,T

with probability at least 1 — 0:

2
Parameter-free tuning: Until plateau Bj, = Bok?, v, = 7o < 48627‘@ and after By, = Bok, v, =
1

Yo/ VE :
ALy - AN 1 /o \TTD
>0 o N-O BO( ) +2(> ,
Ly YoOpe B2 \ ape

AL [ Bo(LPy0+ Afyo)t 1 =
et N:O( o(Zo™0 + 4/%) +(0> )
L1 Oép{-: BO Qape

where A = f(z') — f*, LOF = Lodr ™3 log(1/s), L3P = Lydr~3 log(1/5).

Proof. First, we derive upper bound for new min metric with non-constant parameters from the
bound (6) from Convergence Lemma 1:

S Wl V£,

T 5 T o—1
SA 2% 32> ow/B"
k=1 k=1

min [V, < g = —— + 6L —+ 7
el,
Z% apZ’Yk OépZ’Yk‘ apZ’Vk
k=1 k=1 k=1 k=1
1 1
48dr 2 lo
b BT G+ 20 L0) 2
P Ap >k

Parameter-free tuning, ¢ > L” : If we consider only first 7" steps until plateau LL we use constant
2

stepsizes v = Yo < m and increasing batchsizes By, = Byk? to get
1

T
Yo = Ty, > % =T ="Cr =T,
k=1
T T 2-r
Z Yo oo Z Yo < 2T % InT
=1 = 2(h-1) — =1 )
k=1 B, " =1 (VBok)™ = By~
8A  64LYP 320
min [V ()], < +=0 2, g T <e
kel,T apyoT a, a,(Tv/Bo)

64LO Yo

The term < 5 is bounded by condition, and the number of iterations T =

O ((70% ) + \/BT) (T) o 1)> is enough to bound the other terms. The total sample com-
plexity is

- e 2 3 ~ A 3 1 o %
By = Bok* < ByT° =0 | B + o .
kzzl ’ 1; o 0<’Yoap€> VBo (oz,,e)
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Case ¢ < %, parameter-free tuning. In this case, the first steps can be neglected, as we use
decreasing stepsizes vy, = % and increasing batchsizes By, = Byk to get

T T
Yow = wVT, D> % =%WT,m =%,Cr =1,
k=1 k=1
T T 1 .
S - By < BT
1 Bkm BON P k2x BON
. 8A InT 320InT
min ||V f(z")]|, — 4 64L)P, +———— <=
ke, T apyyoVT agﬁ ozpBoTThTTl

~ 5,1 2 5
Hence, the number of iterations T' = O ((LOPVOJFA/"’O) + Bio ( z ) 1) is enough to bound the

1.2
age ape

sum. The total sample complexity is

T T 5 2K

- Bo(L3Py0+ AJyo)* 1 =
E:BkZE:BokSBOT2:O< o(Lo™70 + £/%0) +("> ) (23)
k=1 k=1

84
Qe By

O

A.6 PROOF OF MajorityVote-CompSGD COMPLEXITY THEOREM 1, INDEPENDENT NOISE

We start the proof with the general lemma on convergence of MajorityVote-CompSGD. The proof
of Theorem 1 in case of independent noise is located after the lemma and divided into two parts: for
finite horizon with optimal tuning and for infinite horizon with parameter-free tuning (Theorem 4).
Lemma 5 (MajorityVote-CompSGD Convergence Lemma). Consider lower-bounded (L, L1 )-
smooth function f (As. 1, 2), random directions (As. 4) and function estimates with HT, unimodal
and symmetric noise k > 0 (As. 3). Then Alg. 2 after T iterations with non-increasing stepsizes
e < ai/(48L1d%’% log 1) and batchsize My > 160/k? achieves with probability at least 1 — §
starting with A := f(x') — f*:

1

T T o .
Op k 2 Ok dr 2 1 1
P |V < 8A+64L 32 48 v L) Tog(
g ,@ZJ"” Fa)lp < 8A+ ok§:1:w k; T8 — IV @) ll+CrLo)log ()

(24)

k—1
where &), = o for independent noise and Gy, = o for Lipschitz noise, Cp := max vy - Y. V-
kel, T =1

Proof. The beginning of the proof copies the proof of CompSGD Convergence Lemma 1 from
Appendix A.3 until the line (38) where we now need to estimate probability

M

> sign(f(z + et &) — (o — et €8 )) | # sien((Vf(*), )| = ().

i=1

P. [Sign

Each comparison sign( f (¥ +vyze, & | )— f (2 —ype®, & ) # sign((V f(z¥), ")) is a Bernoulli
trial with failure probability (40):

Pe [sign(f (" + et &) — fla¥ -y, &) # sign((VF(ab), )] < Pe [|0F, — 05| > 7 - [(VF(ab), eM)]].
k

T, —

The rhs probability can be estimated using Gauss inequality for unimodal symmetric noise 95’ L =0
by the generalized Gauss’s Inequality(Dharmadhikari & Joag-Dev, 1986, Theorem 1).

