
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPSGD: ROBUST COMPARISON-BASED APPROACH
FOR ZEROTH-ORDER OPTIMIZATION UNDER (L0, L1)-
SMOOTHNESS AND HEAVY-TAILED NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

In modern non-convex optimization, more and more attention is drawn to zeroth-
order problems where the only available information is which set of model parame-
ters is better, without quantitative characteristics. The data in these problems can
be extremely noisy, and the models themselves are so complex that the standard
smoothness assumption fails to describe them. Motivated by these challenges, we
propose new zeroth-order methods to deal with generalized (L0, L1)-smoothness
and severe heavy-tailed noise with bounded κ-th moment. Using only comparisons
of function values at two different points, our MajorityVote-CompSGD method
achieves the first-known high probability bound Õ

(
∆σ2d9/2

κ2

(
L3

0

ε6 +
L3

1

ε3

))
, κ ∈

(0, 2] for number of comparisons under symmetric independent noise. If function
values are available, our minibatch-CompSGD can converge to the desired aver-
age gradient norm after Õ

(
∆σ

κ
κ−1 (d

3/2L0

ε2 + d3/2L1

ε )
2κ−1
κ−1

)
, κ ∈ (0, 2] function

evaluations. In addition, we provide convergence guarantees for Lipschitz noise,
parameter-free tunings and in expectation bounds with milder d dependence.

1 INTRODUCTION

In many practical optimization tasks, the computation of the function gradients is infeasible, for
instance, due to enormous sizes, non-differentiable function structure or lack of information. For such
scenarios, methods that operate only with function values or even comparisons of these values are an
active area of research (Nozawa et al., 2025; Jiang et al., 2024; Liu et al., 2024; Chen et al., 2024;
Yin et al., 2024; Tang et al., 2023; Ouyang et al., 2022). Although modern applications, especially
in deep learning, are known to exhibit heavy-tailed noise and very complex model structures, most
related works consider only simple model descriptions and bounded variance noise, or no noise at
all. This leaves an important practical problem without a proper theoretical framework. The goal of
this work is to bridge this gap by introducing a new robust and theoretically justified method that
uses only function values or their comparisons for optimization. We formally present the problem
statement (§1.1), review related works (§1.2), and detail our contributions (§1.3).

1.1 PROBLEM STATEMENT

Consider the following non-convex stochastic optimization problem:

min x∈Rdf(x) := Eξ[f(x, ξ)], (1)

where the random variable ξ can only be sampled from an unknown distribution. The main goal is
to find a point with the smallest gradient norm. For example, in machine learning, f(x, ξ) can be
interpreted as a loss function on a sample ξ (Shalev-Shwartz & Ben-David, 2014).

We consider two oracle types: the zeroth-order oracle which, for any two points x, y ∈ Rd, gives
their noisy function values f(x, ξx) and f(y, ξy), and the comparison oracle ϕ(x, y, ξ := {ξx, ξy})
which determines which noisy function value is larger:

ϕ(x, y, ξ) = sign(f(x, ξx)− f(y, ξy)). (2)
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The realizations ξx and ξy can be both independent or depend on the points x, y. The comparison
oracle is natural for describing human decision-making (Lobanov et al., 2024). Given a choice
between two options, it is much easier to choose which option is better rather than estimate quantitive
difference. The stochasticity ξ describes a variety of decision makers and their random states. This
oracle is extensively used in Reinforcement Learning (RL) and Large Language Models (LLMs)
training via RL with human feedback (Ouyang et al., 2022; Wang et al., 2023; Tang et al., 2023).

(L0, L1)-smoothness. In early theoretical works, deep learning models were described using a
standard smoothness assumption, namely, ∥∇f(x)−∇f(y)∥2 ≤ L0∥x−y∥2,∀x, y ∈ Rd. However,
a new generalized (L0, L1)-smoothness condition was recently introduced in (Zhang et al., 2020b) to
characterize LLMs whose Hessian norm exhibits linear growth: ∥∇2f(x)∥2 ≤ L0 + L1∥∇f(x)∥2.
The future works have extended this framework to only once differentiable functions and various
settings including cases with symmetric and asymmetric power norm growth (Chen et al., 2023) and
sub-quadratic polynomial growth (Li et al., 2023). Applications of the generalized smoothness can
be found not only in training of LLMs (Zhang et al., 2020a; Liu et al., 2023b), but in distributionally
robust optimization (Levy et al., 2020; Jin et al., 2021), multitask learning (Zhang et al., 2024),
federated learning (Liu et al., 2022), bilevel optimization (Hao et al.; Gong et al.) and other domains.

High probability bounds. The remarkable success of stochastic first-order methods for optimiz-
ing neural networks (Bottou, 2012; Kingma & Ba, 2014) has inspired extensive research into the
theoretical convergence properties of these methods under various noise assumptions. Early studies
(Nemirovski et al., 2009; Ghadimi & Lan, 2013; Bernstein et al., 2018a) derive complexity bounds in
expectation, typically under light-tailed noise such as sub-Gaussian or bounded variance (BV) noise.
However, given the high computational cost of training large deep learning models (Davis et al.,
2021), there is a growing interest in high-probability (HP) convergence guarantees (Sadiev et al.,
2023; Nguyen et al., 2023; Hübler et al., 2024). Unlike bounds in expectation, which describe average
performance across multiple runs, HP bounds ensure convergence for individual runs with probability
at least 1− δ, δ ∈ (0, 1). Although Markov’s inequality can convert bounds in expectation into HP
bounds with extra 1

δ factor, the researchers strive to obtain bounds with tighter log 1
δ dependencies.

Heavy-tailed noise. Furthermore, recent studies indicate that mentioned BV assumption fails to
capture the noise characteristics in modern deep learning tasks. For instance, in Transformer models,
stochastic gradients often follow a heavy-tailed (HT) distribution (Simsekli et al., 2019; Zhang et al.,
2020b; Gurbuzbalaban et al., 2021). It means that the noise in function estimates has a bounded κ-th
moment for some κ ∈ (1, 2]. In the zeroth-order optimization, two main types of corrupting noises
are considered: independent which corrupts each point x individually and Lipschitz which corrupts a
pair of points x, y together and decreases as these points become closer.

1.2 RELATED WORKS

Zeroth-order optimization has a rich history including both discrete and continuous classic approaches
such as Bayesian optimization (Shahriari et al., 2015; Balandat et al., 2020), Evolutionary algorithms
(Lei et al., 2025; Salimans et al., 2017), ellipsoid methods (Bland et al., 1981) etc. The most relevant
methods for optimizing non-convex smooth functions are based on finite-difference approximations.

Zeroth-order finite-difference methods. These methods utilize explicit function values to approx-
imate gradient by a finite difference which is then plugged into the first-order methods (Nesterov,
2011; Ghadimi & Lan, 2013; Duchi et al., 2015; Shamir, 2017; Gasnikov et al., 2022). The gradient
estimate gτ (x, e) with the arbitrary smoothing parameter τ is built on a random direction e sampled
from the unit Euclidean sphere:

gτ (x, e) := d(f(x+ τe, ξ+)− f(x− τe, ξ−)) · e/(2τ). (3)

For non-convex functions under Lipschitz BV noise, it is enough to use SGD with gradient estimate
(3) (ZO-SGD) and sample e to obtain the rates O(dε−4) in expectation (Ghadimi & Lan, 2013). To
cope with HT noise, the authors of (Kornilov et al., 2023; 2024) use more robust SGD with clipping
of heavy-tailed gradient estimates (ZO-ClipSGD) and obtain HP bounds for convex functions. For
independent noise, there exists a series of works dedicated to smoothed-based methods with Decision-
Dependent Distributions, achieving rates O(d2ε−6) (Liu et al., 2023a) (for bounded optimized
functions) and O(d2ε−4) (Hikima et al., 2025). Under (L0, L1)-smoothness, only paper (Lobanov &
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Gasnikov, 2025) provides the linear bounds in expectation for the zeroth-order convex setup. The
authors also observe considerable convergence boost for functions with L0 ≈ 0.

There exist even more challenging optimization problems in which only comparisons of function
values are available. For these problems, the methods with a comparison oracle (2) come in handy.

Comparison-based methods. These methods use only comparisons without direct function evalua-
tions. They find the minimal point among the observed ones following random directions. The most
common instance is Stochastic Three Points (STP) method (Bergou et al., 2020) and its variation
with momentum (SMTP) (Gorbunov et al., 2020). For the current iteration xk, it takes a random
direction ek with stepsize γk and goes along it where the function value is smaller (or stays):

xk+1 = argmin{f(xk), f(xk + γke
k), f(xk − γke

k)}.
In these works, the methods are analysed for non-convex functions without any noise. In (Bouch-
erouite et al., 2024), the authors work with sum-type functions and stochastic mini-batches. They
prove sample complexity O(d3ε−6) in expectation for STP under independent BV noise in function
estimates, but with huge batch sizes O(d2ε−4). In (Saha et al., 2021), the authors consider a indepen-
dent noisy comparison oracle where noise is introduced as a fixed probability of receiving a wrong
sign during the comparison. They restate STP via the sign operator and at each iteration repeated
Bernoulli trials with comparisons to ensure the sign correctness with high confidence. The authors
obtain HP bounds, but only for convex and strongly-convex functions.

We highlight the ZO-SignSGD method (Bernstein et al., 2018a;b; Liu et al., 2019a) which belongs to
both method groups simultaneously. It takes only the signs of gradient estimates (3). For the current
iteration xk and direction ek, its update step is:

xk+1 = xk − γk · sign((f(xk + τek, ξ+)− f(xk − τek, ξ−)) · ek). (4)

The sign operator from this update step can be computed by comparison oracle without direct function
values. For non-convex sum-type functions with Lipschitz bounded noise, the authors of (Liu et al.,
2019a) prove the zeroth-order sample complexity O(d2ε−4).

In (Lobanov et al., 2024), the authors propose OrderRCD method which is combination of Coordinate
Gradient Descent and the search for the steepest stepsizes using the golden ration method, which
requires only comparisons. In (Tang et al., 2023), a comparison oracle is used to build a ranking-based
gradient estimate over random directions, which then is plugged into GD.

All the previous non-convex results for zeroth-order and comparison-based methods are proved
under standard L0-smoothness and mostly under BV noise. Meanwhile, real-world applications
motivate to use more general assumptions on smoothness and noise, as we do in this paper.

1.3 CONTRIBUTIONS

Theory. We derive the first-known high probability convergence bounds for non-convex zeroth-
order optimization under generalized (L0, L1)-smoothness and HT independent or Lipschitz
noise. For standard smoothness, these results are new as well. See Section 2.

We propose our robust MajorityVote-CompSGD (Algorithm 2) that uses only function comparisons
for optimization. To achieve accuracy ε in average ℓ2-gradient norm, it needs the following number
of comparisons under independent symmetric noise (∆ = f(x1)− f∗, d — dimensionality and κ, σ
— bounded moment power and value, Theorem 1):

Õ

((
∆L1d

3
2

ε
+

∆L0d
3
2

ε2

)[
1

κ2
+
σ2d3

ε2

(
L1 +

L0

ε

)2
])

, κ ∈ (0, 2].

For zeroth-order oracle where function values are available, we present our minibatch-CompSGD
(Algorithm 3) that under any independent noise has complexity (Theorem 2):

Õ

(∆L1d
3
2

ε
+

∆L0d
3
2

ε2

)1 +(σd 3
2

ε

(
L1 +

L0

ε

)) κ
κ−1

 , κ ∈ (1, 2].

Moreover, we provide convergence guarantees for Lipschitz noise, parameter-free algorithms tunings
and in expectation bounds with milder d dependence in the corresponding theorems.
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Experiments. To validate our theoretical findings in real-world scenarios with heavy-tailed noise,
we evaluate sign-based methods on the fine-tuning of Transformer models, demonstrating their
effectiveness in both NLP classification and image generation tasks. See Section 3.

2 HIGH PROBABILITY BOUNDS FOR COMPARISON AND ZEROTH-ORDER
ORACLES UNDER HEAVY-TAILED NOISE AND GENERALIZED SMOOTHNESS

We begin this section by introducing the necessary assumptions (§2.1) and the backbone method
CompSGD (Alg. 1, §2.2). Then we propose our MajorityVote-CompSGD (Alg. 2, §2.3) method
for comparison oracle (2) to optimize (L0, L1)-smooth non-convex functions corrupted by symmetric
and unimodal HT noise. We prove its HP convergence guarantees for the best parameters and also
for parameter-agnostic tuning. In addition, for classic zeroth-order optimization with available
function values, we propose minibatch-CompSGD (Alg. 3, §2.5) under HT noise without symmetry
assumption. We discuss and compare our methods with related works in §2.4 and §2.6, respectively.

2.1 ASSUMPTIONS

We use the following assumptions on the objective function f(·) and noisy function estimates f(·, ξ).
Assumption 1 (Lower bound). The objective function f is lower bounded by f∗ > −∞.
Assumption 2 ((L0, L1)-smoothness). The objective function f is differentiable and (symmetrically)
(L0, L1)-smooth, i.e., for the non-negative constants (L0, L1) and x, y ∈ Rd, it holds

∥∇f(x)−∇f(y)∥ ≤ (L0 + L1 sup u∈[x,y]∥∇f(u)∥)∥x− y∥. (5)
For examples of (L0, L1)-smooth functions and its basic properties, we refer reader to Appendix A.1.
Assumption 3 (Heavy-tailed noise in function estimates). For two points x, y ∈ Rd, the stochastic
difference f(x, ξx)− f(y, ξy) is unbiased estimate of the true difference f(x)− f(y):

Eξx,ξy [f(x, ξx)− f(y, ξy)] = f(x)− f(y),

and satisfies one of the conditions below for σ > 0 and κ ∈ (1, 2]:

1. independent noise: Eξx,ξy [|f(x, ξx)− f(y, ξy)− (f(x)− f(y))|κ] ≤ σκ, ∀x ∈ Rd,

2. Lipschitz noise: Eξx,ξy [|f(x, ξx)−f(y, ξy)−(f(x)−f(y))|κ] ≤ σκ∥x−y∥κ2 , ∀x ∈ Rd.

The example of independent HT noise is the estimate f(x, ξ) corrupted at each point by independent
heavy-tailed noise ξ with bounded κ-th moment: f(x, ξ) := f(x) + ξ. As instance of Lipschitz HT
noise, one can use estimate f(x, ξ) := f(x) + ⟨x, ξ⟩ where ξ - is d-dimensional HT noise. For a
sum-type function f(x) = 1

K

∑K
i=1 fi(x) with ξ denoting a random batch I from {1, . . . ,K}, the

estimate is f(x, ξ) = 1
|I|
∑

i∈I fi(x). In this case, the oracle gives the same ξ realization (batch) for
two points. This estimate can satisfy both independent and Lipschitz noise assumptions depending
on function properties (Boucherouite et al., 2024; Liu et al., 2019a).

