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ABSTRACT

A mighty goal of representation learning is to train a feature that can transfer
to various tasks or datasets. A conventional approach is to pre-train a neural
network on a large-scale labeled dataset, e.g., ImageNet, and use its feature for
downstream tasks. However, the feature often lacks transferability due to the
class-collapse issue; existing supervised losses (such as cross-entropy) restrain
the intra-class variation and limit the capability of learning rich representations.
This issue becomes more severe when pre-training datasets are class-imbalanced
or coarse-labeled. To address the problem, we propose a new representation learn-
ing method, named Rényi supervised contrastive learning (RényiSCL), which can
effectively learn transferable representation using a labeled dataset. Our main idea
is to use the recently proposed self-supervised Rényi contrastive learning in the
supervised setup. We show that RényiSCL can mitigate the class-collapse prob-
lem by contrasting features with both instance-wise and class-wise information.
Through experiments on the ImageNet dataset, we show that RényiSCL outper-
forms all supervised and self-supervised methods under various transfer learning
tasks. In particular, we also validate the effectiveness of RényiSCL under class-
imbalanced or coarse-labeled datasets.

1 INTRODUCTION

Deep neural networks’ essential and unique property is that they can transfer to other networks of
different tasks or datasets. Thus, it has been a common practice to pre-train a deep neural network
on a large-scale dataset such as ImageNet (Deng et al., 2009) and transfer it to various downstream
tasks (Kornblith et al., 2019; Huh et al., 2016). For example, the ImageNet pre-trained networks
have been widely used for fine-grained classification (Kornblith et al., 2019), few-shot learning (Guo
et al., 2020), object detection (Huang et al., 2017), or semantic segmentation (He et al., 2017; Chen
et al., 2017). Inspired by the success of ImageNet, such pre-training, then transfer learning strat-
egy has also been extensively studied in various other domains such as natural language process-
ing (Sarzynska-Wawer et al., 2021; Devlin et al., 2018; Brown et al., 2020), speech processing (Oord
et al., 2018; Schneider et al., 2019; Hsu et al., 2021) and multimodal representation learning (Zhang
et al., 2020; Radford et al., 2021; Xu et al., 2021).

A straightforward yet effective way to pre-train a neural network (for transfer learning) is to train a
classifier with the standard cross-entropy loss; Kornblith et al. (2019) empirically observed a strong
correlation between the ImageNet classification accuracy and the transfer learning performance. On
the other hand, Kornblith et al. (2021) claimed that the tactics to improve the classification accu-
racy can worsen the transfer learning performance, showing the trade-off between generalization
and transferability. Meanwhile, several recent works (Ericsson et al., 2021; Sariyildiz et al., 2021)
evidenced that supervised methods often lag behind unsupervised or self-supervised methods (Grill
et al., 2020; Chen et al., 2021; Caron et al., 2021) for transfer learning. The inferior transfer learn-
ing performance of supervised models is often attributed to the limited intra-class variation, often
referred to as class-collapse issue (Graf et al., 2021), i.e., the features in the same class concentrate
around a single prototypical vector. Graf et al. (2021) showed that the class-collapse issue appears in
both cross-entropy and supervised contrastive loss; even though those methods attain high accuracy
for the pre-training task, the learned representation might be sub-optimal for transferring to other
downstream tasks (e.g., see Table 1).
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Contribution. This paper proposes Rényi supervised contrastive learning (RényiSCL), a simple
yet effective method to obtain a more transferable representation by mitigating the class-collapse is-
sue. Our approach generalizes the recently proposed Rényi self-supervised contrastive learning (Lee
& Shin, 2022) to the supervised case. We rigorously analyze how RényiSCL improves the trans-
ferability of representations and balance between generalization and transferability trade-off. In
particular, we show that RényiSCL alleviates the class-collapse issue and improves transferability
by performing easy positive mining on the intra-class samples: it imposes instance-wise weight on
positives rather than following the class prototypes. Moreover, we show that RényiSCL performs
hard negative mining on the inter-class samples, increasing the class separability.

Through experiments on ImageNet, we show that RényiSCL outperforms other (supervised or
self-supervised) representation learning methods in various transfer learning tasks such as fine-
grained object classification and cross-domain few-shot learning. In particular, we empirically
find that RényiSCL benefits from sophisticated data augmentations such as multi-crop data aug-
mentation (Caron et al., 2020), typically studied for self-supervised learning (and rarely used for
supervised learning). In addition, we demonstrate the effectiveness of RényiSCL on the imbalanced
datasets and provide a simple yet effective method to improve the transferability of representation
and generalization on minor class samples. Finally, we demonstrate the effectiveness of RényiSCL
in coarse-to-fine transfer learning compared to existing supervised baselines.

2 RELATED WORKS

Transfer learning. Pre-training a model on a large-scale dataset such as ImageNet, and transferring
to downstream tasks is a classical approach in deep learning. A straightforward approach is to train
a classifier with cross-entropy loss and use its feature extractor for transfer learning. Kornblith et al.
(2019) provided empirical evidence of a strong correlation between ImageNet accuracy and transfer
learning performance. However, they also showed that subtle techniques such as regularizations
or minor changes in cross-entropy loss used to improve the ImageNet classification accuracy could
lead to inferior transfer learning performance (Kornblith et al., 2019; 2021). On the other hand,
Salman et al. (2020) showed that adversarially trained models transfer better than standard cross-
entropy-based models, even though they offer inferior performance on ImageNet validation accu-
racy. Recently, a series of works demonstrated the effectiveness of self-supervised learning (Chen
et al., 2020b;a; Grill et al., 2020; Caron et al., 2020; 2021; Dwibedi et al., 2021; Lee & Shin, 2022)
in learning transferable representations, outperforming supervised baselines. Inspired by the suc-
cess of self-supervised methods, many works proposed to improve the transferability of supervised
models (Zhao et al., 2020; Feng et al., 2021; Wang et al., 2022). Zhao et al. (2020) presented su-
pervised learning based on exemplar SVM (Malisiewicz et al., 2011) by leveraging the techniques
from MoCo (Chen et al., 2020a). Feng et al. (2021) proposed a new supervised pre-training method
using a k-nearest neighborhood instead of a prototypical layer as in the usual cross-entropy-based
approach. Wang et al. (2022) showed that inserting a projection MLP to the standard cross-entropy
loss can further increase the transferability, reducing the gap between self-supervised methods.