Lemma 6 (Gauss’s Inequality). Let a random variable £ be unimodal symmetric with mode v and
bounded r-th moment, k > 0. Then the following bounds hold:

K K/]Eﬁ—u'{ " e .
B¢ —v| > 7] < (Fr) 25 e Bl
1‘[%} » T < o EBlE—v[T]
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We denote S = %w,q =P [|0F, — 05 _| >y - |(Vf(2F),e")|] and estimate

K

1 L)K 1 Sr > KT
a=Pe[I6F, — 0 |2y (Vi) < 1V T
2 24w = (rtD)<— 1"
We denote probability of failure of a single estimate by
1 K 1 K K"
B (*)ss ’ i i e =),
2 2w’ = (stD)=-1

Moreover, probability ¢ < G(5) < %, and the deviation of ¢ from % can be bounded by
1 1
= —g< - —gq —=: £ .
cim 5 —q < 5 d(8) = &(S)

The probability of getting the wrong sign can be restated as the probability of failing half out of M,
Bernoulli trials with fail probability g;:

1 1
* . 25
< e <1 29)
452(5)
* First, we consider the case S > —=&_—:
(k+1) =
2
1 1/ & \"1 1 K2
=2
S=lz-—-=|——) =) >2-+—=
£ (2 2 <m+1> SH) “4(r+1)2
1 (k+1)2 5
—_ -] < Y 1< —.
482(S) - K2 ~ K2
If we set My, > 1:20, then the fail probability is upper bounded by
1 1
< < —. 26
t <13 =32 (26)
452(5) -1
* For the case S < # we derive the bound:
k+1) "~
1 (k+1)% 4
— 1 = — —-1< . 27
12(9) 3 =g @7)
And we use the inequality 1+le < 5,z > 0on (25):
=y 1 11
4z
25) < < — 28
== AL SV =
Combining (26) and (28) together, we obtain the bound for each coordinate:
Pe  [sign(f(z" + e, £§f+) — fa® — et €8 ) # sign((Vf ("), e")]
1 1 1 1 1 20
i (29)

.

2 VM S, 82 A (VIR )]

The rest of the proof copies the proof of CompSGD Convergence Lemma 1 from Appendix A.3
\/7 and in the end we obtain the bound:

1

T 1
dr ™2 1
P 1
gkz:j WV S (@ ||p<8A+64Loka+3QZF o (V@) l+CrLo) og(5).

k=1

O
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Proof of MajorityVote-CompSGD Complexity Theorem 1, independent noise. Plugging in con-
stant stepsizes and batchsizes y, = v, Cr = Tv? fyl = ~ in the convergence bound (24) from

Convergence Lemma 5 and dividing both sides by % 2, we obtain the bound for independent noise:

T 1_1
8A Loy 320 48d» "2 ||V f(z1)|2 1
IV IEM), < log(Y/s) + + log ().
T kz:: P = T O[p OZp’YVM TCV% 0
(30)
Optimal tuning, ¢ > 4LL—1°: Choosing the largest possible v = %LS, we bound the term:
4847 213
11 1 LY V. 64 Lo 3e
Adr—3 200 =.
6 042 - 48 L1 2
The bound (30) becomes:

512037~ [A 4o ] 3¢
TZHVf “p—ag[TJr\/M}JFZ'

Choosing M such that < 7 = M = max { 160 (%)2}, we only need to bound

K2

AW

1024L3d» "2 A
T

Optimal tuning, ¢ < %: Choosing M such that X
transform the bound (30) into

2A , LY
—an Mo < —+64dr* o <e.
«
P
. / apA
USlng Y= W, we obtain
2A L LS ALYdr 2
+64dr 3 200 — 16y | 20T~ <
Tap'y ap aT

1

1
. . . S4p 2 . o
Hence, required number of iterations 7' = O (%) and the final comparison complexity is
p

11\ 2
AL‘Sd’_’ 1 oLddvr 2
N=T-M= a3e? K2 02352
p p
: _ apA 0‘12) 4L0
We also notice that v = r < £ for this number of iterations and ¢ < [

1_1 = 1_1
32TLdP 2 48dp 2L
Theorem 4 (HP complexity for MajorityVote-CompSGD, infinite horizon, independent noise).
Consider lower-bounded (Lg, L1 )-smooth function f (As. 1, 2) and HT function estimates corrupted
by independent, unimodal and symmetric HT noise with k. > 0 (As. 3). Then Alg. 2 requires the
sample complexity N to achieve min ||V f(x*)||, < e with probability at least 1 — § for:
ke1,T

s
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2
Parameter-free tuning: M, = My(k/k)?, i = 70 < 48627‘;m until plateau vy, = % after:
1

4L - Mo(L2P(A My))3
cs 4o N:O< (LS (34-203/F0))>’
1 Olp/i€
6
4L [ My [ (A M, Lo
ceto oy Mo (Ata/vVMo)/vo+ LT
L, K2 aze

where A = f(z') — f*, L3P = Lod» % log(1/s), L3 = Lydv 7 log(1/s).
Proof. First, we derive upper bound for new min metric with non-constant parameters from (24):

S Wl V£, S 82 é Nion

. = SA —
min [[Vf(@*)], < = = 0L
' ZWC QPZ’YIC apZ’Yk OépZ’Yk
k=1 k=1 k=1 k=1
1_1 log(1/s
T+ 6dH(ul|V () |y + 200 Lo) 2B
Ol?; >k
k=1

Parameter-free tuning, ¢ > %: If we consider only first T" steps until plateau %, we use constant

1
2

stepsizes v; = 70 < —%— and increasing batchsizes M = My (k/k)? to get
1

48L
T T
Z% = TVO,Z%% = T3, =7, Cr = T,
k=1 k=1

T T
1 K K
E = E < InT,
v/ M;, P v Mok v My

k=1
) 8A  64LYP 32
min V(") < 0 10 2 kInT <e.
kel,T apYol’ Qg apyovV MoT
S,p ~ s
The term 64L{;’727° < i is bounded by condition, and the number of iterations 7" = O (%)

is enough to bound the other terms. The total sample complexity is
T T 3
~ [ M vVMy+ A
S My =3 My(k/w)? < MyT? /% = O (20 (‘Mr) ) .
— — K pY0E
k=1 k=1
4Lg .