Random directions. Usually zeroth-order methods first explore function changes along some
random directions sampled from the chosen set D and then make next step. This set should be wide
enough to capture the full information about function changes, thus, we assume the following.
Assumption 4 (Random directions). The set of random directions D ⊂ Rd satisfies:

1. There exist a norm ∥ · ∥p, p ∈ [1, 2] and a constant αp ∈ (0, 1], such that for all g ∈ Rd:
Ee∈D|⟨g, e⟩| ≥ αp∥g∥p.

2. For all e ∈ D, the norms ∥e∥2 ≤ 1, ∥e∥q ≤ 1, 1p + 1
q = 1.

In our paper, we consider the following instances of D and provide explicit constants (Bergou et al.,
2020, Lemma 3.4) for them:

1. Uniform distribution on the unit Euclidean sphere Sd
2 := {e, ∥e∥2 = 1}, p = 2, αp = 1√

2πd
.

The spheres of radius r < 1 are feasible too.
2. Uniform distribution on standard basic vectors {e1, . . . , ed}, p = 1, αp = 1

d .

4
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2.2 CONVERGENCE PROPERTIES OF THE BACKBONE METHOD CompSGD

In (Lobanov et al., 2024), the authors propose a nameless procedure for the comparison oracle. For
the current point xk, it takes a random direction ek scaled by stepsize γk and goes along it where
noisy function value is smaller, i.e.,

xk+1 = xk − γk · sign(f(xk + γke
k, ξ+)− f(xk − γke

k, ξ−)) · ek.

If value f(xk − γke
k, ξ−) is smaller than f(xk + γke

k, ξ+), then sign equals to 1 and xk+1 =
xk − γke

k. Otherwise, the point xk+1 = xk − γke
k is chosen. We name it CompSGD (Alg. 1) and

prove the following lemma on its convergence.

Algorithm 1 CompSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1;
1: for k = 1, . . . , T do
2: Sample direction ek and noise ξk ;
3: ϕk := sign

[
f(xk+γke

k, ξk+)−f(xk−γkek, ξk−)
]
;

4: xk+1 = xk − γk · ϕk · ek;
5: end for

Output: uniformly random point from {x1, . . . , xT } ;

Lemma 1 (CompSGD Convergence Lemma). Consider lower-bounded (L0, L1)-smooth function
f (As. 1, 2), random directions (As. 4) and HT function estimates σk (As. 3). Then Alg. 1 after
T iterations starting with ∆ := f(x1)− f∗ and non-increasing stepsizes γk ≤ α2

p/(48L1d
1
p
− 1

2 log 1
δ )

achieves with probability at least 1− δ:

αp

8

T∑
k=1

γk∥∇f(xk)∥p ≤ 8∆+32L0

T∑
k=1

γ2k+64

T∑
k=1

σ̃k+
48d

1
p−

1
2

αp
(γ1∥∇f(x1)∥p+CTL0) log(

1

δ
).

(6)

where σ̃k = σk for independent noise and σ̃k = γkσk for Lipschitz noise, CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ .

The proof is located in Appendix A.3. Remarkably, the only effect that comes from the constant L1

in bound (6) is the restriction of the maximal possible stepsize γk ≤ αp/(48L1d
1
p
− 1

2 log 1
δ ). For this

reason, in case of small L0, our methods can achieve faster convergence using large stepsizes instead
of decreasing ones under standard smoothness.

Noise robustness. CompSGD can handle heavy-tailed noise since it implicitly normalizes the
finite-difference gradient approximation (3) using only function comparisons. As shown in recent
works (Hübler et al., 2024; Liu & Zhou, 2024), normalization eliminates heavy tails, but only until
some fixed noise level. For Lipschitz noise, the bound (6) resembles the similar convergence bounds
for the normalized first-order methods and requires σk ∼ ε. However, for independent noise, it has
worse dependence on σk since it is not multiplied by γk. Thus, in order to achieve accuracy ε, the
noise σk must not exceed σk ∼ ε2.

2.3 MajorityVote-CompSGD: ROBUST METHOD FOR COMPARISON ORACLE

For comparison oracle, we cannot use popular batching to lower the noise since it requires summing
the explicit function values with are not available with this oracle. Fortunately, there exists the method
to aggregate the signs of differences of function estimates without its direct calculation. At this point,
we propose our novel MajorityVote-CompSGD (Algorithm 2) which reduces noise level via the
majority voting (Bernstein et al., 2018b) over comparison signs. Our method chooses positive or
negative direction along the random vector ek based on the majority of votes after several trials.

Additional noise assumption. The majority voting demonstrates great performance in distributed
optimization (Bernstein et al., 2018b; Jin et al., 2020). In order to be effective, it must decrease prob-
ability P

[
sign(f(xk+γke

k)− f(xk−γkek)) ̸= sign
[∑M

i=1 ϕ
k
i

]]
with the growth of M. However,

it does not hold true for some very skewed noise distributions which sign from mean differs from mean

5
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Algorithm 2 MajorityVote-CompSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1, batchsizes {Mk}Tk=1.
1: for k = 1, . . . , T do
2: Sample direction ek and noises {ξki }

Mk
i=1;

3: ϕki = sign
[
f(xk+γke

k, ξki,+)−f(xk−γkek, ξki,−)
]
;

4: xk+1 = xk − γk · sign
(∑Mk

i=1 ϕ
k
i

)
· ek;

5: end for
Output: uniformly random point from {x1, . . . , xT } .

of signs. Choosing the most frequent value from the sign sequence {ϕki }Mi=1 is actually M Bernoulli
trials. In these trials, the probability of choosing a correct answer grows only if the probability of
failure for each i less than 1

2 , i.e., P
[
sign(f(xk+γke

k)− f(xk−γkek)) ̸= ϕki
]
< 1

2 ,∀i ∈ 1,M.
For example, this condition is satisfied if the noise for each i is unimodal and symmetric. We use this
assumption in our paper, but other assumptions from (Safaryan & Richtárik, 2021) are valid as well.
Theorem 1 (HP complexity for MajorityVote-CompSGD, independent noise). Consider lower-
bounded (L0, L1)-smooth function f (As. 1, 2), random directions with αp (As. 4) and function
estimates with HT independent, unimodal and symmetric noise κ > 0 (As. 3). Then Alg. 2 requires
comparison number N to achieve 1

T

∑T
k=1 ∥∇f(xk)∥p ≤ ε with probability at least 1− δ for:

Optimal tuning: T = O
(

∆Lδ,p
1

α3
pε

)
, γk =

α2
p

48Lδ,p
1

,Mk = max
{

160
κ2 ,

(
4σT
∆

)2}
for ε ≥ 4L0

L1
and

T = O
(

∆Lδ,p
0

α3
pε

2

)
, γk =

√
αp∆

32TLδ,p
0

,Mk = max
{

160
κ2 ,

(
4σT
∆

)2}
for ε ≤ 4L0

L1
:

N = O

(∆Lδ,p
1

α3
pε

+
∆Lδ,p

0

α3
pε

2

) 1

κ2
+

σ2

α6
pε

2

(
Lδ,p
1 +

Lδ,p
0

ε

)2
 , (7)

where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log( 1δ ), L

δ,p
1 = L1d

1
p−

1
2 log( 1δ ).

The proof is located in Appendix A.6. The results for Lipschitz noise are presented in Appendix
A.7. If functions and noise parameters are unknown we propose parameter-free tuning in Theorem 4,
Appendix A.6. It achieves the same dependencies on ε, but worsens ∆, L0, L1, σ-depending factors.

Two-stage convergence bounds. From Theorem 1, we can clearly distinguish two phases of algo-
rithm convergence: fast initial phase with rate Õ

(
ε−3
)

before threshold ε ≥ 4L0/L1 and substantially
slower one with rate Õ

(
ε−6
)

after. In case of L0 ≈ 0 (e.g. for logistic regression (Gorbunov et al.,
2024) and deep neural networks (Zhang et al., 2020a)), MajorityVote-CompSGD runs in the fast
regime the whole time and can work with large constant stepsizes.

2.4 MajorityVote-CompSGD DISCUSSION

Choice of random directions set. Note that the choice of set D affects both the coefficient αp and
the optimized ℓp-norm. For example, the Euclidean sphere, in comparison with the standard basis,
has

√
d times larger αp, but induces a smaller ℓ2-norm. In practice, neural networks’ gradients are

dense (see experiments from (Bernstein et al., 2018a)), and their norms are related by ∥∇f(x)∥1 ≈√
d∥∇f(x)∥2. Hence, the ℓ1-accuracy ε′ can be larger, around ε′ ∼ ε ·

√
d. Nevertheless, the

Euclidean sphere is preferable for our methods, since αp has more weight in our bounds.

d dependence. For the Euclidean sphere, the bound in (7) is Õ(
d9/2L3

0

κ2ε6 +
d9/2L3

1

κ2ε3 ). Compared to the
prior works (§2.6), its dependence on ε is standard for the BV noise. However, the d9/2 factor is one
of the largest. We emphasize that this factor only appears in high-probability bounds, which offer
an additional guarantees for the solutions. Like prior works, we also prove in expectation bounds
(Theorem 8, Appendix A.9), where the dependence on d is considerably lower and compatible:

N = O

(∆Lδ,p
1

α2
pε

+
∆Lδ,p

0

α2
pε

2

) 1

κ2
+

σ2

α4
pε

2

(
Lδ,p
1 +

Lδ,p
0

ε

)2
 ∼ O

(
d3L3

0

κ2ε6
+
d3L3

1

κ2ε3

)
.
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Optimality under standard smoothness. In this paragraph, we assume that D is the Euclidean
sphere and L1 = 0. In the deterministic case σ = 0, our in expectation bound becomes O(dL0/ε2)
and exactly matches the bounds from the previous works (Bergou et al., 2020; Tang et al., 2023;
Lobanov et al., 2024). Moreover, it matches the optimal bound for the deterministic zeroth-order
optimization (Nemirovskij & Yudin, 1983). Our HP threshold on noise σ ∼ ε2 from (7) is the same
as the threshold for the adversarial noise from OrderRCD (Lobanov et al., 2024) or for batched
variance from STP with batching (Boucherouite et al., 2024).

CompSGD proofs from (Lobanov et al., 2024). Although CompSGD iteration is proposed in
(Lobanov et al., 2024), the authors prove only asymptotic convergence with parameters depending on
the solution. We demonstrate in Lemma 1 and experiments from Section 3.2 that vanilla CompSGD
without noise reduction cannot achieve accuracies lower than noise σ. For this reason, we propose
effective majority voting modification (Alg. 2) which converges non-asymptotically (Theorem 1).

HP results from (Saha et al., 2021). The noisy comparison oracle and noise reduction scheme from
(Saha et al., 2021) are similar to ours. However, all results from (Saha et al., 2021) are proved for the
convex functions, and we prove it for the non-convex ones. The authors used a non-trivial assumption:
for some constant ν ∈ (0, 1/2)

Pξ [ϕ(x, y, ξ) ̸= sign(f(x)− f(y))] ≤ 1/2 − ν, ∀x, y ∈ Rd. (8)
We would like to highlight that our Assumption 3 is much weaker and general, since (8) can fail even
under BV noise as difference f(x)− f(y) goes to zero. In our proofs, we show that

Pξ [ϕ(x, y, ξ) ̸=sign(f(x)−f(y))] ≤ σ/|f(x)−f(y)|.

Thus, in the vicinity of the stationary point where the changes of the function are small or under large
σ, the required condition (8) cannot hold.

2.5 minibatch-CompSGD: ROBUST METHOD FOR FUNCTION VALUE ORACLE

In this section, we adopt our backbone method CompSGD to zeroth-order optimization, where
function values are available or one can batch function values at two points before its direct comparison
(e.g. with sum-type objective function), and build minibatch-CompSGD (Algorithm 3).

Algorithm 3 minibatch-CompSGD

Input: Starting point x1 ∈ Rd, number of iterations T , stepsizes {γk}Tk=1, batchsizes {Bk}Tk=1.
1: for k = 1, . . . , T do
2: Sample a random direction ek and {ξki,±}

Bk
i=1;

3: Set xk+1 = xk − γk · sign(
∑Bk

i=1 f(x
k + γke

k, ξki,+)−
∑Bk

i=1 f(x
k − γke

k, ξki,−)) · ek;
4: end for

Output: uniformly random point from {x1, . . . , xT } .