Supervised contrastive learning. Supervised contrastive learning (Khosla et al., 2020) is a gen-
eralization of self-supervised contrastive learning to the supervised setup. While self-supervised
learning contrasts between instances, supervised contrastive learning contrasts between class sam-
ples, thus showing outstanding generalization performance (Graf et al., 2021). Also, recent works
demonstrated the effectiveness of supervised contrastive learning in long-tailed recognition prob-
lems (Cui et al., 2021; Kang et al., 2021; Li et al., 2022). In particular, Kang et al. (2021) proposed
balanced supervised contrastive learning that improves the generalization and downstream transfer
learning performance on the imbalanced dataset.

Despite its decent generalization performance, recent works noticed the low transferability of super-
vised contrastive learning models (Islam et al., 2021; Chen et al., 2022). Thus, Islam et al. (2021)
proposed to add self-supervised loss to increase the intra-class variation and improve the trans-
fer learning performance on various object classification and few-shot learning tasks. On the other
hand, Chen et al. (2022) proposed to use additional class conditional contrastive loss with an autoen-
coder to improve the coarse-to-fine transfer learning performance. However, those methods often
require sensitive hyperparameter search or computational burden, which limits the applicability to a
large-scale dataset.
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Figure 1: UMAP visualization of coares-to-fine transfer learning with RényiSCL, SupCon (Khosla et al., 2020),
and SLMLP (Wang et al., 2022). We visualize the features of a superclass that contains three subclasses of
TinyImageNet dataset. See Section 5.3 and Appendix B.3 for details.

3 PRELIMINARIES

Notation. Let x ∈ X be a data point drawn from data distribution p(x) over X . Our goal is to train
an encoder g : X → Rd (e.g. ResNet50 (He et al., 2016)) that maps input x into a compact feature
space, and use g as a feature extractor for various downstream transfer learning tasks. For notational
simplicity, we denote z = g(x) ∈ Rd be a feature from input x. Assume we have discrete label
space Y consisting of C classes, and let L : X → Y be the labeling function that assigns data into
the ground-truth class. Denote L(z) = L(x) for notational simplicity.

3.1 SUPERVISED LEARNING

Supervised learning with cross-entropy loss. The most common approach in supervised learning
is to jointly optimize g and a linear weight W ∈ Rd×K by using a cross-entropy loss defined by

ℓCE(z, y) = − log
exp

(
z⊤wy

)∑C
k=1 exp

(
z⊤wk

) ,
where wk ∈ Rd is a k-th column of W . Recently, Wang et al. (2022) proposed Supervised Learning
with MLP (SLMLP) which improves the transferability of supervised models by attaching a projec-
tion MLP on z and using cosine cross-entropy loss. Formally, let h : Rd → Rd′

be a projection
MLP, and W : Rd′ → RC be linear weight, then the SLMLP loss is given as follows:

ℓSLMLP(z, y) = − log
exp

(
h̃(z)⊤w̃y/τ

)∑C
k=1 exp

(
h̃(z)⊤w̃k/τ

) , with h̃(z) =
h(z)

∥h(z)∥2
, w̃k =

wk

∥wk∥2
,

for each k = 1, . . . , C and τ > 0 is a temperature for cosine cross-entropy loss. Adding MLP helps
the representation retain the intra-class variation, which is crucial in transfer learning.

Supervised contrastive learning. The supervised contrastive (SupCon) learning (Khosla et al.,
2020) is a generalization of self-supervised contrastive learning (Chen et al., 2020b) to a supervised
version. In self-supervised learning, positives are defined by instances that are augmented from
the same input. In contrast, in SupCon, positives are extended to instances that are in the same
class. Let us denote z+i , i = 1, . . . ,M be M positives of z, i.e., z+ ∼ p

(
z+ |L(z) = L(z+)

)
, and

z−j , j = 1, . . . ,K be K negatives of z, i.e., z− ∼ p
(
z− |L(z) ̸= L(z−)

)
. Then the SupCon loss is

defined as follows:

ℓSupCon
(
z; {z+i }

M
i=1, {z−j }Kj=1

)
= − 1

M

M∑
i=1

log
exp

(
f(z, z+i )

)∑M
i=1 exp

(
f(z, z+i )

)
+

∑K
j=1 exp

(
f(z, z−j )

) ,
where f : Rd × Rd → R is a similarity function that is jointly optimized during training. In
particular, one can use cosine-similarity function followed by a projection MLP h : Rd → Rd′

for
f , i.e., f(z, z′) = h(z)⊤h(z′)