L1 *
ecreasing stepsizes v, = —Z and increasing batchsizes M = My(k/k)“ to get
d g step v :}"E d g batch My, = My(k/k)?to g

T
ka = 70ﬁ727£:7§1nT7’71:V07CT:7§7
k=1 k=1

Parameter-free tuning, ¢ < In this case, the first steps can be neglected, since we use

T T
1 K I
= < InT,
D Py vy
8A InT L 32koInT -
- = Yo S
Oé;,ﬂ/o\/T aIQ)\/T apyov My

~ v 5.p 2
Hence, the number of iterations 7' = O (<(A+U/ M(ggé 20+ Lg %) ) is enough to bound the sum.
P

+64L07

The total sample complexity is

T T
S M= My(k/k)® < MyT?/k* = O
k=1 k=1

%<(A+0/VM0)/70+LS”’%>6 R

2 2
K Oépé'
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A.7 PROOF OF MajorityVote-CompSGD COMPLEXITY THEOREM 1, LIPSCHITZ NOISE

The proof of Theorem 1 in case of Lipschitz noise is divided into two parts: for finite horizon with
optimal tuning (Theorem 5) and for infinite horizon with parameter-free tuning (Theorem 6).

Theorem 5 (HP complexity for MajorityVote-CompSGD, finite horizon, Lipschitz noise). Con-
sider the lower-bounded (L, L1)-smooth function f (As. 1, 2), random directions with o, (As. 4)
and function estimates with HT Lipschitz, unimodal and symmetric noise k. > 0 (As. 3). Then Alg. 2
requires comparison number N to achieve - Zle |V f(zx)|lp < € with probability at least 1 — §

for:

i ; AL}P op 160 (1280 )° 4Lg
Optimal tuning: T = O( ags ),’yk = —2_— M, = max ?’( ) fore > 22 and

481" ape
ALYP _ a, A 160 (1280 > 4Lg .
T = O( )7’}%2 W,Mk—max{nz,<%’g) foragﬁ.
ALY ALYPN[1 o2
N=0 L =0 [2+2 2} ) (32)
ase ape K age

where A = f(a') = f*, L§” = Lod?~ % log(}), L{” = Lydr ™~ * log(}).

Proof. Plugging in constant stepsizes and batchsizes v, = v, Cr = T2, y1 = + in the convergence

bound (24) from Convergence Lemma 5 and dividing both sides by ”"T'y , we obtain the bound for
L1psch1tz noise:

8A 11 Loy 320 4847 3|V (@2, 1

— <7 64dv log(1 log(=).
an Mo < 70—+ o7 s+~ = og(5)
(33)

The T dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence.

2
Optimal tuning, ¢ > 3L2: Choosing the largest possible ¥ = — j’l -, we bound the term:
48dr 2 L9
1_1 L v < 64 Lo 3e
64dr 2 =01
a}% - 48 L1 =2
The bound (33) becomes:
512L8d 2 A 320 ¢
*ZHVf HP—TT r+§
P apVM

2
Choosing B such that 322 < ¢/4 = M = max {160/&27 (138"> }, we only need to bound

\/7 p€
§qr—1 5 i1
SLRLY P A g AHIT 2
o T — 4 af;s

The final sample complexity is

S5~ 3 2
N:T.M:O<AL1§ [12+(0) D
Oép€ K Cng

Optimal tuning, ¢ < %: Choosing M such that Qj’f/"M < ¢4 = M =
2
max{l6()//<; (128") } we transform the bound (33) into
T
1 2A 1 1L5’y
=y |V 64dr 2 2L <.
SIITIE T
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. WA .
Using vy = , [ —225—, we obtain
32T L3dr ™ 2

1_1
28 g8 g, [ALBIT TR
Ty oz azl  —
5 E-%
Hence, required number of iterations 7' = O (Mgﬁ;z) and the final comparison complexity is
P
ALYd» 2 [ 1 o \?
N:T'M:()(asaz 2t |
D D
2
We also notice that v = opl < af for this number of iterations and ¢ < %- O

1_1 = 1
32TLEdP 2~ 48d»

Theorem 6 (HP complexity for MajorityVote-CompSGD, infinite horizon, Lipschitz noise).
Consider lower-bounded (L, L1)-smooth function f (As. 1, 2) and HT, Lipschitz, unimodal,
symmetric function estimates & > 0 (As. 3). Then Alg. 2 requires the sample complexity N to achieve
min ||V f(z*)|, < e with probability at least 1 — §:

kel T

2
Parameter-free tuning: Until plateau My = Mok?/Kk% v = 70 < 48(27@, and after M, =
1

Mok/k?, v = v0/Vk :

52% = N:O(MO (A/VO+0/\/HO>3>7

L, K2 Qpe

4L < Mo(LSP~o + A /o) 1 4
et N oMol +A/%)" ).

Ly /@2041%54 K2My \ ape

where A = f(z') — f*, LOF = Lod» ™2 log(1/s), L3? = Lydv~? log(1/5).