Theorem 2 (HP complexity for minibatch-CompSGD). Consider lower-bounded (L0, L1)-smooth
function f (As. 1, 2), random directions (As. 4) and HT function estimates κ ∈ (1, 2] (As. 3). Then
Alg. 3 requires N function calls to achieve 1

T

∑T
k=1 ∥∇f(xk)∥p ≤ ε with probability at least 1− δ:

Optimal tuning, independent noise: T = O
(

∆Lδ,p
1

α3
pε

)
, γk =

α2
p

48Lδ,p
1

, Bk = max
{
1,
(
4σT
∆

) κ
κ−1

}
for

ε ≥ 4L0

L1
and T = O

(
∆Lδ,p

0

α3
pε

2

)
, γk =

√
αp∆

32TLδ,p
0

, Bk = max
{
1,
(
4σT
∆

) κ
κ−1

}
for ε ≤ 4L0

L1

N = O

 ∆

α3
pε

(
Lδ,p
1 +

Lδ,p
0

ε

)1 +( σ

α3
pε

(
Lδ,p
1 +

Lδ,p
0

ε

)) κ
κ−1

 ,

Optimal tuning, Lipschitz noise: T = O
(

∆Lδ,p
1

α3
pε

)
, γk =

α2
p

48Lδ,p
1

, Bk = max

{
1,
(

16σ
αpε

) κ
κ−1

}
for

ε ≥ 4L0

L1
and T = O

(
∆Lδ,p

0

α3
pε

2

)
, γk =

√
αp∆

32TLδ,p
0

, Bk = max

{
1,
(

16σ
αpε

) κ
κ−1

}
for ε ≤ 4L0

L1

N = O

(
∆d

1
p−

1
2

α3
pε

(
L1 +

L0

ε

)[
1 +

(
σ

αpε

) κ
κ−1

])
log 1/δ,
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where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log 1/δ, Lδ,p

1 = L1d
1
p−

1
2 log 1/δ.

The proof is located in Appendices A.4 and A.5. Parameter-free tuning for minibatch-CompSGD
can be done only under Lipschitz noise (Theorem 3, Appendix A.4). We also provide in expectation
bounds for minibatch-CompSGD with weaker d dependence in (Theorem 7, Appendix A.8).

2.6 minibatch-CompSGD DISCUSSION

Related works. For a fair comparison with other methods, we use our in expectation bounds in
Theorem 7 under BV noise κ = 2 and standard smoothness L1 = 0, namely, minibatch-CompSGD
on D = Sd

2 achieves rates O(d3ε−6) and O(d2ε−4) for independent and Lipschitz noises. Under
the same assumptions and independent noise, STP with minibatching achieves a rate O(d2ε−6), the
same as ours. The methods with Decision-Dependent Distributions achieve ratesO(d4ε−6) (Liu et al.,
2023a) (for bounded optimized functions) and O(d3ε−6) (Hikima et al., 2025). When corrupting
noise is Lipschitz, ZO-SignSGD achieves O(d2ε−4) and ZO-SGD - O(dε−4). To sum up, our rates
have the same ε dependence and are competitive in terms of d factors.

Optimality. Under Lipschitz noise, our high-probability rates (without d factors) match the optimal
rates for non-convex first-order optimization (Zhang et al., 2020b) when L1 = 0. For the case L1 ̸= 0,
they match the best-known first-order bounds, namely, for SGD with normalization (Liu & Zhou,
2024). To the best of our knowledge, no lower bounds exist for generalized smoothness.

Technical novelty. The proof techniques in our theoretical analysis for all methods are completely
different from the standard proofs for finite-difference methods. Usually zeroth-order methods take
already established convergence of a first-order method and apply it to the abstract smoothed function
for which gradient estimate (3) is the unbiased estimator. The chosen first-order method itself does
not mean much, while the properties of the smoothed function are adjusted and proved to fit the base
method. Our proof is based only on the direct structure of CompSGD method and the following
HP properties. It allows us to work under much weaker assumptions, since we do not adjust to the
base method. For example, the proof for ZO-SignSGD with majority voting requires the difference
[f(x+ τe, ξ)− f(x− τe, ξ)]e to be symmetric for both ξ and e (what is very strict), while we only
need symmetry of the noisy function estimates.

3 EXPERIMENTS

In this section, we present experimental results for the comparison-based and zeroth-order methods
from Section 2. To demonstrate their effectiveness, we focus mainly on language (§3.1) and diffusion
(§3.3) models fine-tuning. This choice is motivated by two factors: first, these tasks are known to
exhibit heavy-tailed noise (Zhang et al., 2020b) and generalized smoothness (Zhang et al., 2020a; Liu
et al., 2023b) characteristics, and second, they represent an important real-world application domain.

3.1 minibatch-CompSGD ON ROBERTA FINE-TUNING

First, we consider a zeroth-order language model fine-tuning. Following MeZO (Malladi et al.,
2023a), we evaluate our method on classification fine-tuning tasks, specifically SST-2, SST-5 (Socher
et al., 2013), SNLI (Bowman et al., 2015), MNLI (Williams et al., 2017) and RTE, TREC (Voorhees &
Tice, 2000), on the RoBERTa-large model with k = 16 (Liu et al., 2019b). We employ the established
few-shot prediction setting (Malladi et al., 2023b; Gao et al., 2020a). See details in Appendix B.1.

We compare minibatch-CompSGD Algorithm 3 with the pre-trained model without fine-tuning
(Zero-shot) and the original MeZO version. As demonstrated in Table 1, the sign-based method
outperforms its non-sign counterpart.

Table 1: Accuracy of RoBERTa-large (350M params) fine-tuned on different tasks. Higher is better.

Method SST-2 SST-5 SNLI MNLI RTE TREC
minibatch-CompSGD 91.9 46.7 69.6 63.8 65.7 77.2

MeZO 91.7 45.5 68.5 58.7 64.0 76.9
Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0
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3.2 MajorityVote-CompSGD FOR ACCURACY MAXIMIZATION

Second, we simulate the zeroth-order environment with comparison oracles as follows. We take the
prediction accuracy of the linear model on the training dataset as the objective:

f(x) =
(
1− Acc

(
ytrain, sign

(
2

1+exp(−Xtrainx)

)
− 1
))
.

As training data, we consider classification tasks from LibSVM (Chang & Lin, 2011): mushrooms,
phishing, a9a. In Figure 1, we provide the dynamics of accuracy on the test dataset for our
methods and for several baselines that also consider the comparison oracle: OrderRCD (Lobanov
et al., 2024), STP (Bergou et al., 2020) and SMTP (Gorbunov et al., 2019). In all cases, MajotityVote-
CompSGD outperforms baselines and Comp-SGD is either on par with them or better.

Figure 1: Performance of zeroth-order methods with comparison oracle on LibSVM datasets.

3.3 MajorityVote-CompSGD ON DIFFUSION MODELS FINE-TUNING

In this section, we are interested in solving the following problem: suppose that we have an image
generative model; our goal is to add to its output new complex features/attributes through fine-tuning
using only a comparison oracle. This setting covers a scenario in which a person can customize a
model simply by selecting a preferred image. In our experiments, we simulate this human feedback
with the feedback from Gemini-2.0-flash (Team, 2025).

The basic model considered is pre-trained Stable Diffusion v2.0 (Rombach et al., 2022) (dreamlike-
art/dreamlike-photoreal-2.0). Since we use the model pre-trained for generating photorealistic faces,
we consider freckles and green eyes as the target features. The validation is done in the following
way: we generate 100 images with pre-trained model and 100 images with fine-tuned model and ask
LLM-as-a-judge (Zheng et al., 2023) to score each set. To properly score the generated images, we
use the two-metric scoring system: basic metrics and draw resolution. That is, image score is based
on the explicit presence of target attributes, and priority is given to images with neutral backgrounds
or without artificial colour distortion (see the corresponding prompts in Appendix C).

We fine-tune U-Net of Stable Diffusion using MajorityVote-CompSGD for T = 80 iterations with
Mk = 3 and cosine annealing learning rate schedule with γmax = 0.05. We choose between two
generated images using Gemini-2.0-flash (see the corresponding prompt in Appendix C).

As a result, we observe that pre-trained model achieves 32/100 notional units, while our fine-tuned
model scores 84/100, indicating that even with that simple procedure it is possible to add significant
features to the models output. We also provide corresponding images in Figure 2.

Figure 2: The images generated by the pre-trained model (left) and fine-tuned model (right).
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A THEORETICAL DETAILS AND PROOFS

A.1 (L0, L1)-SMOOTHNESS

Standard L-smoothness assumes that the gradient of a function is globally Lipschitz continuous.
However, this condition can be too restrictive in practice. Many functions arising in optimization,
especially in Machine Learning and statistics, either do not satisfy L-smoothness or satisfy it with a
very large constant L0, leading to overly pessimistic theoretical guarantees. (L0, L1)-smoothness
(Assumption 2) is weaker than L-smoothness and allows finer control over the smoothness behavior
of functions with rapidly growing curvature in regions where the gradient is large.

Importantly, many functions satisfy (L0, L1)-smoothness with significantly smaller constants L0 and
L1 compared to the L required for global Lipschitz smoothness. As a result, optimization algorithms
tailored for (L0, L1)-smooth functions can achieve better convergence guarantees, especially in
settings involving large gradients or heavy-tailed noise. The examples of practically used (L0, L1)-
smooth functions include:
Example 1 (Power of Norm). Let f(x) = ∥x∥2n, where n is a positive integer. Then, f(x) is convex
and (2n, 2n− 1)-smooth. Moreover, f(x) is not L-smooth for n ≥ 2 and any L ≥ 0.
Example 2 (Exponent of the Inner Product). Function f(x) = exp(a⊤x) for some a ∈ Rd is convex,
(0, ∥a∥)-smooth, but not L-smooth for a ̸= 0 and any L ≥ 0.

Example 3 (Logistic Function). Consider logistic function: f(x) = log
(
1 + exp(−a⊤x)

)
, where

a ∈ Rd is some vector. It is known that this function is L-smooth and convex with L = ∥a∥2. However,
one can show that f is also (L0, L1)-smooth with L0 = 0 and L1 = ∥a∥. For ∥a∥ ≫ 1, both L0 and
L1 are much smaller than L.
Example 4 (Quadratic Function with Linear Term.). Let f(x) = 1

2x
⊤Ax+ b⊤x, where A ∈ Rd×d is

symmetric positive semi-definite, and b ∈ Rd. Then f is convex and (L0, 0)-smooth with L0 = ∥A∥.
This function is also L-smooth with the same L, but here (L1 = 0) shows the gradient is Lipschitz
regardless of gradient size.

The condition of (L0, L1)-smoothness from Assumption 2 can be formulated in terms of inequalities
without sup operator, similar to the case of standard smoothness.
Lemma 2 ((L0, L1)-Smoothness properties. (Gorbunov et al., 2024)). For (L0, L1)-smooth function
f and x, y ∈ Rd, it holds

∥∇f(x)−∇f(y)∥2 ≤ (L0 + L1∥∇f(y)∥2) exp(L1∥x− y∥2)∥x− y∥2,

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L0 + L1∥∇f(x)∥2
2

exp(L1∥x− y∥2)∥x− y∥22. (9)

A.2 TECHNICAL LEMMAS AND PROPOSITIONS

We use the following facts from the linear algebra and convex analysis (Boyd, 2004):
Proposition 1 (Norm Relation). For two norms ℓp and ℓq with 1 ≤ p ≤ q ≤ 2, the following relation
holds true:

∥x∥q ≤ ∥x∥p ≤ d
1
p−

1
q ∥x∥q, ∀x ∈ Rd. (10)

Proposition 2 (Jensen’s Inequality). For scalar random variable ξ with bounded κ-th moment
κ ∈ (1, 2], the following inequality holds true:

E[|ξ|] ≤ (E[|ξ|κ])
1
κ . (11)

Proposition 3 (Markov’s Inequality). For scalar random variable ξ with bounded first moment, the
following inequality holds true for any a > 0:

P(|ξ − E[ξ]]| ≥ a) ≤ E[|ξ|]
a

. (12)

To prove the HP bounds with the logarithmic dependence, we use the following measure concentration
result (see, for example, (Li & Orabona, 2020, Lemma 1).
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Lemma 3 (Measure Concentration Lemma). Let {Dk}Tk=1 be a martingale difference sequence
(MDS), i.e., E[Dk|Dk−1, . . . , D1] = 0 for all k ∈ 1, T . Furthermore, for each k ∈ 1, T , there exists

positive σk ∈ R, s.t. E
[
exp

(
D2

k

σ2
k

)
|k
]
≤ e. Then the following probability bound holds true:

∀λ > 0, δ ∈ (0, 1) : P

(
T∑

k=1

Dk ≤ 3

4
λ

T∑
k=1

σ2
k +

1

λ
log(1/δ)

)
≥ 1− δ. (13)

To control error reduction during batching, we use the following batching lemma for HT variables.
Its modern proof for d = 1 was proposed in (Cherapanamjeri et al., 2022, Lemma 4.2) and then
generalized for the multidimensional case in (Kornilov et al., 2024; Hübler et al., 2024).
Lemma 4 (HT Batching Lemma). Let κ ∈ (1, 2], and X1, . . . , XB ∈ Rd be a martingale difference
sequence (MDS), i.e., E[Xi|Xi−1, . . . , X1] = 0 for all i ∈ 1, B. If all variables Xi have bounded
κ−th moment, i.e., E[∥Xi∥κ2 ] < +∞, then the following bound holds true

E

[∣∣∣∣∣
∣∣∣∣∣ 1B

B∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
κ

2

]
≤ 2

Bκ

B∑
i=1

E[∥Xi∥κ2 ]. (14)

A.3 PROOF OF CompSGD CONVERGENCE LEMMA 1

Proof. Consider the k-th step of CompSGD. We use smoothness of function f (Lemma 2) to
estimate:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥2
2

exp(L1∥xk+1 − xk∥2)∥xk+1 − xk∥22

= −γk · sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) · ⟨∇f(xk), ek⟩

+
L0 + L1∥∇f(xk)∥2

2
exp(γkL1∥ek∥2)γ2k∥ek∥22

As.4
≤ −γk

sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) · ⟨∇f(xk), ek⟩
∥∇f(xk)∥p

· ∥∇f(xk)∥p

+
L0 + L1∥∇f(xk)∥2

2
exp(γkL1)γ

2
k.