τ∥h(z)∥·∥h(z′)∥ with temperature τ > 0.
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Class collapse issue for cross-entropy and SupCon. While the models trained by cross-entropy or
SupCon losses show decent generalization, they lack transferability due to the class collapse issue:
the features lack intra-class variation (Graf et al., 2021). Here, we provide some high-level intuition
on how cross-entropy and SupCon losses lead to class collapse by breaking up the loss functions into
alignment terms (i.e., loss for intra-class closeness) and uniformity terms (i.e., loss for inter-class
repulsion) (Wang & Isola, 2020). By taking off the logarithm term, the cross-entropy loss can be
written as ℓCE(z, y) = −z⊤wy + log

∑C
k=1 exp

(
z⊤wk

)
. On the other hand, suppose we use an

inner product similarity function for f , i.e., f(z, z′) = z⊤z′. Then the SupCon loss becomes

ℓSupCon(z) = − 1

M

M∑
i=1

log
exp

(
z⊤z+i

)∑M
i=1 exp

(
z⊤z+i

)
+
∑K

j=1 exp
(
z⊤z−j

)
= − 1

M

M∑
i=1

z⊤z+i + log

( M∑
i=1

exp(z⊤z+i ) +

K∑
j=1

exp
(
z⊤z−j

))
.

If we have sufficiently large M , then we have 1
M

∑M
i=1 z

+
i → w̄y for some class prototype vector

w̄y ∈ Rd. Therefore, the first terms of each cross-entropy and SupCon loss are equivalent in that
they aim to maximize the alignment with respect to the class prototype, and the first term enforces
the features to concentrate around the class prototype, leading to class collapse.

3.2 CONTRASTIVE LEARNING WITH RÉNYI DIVERGENCE

Lee & Shin (2022) proposed self-supervised Rényi contrastive learning, which defines a new con-
trastive learning objective by variational estimator of the skew Rényi divergence between positives
and negatives. Note that the skew divergence allows the variational estimation to have low vari-
ance, otherwise the exploding variance disrupts the learning. Formally, let P and Q be distributions
with densities p and q, respectively, and suppose P is absolutely continuous with respect to Q, (i.e.,
p(x)/q(x) > 0 for all x). Then, Rényi divergence (Rényi, 1961) of order γ ∈ (0, 1) ∪ (1,∞)
between P and Q is defined by

Rγ(P ∥Q) :=
1

γ(γ − 1)
logEP

[(
p(x)

q(x)

)γ−1]
,

and the α-skew Rényi divergence of order γ between P and Q is defined by the Rényi divergence
between P and αP + (1 − α)Q, i.e., R(α)

γ (P ∥Q) = Rγ(P∥αP + (1 − α)Q). From Birrell et al.
(2021); Lee & Shin (2022), the following variational form of skew Rényi divergence holds:

R(α)
γ (P ∥Q) = sup

f

1

γ − 1
logEP [e

(γ−1)f(x)]− 1

γ
log(αEP [e

γf(x)] + (1− α)EQ[e
γf(x)]). (1)

Then the self-supervised Rényi contrastive learning is derived by applying equation 1 on the skew
Rényi divergence between positives and negatives. Remark that Rényi contrastive learning conducts
intrinsic easy positive mining and hard negative mining, showing its effectiveness in self-supervised
learning with hard data augmentations.

4 RÉNYI SUPERVISED CONTRASTIVE LEARNING

Now we propose Rényi supervised contrastive learning (RényiSCL) by using variational representa-
tion of skew Rényi divergence in equation 1. Analogous to the supervised contrastive learning, given
an anchor z, let z+ ∼ p

(
z+ |L(z) = L(z+)

)
be positive of z, i.e., sampled from same class, and let

z− ∼ p
(
z− |L(z) ̸= L(z−)

)
be negative of z. Then by using variational equality in equation 1, we

define (α, γ)-Rényi supervised contrastive learning (RSCL) loss as following:

ℓ
(α,γ)
RSCL (z) = − 1

γ − 1
logEz+ [e(γ−1)f(z,z+)] +

1

γ
log

(
αEz+ [eγf(z,z

+)] + (1− α)Ez− [eγf(z,z
−)]

)
.

Remark that when γ → 1, one can observe that the RSCL loss is equivalent to the SupCon loss
by setting α proportional to the number of positive samples. Thus, one can define α−SupCon loss
similarly and see that RényiSCL is a generalized version of SupCon. Note that RényiSCL is slightly
different from Rényi contrastive learning in its derivation. In Appendix A.1, we provide a detailed
comparison between supervised and self-supervised Rényi contrastive learning.
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4.1 INTUITION BEHIND RÉNYISCL

Here, we analyze how RényiSCL can learn a transferable representation without class collapse. In
particular, we show that RényiSCL performs intra-class easy positive and inter-class hard negative
mining by controlling the hyperparameter γ.

Recall that the first term of SupCon and cross-entropy losses directly maximize the alignment with
the class prototype. On the other hand, we show that RényiSCL prevents the direct alignment by
easy positive sampling, i.e., add importance weights proportional to the similarity. Let the similarity
function fθ be a neural network parametrized by θ. Then the gradient of the first term of RényiSCL
loss with respect to θ gives us

∇θℓ
(γ)
RSCL−1st(z) = −Ez+ [e(γ−1)fθ(z,z

+)∇θfθ(z, z
+)]

Ez+ [e(γ−1)fθ(z,z+)]
= −Esg(qθ(z+;z))[∇θfθ(z, z

+)],

where sg(qθ(z
+; z)) ∝ exp((γ − 1)fθ(z, z

+)) is a self-normalizing importance weights (Owen,
2013) and sg is a stop-gradient operator. Thus, it is equivalent to the following in terms of gradient:

ℓ
(γ)
RSCL−1st(z) = −Esg(qθ(z+;z))[fθ(z, z

+)]. (2)

The equation 2 shows that in contrast to SupCon or cross-entropy, RényiSCL conducts easy posi-
tives mining by imposing more weights on positive instances z+ that currently have high similarity
fθ(z, z

+). Remark that when γ → 1, the loss in equation 2 is equal to alignment term of cross-
entropy and SupCon loss so that the features are pushed to follow the class prototype. On the other
hand, when γ → ∞, the qθ assigns weights on only the closest instances of z, which resembles the
idea of instance discrimination in self-supervised learning (Wu et al., 2018). Thus, by controlling
the value of γ, one can balance the trade-off between generalization and transferability (Kornblith
et al., 2021): by letting γ → 1, the intra-class features are more tightened, and by letting γ → ∞,
the intra-class variation increases and helps transferability of representations.