Proof. First, we derive upper bound for new min metric with non-constant parameters from (24):

T T T
eIV ()]l SA Yo 323 o/ VM
min [V ), < = - ——— L — +
€T,
> Tk ap D Mk ap D Mk ap D Mk
k=1 k=1 k=1 k=1
11 log(1/s
+ 6dr 2(’}/1HVf((E1)H1 +2CTLO)#
%27 >k
k=1

Parameter-free tuning, ¢ > %: If we consider only first 7" steps until plateau %, we use constant

2

stepsizes v = Yo < 48(27%,17 and increasing batchsizes My = Mok? to get
1
T T
Yow = Tr, 7 =T%m = Cr =T,
k=1 k=1

T

Z Yo _ Z KY0 </<;701nT
/M Mok~ VM

8A +64Lg’pfyo 320

. . < n
kel,T apyoT 0412) ap(TV MO)

g
=
<
pug
8
=
Sn
AN

InT <e.
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The term
1) (A/WoJrU/vMo

ape

S,p
64L°2 < % is bounded by condition, and the number of iterations T =

) is enough to bound the other terms. The total sample complexity is
T T
M 3 _ A A/ Yo + 0 /v M,
2 M=) TGk < 210 =0(
P K pE

Case ¢ < %, parameter-free tuning. In this case, the first steps can be neglected, as we use
decreasing stepsizes v = % and increasing batchsizes My, = Moyk/k? to get

T T
Yo = VT i =wWT, v =%,Cr =1

k=1 k=1

T
Tk K0 1 K0
= - < InT,
g /M, v My ; k= /My
SA InT 320 InT

———— +64Ly" 0 <e
O‘p’YO\/T ’ 042\/> apV M

min ||V f(z")|,
kel, T

~ s, 2
Hence, the number of iterations 7' = O ((L"p%w + ]%40 ( g ) ) is enough to bound the

42
QPE Qape

sum. The total sample complexity is

T T o,p 4 4
Sag =30 Moy < Moga o(MO(Lo 0t A, ()) o4

2084 2
K2 R2Qpe KMy \ ape

A.8 1IN EXPECTATION CONVERGENCE OF minibatch-CompSGD

Theorem 7 (In expectation complexity for minibatch-CompSGD). Consider lower-bounded
(Lo, Ly)-smooth function f (As. 1, 2), random directions (As. 4) and HT function estimates k € (1, 2]

(As. 3). Then Alg. 3 requires N function calls to achieve Z£=1 E[||Vf(zi)llp) < € with
probability at least 1 — § starting with A = f(z1) — f*:

Optimal tuning, independent noise: T = O (AL1> Ak = 2. B = max {1 (4gL) =1 } for

aPE 4L1

€= 4LO andT = O (a 52) Ve = 4TLD s B = max{l, (“%5) ﬁ_l}forf < %

N:O<g (1+ 1)
Osz 9

Optimal tuning, Lipschitz noise: T = O (ALI) Yk = 12, By = max {1, (320)H} for

041276 4L, ape
4Lg _ ALg _ A _ 320 | 1 4Lg
>0 andT—O(a§€2),*yk— 32TL0’Bk_maX{1’(ap5) fore < F¢
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Proof. Consider the k-th step of CompSGD. We use smoothness of function f (Lemma 2) to
estimate:

Lo + L[|V f ()] 2

FEHY = F@R) € (VHE =) 4 VI e = ¥+ — a3
=~ sign(f(a® + met &) — fa® — et €h)) - (Vf(b),e")
k
s Dot BN oo et et
As.4 sign(f(z* + 'ykek@ﬁ) — f(a® — ypek, k)) - (V f(2F), eb) k
< - 2\
- L 195Gl
k
n L0+L1||2Vf(93 )ll2 exp(yeL1 )72,
Let us choose v, < g7= < g7, then we have Liygexp(Liyy) < ¢ and [|[Vf(z¥)[ls <
IV f(@*)]lp:
: k K oek) — flab — ek €5)) . (V F(2F). eF
FEY - ) < _%slgn(f(x +re”, ) ”é;ﬂixk)”%e LE8)) - (V f(2F), eF) A FE
p
+ LO’YI% + O‘P’Ykva(‘rEkmp. (35)

2 8
Consequently, after summing 7" steps, we obtain

T, [sign(f(a* + ek, €8) — f(ak — ek, €0)) - (VF(ab), eF)
2w [ IV @),

[
=S, <
k=1

Kﬁ
CX
|
&ﬁ
",
N—
+
|5
M=
=

(36)

~ k=1

Taking math expectation from both sides, we obtain

T
Z%Eg,ek [sign(f(z" +we®, &h) — f(z* — we®, 8)) - (VF(z¥),e")] - ap%Es,ek[HVf(ﬂik)Hp] <

k=1 8
1 * LO a 2
fh) = fa) + 5D i (37)
Iy k=1
Next, we estimate the term
Y = Eeor [sign(f(a* + ek, ) = f(@* — yeb,€h)) - (VF(aF),eb)] = Bt [(V£(2¥), e")]

Eor [2- Pe [sign(f (2" +e®, €F) — f(a* — et 8)) # sign((Vf(z*),e)] - [(VF(a*), )] -
We consider two cases to deal with probability over &: |(V f(2*),e*)| > 2y Lo + ||V f(2%)|,,/8
and [(V f(2*), ") < 29 Lo + ap |V f(2*) /8.
Case [(Vf(2"),e")| < 2vpLo + ||V f(2F)[],,/8:
Eew  [sEn(f(e* 1 e, &) - F(a* — yeh,€5)) - (V). o8] > “Eae[[(V (25, e8]

V£ ()]

As. 4 Ty
> B [(VF(h),eh)] — dmlo — ap L S T £y, — L,

Case |(Vf(2"),€")| > 29 Lo + ap ||V f(2)]|,/8:
We change sign operators to equivalent ones denoting 6% := f(z* + vze¥, &%) — f(2* + y,e") and
OF = fah — et &8) — f(a* — net):
sign(f (¥ + ¥, &) — f(a¥ — et ¢F)) £ sign((VF(ab), "))
T

sign(f (2" +ye®) = fa* —e’) + 05 —05) £ sign(2y - (Vf(2"),e")).