Let us choose γk ≤ 1
4L1

≤ αp

4L1
, then we have L1γk exp(L1γk) ≤ αp

4 and ∥∇f(xk)∥2 ≤
∥∇f(xk)∥p:

f(xk+1)− f(xk) ≤ −γk
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

∥∇f(xk)∥p
· ∥∇f(xk)∥p

+
L0γ

2
k

2
+
αpγk∥∇f(xk)∥p

8
. (15)

Consequently, after summing T steps, we obtain

T∑
k=1

γk

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

∥∇f(xk)∥p
− αp

8

]
· ∥∇f(xk)∥p ≤

f(x1)− f(x∗)︸ ︷︷ ︸
=∆

+
L0

2

T∑
k=1

γ2k. (16)

Next, we deal with terms ϕk :=
sign(f(xk+γke

k,ξk+)−f(xk−γke
k,ξk−))·⟨∇f(xk),ek⟩

∥∇f(xk)∥p
, ψk := E[ϕk|xk] and

Dk := −γk(ϕk −ψk)∥∇f(xk)∥p. The terms ϕk are bounded with |ϕk| ≤ 1 due to Cauchy–Schwarz
inequality :

|ϕk| =
|sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩|

∥∇f(xk)∥p
≤ |⟨∇f(xk), ek⟩|

∥∇f(xk)∥p
≤ ∥ek∥q

As.4
≤ 1.
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We note that Dk is a martingale difference sequence (E[Dk|Dk−1, . . . , D1] = 0) satisfying the
inequality

exp

(
D2

k

4γ2k∥∇f(xk)∥2p

)
= exp

(
(ϕk − ψk)

2

4

)
≤ e.

Applying Measure Concentration Lemma 3 to the sequenceDk with σ2
k = 4γ2k∥∇f(xk)∥2p, we derive

the bound for all λ > 0 with probability at least 1− δ :

T∑
k=1

γk

(
ψk − 3λγk∥∇f(xk)∥p −

αp

8

)
∥∇f(xk)∥p ≤ ∆+

L0

2

T∑
k=1

γ2k +
1

λ
log(1/δ)

We use norm relation (10) and (L0, L1)-smoothness (Lemma 2) to estimate maximum gradient norm
for all k ∈ 2, T + 1 :

∥∇f(xk)∥p/d
1
p−

1
2 ≤ ∥∇f(xk)∥2 ≤ ∥∇f(xk)−∇f(xk−1) +∇f(xk−1)∥2

≤ ∥∇f(xk)−∇f(xk−1)∥2 + ∥∇f(xk−1)∥2
≤ (L0 + L1∥∇f(xk−1)∥2) exp(L1∥xk − xk−1∥2)∥xk − xk−1∥2 + ∥∇f(xk−1)∥2
≤ (L0 + L1∥∇f(xk−1)∥2) exp(L1γk)γk + ∥∇f(xk−1)∥2.

At this point, we take γk ≤ α2
p

48L1d
1
p
− 1

2 log 1
δ

to obtain

∥∇f(xk)∥p/d
1
p−

1
2 ≤ 2L0γk +

α2
p∥∇f(xk−1)∥2
48d

1
p−

1
2 log 1

δ

+ ∥∇f(xk−1)∥2

≤ 2L0

k−1∑
τ=1

γτ +

k−1∑
τ=1

α2
p∥∇f(xτ )∥2

48d
1
p−

1
2 log 1

δ

+ ∥∇f(x1)∥2

≤ 2L0

k−1∑
τ=1

γτ +

k−1∑
τ=1

α2
p∥∇f(xτ )∥p

48d
1
p−

1
2 log 1

δ

+ ∥∇f(x1)∥p,

γk∥∇f(xk)∥p ≤ 2L0d
1
p−

1
2 · γk

k−1∑
τ=1

γτ + γk

k−1∑
τ=1

α2
p∥∇f(xτ )∥p
48 log 1

δ

+ d
1
p−

1
2 γk∥∇f(x1)∥p.

Since stepsizes γk are non-increasing, we have

γk

k−1∑
τ=1

α2
p∥∇f(xτ )∥p
48 log 1

δ

≤
k−1∑
τ=1

γτα
2
p∥∇f(xτ )∥p
48 log 1

δ

,

γk∥∇f(xk)∥p ≤ 2L0d
1
p−

1
2 · γk

k−1∑
τ=1

γτ +

k−1∑
τ=1

γτα
2
p∥∇f(xτ )∥p
48 log 1

δ

+ d
1
p−

1
2 γk∥∇f(x1)∥p.

Hence, the choice λ :=
αp

6d
1
p
− 1

2 (γ1∥∇f(x1)∥p+
∑k−1

τ=1

α2
pγτ∥∇f(xτ )∥p

48d
1
p
− 1

2 log 1
δ

+CTL0)
yields with probability at

least 1− δ:
T∑

k=1

γk

(
ψk − αp

2
− αp

8
− αp

8

)
∥∇f(xk)∥p ≤ ∆+

L0

2

T∑
k=1

γ2k +
6d

1
p−

1
2

αp
(γ1∥∇f(x1)∥2 + CTL0) log(1/δ), (17)

where CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ and γ1 := max
k∈1,T

γk. Next, we estimate the term ψk∥∇f(xk)∥p:

Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
= Eek |⟨∇f(xk), ek⟩|

− Eek

[
2 · Pξ

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)

]
· |⟨∇f(xk), ek⟩|

]
.

We consider two cases to deal with probability over ξ: |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8
and |⟨∇f(xk), ek⟩| ≤ 2γkL0 + αp∥∇f(xk)∥p/8.
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Case |⟨∇f(xk), ek⟩| ≤ 2γkL0 + αp∥∇f(xk)∥p/8:
Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
≥ −Eek [|⟨∇f(xk), ek⟩|]

≥ Eek [|⟨∇f(xk), ek⟩|]− 4γkL0 − αp
∥∇f(xk)∥p

8

As. 4
≥ 7αp

8
∥∇f(xk)∥p − 4γkL0.

Case |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8:

We change sign operators to equivalent ones denoting θk+ := f(xk + γke
k, ξk+)− f(xk + γke

k) and
θk− := f(xk − γke

k, ξk−)− f(xk − γke
k):

sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)
⇕

sign(f(xk + γke
k)− f(xk − γke

k) + θk+ − θk−) ̸= sign(2γk · ⟨∇f(xk), ek⟩).
Further, we can bound probability by considering larger number of cases:
Pξ

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)

]
(18)

= Pξ

[
sign(f(xk + γke

k)− f(xk − γke
k) + θk+ − θk−) ̸= sign(2γk · ⟨∇f(xk), ek⟩)

]
≤ Pξ

[
|f(xk + γke

k)− f(xk − γke
k) + θk+ − θk− − 2γk · ⟨∇f(xk), ek⟩| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
|f(xk + γke

k)− f(xk − γke
k)− 2γk · ⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
.

We apply Smoothness Lemma 2 and choose γk ≤ αp

8L1
to bound the term:

|f(xk + γke
k)− f(xk − γke

k)− 2γk · ⟨∇f(xk), ek⟩| ≤ 2 · L0 + L1∥∇f(xk)∥2
2

exp(L1γk∥ek∥2)γ2k∥ek∥22

≤ 2L0γ
2
k + αp∥∇f(xk)∥pγk/8.

We continue to estimate the probability:
Pξ

[
|f(xk + γke

k)− f(xk − γke
k)− 2γk · ⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
2L0γ

2
k + γkαp∥∇f(xk)∥p/4 + |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
. (19)

Since we consider the case |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8, we bound

(19) ≤ Pξ

[
γk · |⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
|θk+ − θk−| ≥ γk · |⟨∇f(xk), ek⟩|

]
Markov ineq.(12):

≤
Eξ[|θk+ − θk−|]

γk · |⟨∇f(xk), ek⟩|
. (20)

In case of independent noise, Eξ[|θk+ − θk−|] is simply bounded by the constant σk and σ̃k = σk. In
case of Lipschitz noise, Eξ[|θk+ − θk−|] ≤ σk∥2γkek∥2 = 2σkγk and σ̃k = 2σkγk. Finally, we obtain
the bound

Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
≥ Eek |⟨∇f(xk), ek⟩| − 4σ̃k

γk
As. 4
≥ αp∥∇f(xk)∥p −

4σ̃k
γk

.

Combining two cases together, we get that ψk∥∇f(xk)∥p ≥ 7αp

8 ∥∇f(xk)∥p − 4γkL0 − 4σ̃k

γk
, and

the bound follows from (17)

1

8

T∑
k=1

γk∥∇f(xk)∥p ≤ ∆

αp
+

L0

2αp

T∑
k=1

γ2k +

T∑
k=1

γk · 4L0γk
αp

+ 4

T∑
k=1

σ̃k
αp

+
6d

1
p−

1
2

α2
p

(γ1∥∇f(x1)∥p + CTL0) log(1/δ).

Thus,we obtain the desired bound:

αp

8

T∑
k=1

γk∥∇f(xk)∥p ≤ ∆+ 8L0

T∑
k=1

γ2k + 4

T∑
k=1

σ̃k +
6d

1
p−

1
2

αp
(γ1∥∇f(x1)∥p + CTL0) log(

1

δ
).
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1038
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A.4 PROOF OF minibatch-CompSGD COMPLEXITY THEOREM 2, INDEPENDENT NOISE

Proof. Due to Batching Lemma 4, we can estimate the κ−th moment of the batched estimate by:

σk ≤ 2σ

B
κ−1
κ

k

.

We start with CompSGD Convergence Lemma 1. Plugging in constant stepsizes and batchsizes
γk ≡ γ, CT = Tγ2, γ1 = γ and dividing both sides by αpTγ

8 yields the bound:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8∆

Tαpγ
+ 64d

1
p−

1
2
L0γ

α2
p

log(1/δ) +
32σ

αpγB
κ−1
κ

+
48d

1
p−

1
2 ∥∇f(x1)∥2
Tα2

p

log(
1

δ
).

(21)
The T dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence and prove convergence bounds
for parameter-free tuning.

Optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

α2
p

48d
1
p
− 1

2 Lδ
1

, we bound the term:

64d
1
p−

1
2
Lδ
0γ

α2
p

≤ 64

48

L0

L1
≤ ε

2
.

The bound (21) becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 512Lδ
1d

1
p−

1
2

α3
p

[
∆

T
+

4σ

B
κ−1
κ

]
+
ε

2
.

Choosing B such that 4σ

∆B
κ−1
κ

≤ 1
T ⇒ B = max

{
1,
(
4σT
∆

) κ
κ−1

}
, we only need to bound

1024Lδ
1d

1
p−

1
2

α3
p

∆

T
≤ ε

2
⇒ T = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

)
.

The final sample complexity is

N = T ·B = O

∆Lδ
1d

1
p−

1
2

α3
pε

1 +(σLδ
1d

1
p−

1
2

α3
pε

) κ
κ−1

 .

Optimal tuning, ε ≤ 4L0

L1
: Choosing B such that 4σ

∆B
κ−1
κ

≤ 1
T ⇒ B = max

{
1,
(
4σT
∆

) κ
κ−1

}
, we

transform the bound (21) into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

≤ ε.

Using γ =
√

∆αp

32TLδ
0d

1
p
− 1

2
, we obtain

2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

= 16

√
∆Lδ

0d
1
p−

1
2

α3
pT

≤ ε.

Hence, required number of iterations T = O

(
∆Lδ

0d
1
p
− 1

2

α3
pε

2

)
and the final comparison complexity is

N = T ·B = O

∆Lδ
0d

1
p−

1
2

α3
pε

2

1 +(σLδ
0d

1
p−

1
2

α3
pε

2

) κ
κ−1

 .

We also notice that γ =
√

∆

32TLδ
0d

1
p
− 1

2
≤ αp

48d
1
p
− 1

2 Lδ
1

for this number of iterations and ε ≤ 4L0

L1
.
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A.5 PROOF OF minibatch-CompSGD COMPLEXITY THEOREM 2, LIPSCHITZ NOISE

The proof of Theorem 2 in case of Lipschitz noise is divided into two parts: for finite horizon with
optimal tuning below and for infinite horizon with parameter-free tuning (Theorem 3).

Proof. Due to Batching Lemma 4, we can estimate the κ−th moment of the batched estimate by:

σk ≤ 2σ

B
κ−1
κ

k

.

We start with CompSGD Convergence Lemma 1. Plugging in constant stepsizes and batchsizes
γk ≡ γ, CT = Tγ2, γ1 = γ and dividing both sides by αpTγ

8 yields the bound:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8∆

Tαpγ
+ 64d

1
p−

1
2
L0γ

α2
p

log(1/δ) +
32σ

αpB
κ−1
κ

+
48d

1
p−

1
2 ∥∇f(x1)∥2
Tα2

p

log(
1

δ
).

(22)
The T dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence.

Optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

α2
p

48d
1
p
− 1

2 Lδ
1

, we bound the term:

64d
1
p−

1
2
Lδ
0γ

α2
p

≤ 64

48

L0

L1
≤ ε

2
.

The bound (22) becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 512Lδ
1d

1
p−

1
2

α3
p

∆

T
+

4σ

αpB
κ−1
κ

+
ε

2
.

Choosing B such that 4σ

αpB
κ−1
κ

≤ ε/4 ⇒ B = max

{
1,
(

16σ
αpε

) κ
κ−1

}
, we only need to bound

512Lδ
1d

1
p−

1
2

α3
p

∆

T
≤ ε

4
⇒ T = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

)
.

The final sample complexity is

N = T ·B = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

[
1 +

(
σ

αpε

) κ
κ−1

])
.

Optimal tuning, ε ≤ 4L0

L1
: Choosing B such that 4σ

αpB
κ−1
κ

≤ ε/4 ⇒ B = max

{
1,
(

16σ
αpε

) κ
κ−1

}
,

we transform the bound (22) into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

≤ ε.