Also, in Appendix A.2, we show that RényiSCL performs hard negative mining (Robinson et al.,
2020; Lee & Shin, 2022) on the inter-class features; pushing the feature z− that currently has the
highest similarity fθ(z, z

−). Therefore, this helps increasing the separability between classes and
especially, it helps when harder data augmentation is applied. In Section 5.1, we empirically validate
that RényiSCL exhibits the largest gain on using the sophisticated data augmentation such as multi-
crop (Caron et al., 2020), compared to cross-entropy or SupCon.

Class-wise control of γ for class-imbalanced dataset. When the pre-training dataset is class-
imbalanced, the easy positive mining on the major group, i.e., the set of classes with many data
points, can improve transferability. On the other hand, the easy positive mining on the minor group,
i.e., the set of classes with few data points, has only a little effect as there are only a small number
of data points. Meanwhile, the effect of γ can hurt the generalization in minor group samples as it
interferes with forming a cluster. Therefore, in learning representation on the imbalanced dataset,
we propose to use different values of γ for the major and minor groups to balance the generalization
and transferability trade-off in minor groups. Our idea is straightforward: we use a higher value of
γ for the major group and a smaller value of γ for the minor group. In Section 5.2, we empirically
verify that this design choice of γ helps the transfer learning performance on the imbalanced dataset
and the generalization performance on minor group samples.

Coarse-to-fine transfer learning. The class collapse issue of SupCon and cross-entropy loss be-
comes severe when the pre-training dataset is coarse-labeled and the transfer learning dataset is
fine-labeled (Chen et al., 2022). For example, when we train the supervised model on a coarse-
labeled dataset with cross-entropy or SupCon, the features that share a common superclass tend to
entangle in a single cluster. On the other hand, RényiSCL can learn disentangled features even when
trained on the superclass. For example, in Figure 1, we visualize the features of each RényiSCL,
SupCon, and cross-entropy method trained on coarse-labeled TinyImageNet dataset (see Section 5.3
for details) with UMAP (McInnes et al., 2018). While it is hard to discriminate the features trained
with cross-entropy or SupCon loss by subclasses, one can easily distinguish the RényiSCL learned
features by subclasses.
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Method IMN C10 C100 FOOD PET FLO CAL CAR AIR DTD SUN Average

Self-supervised learning methods

BYOL (Grill et al., 2020) 74.3 91.3 78.4 75.3 90.4 96.1 94.2 67.8 60.6 75.5 62.2 79.2
SwAV (Caron et al., 2020) 75.3 94.2 79.8 76.9 87.5 94.8 92.7 62.4 58.0 77.8 65.7 78.9
MoCo v3 (Chen et al., 2021) 74.8 94.8 80.1 73.8 90.6 94.6 94.5 66.0 61.4 75.7 62.6 79.4
DINO (Caron et al., 2021) 75.3 93.9 79.4 78.7 89.3 96.1 92.5 68.0 62.5 77.2 66.0 80.4
NNCLR (Dwibedi et al., 2021) 75.6 93.7 79.0 76.7 91.8 95.1 91.3 67.1 64.1 75.5 62.5 79.7
RényiCL (Lee & Shin, 2022) 76.2 94.0 78.8 78.0 89.5 96.5 93.3 71.5 61.8 77.3 66.1 80.7

Supervised learning methods

CE (He et al., 2016) 76.5 91.8 74.3 71.1 92.4 90.9 91.0 50.0 48.7 72.0 60.4 74.3
RSB (Wightman et al., 2021) 80.4 92.6 75.3 71.4 92.8 89.8 93.0 54.3 46.6 73.8 63.1 75.3
SupCon (Khosla et al., 2020) 79.1 93.0 76.3 71.9 92.7 92.5 94.3 61.2 57.4 74.7 62.9 77.7
SupCon+SSL (Guo et al., 2020) 77.1 94.4 79.6 74.7 92.5 94.5 94.7 64.0 59.0 74.7 64.1 79.2

RényiSCL (Ours) 78.4 95.3 80.6 80.1 91.5 97.0 93.2 73.6 65.6 78.9 66.9 82.3

Table 1: Transfer learning performance on fine-grained classification benchmark. We compare both supervised
and self-supervised methods. For Pets, (PET), Caltech101 (CAL), Aircraft (AIR), and Flowers (FLO), we
report mean per-class accuracy (%); otherwise, we report Top-1 classification accuracies (%). IMN denotes the
classification accuracy on the ImageNet dataset, and the Average is calculated over 10 downstream datasets.
All baseline models are from their official repositories (see Appendix C.2).