30



Under review as a conference paper at ICLR 2026

Further, we can bound probability by considering larger number of cases:

Pe  [sign(f(a" +we®, &) — f(a* —pe®, &) # sign((Vf( "),e")] (38)
= P [sign(f(a" + yne") — f(aF —ye®) + 0% —0F) # SlgH(Q’Yk (Vf(z ) "]

< P [|f (2" +met) = flab —pet) + 05 — 08 — 29 - (Vf(ab), ") > 295 - (V[ ("), V)]

< Pe [|f(2* 4 e®) — f(a* — ywe®) — 291 - (VF(2"), e")] + I9i — 0% > 2% (VF("),eM)]] .

0417

We apply Smoothness Lemma 2 and choose v;, < to bound the term:

Lo+ Li|Vf(2*
£+ et) — Fat — et) - 2 (V) e <2 IV )20t

2Lo7; + ap ||V f (@) | pe /8-

IN

IN

We continue to estimate the probability:

Pe [ f(2" +vke®) — f(2F —yne®) — 29 - (VF(2F), ") + 0% — 0% | > 275, - [(Vf(2F), e")]]
< Pe [2Lo7; + Mol VF(@F) /4 + 105 — 65| > 2y, - [(Vf(2*),e)]] - (39)

k), e >\>2fykLo+ap||Vf( )||p/8, we bound

Since we consider the case |(V f(z
(e - 1€ )| + 165 — 68| > 29, - [(Vf(2"), )]

(19) < PP
< Pe [|0% —e’f| >vk (VF(*),eM)]
Markov ineq.(12): ]Eg“&_]f_ — 95”

< : (40)

Y- [V f(zF), e)|
In case of independent noise, E¢[|0% — 6% || is simply bounded by the constant o, and &), = 0. In
case of Lipschitz noise, E¢[|0% — 6% || < o4 ||2yx€”||2 = 204k and 6, = 2047 Finally, we obtain
the bound

Ee o [sign(f(z” + e’ &) — f(a% —pef &) - (Vf(@¥),e")] > Ea|(VF(aF),e")| - 4%

As. 4 467,
2 Oépva(xk)”p_ -
Yk

Combining two cases together, we get ¢, > 7% IV (@), — 4y Lo — % and the bound

1 <& . Lo < 4 4L0'7k
§ MBIV < 2 TkZ PN 42
=1

Due to Batching Lemma 4, we can estimate the x—th moment of the batched estimate by:

20
Ok S 1
B, -
Plugging in constant stepsizes and batchsizes v, = v, Cr = T2, = 7 and dividing both sides by
%TV yields the bound:

k—1

2A L 80
—ZIIVf M < 0 +8 LR @1
py ap  apyyB TR

Next, we pick optimal parameters for optimal convergence under independent and Lipschitz noise.

4L0 we bound the term:

Independent, optimal tuning, ¢ > : Choosing the largest possible v =

4L’

5
gfoy (8Lo 2
ay ~A4L; = 1

31



Under review as a conference paper at ICLR 2026

The bound (21) becomes:

8L, [A 4o 2e
*Z”Vf Np < s |:T+Bn~1:|+1'

Choosing B such that A;; < 1 = B = max {1, (29L) =1 } we only need to bound

16L1A<E:>T_O<AL1>

2 =9 2
o T 2 age

+ ? .
aze
4Lqg

Independent, optimal tuning, ¢ < 7;*+ Choosing B such that

The final sample complexity is

N_T-B—O<A2Ll

@p

ABw

max {1, (2sL) "1 }, we transform the bound into

2A L
f§ jHVf My < +87 % < ¢
p7

Qp

Using v = fTL , we obtain

2A L AL
+80 =16, /=2 <.
Tayy oy, 1

Hence, required number of iterations 7' = O ( ALso
p

NTBO(AQL;J [1+<02L°2) D
Oép5 Oép€

We also notice that v =  / 32%;0 < 401“:” for this number of iterations and ¢ < 4L10

) and the final comparison complexity is

Lipschitz, optimal tuning, £ > %: Choosing the largest possible v = 4 o> we bound the term:

ghor  8Lo 22
ap_4L1 1°

The bound becomes:

T
8L1 A 8c 2e
Vf < —t — + .
,;” Yo < PG+ e+

K

8¢ <e/4= B =max {1, (32">H}, we only need to bound

Choosing B such that

a = ape
8L1 A 3 ALl
<-=T= .
a2 T=17 © ( ale )

The final sample complexity is

ALy
aze

NT‘BO<

+(2)7])
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Lipschitz, optimal tuning, ¢ < %: Choosing B such that o < ¢/4 = B =

apB w

K

r—1
max {1, (%)
P

}, we transform the bound (22) into
2A Lo’)/
TZHVf Mp < 7 +8-— <
Tayy

Qp
. o A .
Using v = 4/ 167, Ve obtain

2A L AL
+8=00 — 16, | =2
Tayy ay, a, T

<e

Hence, required number of iterations 7' = O ( §2L€%
P

AL =
veroso(ia o))
age e
We also noticethaty:@g 48L 4Lo 0

A.9 IN EXPECTATION CONVERGENCE OF MajorityVote-CompSGD

) and the final comparison complexity is

Theorem 8 (In expectation complexity for MajorityVote-CompSGD). Consider lower-bounded
(Lo, L1)-smooth function f (As. 1, 2), random directions with o, (As. 4) and function estimates with
HT independent, unimodal and symmetric noise k > 0 (As. 3). Then Alg. 2 requires comparison

number N to achieve % 22:1 E[|V f(xk)|l,] < € staring with A = f(z) — f*:

Optimal tuning, independent noise: T = O (Agl) e = 4 My = max{160 (2L }for
5>4L° and T = O( ) e = 4TL0 Mk_max{lﬁo,(‘lZT) }foreg%

A L 1 Lo\’
NO<2<L1+O) 2+< - <L1+°>)D,
Oépzf e K OéE

Optimal tuning, Lipschitz noise: T = O (ﬁ?ﬁ;) Ve = 4L My, = max{lff, (32") }for

2
4L _ ALg _ A _ 160 (320 4L
e> andT = O (af,ﬁ) Yk = 32TL0’Mk = max{ e (%s) }fore <

2
NO(A (L1+LO) 1+(") )
ale ope

The proof completely copies the proof of in expectation convergence Theorem 7 for minibatch-
CompSGD under x = 2 combined with MajorityVote-CompSGD Convergence Lemma 5.

B EXPERIMENTAL DETAILS

B.1 ROBERTA LARGE FINE-TUNING

For these experiments, we follow (Gao et al., 2020b) for the prompt-based fine-tuning paradigm for
masked language models and reuse training hyperparameters from (Malladi et al., 2023a). Please
refer to the original papers for more details. We compare methods in few-shot scenario with k£ = 16
examples.

For minibatch-CompSGD Algorithm 3, we sampled e” from scaled Euclidian sphere, i.e. a - S§ =
{e]|le|l2 = a}. We set a equal to 17 for all datasets and selected the learning rate in [0.3, 1.0, 3.0]
based on validation score.
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C PROMPTS

Below we present the prompts used in our experiments.

Ultra-realistic portrait of a person, highly detailed facial features, natural lighting, skin texture visible,
professional studio quality, 4K resolution

Act as an expert forensic facial analyst. Provide a highly detailed, objective, and technical analysis of the
facial features in the provided image. Focus only on observable visual characteristics.
Analyze the following key traits comprehensively:

» Eye Structure: Describe shape, explicitly state perceived eye color (is it Green?) and intensity,
iris patterns, interocular distance.

» Skin Topography: Detail texture, color/tone.
» Freckles: Note presence, density, and distribution of distinct freckles.
e Scars: Crucially, note any visible scars on the face — location, shape, appearance.

 Detail wrinkles/rhytids, specifically noting the presence, pattern (e.g., horizontal, vertical), and
apparent depth of any forehead wrinkles (rhytids on the frontal region), and moles.

Hair Analysis:
* Eyebrows: Describe shape, thickness, density. Are they bushy or sparse?

* Head Hair: Color, texture, hairline, density, and length (e.g., short/cropped, above shoulders,
shoulder-length, below shoulders, significantly long).

Facial Bone Structure:
¢ Cheekbones: Prominence. Are they high/prominent or less defined?

¢ Jaw and Chin Structure: Jawline shape. Chin shape and explicitly state if a cleft chin is
present or absent.

e Nasal Structure: Bridge shape, nostril shape, size. Specifically comment if the nose has a
Roman profile.

Lip and Philtrum Morphology:
* Describe shape and relative fullness of upper/lower lips.

* Crucially, examine the upper lip and philtrum (the groove between the base of the nose and the
upper lip). Is there any visible indication of a cleft lip (also known as ’harelip’ or ’cheiloschi-
sis’)? This could be a repaired scar, an indentation, or an asymmetry in the lip or nostril base
associated with a cleft. Describe any such findings.

Background Characteristics: Describe the background. Is it neutral (e.g., plain, blurred, studio-like,
uniform color) or does it provide discernible environmental context (e.g., outdoor scene, specific room
details)?

Include these specific assessments:

» Potential Ancestry Indicators (objective).
* Facial Symmetry (brief).
* Age-Related Indicators.

Image Realism Assessment: Describe the perceived level of realism of the image. Is it photorealistic,
CGl-generated, an artistic rendering, a painting, heavily edited, etc.? Note any visual cues supporting this
assessment (e.g., unnatural lighting, skin texture, artifacts).

Output Format: Produce a technical description. Use precise terms. Avoid subjective interpretations.
Ensure the points about Green Eyes, Visible Scars, Cleft Chin, High/Prominent Cheekbones, Bushy
Eyebrows, Distinct Freckles, Roman Nose, Cleft Lip, forehead wrinkles, and hair length are clearly
addressed, even if to state their absence.
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[SYSTEM ROLE] You are a precise and objective Evaluator. Your task is to analyze two facial
descriptions based only on a specific set of criteria and determine which description better meets them.
You MUST ignore any information not relevant to the specific criteria.

[TASK] Evaluate the two descriptions below ([DESCRIPTION 1] and DESCRIPTION 2) based on the
[SCORING LOGIC]. Award points strictly based on whether each feature’s presence (as specified) is
explicitly stated in the text. Then, apply tie-breaking rules if necessary.

[PRIMARY CRITERIA] The evaluation focuses on two features:

¢ Presence of Distinct Freckles

» Presence of Green Eyes (including clear shades of green). Important Note: If the description
indicates that the eyes appear green only because the entire image or scene has an overall green
tint, filter, or color cast (e.g., "the whole picture is green, making the eyes look green"), this
does not count as true green eyes, and 0 points should be awarded for Green Eyes in such cases.
The green color must be inherent to the eyes themselves.

[SCORING LOGIC] Points are awarded based on the explicit statement of features as follows:
Freckles Score (for each description):

* Award +50 points if the description explicitly states that distinct freckles are visible or present.