Using γ =
√

∆

32TLδ
0d

1
p
− 1

2
, we obtain

2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

= 16

√
∆Lδ

0d
1
p−

1
2

α3
pT

≤ ε.

Hence, required number of iterations T = O

(
∆Lδ

0d
1
p
− 1

2

α3
pε

2

)
and the final comparison complexity is

N = T ·B = O

(
∆Lδ

0d
1
p−

1
2

α3
pε

2

[
1 +

(
σ

αpε

) κ
κ−1

])
.

We also notice that γ =
√

∆

32TLδ
0d

1
p
− 1

2
≤ α2

p

48d
1
p
− 1

2 Lδ
1

for this number of iterations and ε ≤ 4L0

L1
.
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Theorem 3 (HP complexity for minibatch-CompSGD, infinite horizon, Lipschitz noise). Con-
sider lower-bounded (L0, L1)-smooth function f (As. 1, 2) and HT Lipschitz function estimates
κ ∈ (1, 2] (As. 3). Then Alg. 3 requires the sample complexity N to achieve min

k∈1,T
∥∇f(xk)∥p ≤ ε

with probability at least 1− δ:

Parameter-free tuning: Until plateau Bk = B0k
2, γk = γ0 ≤ α2

p

48Lδ,p
1

and after Bk = B0k, γk =

γ0/
√
k :

ε ≥ 4L0

L1
⇒ N = Õ

(
B0

(
∆

γ0αpε

)3

+
1

B2
0

(
σ

αpε

) 3κ
2(κ−1)

)
,

ε≪ 4L0

L1
⇒ N = Õ

(
B0(L

δ,p
0 γ0 +∆/γ0)

4

α8
pε

4
+

1

B0

(
σ

αpε

) 2κ
κ−1

)
,

where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log(1/δ), Lδ,p

1 = L1d
1
p−

1
2 log(1/δ).

Proof. First, we derive upper bound for new min metric with non-constant parameters from the
bound (6) from Convergence Lemma 1:

min
k∈1,T

∥∇f(xk)∥p ≤

T∑
k=1

γk∥∇f(xk)∥p

T∑
k=1

γk

=
8∆

αp

T∑
k=1

γk

+ 64L0

T∑
k=1

γ2k

αp

T∑
k=1

γk

+

32
T∑

k=1

σγk/B
κ−1
κ

k

αp

T∑
k=1

γk

+
48d

1
p−

1
2

αp
(γ1∥∇f(x1)∥1 + 2CTL0)

log(1/δ)

αp

T∑
k=1

γk

.

Parameter-free tuning, ε ≥ 4L0

L1
: If we consider only first T steps until plateau 4L0

L1
, we use constant

stepsizes γk = γ0 ≤ α2
p

48Lδ,p
1

and increasing batchsizes Bk = B0k
2 to get

T∑
k=1

γk = Tγ0,

T∑
k=1

γ2k = Tγ20 , γ1 = γ0, CT = Tγ0,

T∑
k=1

γ0

B
κ−1
κ

k

=

T∑
k=1

γ0

(
√
B0k)

2(κ−1)
κ

≤ γ0T
2−κ
κ lnT

B
κ−1
κ

0

,

min
k∈1,T

∥∇f(xk)∥p ≤ 8∆

αpγ0T
+

64Lδ,p
0 γ0
α2
p

+
32σ

αp(T
√
B0)

2(κ−1)
κ

lnT ≤ ε.

The term 64Lδ,p
0 γ0

α2
p

≤ ε
16 is bounded by condition, and the number of iterations T =

Õ

((
∆

γ0αpε

)
+ 1√

B0

(
σ

αpε

) κ
2(κ−1)

)
is enough to bound the other terms. The total sample com-

plexity is

T∑
k=1

Bk =

T∑
k=1

B0k
2 ≤ B0T

3 = Õ

(
B0

(
∆

γ0αpε

)3

+
1√
B0

(
σ

αpε

) 3κ
2(κ−1)

)
.
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Case ε ≪ 4L0

L1
, parameter-free tuning. In this case, the first steps can be neglected, as we use

decreasing stepsizes γk = γ0√
k

and increasing batchsizes Bk = B0k to get

T∑
k=1

γk = γ0
√
T ,

T∑
k=1

γ2k = γ20 lnT, γ1 = γ0, CT = γ20 ,

T∑
k=1

γk

B
κ−1
κ

k

=
γ0

B
κ−1
κ

0

T∑
k=1

1

k
3κ−2
2κ

≤ γ0

B
κ−1
κ

0

T
2−κ
2κ lnT,

min
k∈1,T

∥∇f(xk)∥p ≤ 8∆

αpγ0
√
T

+ 64Lδ,p
0 γ0

lnT

α2
p

√
T

+
32σ lnT

αpB
κ−1
κ

0 T
κ−1
κ

≤ ε.

Hence, the number of iterations T = Õ

(
(Lδ,p

0 γ0+∆/γ0)
2

α4
pε

2 + 1
B0

(
σ

αpε

) κ
κ−1

)
is enough to bound the

sum. The total sample complexity is
T∑

k=1

Bk =

T∑
k=1

B0k ≤ B0T
2 = Õ

(
B0(L

δ,p
0 γ0 +∆/γ0)

4

α8
pε

4
+

1

B0

(
σ

αpε

) 2κ
κ−1

)
. (23)

A.6 PROOF OF MajorityVote-CompSGD COMPLEXITY THEOREM 1, INDEPENDENT NOISE

We start the proof with the general lemma on convergence of MajorityVote-CompSGD. The proof
of Theorem 1 in case of independent noise is located after the lemma and divided into two parts: for
finite horizon with optimal tuning and for infinite horizon with parameter-free tuning (Theorem 4).
Lemma 5 (MajorityVote-CompSGD Convergence Lemma). Consider lower-bounded (L0, L1)-
smooth function f (As. 1, 2), random directions (As. 4) and function estimates with HT, unimodal
and symmetric noise κ > 0 (As. 3). Then Alg. 2 after T iterations with non-increasing stepsizes
γk ≤ α2

p/(48L1d
1
p
− 1

2 log 1
δ ) and batchsize Mk ≥ 160/κ2 achieves with probability at least 1 − δ

starting with ∆ := f(x1)− f∗:

αp

8

T∑
k=1

γk∥∇f(xk)∥p ≤ 8∆+64L0

T∑
k=1

γ2k+32

T∑
k=1

σ̃k√
Mk

+48
d

1
p−

1
2

αp
(γ1∥∇f(x1)∥p+CTL0) log(

1

δ
),

(24)

where σ̃k = σ for independent noise and σ̃k = γkσ for Lipschitz noise, CT := max
k∈1,T

γk ·
k−1∑
τ=1

γτ .

Proof. The beginning of the proof copies the proof of CompSGD Convergence Lemma 1 from
Appendix A.3 until the line (38) where we now need to estimate probability

Pξ

[
sign

[
M∑
i=1

sign(f(xk + γke
k, ξki,+)− f(xk − γke

k, ξki,−))

]
̸= sign(⟨∇f(xk), ek⟩)

]
= (∗).

Each comparison sign(f(xk+γke
k, ξki,+)−f(xk−γkek, ξki,−)) ̸= sign(⟨∇f(xk), ek⟩) is a Bernoulli

trial with failure probability (40):

Pξ

[
sign(f(xk + γke

k, ξki,+)− f(xk − γke
k, ξki,−)) ̸= sign(⟨∇f(xk), ek⟩

]
≤ Pξ

[
|θki,+ − θki,−| ≥ γk · |⟨∇f(xk), ek⟩|

]
.

The rhs probability can be estimated using Gauss inequality for unimodal symmetric noise θki,+−θki,−
by the generalized Gauss’s Inequality(Dharmadhikari & Joag-Dev, 1986, Theorem 1).

Lemma 6 (Gauss’s Inequality). Let a random variable ξ be unimodal symmetric with mode ν and
bounded κ-th moment, κ > 0. Then the following bounds hold:

P [|ξ − ν| ≥ τ ] ≤


(

κ
κ+1

)κ E[|ξ−ν|]κ
τκ , τκ ≥ κκ

(κ+1)κ−1 · E[|ξ − ν|κ],

1−
[

τκ

(κ+1)E[|ξ−ν|]κ

] 1
κ

, τκ ≤ κκ

(κ+1)κ−1 · E[|ξ − ν|κ].
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We denote S = γk|⟨∇f(xk),ek⟩|
2σ̃k

, q := Pξ

[
|θki,+ − θki,−| ≥ γk · |⟨∇f(xk), ek⟩|

]
and estimate

q = Pξ

[
|θki,+ − θki,−| ≥ γk · |⟨∇f(xk), ek⟩|

]
≤


1
2

(
κ

κ+1

)κ
1
Sκ , Sκ ≥ κκ

(κ+1)κ−1 ,
1
2 − 1

2
S

(κ+1)
1
κ
, Sκ ≤ κκ

(κ+1)κ−1 .

We denote probability of failure of a single estimate by

q ≤


1
2

(
κ

κ+1

)κ
1
Sκ , Sκ ≥ κκ

(κ+1)κ−1 ,
1
2 − 1

2
S

(κ+1)
1
κ
, Sκ ≤ κκ

(κ+1)κ−1 ,
=: q̃(S).

Moreover, probability q ≤ q̃(S) < 1
2 , and the deviation of q from 1

2 can be bounded by

ε :=
1

2
− q ≤ 1

2
− q̃(S) =: ε̃(S).

The probability of getting the wrong sign can be restated as the probability of failing half out of Mk

Bernoulli trials with fail probability qj :

(∗) ≤ 1

1 + Mk
1

4ε2
−1

<
1

1 + Mk
1

4ε̃2(S)
−1

. (25)

• First, we consider the case S ≥ κ

(κ+1)
κ−1
κ

:

ε̃2(S) =

(
1

2
− 1

2

(
κ

κ+ 1

)κ
1

Sκ

)2

≥ 1

4

κ2

(κ+ 1)2
,

1

4ε̃2(S)
− 1 ≤ (κ+ 1)2

κ2
− 1 ≤ 5

κ2
.

If we set Mk ≥ 160
κ2 , then the fail probability is upper bounded by

(∗) < 1

1 + Mk
1

4ε̃2(S)
−1

≤ 1

32
. (26)

• For the case S < κ

(κ+1)
κ−1
κ

, we derive the bound:

1

4ε̃2(S)
− 1 =

(κ+ 1)
2
κ

S2
− 1 ≤ 4

S2
. (27)

And we use the inequality 1
1+x2 ≤ 1

2x , x > 0 on (25):

(25) ≤

√
1

4ε̃2(S) − 1

2
√
Mk

≤ 1√
Mk

· 1
S
. (28)

Combining (26) and (28) together, we obtain the bound for each coordinate:

Pξ

[
sign(f(xk + γke

k, ξki,+)− f(xk − γke
k, ξki,−)) ̸= sign(⟨∇f(xk), ek⟩

]
≤ 1

32
+

1√
Mk

· 1

Sj
=

1

32
+

1√
Mk

2σ̃k
γk|⟨∇f(xk), ek⟩|

. (29)

The rest of the proof copies the proof of CompSGD Convergence Lemma 1 from Appendix A.3
with substitution σ̃k → σ̃k√

Mk
, and in the end we obtain the bound:

αp

8

T∑
k=1

γk∥∇f(xk)∥p ≤ 8∆+64L0

T∑
k=1

γ2k+32

T∑
k=1

σ̃k√
Mk

+48
d

1
p−

1
2

αp
(γ1∥∇f(x1)∥p+CTL0) log(

1

δ
).
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Proof of MajorityVote-CompSGD Complexity Theorem 1, independent noise. Plugging in con-
stant stepsizes and batchsizes γk ≡ γ, CT = Tγ2, γ1 = γ in the convergence bound (24) from
Convergence Lemma 5 and dividing both sides by αpTγ

8 , we obtain the bound for independent noise:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8∆

Tαpγ
+ 64d

1
p−

1
2
L0γ

α2
p

log(1/δ) +
32σ

αpγ
√
M

+
48d

1
p−

1
2 ∥∇f(x1)∥2
Tα2

p

log(
1

δ
).

(30)

Optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

α2
p

48d
1
p
− 1

2 Lδ
1

, we bound the term:

64d
1
p−

1
2
Lδ
0γ

α2
p

≤ 64

48

L0

L1
≤ 3ε

2
.

The bound (30) becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 512Lδ
1d

1
p−

1
2

α3
p

[
∆

T
+

4σ√
M

]
+

3ε

2
.

Choosing M such that 4σ
∆
√
M

≤ 1
T ⇒M = max

{
160
κ2 ,

(
4σT
∆

)2}
, we only need to bound

1024Lδ
1d

1
p−

1
2

α3
p

∆

T
≤ ε

2
⇒ T = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

)
.

The final sample complexity is

N = T ·M =
∆Lδ

1d
1
p−

1
2

α3
pε

 1

κ2
+

(
σLδ

1d
1
p−

1
2

α3
pε

)2
 .

Optimal tuning, ε ≤ 4L0

L1
: Choosing M such that 4σ

∆
√
M

≤ 1
T ⇒ M = max

{
160
κ2 ,

(
4σT
∆

)2}
, we

transform the bound (30) into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

≤ ε.

Using γ =
√

αp∆

32TLδ
0d

1
p
− 1

2
, we obtain

2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

= 16

√
∆Lδ

0d
1
p−

1
2

α3
pT

≤ ε.

Hence, required number of iterations T = O

(
∆Lδ

0d
1
p
− 1

2

α3
pε

2

)
and the final comparison complexity is

N = T ·M =
∆Lδ

0d
1
p−

1
2

α3
pε

2

 1

κ2
+

(
σLδ

0d
1
p−

1
2

α3
pε

2

)2
 .