5 EXPERIMENTS

5.1 MAIN RESULTS

We follow the two-stage setup of Khosla et al. (2020): we pre-train an encoder on ImageNet (Deng
et al., 2009) train dataset and use frozen encoder as feature extractor. We use ResNet50 (He et al.,
2016) as a base encoder g and implement the similarity function f by a temperature-scaled cosine
similarity followed by a projection MLP. For data augmentation, we use default data augmentation
from (Chen et al., 2020b; Grill et al., 2020) and further use RandAugment (Cubuk et al., 2020) and
multi-crop (Caron et al., 2020). Then we pre-train for 200 epochs with RényiSCL loss of (α, γ) =
(0.001, 2.0). We use linear evaluation protocol, i.e., train a linear classifier at the top of frozen
feature, for ImageNet validation accuracy. We compare the transfer learning performance of various
open-sourced self-supervised and supervised representation learning methods on 10 fine-grained
object classification datasets and 4 cross-domain few-shot learning datasets. See Appendix C.2 for
more details.

Transfer learning on fine-grained object classification. Following (Kornblith et al., 2019), we
evaluate the transfer learning performance of a representation by linear evaluation on 10 fine-grained
object classification datasets. The datasets are consist of CIFAR10&100 (C10&C100) (Krizhevsky
et al., 2009), Food101 (FOOD) (Bossard et al., 2014), Oxford Pets (PET) (Parkhi et al., 2012),
Flowers (FLO) (Nilsback & Zisserman, 2008), Caltech101 (CAL) (Fei-Fei et al., 2004), Stanford
Cars (CAR) (Krause et al., 2013), Aircraft (AIR) (Maji et al., 2013), DTD (Cimpoi et al., 2014), and
SUN397 (SUN) (Xiao et al., 2010). See Appendix C.1 for the detailed experimental setup.

In Table 1, we report the Top-1 ImageNet validation accuracy and transfer learning accuracy on
each dataset. Remark that RényiSCL achieves the state-of-the-art performance in average transfer
learning accuracy, outperforming previous state-of-the-art RényiCL (Lee & Shin, 2022) by +1.6%.
Note that RényiSCL lags behind by ResNet-Strikes-Back (RSB) (Wightman et al., 2021) and Sup-
Con (Khosla et al., 2020) in ImageNet validation accuracy by 2.0% and 0.7%, respectively. How-
ever, RényiSCL shows better overall performance in generalization and transferability, as it outper-
forms RSB and SupCon in average transfer learning accuracy by +7.0% and +4.6%, respectively.

Cross-domain few-shot learning. Furthermore, we consider cross-domain few-shot learning tasks
to evaluate the capability of learned representations to adapt to unseen tasks. For datasets, we use
CUB200 (Cubuk et al., 2020) and FC100 (Oreshkin et al., 2018), which are datasets that have high
domain-similarity with ImageNet, and CropDisease (Mohanty et al., 2016) and EuroSAT (Helber
et al., 2019), which are datasets that have low domain-similarity with ImageNet (Oh et al., 2022).
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CropDisease EuroSAT CUB200 FC100

Method (5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5) (5, 1) (5, 5)

MoCo v3 (Chen et al., 2021) 81.18 94.73 72.48 89.68 69.11 89.00 38.87 57.70
DINO (Caron et al., 2021) 82.89 95.60 72.69 89.94 59.10 81.52 38.16 54.70
RényiCL (Lee & Shin, 2022) 83.80 95.64 73.45 90.31 57.65 82.42 36.61 53.37
RSB (Wightman et al., 2021) 75.37 92.11 66.92 85.48 75.75 91.81 41.28 59.81
SupCon (Khosla et al., 2020) 74.17 89.59 70.58 86.59 70.68 87.28 40.38 57.86
SupCon+SSL (Guo et al., 2020) 79.82 93.20 75.05 89.46 60.90 82.35 42.76 59.79

RényiSCL (Ours) 82.97 95.99 75.49 91.19 71.89 92.32 39.52 60.06

Table 2: The transferability of representation learning methods on few-shot learning tasks. We report the
mean few-shot classification accuracy (%) over 600 episodes (with 95% confidence interval) on CropDisease,
CUB200, EuroSAT, and FC100 datasets. (N,K) denotes N -way K-shot classification. All baseline models
are from their official repositories (see Appendix C.2).

Method AIR CAR DTD SAT FLO ISIC PET

Exemplar v2 (Zhao et al., 2020) 50.9 48.3 73.5 96.8 90.0 81.4 85.0
LOOK (Feng et al., 2021) 60.0 71.9 72.3 95.0 94.7 75.0 91.0
SLMLP (Wang et al., 2022) 59.2 63.8 72.7 96.7 94.5 80.7 91.2

RényiSCL (Ours) 65.2 72.1 76.2 97.1 96.2 81.7 91.9

Table 3: Transfer learning accuracy of supervised learning models. We
report Top-1 accuracy (%) for EuroSAT (SAT) and ISIC datasets, and
otherwise we use the same metric in Table 1. We train RényiSCL for
100 epochs without using multi-crop for a fair comparison. Exemplar
v2 and LOOK are from their official repositories (see Appendix C.2).

Method Transfer ImageNet

SLMLP 78.6 76.2
+ MC 78.8(+0.2) 76.8(+0.6)

SupCon 79.6 76.1
+ MC 80.1(+0.5) 76.9(+0.8)

RényiSCL 81.2 76.6
+ MC 81.7(+0.5) 77.8(+1.2)

Table 4: Effect of multi-crop (MC)
data augmentation.

For evaluation, we train a logistic regression on the top of frozen representation, and generate 600
episodes to compute the means of 5-way, 1-shot and 5-shot accuracies with 95% confidence interval.

In Table 2, we report the Top-1 accuracy (%) on each cross-domain few-shot learning task. We
observe that RényiSCL shows the best overall performance, outperforming various supervised and
self-supervised models. As shown in Oh et al. (2022), the supervised models show better perfor-
mance on CUB200 and FC100 as these datasets have high domain similarity with respect to Ima-
geNet, while self-supervised models perform better on CropDisease and EuroSAT. Since RényiSCL
takes the best of both approaches, it shows the best overall performance.