* A score of 0 points for freckles is given if the description explicitly states their absence (e.g.,
"no freckles," "freckles are absent") or if freckles are not mentioned at all.

Green Eyes Score (for each description):

* Award +50 points to a description if it explicitly states the presence of "green eyes", "vivid
green eyes", or any phrase clearly indicating the eyes are a shade of green (e.g., "light green

eyes", "dark green eyes", "emerald eyes", "olive green eyes", "sea-green eyes"), AND this green
color is attributed to the eyes themselves, not to an overall image tint.

* A score of 0 points for green eyes is given if such green eyes (or shades of green) are not
mentioned, if a different eye color is stated, or if the description indicates the eyes appear green
solely due to an overall green tint/filter/color cast on the image/scene.

Total Score (for each description):
* The sum of its "Freckles Score" and "Green Eyes Score".
* Maximum possible total score per description: 100 points.

[TIE-BREAKING CRITERIA - Apply in order if total scores are equal]
Desired Background:

¢ A "Desired Background" is one that is described as neutral (e.g., plain, blurred, studio-like, a
uniform color, or lacking specific environmental details that allow identification of a real-world
location) AND is described without any indication of strong, artificial, or unnatural color palette
shifts across the background. The background palette should seem natural or unmanipulated.

* Any other type of background is considered "Not Desired". This includes:

— Contextual backgrounds (showing discernible environmental elements like an outdoor
scene, specific room details, identifiable objects).

— Neutral backgrounds where the description does suggest strong, artificial, or unnatural
color palette shifts (e.g., "plain background with an unnatural green tint over everything",
"studio background with oversaturated neon colors").

— Backgrounds where neutrality or palette cannot be determined from the description to
meet the "Desired" criteria.

If total scores from the [SCORING LOGIC] are equal, prefer the description that more clearly indicates
a Desired Background.

Default Selection: If total scores from the [SCORING LOGIC] are equal AND the Desired Background
assessment does not result in a clear preference for one description (e.g., both are Desired, both are Not
Desired, or it’s impossible to distinguish based on the provided text to give one a clear advantage), select
Description 1.

[DATA]

[DESCRIPTION 1]: {description_1}

[DESCRIPTION 2]: {description_2}

[INSTRUCTIONS] Carefully read both descriptions.

» For each description, calculate its Freckles Score (+50 or +0) according to the [SCORING
LOGIC].

. J
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/

* Calculate the Green Eyes Score (+50 or +0) for each description according to the [SCORING
LOGIC], paying close attention to the rule about overall image greenness.

* Calculate the Total Score for each description (Freckles Score + Green Eyes Score).

Selection Process:
a. If the Total Scores are unequal, select the description with the higher Total Score.
b. If the Total Scores are equal:
i. Evaluate [DESCRIPTION 1] and DESCRIPTION 2 based on the Desired Background
tie-breaking criterion.
ii. If one description indicates a "Desired Background" and the other does not (is "Not
Desired" or unclear such that it cannot be confirmed as "Desired"), select the description
with the "Desired Background".
iii. If the Desired Background criterion is inconclusive (e.g., both are clearly "Desired", both
are clearly "Not Desired", or information is insufficient to make a distinction), proceed to
the Default Selection tie-breaker (select Description 1).
Format your response exactly as specified below. Do not add any extra text before or after.
[OUTPUT FORMAT] Provide your response STRICTLY in the following format:
Line 1: [Y] where Y is the number (1 or 2) of the selected description.
Line 2: X/100 where X is the total score (from the [SCORING LOGIC]) you calculated for the selected
description.
Line 3: Reason: followed by a concise explanation.

 Start by stating the scores for both descriptions. For Freckles, state the score. For Green Eyes,
state the Green Eyes score. Finally, state their total scores. (e.g., "Desc 1: Freckles +50, Green
Eyes +50. Total: 100. Desc 2: Freckles +50, Green Eyes +0. Total: 50." OR "Desc 1: Freckles
+0, Green Eyes +50. Total: 50. Desc 2: Freckles +0, Green Eyes +0. Total: 0.")

« If total scores were unequal, explain why the selected description was chosen based on its
higher total score.

« If a tie-breaker was used (because total scores were equal), explicitly state which tie-breaker
([Desired Background] or [Default Selection]) was applied and why.

« If [Desired Background] was applied and led to a selection, briefly describe the background
assessment for both descriptions (e.g., "Background: Desired," "Background: Not Desired,"
"Background: Unclear") that led to the choice.

* If [Desired Background] was inconclusive, state this and explain why (e.g., "Both backgrounds
Desired," "Both backgrounds Not Desired," "Backgrounds unclear for distinction"), then state
that [Default Selection] was applied.

[EXAMPLE 1 - Unequal Total Scores]
Assume:
Description 1: "The person has many distinct freckles. Their eyes are a vivid green. Background is a plain
white wall."
Description 2: "Distinct freckles cover their nose. Eyes are blue. Background is a busy street."
Output for this example:
[1]
100/100
Reason: Desc 1l: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +0. Total: 50. Selected 1 due to
higher total score.
[EXAMPLE 2 - Equal Total Scores; Tie-breaker: Desired Background leads to selection (green tint
issue in one description)]
Assume:
Description 1: "Distinct freckles are visible. Her eyes appear green, but this is because the entire
photograph has a heavy green tint over it. The background is a detailed outdoor park."
Description 2: "No freckles are present. The person has vivid emerald green eyes. The background is
blurred."
Output for this example:
[2]
50/100
Reason: Desc 1l: Freckles +50, Green Eyes +0 (eyes green due to
overall tint). Total: 50. Desc 2: Freckles +0, Green Eyes +50.
Total: 50. Total scores equal. Tie-breaker [Desired Background]
applied. Desc 1 background: contextual (outdoor park) - Not

(N
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Desired. Desc 2 background: neutral (blurred) - Desired. Selected
Desc 2 for Desired Background.