We also notice that γ =
√

αp∆

32TLδ
0d

1
p
− 1

2
≤ α2

p

48d
1
p
− 1

2 Lδ
1

for this number of iterations and ε ≤ 4L0

L1
.

Theorem 4 (HP complexity for MajorityVote-CompSGD, infinite horizon, independent noise).
Consider lower-bounded (L0, L1)-smooth function f (As. 1, 2) and HT function estimates corrupted
by independent, unimodal and symmetric HT noise with κ > 0 (As. 3). Then Alg. 2 requires the
sample complexity N to achieve min

k∈1,T
∥∇f(xk)∥p ≤ ε with probability at least 1− δ for:
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Parameter-free tuning: Mk =M0(k/κ)
2, γk = γ0 ≤ α2

p

48Lδ,p
1

until plateau γk = γ0√
k

after:

ε ≥ 4L0

L1
⇒ N = Õ

(
M0(L

δ,p
1 (∆ + σ/

√
M0))

3

α3
pκ

2ε3

)
,

ε≪ 4L0

L1
⇒ N = Õ

M0

κ2

(
(∆ + σ/

√
M0)/γ0 + Lδ,p

0 γ0
α2
pε

)6
 .

where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log(1/δ), Lδ,p

1 = L1d
1
p−

1
2 log(1/δ).

Proof. First, we derive upper bound for new min metric with non-constant parameters from (24):

min
k∈1,T

∥∇f(xk)∥p ≤

T∑
k=1

γk∥∇f(xk)∥p

T∑
k=1

γk

=
8∆

αp

T∑
k=1

γk

+ 64L0

T∑
k=1

γ2k

αp

T∑
k=1

γk

+

32
T∑

k=1

σ/
√
Mk

αp

T∑
k=1

γk

+ 6d
1
p−

1
2 (γ1∥∇f(x1)∥1 + 2CTL0)

log(1/δ)

α2
p

T∑
k=1

γk

.

Parameter-free tuning, ε ≥ 4L0

L1
: If we consider only first T steps until plateau 4L0

L1
, we use constant

stepsizes γk = γ0 ≤ α2
p

48Lδ,p
1

and increasing batchsizes Mk =M0(k/κ)
2 to get

T∑
k=1

γk = Tγ0,

T∑
k=1

γ2k = Tγ20 , γ1 = γ0, CT = Tγ0,

T∑
k=1

1√
Mk

=

T∑
k=1

κ√
M0k

≤ κ√
M0

lnT,

min
k∈1,T

∥∇f(xk)∥1 ≤ 8∆

αpγ0T
+

64Lδ,p
0 γ0
α2
p

+
32σ

αpγ0
√
M0T

κ lnT ≤ ε.

The term 64Lδ,p
0 γ0

α2
p

≤ ε
4 is bounded by condition, and the number of iterations T = Õ

(
(σ/

√
M0+∆)

αpγ0ε

)
is enough to bound the other terms. The total sample complexity is

T∑
k=1

Mk =

T∑
k=1

M0(k/κ)
2 ≤M0T

3/κ2 = Õ

(
M0

κ2

(
σ/

√
M0 +∆

αpγ0ε

)3
)
.

Parameter-free tuning, ε ≪ 4L0

L1
: In this case, the first steps can be neglected, since we use

decreasing stepsizes γk = γ0√
k

and increasing batchsizes Mk =M0(k/κ)
2 to get

T∑
k=1

γk = γ0
√
T ,

T∑
k=1

γ2k = γ20 lnT, γ1 = γ0, CT = γ20 ,

T∑
k=1

1√
Mk

=

T∑
k=1

κ√
M0k

≤ κ√
M0

lnT,

min
k∈1,T

∥∇f(xk)∥p ≤ 8∆

αpγ0
√
T

+ 64Lδ,p
0 γ0

lnT

α2
p

√
T

+
32κσ lnT

αpγ0
√
M0T

≤ ε.

Hence, the number of iterations T = Õ

((
(∆+σ/

√
M0)/γ0+Lδ,p

0 γ0

α2
pε

)2)
is enough to bound the sum.

The total sample complexity is
T∑

k=1

Mk =

T∑
k=1

M0(k/κ)
2 ≤M0T

3/κ2 = Õ

M0

κ2

(
(∆ + σ/

√
M0)/γ0 + Lδ,p

0 γ0
α2
pε

)6
 . (31)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

A.7 PROOF OF MajorityVote-CompSGD COMPLEXITY THEOREM 1, LIPSCHITZ NOISE

The proof of Theorem 1 in case of Lipschitz noise is divided into two parts: for finite horizon with
optimal tuning (Theorem 5) and for infinite horizon with parameter-free tuning (Theorem 6).
Theorem 5 (HP complexity for MajorityVote-CompSGD, finite horizon, Lipschitz noise). Con-
sider the lower-bounded (L0, L1)-smooth function f (As. 1, 2), random directions with αp (As. 4)
and function estimates with HT Lipschitz, unimodal and symmetric noise κ > 0 (As. 3). Then Alg. 2
requires comparison number N to achieve 1

T

∑T
k=1 ∥∇f(xk)∥p ≤ ε with probability at least 1− δ

for:

Optimal tuning: T = O
(

∆Lδ,p
1

α3
pε

)
, γk =

α2
p

48Lδ,p
1

,Mk = max

{
160
κ2 ,

(
128σ
αpε

)2}
for ε ≥ 4L0

L1
and

T = O
(

∆Lδ,p
0

α3
pε

2

)
, γk ≡

√
αp∆

32TLδ,p
0

,Mk = max

{
160
κ2 ,

(
128σ
αpε

)2}
for ε ≤ 4L0

L1
:

N = O

((
∆Lδ,p

1

α3
pε

+
∆Lδ,p

0

α3
pε

2

)[
1

κ2
+

σ2

α2
pε

2

])
, (32)

where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log( 1δ ), L

δ,p
1 = L1d

1
p−

1
2 log( 1δ ).

Proof. Plugging in constant stepsizes and batchsizes γk ≡ γ, CT = Tγ2, γ1 = γ in the convergence
bound (24) from Convergence Lemma 5 and dividing both sides by αpTγ

8 , we obtain the bound for
Lipschitz noise:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8∆

Tαpγ
+ 64d

1
p−

1
2
L0γ

α2
p

log(1/δ) +
32σ

αp

√
M

+
48d

1
p−

1
2 ∥∇f(x1)∥2
Tα2

p

log(
1

δ
).

(33)
The T dependence in the first three terms is dominant in comparison with the last term, hence, we
neglect it. Next, we pick optimal parameters for optimal convergence.

Optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

α2
p

48d
1
p
− 1

2 Lδ
1

, we bound the term:

64d
1
p−

1
2
Lδ
0γ

α2
p

≤ 64

48

L0

L1
≤ 3ε

2
.

The bound (33) becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 512Lδ
1d

1
p−

1
2

α3
p

∆

T
+

32σ

αp

√
M

+
ε

2
.

Choosing B such that 32σ
αp

√
M

≤ ε/4 ⇒M = max

{
160/κ2,

(
128σ
αpε

)2}
, we only need to bound

512Lδ
1d

1
p−

1
2

α3
p

∆

T
≤ ε

4
⇒ T = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

)
.

The final sample complexity is

N = T ·M = O

(
∆Lδ

1d
1
p−

1
2

α3
pε

[
1

κ2
+

(
σ

αpε

)2
])

.

Optimal tuning, ε ≤ 4L0

L1
: Choosing M such that 32σ

αp

√
M

≤ ε/4 ⇒ M =

max

{
160/κ2,

(
128σ
αpε

)2}
, we transform the bound (33) into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

≤ ε.
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Using γ =
√

αp∆

32TLδ
0d

1
p
− 1

2
, we obtain

2∆

Tαpγ
+ 64d

1
p−

1
2
Lδ
0γ

α2
p

= 16

√
∆Lδ

0d
1
p−

1
2

α2
pT

≤ ε.

Hence, required number of iterations T = O

(
∆Lδ

0d
1
p
− 1

2

α3
pε

2

)
and the final comparison complexity is

N = T ·M = O

(
∆Lδ

0d
1
p−

1
2

α3
pε

2

[
1

κ2
+

(
σ

αpε

)2
])

.

We also notice that γ =
√

αp∆

32TLδ
0d

1
p
− 1

2
≤ α2

p

48d
1
p
− 1

2 Lδ
1

for this number of iterations and ε ≤ 4L0

L1
.

Theorem 6 (HP complexity for MajorityVote-CompSGD, infinite horizon, Lipschitz noise).
Consider lower-bounded (L0, L1)-smooth function f (As. 1, 2) and HT, Lipschitz, unimodal,
symmetric function estimates κ > 0 (As. 3). Then Alg. 2 requires the sample complexity N to achieve
min
k∈1,T

∥∇f(xk)∥p ≤ ε with probability at least 1− δ:

Parameter-free tuning: Until plateau Mk = M0k
2/κ2, γk = γ0 ≤ α2

p

48Lδ,p
1

and after Mk =

M0k/κ
2, γk = γ0/

√
k :

ε ≥ 4L0

L1
⇒ N = Õ

(
M0

κ2

(
∆/γ0 + σ/

√
M0

αpε

)3
)
,

ε≪ 4L0

L1
⇒ N = Õ

(
M0(L

δ,p
0 γ0 +∆/γ0)

4

κ2α8
pε

4
+

1

κ2M0

(
σ

αpε

)4
)
,

where ∆ = f(x1)− f∗, Lδ,p
0 = L0d

1
p−

1
2 log(1/δ), Lδ,p

1 = L1d
1
p−

1
2 log(1/δ).

Proof. First, we derive upper bound for new min metric with non-constant parameters from (24):

min
k∈1,T

∥∇f(xk)∥p ≤

T∑
k=1

γk∥∇f(xk)∥p

T∑
k=1

γk

=
8∆

αp

T∑
k=1

γk

+ 64L0

T∑
k=1

γ2k

αp

T∑
k=1

γk

+

32
T∑

k=1

σγk/
√
Mk

αp

T∑
k=1

γk

+ 6d
1
p−

1
2 (γ1∥∇f(x1)∥1 + 2CTL0)

log(1/δ)

α2
p

T∑
k=1

γk

.

Parameter-free tuning, ε ≥ 4L0

L1
: If we consider only first T steps until plateau 4L0

L1
, we use constant

stepsizes γk = γ0 ≤ α2
p

48Lδ,p
1

and increasing batchsizes Mk =M0k
2 to get

T∑
k=1

γk = Tγ0,

T∑
k=1

γ2k = Tγ20 , γ1 = γ0, CT = Tγ0,

T∑
k=1

γ0√
Mk

=

T∑
k=1

κγ0√
M0k

≤ κγ0 lnT√
M0

,

min
k∈1,T

∥∇f(xk)∥p ≤ 8∆

αpγ0T
+

64Lδ,p
0 γ0
α2
p

+
32σ

αp(T
√
M0)

lnT ≤ ε.
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The term 64Lδ,p
0 γ0

α2
p

≤ ε
16 is bounded by condition, and the number of iterations T =

Õ
(

∆/γ0+σ/
√
M0

αpε

)
is enough to bound the other terms. The total sample complexity is

T∑
k=1

Mk =

T∑
k=1

M0

κ2
k2 ≤ M0

κ2
T 3 = Õ

(
M0

κ2

(
∆/γ0 + σ/

√
M0

αpε

)3
)
.

Case ε ≪ 4L0

L1
, parameter-free tuning. In this case, the first steps can be neglected, as we use

decreasing stepsizes γk = γ0√
k

and increasing batchsizes Mk =M0k/κ
2 to get

T∑
k=1

γk = γ0
√
T ,

T∑
k=1

γ2k = γ20 lnT, γ1 = γ0, CT = γ20 ,

T∑
k=1

γk√
Mk

=
κγ0√
M0

T∑
k=1

1

k
≤ κγ0√

M0

lnT,

min
k∈1,T

∥∇f(xk)∥p ≤ 8∆

αpγ0
√
T

+ 64Lδ,p
0 γ0

lnT

α2
p

√
T

+
32σ lnT

αp

√
M0T

≤ ε.

Hence, the number of iterations T = Õ

(
(Lδ,p

0 γ0+∆/γ0)
2

α4
pε

2 + 1
M0

(
σ

αpε

)2)
is enough to bound the

sum. The total sample complexity is

T∑
k=1

Mk =

T∑
k=1

M0

κ2
k ≤ M0

κ2
T 2 = Õ

(
M0(L

δ,p
0 γ0 +∆/γ0)

4

κ2α8
pε

4
+

1

κ2M0

(
σ

αpε

)4
)
. (34)

A.8 IN EXPECTATION CONVERGENCE OF minibatch-CompSGD

Theorem 7 (In expectation complexity for minibatch-CompSGD). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2), random directions (As. 4) and HT function estimates κ ∈ (1, 2]

(As. 3). Then Alg. 3 requires N function calls to achieve 1
T

∑T
k=1 E[∥∇f(xk)∥p] ≤ ε with

probability at least 1− δ starting with ∆ = f(x1)− f∗:

Optimal tuning, independent noise: T = O
(

∆L1

α2
pε

)
, γk =

αp

4L1
, Bk = max

{
1,
(
4σT
∆

) κ
κ−1

}
for

ε ≥ 4L0

L1
and T = O

(
∆L0

α2
pε

2

)
, γk =

√
∆

4TL0
, Bk = max

{
1,
(
4σT
∆

) κ
κ−1

}
for ε ≤ 4L0

L1

N = O

(
∆

α2
pε

(
L1 +

L0

ε

)[
1 +

(
σ

α2
pε

(
L1 +

L0

ε

)) κ
κ−1

])
,

Optimal tuning, Lipschitz noise: T = O
(

∆L1

α2
pε

)
, γk =

αp

4L1
, Bk = max

{
1,
(

32σ
αpε

) κ
κ−1

}
for

ε ≥ 4L0

L1
and T = O

(
∆L0

α2
pε

2

)
, γk =

√
∆

32TL0
, Bk = max

{
1,
(

32σ
αpε

) κ
κ−1

}
for ε ≤ 4L0

L1

N = O

(
∆

α2
pε

(
L1 +

L0

ε

)[
1 +

(
σ

αpε

) κ
κ−1

])
.
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Proof. Consider the k-th step of CompSGD. We use smoothness of function f (Lemma 2) to
estimate:

f(xk+1)− f(xk) ≤ ⟨∇f(xk), xk+1 − xk⟩+ L0 + L1∥∇f(xk)∥2
2

exp(L1∥xk+1 − xk∥2)∥xk+1 − xk∥22

= −γk · sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) · ⟨∇f(xk), ek⟩

+
L0 + L1∥∇f(xk)∥2

2
exp(γkL1∥ek∥2)γ2k∥ek∥22

As.4
≤ −γk

sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) · ⟨∇f(xk), ek⟩
∥∇f(xk)∥p

· ∥∇f(xk)∥p

+
L0 + L1∥∇f(xk)∥2

2
exp(γkL1)γ

2
k.