Comparison with supervised learning methods for transfer learning. We present additional
comparison with various supervised representation learning methods that were proposed to im-
prove the transferability. For the baseline, we compare with Exemplar v2 (Zhang et al., 2020),
LOOK (Feng et al., 2021), and SLMLP (Wang et al., 2022). For a fair comparison, we do not
use multi-crop data augmentation in RényiSCL and trained for 100 epochs. In Table 3, we com-
pare the transfer learning performance of various supervised representation learning methods on the
subset of 10 object classification datasets with additional EuroSAT (SAT) (Helber et al., 2019) and
ISIC (Codella et al., 2019) datasets. Remark that RényiSCL clearly outperforms other supervised
representation learning baselines.

Effect of multi-crop data augmentation. Furthermore, we experiment on the effect of multi-crop
data augmentation (Caron et al., 2020) on supervised representation learning methods. In Table 4,
we compare the ImageNet validation accuracy (%) and average transfer learning accuracy (%) on
object classification datasets. Compared to SLMLP, SupCon and RényiSCL attains larger gain from
the usage of multi-crop, and RényiSCL achieves the best results in both ImageNet accuracy and
average transfer learning accuracy.

5.2 RÉNYISCL ON CLASS-IMBALANCED DATASET

In this section, we consider ImageNet-LT (Liu et al., 2019) for imbalanced pre-training dataset,
which is a long-tailed version of ImageNet (Deng et al., 2009) dataset by sampling with Pareto
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Method IMN C10 C100 FOOD PET FLO CAL CAR AIR DTD SUN Average

τ -norm (Kang et al., 2020) 54.5 86.9 65.8 59.4 82.0 85.2 83.6 33.4 36.3 63.1 49.0 64.5
KCL (Kang et al., 2021) 51.4 86.2 66.0 60.9 83.1 87.6 84.1 38.3 40.7 66.0 51.7 66.5
TSC (Li et al., 2022) 51.9 86.5 66.5 60.9 83.3 87.0 83.4 38.0 40.5 66.2 51.6 66.4
PaCo (Cui et al., 2021) 58.2 90.1 68.8 59.1 85.3 81.6 86.6 33.1 36.9 64.4 47.9 65.4

RényiSCL (Ours) 57.7 90.2 70.1 61.1 85.7 86.8 87.7 37.8 38.5 66.7 50.3 67.5

Table 5: Comparison on the transfer learning performance of various representation learning methods on
ImageNet-LT dataset trained with ResNeXt50. We use the same metric as in Table 1. IMN denotes the clas-
sification accuracy on ImageNet dataset, and Average is calculated over 10 downstream datasets. All baseline
models are from their official repositories (see Appendix C.2).

ImageNet-LT iNaturalist

Method Many Medium Few All Many Medium Few All

Balanced SoftMax (Ren et al., 2020) 66.7 52.9 33.0 55.0 72.3 72.6 71.7 71.8
τ -norm (Kang et al., 2020) 65.0 52.2 32.3 54.5 74.1 72.1 70.4 71.5
KCL (Kang et al., 2021) 64.8 47.3 27.4 51.4 - - - 68.6
TSC (Li et al., 2022) 64.5 48.6 28.0 51.9 72.6 70.6 67.8 69.7
PaCo (Cui et al., 2021) 67.5 56.9 36.7 58.2 70.3 73.2 73.6 73.2

RényiSCL (Ours) 62.8 55.4 50.9 57.7 69.5 73.6 74.6 73.5

Table 6: Top-1 accuracy (%) of various long-tailed recognition methods on ImageNet-LT and iNaturalist
datasets. All ImageNet-LT models are ResNeXt50 and iNaturalist models are ResNet50. We report the group-
wise accuracy by dividing into Many (> 100 shots), Medium (20 − 100 shots), and Few (< 20 shots). All
baseline models are from their official repositories (see Appendix C.2).

distribution. The number of images in each class varies from 5 to 1,280. We use ResNeXt50 (Xie
et al., 2017) for fair comparison with previous studies. Following the best practice (Cui et al., 2021),
we introduce class prototypes to supervised contrastive learning (see Appendix C.3 for details). Note
that one can divide the classes into 3 groups: Many (> 100 shots), Medium (Med) (20− 100 shots),
and Few (< 20 shots). Then as explained in Section 4.1, we use γmany = γmed = 1.5, and γfew = 1.0.

(γmany, γmed, γfew) Many Med Few All TF

(1.5, 1.5, 1.5) 63.3 56.6 47.2 57.9 67.4
(1.5, 1.5, 1.0) 62.8 55.4 50.9 57.7 67.5
(1.5, 1.2, 1.0) 62.8 57.7 46.9 58.2 66.8
(1.5, 1.0, 1.0) 62.2 58.0 44.7 57.8 66.6

Table 7: Ablation on the effect of group-wise assign-
ment of γ values. We report group-wise accuracy and
TF denotes average transfer accuracy on 10 downstream
datasets. Experiments with ResNeXt50 on ImageNet-
LT dataset.

Results. In Table 5, we compare the trans-
fer learning performance of various representa-
tion learning methods trained on ImageNet-LT
dataset. Remark that RényiSCL attains aver-
age transfer accuracy of 67.5%, outperforming
other representation learning methods. More-
over, RényiSCL achieves 57.7% in ImageNet-
LT classification accuracy, which is comparable
to the state-of-the-art method PaCo (Cui et al.,
2021). In particular, in Table 6, we compare
the group-wise accuracy of various long-tailed
recognition methods. Remark that RényiSCL
achieves the state-of-the-art performance in few
samples by a large margin. Also, we consider iNaturalist (Van Horn et al., 2018) dataset, which is
natural class-imbalanced dataset. Similar to ImageNet-LT, RényiSCL outperforms existing methods
in few and medium group, and achieves the state-of-the-art performance in overall accuracy.