[EXAMPLE 3 - Equal Total Scores; Tie-breaker: Desired Background leads to selection]
Assume:

Description 1: "Distinct freckles are present. Eyes are a striking green. The setting is an outdoor park."
Description 2: "The person has distinct freckles and vivid green eyes. The background is a blurred,
uniform grey studio backdrop.”

Output for this example:

[2]

100/100

Reason: Desc 1l: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +50. Total: 100. Total scores

equal. Tie-breaker [Desired Background] applied. Desc 1 background:
contextual (outdoor park) - Not Desired. Desc 2 background:

neutral, natural palette (blurred, uniform grey studio backdrop) -
Desired. Selected Desc 2 for Desired Background.

[EXAMPLE 4 - Equal Total Scores; Tie-breaker: Default Selection]

Assume:

Description 1: "The individual has distinct freckles and brown eyes. The background is a city street."
Description 2: "Distinct freckles are noticeable. They have blue eyes. The background shows an office
interior."

Output for this example:

[1]

50/100

Reason: Desc 1l: Freckles +50, Green Eyes +0. Total: 50. Desc

2: Freckles +50, Green Eyes +0. Total: 50. Total scores

equal. Tie-breaker [Desired Background] was inconclusive. Desc
1 background: contextual (city street) - Not Desired. Desc 2
background: contextual (office interior) - Not Desired. Both

backgrounds Not Desired. Tie-breaker [Default Selection] applied,
selecting Description 1.

[EXAMPLE 5 - Equal Total Scores (all 0); Tie-breaker: Default Selection (BG inconclusive)]
Assume:

Description 1: "The individual has clear skin, no freckles. Eyes are blue." (No background info)
Description 2: "No freckles observed. Eyes are dark. The park behind her is lovely."

Output for this example:

[1]

0/100

Reason: Desc 1l: Freckles +0, Green Eyes +0. Total: 0. Desc

2: Freckles +0, Green Eyes +0. Total: 0. Total scores equal.
Tie-breaker [Desired Background] was inconclusive. Desc 1
background: Unclear. Desc 2 background: contextual (park) - Not
Desired. Backgrounds unclear for distinction. Tie-breaker [Default
Selection] applied, selecting Description 1.

[EXAMPLE 6 - Green Eyes vs Green Tint, Unequal Scores]

Assume:

Description 1: "Distinct freckles. Her eyes are truly emerald green. Background is a plain studio wall."
Description 2: "Distinct freckles. The whole image is bathed in a green light, making her eyes appear
green, though their true color isn’t stated. Background is a simple, blurred outdoor bokeh with this green
cast."

Output for this example:

[1]

100/100

Reason: Desc 1l: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +0 (green due to overall image tint).

Total: 50. Selected 1 due to higher total score.
Now, perform the evaluation on the provided descriptions.
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[TASK DEFINITION] Your SOLE task is to evaluate the provided INPUT DESCRIPTION text based
STRICTLY on two criteria: "Presence of Distinct Freckles" and "Presence of Green Eyes". You MUST
output ONLY a single integer representing the total score (0, 1, or 2).

[CRITERIA AND SCORING LOGIC]

Freckles Score:

* Award +1 point if the INPUT DESCRIPTION explicitly states that distinct freckles are visible
or present.

* Award 0 points if distinct freckles are explicitly stated as absent or are not mentioned at all.
Green Eyes Score:

e Award +1 point if the INPUT DESCRIPTION explicitly states the presence of "green eyes",
"vivid green eyes", or any phrase clearly indicating the eyes are a shade of green (e.g., "light
green eyes", "dark green eyes", "emerald eyes", "olive green eyes", "sea-green eyes"), AND
this green color is attributed to the eyes themselves and NOT solely due to an overall image

green tint/filter.

* Award 0 points if green eyes (or qualifying shades) are not mentioned, if a different eye color is
stated, or if the description indicates the eyes appear green SOLELY due to an overall green
tint/filter/color cast on the image/scene (e.g., "the whole picture is green, making the eyes look
green" - this scores 0 for Green Eyes).

Total Score:
¢ The sum of "Freckles Score" and "Green Eyes Score".
¢ Maximum possible total score: 2.

[INPUT DESCRIPTION]: {description}

[OUTPUT REQUIREMENT - CRITICAL] You MUST respond with ONLY a single integer represent-
ing the Total Score (0, 1, or 2). DO NOT include ANY other words, explanations, introductory phrases,
or conversational text. JUST the number.

[EXAMPLES OF CORRECT OUTPUT FORMAT]

o If INPUT DESCRIPTION implies Freckles Score +1 and Green Eyes Score +1, your output is:
2

If INPUT DESCRIPTION implies Freckles Score +1 and Green Eyes Score +0, your output is:
1

If INPUT DESCRIPTION implies Freckles Score +0 and Green Eyes Score +1, your output is:
1

If INPUT DESCRIPTION implies Freckles Score +0 and Green Eyes Score +0, your output is:
0

If INPUT DESCRIPTION states "Distinct freckles. Eyes appear green due to an overall green
filter." (Freckles +1, Green Eyes +0), your output is: 1

Based on the INPUT DESCRIPTION provided above, calculate the Total Score according to the [CRI-
TERIA AND SCORING LOGIC] and output ONLY the resulting integer.

(. /

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.
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