Let us choose γk ≤ 1
4L1

≤ αp

4L1
, then we have L1γk exp(L1γk) ≤ αp

4 and ∥∇f(xk)∥2 ≤
∥∇f(xk)∥p:

f(xk+1)− f(xk) ≤ −γk
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

∥∇f(xk)∥p
· ∥∇f(xk)∥p

+
L0γ

2
k

2
+
αpγk∥∇f(xk)∥p

8
. (35)

Consequently, after summing T steps, we obtain
T∑

k=1

γk

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

∥∇f(xk)∥p
− αp

8

]
· ∥∇f(xk)∥p ≤

f(x1)− f(x∗)︸ ︷︷ ︸
=∆

+
L0

2

T∑
k=1

γ2k. (36)

Taking math expectation from both sides, we obtain
T∑

k=1

γkEξ,ek [sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) · ⟨∇f(xk), ek⟩]−
αpγk
8

Eξ,ek [∥∇f(xk)∥p] ≤

f(x1)− f(x∗)︸ ︷︷ ︸
=∆

+
L0

2

T∑
k=1

γ2k. (37)

Next, we estimate the term
ψk := Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
= Eek |⟨∇f(xk), ek⟩|

− Eek

[
2 · Pξ

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)

]
· |⟨∇f(xk), ek⟩|

]
.

We consider two cases to deal with probability over ξ: |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8
and |⟨∇f(xk), ek⟩| ≤ 2γkL0 + αp∥∇f(xk)∥p/8.

Case |⟨∇f(xk), ek⟩| ≤ 2γkL0 + αp∥∇f(xk)∥p/8:

Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
≥ −Eek [|⟨∇f(xk), ek⟩|]

≥ Eek [|⟨∇f(xk), ek⟩|]− 4γkL0 − αp
∥∇f(xk)∥p

8

As. 4
≥ 7αp

8
∥∇f(xk)∥p − 4γkL0.

Case |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8:

We change sign operators to equivalent ones denoting θk+ := f(xk + γke
k, ξk+)− f(xk + γke

k) and
θk− := f(xk − γke

k, ξk−)− f(xk − γke
k):

sign(f(xk + γke
k, ξk+)− f(xk − γke

k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)
⇕

sign(f(xk + γke
k)− f(xk − γke

k) + θk+ − θk−) ̸= sign(2γk · ⟨∇f(xk), ek⟩).
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Further, we can bound probability by considering larger number of cases:

Pξ

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) ̸= sign(⟨∇f(xk), ek⟩)

]
(38)

= Pξ

[
sign(f(xk + γke

k)− f(xk − γke
k) + θk+ − θk−) ̸= sign(2γk · ⟨∇f(xk), ek⟩)

]
≤ Pξ

[
|f(xk + γke

k)− f(xk − γke
k) + θk+ − θk− − 2γk · ⟨∇f(xk), ek⟩| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
|f(xk + γke

k)− f(xk − γke
k)− 2γk · ⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
.

We apply Smoothness Lemma 2 and choose γk ≤ αp

8L1
to bound the term:

|f(xk + γke
k)− f(xk − γke

k)− 2γk · ⟨∇f(xk), ek⟩| ≤ 2 · L0 + L1∥∇f(xk)∥2
2

exp(L1γk∥ek∥2)γ2k∥ek∥22

≤ 2L0γ
2
k + αp∥∇f(xk)∥pγk/8.

We continue to estimate the probability:

Pξ

[
|f(xk + γke

k)− f(xk − γke
k)− 2γk · ⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
2L0γ

2
k + γkαp∥∇f(xk)∥p/4 + |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
. (39)

Since we consider the case |⟨∇f(xk), ek⟩| ≥ 2γkL0 + αp∥∇f(xk)∥p/8, we bound

(19) ≤ Pξ

[
γk · |⟨∇f(xk), ek⟩|+ |θk+ − θk−| ≥ 2γk · |⟨∇f(xk), ek⟩|

]
≤ Pξ

[
|θk+ − θk−| ≥ γk · |⟨∇f(xk), ek⟩|

]
Markov ineq.(12):

≤
Eξ[|θk+ − θk−|]

γk · |⟨∇f(xk), ek⟩|
. (40)

In case of independent noise, Eξ[|θk+ − θk−|] is simply bounded by the constant σk and σ̃k = σk. In
case of Lipschitz noise, Eξ[|θk+ − θk−|] ≤ σk∥2γkek∥2 = 2σkγk and σ̃k = 2σkγk. Finally, we obtain
the bound

Eξ,ek

[
sign(f(xk + γke

k, ξk+)− f(xk − γke
k, ξk−)) · ⟨∇f(xk), ek⟩

]
≥ Eek |⟨∇f(xk), ek⟩| − 4σ̃k

γk
As. 4
≥ αp∥∇f(xk)∥p −

4σ̃k
γk

.

Combining two cases together, we get ψk ≥ 7αp

8 ∥∇f(xk)∥p − 4γkL0 − 4σ̃k

γk
and the bound

1

8

T∑
k=1

γkE[∥∇f(xk)∥p] ≤ ∆

αp
+

L0

2αp

T∑
k=1

γ2k +
T∑

k=1

γk · 4L0γk
αp

+ 4

T∑
k=1

σ̃k
αp
.

Due to Batching Lemma 4, we can estimate the κ−th moment of the batched estimate by:

σk ≤ 2σ

B
κ−1
κ

k

.

Plugging in constant stepsizes and batchsizes γk ≡ γ, CT = Tγ2, γ1 = γ and dividing both sides by
αpTγ

8 yields the bound:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 8

L0γ

αp
+

8σ̃

αpγB
κ−1
κ

. (41)

Next, we pick optimal parameters for optimal convergence under independent and Lipschitz noise.

Independent, optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

αp

4L1
, we bound the term:

8
Lδ
0γ

αp
≤ 8

4

L0

L1
≤ 2ε

1
.
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The bound (21) becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8L1

α2
p

[
∆

T
+

4σ

B
κ−1
κ

]
+

2ε

1
.

Choosing B such that 4σ

∆B
κ−1
κ

≤ 1
T ⇒ B = max

{
1,
(
4σT
∆

) κ
κ−1

}
, we only need to bound

16L1

α2
p

∆

T
≤ ε

2
⇒ T = O

(
∆L1

α2
pε

)
.

The final sample complexity is

N = T ·B = O

(
∆L1

α2
pε

[
1 +

(
σL1

α2
pε

) κ
κ−1

])
.

Independent, optimal tuning, ε ≤ 4L0

L1
: Choosing B such that 4σ

∆B
κ−1
κ

≤ 1
T ⇒ B =

max
{
1,
(
4σT
∆

) κ
κ−1

}
, we transform the bound into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 8

L0γ

αp
≤ ε.

Using γ =
√

∆αp

4TL0
, we obtain

2∆

Tαpγ
+ 8

L0γ

αp
= 16

√
∆L0

α2
pT

≤ ε.

Hence, required number of iterations T = O
(

∆L0

α2
pε

2

)
and the final comparison complexity is

N = T ·B = O

(
∆L0

α2
pε

2

[
1 +

(
σL0

α2
pε

2

) κ
κ−1

])
.

We also notice that γ =
√

∆
32TL0

≤ αp

4L1
for this number of iterations and ε ≤ 4L0

L1
.

Lipschitz, optimal tuning, ε ≥ 4L0

L1
: Choosing the largest possible γ =

αp

4L1
, we bound the term:

8
L0γ

αp
≤ 8

4

L0

L1
≤ 2ε

1
.

The bound becomes:

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 8L1

α2
p

∆

T
+

8σ

αpB
κ−1
κ

+
2ε

1
.

Choosing B such that 8σ

αpB
κ−1
κ

≤ ε/4 ⇒ B = max

{
1,
(

32σ
αpε

) κ
κ−1

}
, we only need to bound

8L1

α2
p

∆

T
≤ ε

4
⇒ T = O

(
∆L1

α2
pε

)
.

The final sample complexity is

N = T ·B = O

(
∆L1

α2
pε

[
1 +

(
σ

αpε

) κ
κ−1

])
.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Lipschitz, optimal tuning, ε ≤ 4L0

L1
: Choosing B such that 4σ

αpB
κ−1
κ

≤ ε/4 ⇒ B =

max

{
1,
(

16σ
αpε

) κ
κ−1

}
, we transform the bound (22) into

1

T

T∑
k=1

∥∇f(xk)∥p ≤ 2∆

Tαpγ
+ 8

L0γ

αp
≤ ε.

Using γ =
√

∆
16TL0

, we obtain

2∆

Tαpγ
+ 8

L0γ

αp
= 16

√
∆L0

α2
pT

≤ ε.

Hence, required number of iterations T = O
(

∆L0

α2
pε

2

)
and the final comparison complexity is

N = T ·B = O

(
∆L0

α2
pε

2

[
1 +

(
σ

αpε

) κ
κ−1

])
.

We also notice that γ =
√

∆
32TL0

≤ αp

48L1
for this number of iterations and ε ≤ 4L0

L1
.

A.9 IN EXPECTATION CONVERGENCE OF MajorityVote-CompSGD

Theorem 8 (In expectation complexity for MajorityVote-CompSGD). Consider lower-bounded
(L0, L1)-smooth function f (As. 1, 2), random directions with αp (As. 4) and function estimates with
HT independent, unimodal and symmetric noise κ > 0 (As. 3). Then Alg. 2 requires comparison
number N to achieve 1

T

∑T
k=1 E[∥∇f(xk)∥p] ≤ ε staring with ∆ = f(x1)− f∗:

Optimal tuning, independent noise: T = O
(

∆L1

α2
pε

)
, γk =

αp

4L1
,Mk = max

{
160
κ2 ,

(
4σT
∆

)2}
for

ε ≥ 4L0

L1
and T = O

(
∆L0

α2
pε

2

)
, γk =

√
∆

4TL0
,Mk = max

{
160
κ2 ,

(
4σT
∆

)2}
for ε ≤ 4L0

L1

N = O

(
∆

α2
pε

(
L1 +

L0

ε

)[
1

κ2
+

(
σ

α2
pε

(
L1 +

L0

ε

))2
])

,

Optimal tuning, Lipschitz noise: T = O
(

∆L1

α2
pε

)
, γk =

αp

4L1
,Mk = max

{
160
κ2 ,

(
32σ
αpε

)2}
for

ε ≥ 4L0

L1
and T = O

(
∆L0

α2
pε

2

)
, γk =

√
∆

32TL0
,Mk = max

{
160
κ2 ,

(
32σ
αpε

)2}
for ε ≤ 4L0

L1

N = O

(
∆

α2
pε

(
L1 +

L0

ε

)[
1 +

(
σ

αpε

)2
])

.

The proof completely copies the proof of in expectation convergence Theorem 7 for minibatch-
CompSGD under κ = 2 combined with MajorityVote-CompSGD Convergence Lemma 5.

B EXPERIMENTAL DETAILS

B.1 ROBERTA LARGE FINE-TUNING

For these experiments, we follow (Gao et al., 2020b) for the prompt-based fine-tuning paradigm for
masked language models and reuse training hyperparameters from (Malladi et al., 2023a). Please
refer to the original papers for more details. We compare methods in few-shot scenario with k = 16
examples.

For minibatch-CompSGD Algorithm 3, we sampled ek from scaled Euclidian sphere, i.e. α · Sd
2 =

{e|∥e∥2 = α}. We set α equal to 17 for all datasets and selected the learning rate in [0.3, 1.0, 3.0]
based on validation score.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

C PROMPTS

Below we present the prompts used in our experiments.

Prompt for human face generation for diffusion

Ultra-realistic portrait of a person, highly detailed facial features, natural lighting, skin texture visible,
professional studio quality, 4K resolution

Prompt to get a description of a picture of a human face

Act as an expert forensic facial analyst. Provide a highly detailed, objective, and technical analysis of the
facial features in the provided image. Focus only on observable visual characteristics.
Analyze the following key traits comprehensively:

• Eye Structure: Describe shape, explicitly state perceived eye color (is it Green?) and intensity,
iris patterns, interocular distance.

• Skin Topography: Detail texture, color/tone.

• Freckles: Note presence, density, and distribution of distinct freckles.

• Scars: Crucially, note any visible scars on the face – location, shape, appearance.

• Detail wrinkles/rhytids, specifically noting the presence, pattern (e.g., horizontal, vertical), and
apparent depth of any forehead wrinkles (rhytids on the frontal region), and moles.

Hair Analysis:
• Eyebrows: Describe shape, thickness, density. Are they bushy or sparse?

• Head Hair: Color, texture, hairline, density, and length (e.g., short/cropped, above shoulders,
shoulder-length, below shoulders, significantly long).

Facial Bone Structure:
• Cheekbones: Prominence. Are they high/prominent or less defined?