Effect of group-wise γ. In Section 4.1, we proposed to use higher value of γ for major group, and
smaller value of γ on minor group. In Table 7, we demonstrate the effect of assigning different values
of γ. One can observe that using higher value of γ on Few group does not affect the performance
of transfer learning. Thus, by using small value of γfew, one can increase the generalization on few
samples. Otherwise, using smaller value of γmed degrades the transferability, while increases the
generalization on Medium group samples. See Appendix B.2 for more information.
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Nl = 1000 Nl = 918 Nl = 753 Nl = 486

Method Fine-TF Fine-IMN Fine-TF Fine-IMN Fine-TF Fine-IMN Fine-TF Fine-IMN

SupCon (Khosla et al., 2020) 79.6 76.1 69.3 58.2 63.8 50.1 61.4 48.4
SLMLP (Wang et al., 2022) 78.6 76.2 77.6 73.1 78.6 70.2 73.7 63.1
RényiSCL (Ours) 81.2 76.6 80.6 76.2 79.6 74.3 77.1 70.6

Table 8: Results of coarse-to-fine transfer learning on coarse-labeled ImageNet dataset with number of labels
Nl = 918, 753, and 486. We report (average) transfer learning accuracy (%) on the 10 fine-grained object
classification benchmark (denoted by Fine-TF), and fine-labeled ImageNet of 1000 classes (denoted by Fine-
IMN). For fair comparison, we train each method for 100 epochs without changing the hyperparameters that
were used in fine-labeled ImageNet experiments. For comparison, we also report the original results using the
fine-labeled ImageNet datatset to pre-train (with colored by gray).

5.3 RÉNYISCL ON COARSE-LABELED DATASET

In this section, we consider coarse-labeled versions of ImageNet as pre-training datasets. Note
that the 1000 classes of the ImageNet dataset are generated from the leaves of WordNet (Miller,
1995) hierarchy. Huh et al. (2016) proposed two different approaches to generate superclasses for
ImageNet: top-down and bottom-up approaches. The top-down approach generates superclasses by
choosing leaves with the same distance from the root. However, this approach can make only 3
different taxnomies, where the number of labels is 127, 10, and 2. On the other hand, the bottom-
up approach iteratively clusters the leaf nodes of the same parent nodes as one superclass, and this
approach can have 18 different taxonomies. Therefore, we select 3 of them, where the number of
labels is 918, 753, and 486, respectively.

Given the coarse-labeled ImageNet datasets, we compare three supervised learning methods:
SLMLP (Wang et al., 2022), SupCon (Khosla et al., 2020), and RényiSCL. We train each model
for 100 epochs without using multi-crop data augmentation. Specifically, we do not change the hy-
perparameters used for fine-labeled ImageNet experiments in Section 5.1. After pre-training, we use
the linear evaluation protocol on the original fine-labeled (i.e., 1000 classes) ImageNet train dataset,
and transfer to 10 fine-grained object classification datasets used in Section 5.1.

Results. In Table 8, we compare the transfer learning performance of three supervised learning
methods. Remark that RényiSCL is the most robust method that retains transfer learning accuracy on
both 10 fine-grained object classification and fine-labeled ImageNet datasets, despite the scarcity of
label information. Especially, when pre-trained with 486 number of labels, RényiSCL outperforms
SLMLP and SupCon by +3.4% and +15.7% for the former, and +7.5% and +22.2% for the latter,
respectively. The performance gap between RényiSCL and baselines is larger when the number
of pre-trained coarse-labels is smaller, which indeed confirms that RényiSCL resolves the class-
collapse issue (Graf et al., 2021).

Ablation study. We also consider coarse-labeled version of CIFAR10, CIFAR100 (Krizhevsky
et al., 2009), and TinyImageNet (Le & Yang, 2015) (see Appendix C.1 for details). We refer to
Appendix B.3 for the complete results of our ablative study. In Figure 1, we visualize the features
in a superclass of TinyImageNet that has 3 subclasses using UMAP (McInnes et al., 2018). Remark
that RényiSCL learned features are distinguishable by subclasses, while the features learned by
SupCon or SLMLP are entangled regardless of the subclasses.

6 CONCLUSION

This work presents Rényi supervised contrastive learning, which effectively learns transferable rep-
resentation. We show that it performs easy positive sampling among intra-class instances and hard
negative sampling among inter-class instances and provides empirical evidence supporting our find-
ings. Significantly, the ImageNet pre-trained model with Rényi supervised contrastive learning out-
performs other supervised and self-supervised models in various transfer learning tasks. We believe
our paper could bring new insights for pre-training a large-scale foundation model, beneficial for
various downstream tasks, e.g., supervised or semi-supervised learning might be better than purely
self-supervised learning.
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ETHICS STATEMENT

Since the supervised models highly rely on the label information, recent works noticed the weakness
of supervised models on spurious attributes (e.g., hair color and gender attribute (Sagawa et al.,
2019)). We believe that RényiSCL could be an alternative approach to handle the bias in the labeled
dataset, which we leave for future work.