• Jaw and Chin Structure: Jawline shape. Chin shape and explicitly state if a cleft chin is
present or absent.

• Nasal Structure: Bridge shape, nostril shape, size. Specifically comment if the nose has a
Roman profile.

Lip and Philtrum Morphology:
• Describe shape and relative fullness of upper/lower lips.

• Crucially, examine the upper lip and philtrum (the groove between the base of the nose and the
upper lip). Is there any visible indication of a cleft lip (also known as ’harelip’ or ’cheiloschi-
sis’)? This could be a repaired scar, an indentation, or an asymmetry in the lip or nostril base
associated with a cleft. Describe any such findings.

Background Characteristics: Describe the background. Is it neutral (e.g., plain, blurred, studio-like,
uniform color) or does it provide discernible environmental context (e.g., outdoor scene, specific room
details)?
Include these specific assessments:

• Potential Ancestry Indicators (objective).

• Facial Symmetry (brief).

• Age-Related Indicators.

Image Realism Assessment: Describe the perceived level of realism of the image. Is it photorealistic,
CGI-generated, an artistic rendering, a painting, heavily edited, etc.? Note any visual cues supporting this
assessment (e.g., unnatural lighting, skin texture, artifacts).
Output Format: Produce a technical description. Use precise terms. Avoid subjective interpretations.
Ensure the points about Green Eyes, Visible Scars, Cleft Chin, High/Prominent Cheekbones, Bushy
Eyebrows, Distinct Freckles, Roman Nose, Cleft Lip, forehead wrinkles, and hair length are clearly
addressed, even if to state their absence.
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Prompt to evaluate two descriptions and select a more relevant person

[SYSTEM ROLE] You are a precise and objective Evaluator. Your task is to analyze two facial
descriptions based only on a specific set of criteria and determine which description better meets them.
You MUST ignore any information not relevant to the specific criteria.
[TASK] Evaluate the two descriptions below ([DESCRIPTION 1] and DESCRIPTION 2) based on the
[SCORING LOGIC]. Award points strictly based on whether each feature’s presence (as specified) is
explicitly stated in the text. Then, apply tie-breaking rules if necessary.
[PRIMARY CRITERIA] The evaluation focuses on two features:

• Presence of Distinct Freckles

• Presence of Green Eyes (including clear shades of green). Important Note: If the description
indicates that the eyes appear green only because the entire image or scene has an overall green
tint, filter, or color cast (e.g., "the whole picture is green, making the eyes look green"), this
does not count as true green eyes, and 0 points should be awarded for Green Eyes in such cases.
The green color must be inherent to the eyes themselves.

[SCORING LOGIC] Points are awarded based on the explicit statement of features as follows:
Freckles Score (for each description):

• Award +50 points if the description explicitly states that distinct freckles are visible or present.

• A score of 0 points for freckles is given if the description explicitly states their absence (e.g.,
"no freckles," "freckles are absent") or if freckles are not mentioned at all.

Green Eyes Score (for each description):

• Award +50 points to a description if it explicitly states the presence of "green eyes", "vivid
green eyes", or any phrase clearly indicating the eyes are a shade of green (e.g., "light green
eyes", "dark green eyes", "emerald eyes", "olive green eyes", "sea-green eyes"), AND this green
color is attributed to the eyes themselves, not to an overall image tint.

• A score of 0 points for green eyes is given if such green eyes (or shades of green) are not
mentioned, if a different eye color is stated, or if the description indicates the eyes appear green
solely due to an overall green tint/filter/color cast on the image/scene.

Total Score (for each description):

• The sum of its "Freckles Score" and "Green Eyes Score".

• Maximum possible total score per description: 100 points.

[TIE-BREAKING CRITERIA - Apply in order if total scores are equal]
Desired Background:

• A "Desired Background" is one that is described as neutral (e.g., plain, blurred, studio-like, a
uniform color, or lacking specific environmental details that allow identification of a real-world
location) AND is described without any indication of strong, artificial, or unnatural color palette
shifts across the background. The background palette should seem natural or unmanipulated.

• Any other type of background is considered "Not Desired". This includes:

– Contextual backgrounds (showing discernible environmental elements like an outdoor
scene, specific room details, identifiable objects).

– Neutral backgrounds where the description does suggest strong, artificial, or unnatural
color palette shifts (e.g., "plain background with an unnatural green tint over everything",
"studio background with oversaturated neon colors").

– Backgrounds where neutrality or palette cannot be determined from the description to
meet the "Desired" criteria.

If total scores from the [SCORING LOGIC] are equal, prefer the description that more clearly indicates
a Desired Background.
Default Selection: If total scores from the [SCORING LOGIC] are equal AND the Desired Background
assessment does not result in a clear preference for one description (e.g., both are Desired, both are Not
Desired, or it’s impossible to distinguish based on the provided text to give one a clear advantage), select
Description 1.
[DATA]
[DESCRIPTION 1]: {description_1}
[DESCRIPTION 2]: {description_2}
[INSTRUCTIONS] Carefully read both descriptions.

• For each description, calculate its Freckles Score (+50 or +0) according to the [SCORING
LOGIC].
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• Calculate the Green Eyes Score (+50 or +0) for each description according to the [SCORING
LOGIC], paying close attention to the rule about overall image greenness.

• Calculate the Total Score for each description (Freckles Score + Green Eyes Score).

Selection Process:
a. If the Total Scores are unequal, select the description with the higher Total Score.

b. If the Total Scores are equal:
i. Evaluate [DESCRIPTION 1] and DESCRIPTION 2 based on the Desired Background

tie-breaking criterion.
ii. If one description indicates a "Desired Background" and the other does not (is "Not

Desired" or unclear such that it cannot be confirmed as "Desired"), select the description
with the "Desired Background".

iii. If the Desired Background criterion is inconclusive (e.g., both are clearly "Desired", both
are clearly "Not Desired", or information is insufficient to make a distinction), proceed to
the Default Selection tie-breaker (select Description 1).

Format your response exactly as specified below. Do not add any extra text before or after.
[OUTPUT FORMAT] Provide your response STRICTLY in the following format:
Line 1: [Y] where Y is the number (1 or 2) of the selected description.
Line 2: X/100 where X is the total score (from the [SCORING LOGIC]) you calculated for the selected
description.
Line 3: Reason: followed by a concise explanation.

• Start by stating the scores for both descriptions. For Freckles, state the score. For Green Eyes,
state the Green Eyes score. Finally, state their total scores. (e.g., "Desc 1: Freckles +50, Green
Eyes +50. Total: 100. Desc 2: Freckles +50, Green Eyes +0. Total: 50." OR "Desc 1: Freckles
+0, Green Eyes +50. Total: 50. Desc 2: Freckles +0, Green Eyes +0. Total: 0.")

• If total scores were unequal, explain why the selected description was chosen based on its
higher total score.

• If a tie-breaker was used (because total scores were equal), explicitly state which tie-breaker
([Desired Background] or [Default Selection]) was applied and why.

• If [Desired Background] was applied and led to a selection, briefly describe the background
assessment for both descriptions (e.g., "Background: Desired," "Background: Not Desired,"
"Background: Unclear") that led to the choice.

• If [Desired Background] was inconclusive, state this and explain why (e.g., "Both backgrounds
Desired," "Both backgrounds Not Desired," "Backgrounds unclear for distinction"), then state
that [Default Selection] was applied.

[EXAMPLE 1 - Unequal Total Scores]
Assume:
Description 1: "The person has many distinct freckles. Their eyes are a vivid green. Background is a plain
white wall."
Description 2: "Distinct freckles cover their nose. Eyes are blue. Background is a busy street."
Output for this example:
[1]
100/100
Reason: Desc 1: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +0. Total: 50. Selected 1 due to
higher total score.
[EXAMPLE 2 - Equal Total Scores; Tie-breaker: Desired Background leads to selection (green tint
issue in one description)]
Assume:
Description 1: "Distinct freckles are visible. Her eyes appear green, but this is because the entire
photograph has a heavy green tint over it. The background is a detailed outdoor park."
Description 2: "No freckles are present. The person has vivid emerald green eyes. The background is
blurred."
Output for this example:
[2]
50/100
Reason: Desc 1: Freckles +50, Green Eyes +0 (eyes green due to
overall tint). Total: 50. Desc 2: Freckles +0, Green Eyes +50.
Total: 50. Total scores equal. Tie-breaker [Desired Background]
applied. Desc 1 background: contextual (outdoor park) - Not

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Desired. Desc 2 background: neutral (blurred) - Desired. Selected
Desc 2 for Desired Background.
[EXAMPLE 3 - Equal Total Scores; Tie-breaker: Desired Background leads to selection]
Assume:
Description 1: "Distinct freckles are present. Eyes are a striking green. The setting is an outdoor park."
Description 2: "The person has distinct freckles and vivid green eyes. The background is a blurred,
uniform grey studio backdrop."
Output for this example:
[2]
100/100
Reason: Desc 1: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +50. Total: 100. Total scores
equal. Tie-breaker [Desired Background] applied. Desc 1 background:
contextual (outdoor park) - Not Desired. Desc 2 background:
neutral, natural palette (blurred, uniform grey studio backdrop) -
Desired. Selected Desc 2 for Desired Background.
[EXAMPLE 4 - Equal Total Scores; Tie-breaker: Default Selection]
Assume:
Description 1: "The individual has distinct freckles and brown eyes. The background is a city street."
Description 2: "Distinct freckles are noticeable. They have blue eyes. The background shows an office
interior."
Output for this example:
[1]
50/100
Reason: Desc 1: Freckles +50, Green Eyes +0. Total: 50. Desc
2: Freckles +50, Green Eyes +0. Total: 50. Total scores
equal. Tie-breaker [Desired Background] was inconclusive. Desc
1 background: contextual (city street) - Not Desired. Desc 2
background: contextual (office interior) - Not Desired. Both
backgrounds Not Desired. Tie-breaker [Default Selection] applied,
selecting Description 1.
[EXAMPLE 5 - Equal Total Scores (all 0); Tie-breaker: Default Selection (BG inconclusive)]
Assume:
Description 1: "The individual has clear skin, no freckles. Eyes are blue." (No background info)
Description 2: "No freckles observed. Eyes are dark. The park behind her is lovely."
Output for this example:
[1]
0/100
Reason: Desc 1: Freckles +0, Green Eyes +0. Total: 0. Desc
2: Freckles +0, Green Eyes +0. Total: 0. Total scores equal.
Tie-breaker [Desired Background] was inconclusive. Desc 1
background: Unclear. Desc 2 background: contextual (park) - Not
Desired. Backgrounds unclear for distinction. Tie-breaker [Default
Selection] applied, selecting Description 1.
[EXAMPLE 6 - Green Eyes vs Green Tint, Unequal Scores]
Assume:
Description 1: "Distinct freckles. Her eyes are truly emerald green. Background is a plain studio wall."
Description 2: "Distinct freckles. The whole image is bathed in a green light, making her eyes appear
green, though their true color isn’t stated. Background is a simple, blurred outdoor bokeh with this green
cast."
Output for this example:
[1]
100/100
Reason: Desc 1: Freckles +50, Green Eyes +50. Total: 100. Desc
2: Freckles +50, Green Eyes +0 (green due to overall image tint).
Total: 50. Selected 1 due to higher total score.
Now, perform the evaluation on the provided descriptions.
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Prompt to evaluate a single description

[TASK DEFINITION] Your SOLE task is to evaluate the provided INPUT DESCRIPTION text based
STRICTLY on two criteria: "Presence of Distinct Freckles" and "Presence of Green Eyes". You MUST
output ONLY a single integer representing the total score (0, 1, or 2).
[CRITERIA AND SCORING LOGIC]
Freckles Score:

• Award +1 point if the INPUT DESCRIPTION explicitly states that distinct freckles are visible
or present.

• Award 0 points if distinct freckles are explicitly stated as absent or are not mentioned at all.

Green Eyes Score:
• Award +1 point if the INPUT DESCRIPTION explicitly states the presence of "green eyes",

"vivid green eyes", or any phrase clearly indicating the eyes are a shade of green (e.g., "light
green eyes", "dark green eyes", "emerald eyes", "olive green eyes", "sea-green eyes"), AND
this green color is attributed to the eyes themselves and NOT solely due to an overall image
green tint/filter.

• Award 0 points if green eyes (or qualifying shades) are not mentioned, if a different eye color is
stated, or if the description indicates the eyes appear green SOLELY due to an overall green
tint/filter/color cast on the image/scene (e.g., "the whole picture is green, making the eyes look
green" - this scores 0 for Green Eyes).

Total Score:
• The sum of "Freckles Score" and "Green Eyes Score".

• Maximum possible total score: 2.

[INPUT DESCRIPTION]: {description}
[OUTPUT REQUIREMENT - CRITICAL] You MUST respond with ONLY a single integer represent-
ing the Total Score (0, 1, or 2). DO NOT include ANY other words, explanations, introductory phrases,
or conversational text. JUST the number.
[EXAMPLES OF CORRECT OUTPUT FORMAT]

• If INPUT DESCRIPTION implies Freckles Score +1 and Green Eyes Score +1, your output is:
2

• If INPUT DESCRIPTION implies Freckles Score +1 and Green Eyes Score +0, your output is:
1

• If INPUT DESCRIPTION implies Freckles Score +0 and Green Eyes Score +1, your output is:
1

• If INPUT DESCRIPTION implies Freckles Score +0 and Green Eyes Score +0, your output is:
0

• If INPUT DESCRIPTION states "Distinct freckles. Eyes appear green due to an overall green
filter." (Freckles +1, Green Eyes +0), your output is: 1

Based on the INPUT DESCRIPTION provided above, calculate the Total Score according to the [CRI-
TERIA AND SCORING LOGIC] and output ONLY the resulting integer.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were used only to check and correct grammar, as well as to rephrase short
parts of the text for improved clarity.
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