REPRODUCIBILITY STATEMENT

We provide all the implementation details to reproduce our experimental results in Section 5 and
Appendix B. Also, we attach our codes in supplementary materials.
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A DETAILED ANALYSIS

A.1 COMPARISON WITH RÉNYICL

In self-supervised setup, let Z and Z ′ be i.i.d random variables of feature z = g(x). Then, a pair
of samples (z, z′) ∼ PZ,Z′(z, z′) is a positive pair if z and z′ are augmented from same input.
Otherwise, a pair of samples (z, z′) ∼ PZ(z)PZ′(z′) is a negative pair if they are augmented from
different input. Then, (Lee & Shin, 2022) showed that the InfoNCE (a.k.a CPC) objective is a
variational lower bound of skew KL divergence as following equality holds:

D
(α)
KL (PZ,Z′∥PZPZ′) = sup

f
ICPC(f), where

ICPC(f) = EPZ,Z′ [f(z, z
′)]− log

(
αEPZ,Z′ [e

f(z,z′)] + (1− α)EPZPZ′ [e
f(z,z′)]

)
.

Then they generalize to Rényi divergence to define RényiCL objective, which satisfies following:

R(α)
γ (PZ,Z′∥PZPZ′) = sup

f
IRenyiCL(f), where

IRenyiCL(f) =
1

γ − 1
logEPZ,Z′ [e

(γ−1)f(z,z′)]− 1

γ
log

(
αEPZ,Z′ [e

γf(z,z′)] + (1− α)EPZPZ′ [e
γf(z,z′)]

)
.

In contrast to the RényiCL objective, which is done in the full Rényi divergence between PZ,Z′ and
PZPZ′ , the Rényi supervised contrastive learning we considered in this paper, conducts variational
estimation on the conditional Rényi divergence:

R(α)
γ (PZ′|Z∥PZ′ |Z = z) = sup

f
IRenyiSCL(f, z), where

IRenyiSCL(f) =
1

γ − 1
logEPZ′|Z=z

[e(γ−1)f(z,z′)]− 1

γ
log

(
αEPZ′|Z=z

[eγf(z,z
′)] + (1− α)EPZ′ [e

γf(z,z′)]
)
.

Remark that the conditioning does not change the variational objective in KL divergence, i.e., we
have

D
(α)
KL (PZ,Z′∥PZPZ′) = Ez∼Z [D

(α)
KL (PZ′|Z=z∥PZ′)],

but in general, the above equality does not holds for Rényi divergence (Rényi, 1961; Van Erven &
Harremos, 2014), i.e.,

R(α)
γ (PZ,Z′∥PZPZ′) ̸= Ez∼Z [R

(α)
γ (PZ′|Z=z∥PZ′)].

Thus, the generalization of CPC objective to SupCon loss is equivalent that they estimate the same
objective, however, RényiCL and RényiSCL do not share the common objective due to the difference
in their derivation. A straightforward generalization of RényiCL could be an interesting direction,
which we leave for future work.

A.2 HARD NEGATIVE MINING

Here, we show that RényiSCL also performs hard negative mining (we explained easy positive
mining in Section 4.1). Similar to Section 4.1, suppose fθ is a neural network parametrized by θ.
Suppose we have M positives z+i , i = 1, . . . ,M such that z+i ∼ p(z+i |L(z) = L(z+i )), and K
negatives z−j , j = 1, . . . ,K such that z−j ∼ p(z−j |L(z) ̸= L(z−j )). Then the RényiSCL loss is given
as follows:

ℓRSCL(z; θ) = − 1

γ − 1
log

M∑
i=1

e(γ−1)fθ(z,z
+
i ) +

1

γ
log

(
α

M

M∑
i=1

eγfθ(z,z
+
i ) +

1− α

K

K∑
j=1

eγfθ(z,z
−
j )

)
.

Then the gradient of the RényiSCL loss is given as follows:

∇θℓRSCL(z; θ) = −Esg(qθ(z+;z)[∇θfθ(z, z
+
i )] +

α
M

∑M
i=1 e

γf(z,z+
i )∇θfθ(z, z

+
i ) +

1−α
K

∑K
j=1 e

γf(z,z−
j )∇θfθ(z, z

−
j )

α
M

∑M
i=1 e

γfθ(z,z
+
i ) + 1−α

K

∑K
j=1 e

γfθ(z,z
−
j )

= −Esg(qθ(z+;z)[∇θfθ(z, z
+
i )] + Esg(rθ(z′;z))[∇θfθ(z, z

′)],
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Method IMN C10 C100 FOOD PET FLO CAL CAR AIR DTD SUN Average

SLMLP (Wang et al., 2022) 76.2 95.0 80.3 72.9 91.2 94.5 94.6 63.8 59.2 72.7 62.1 78.6
SLMLP †(Wang et al., 2022) 76.8 94.2 79.3 76.1 90.9 94.9 93.3 60.1 57.0 76.8 65.4 78.8
SupCon(Khosla et al., 2020) 76.1 95.1 81.1 73.1 90.3 95.3 94.7 65.5 64.3 74.4 62.6 79.6
SupCon † (Khosla et al., 2020) 76.9 94.6 79.9 77.5 90.4 96.1 93.3 64.7 60.8 77.1 66.4 80.1

RényiSCL (Ours) 76.6 95.1 81.5 74.7 91.9 96.2 95.3 72.1 65.2 76.2 63.7 81.2
RényiSCL † (Ours) 77.8 94.5 80.1 79.3 91.6 96.4 93.9 70.9 64.7 78.9 66.3 81.7

Table 9: Extended results of Table 4. We use same metric as in Table 1. † denotes the use of multi-crop data
augmentation. All models are trained for 100 epochs.

(γmany, γmedium, γfew) C10 C100 FOOD PET FLO CAL CAR AIR DTD SUN Average

(1.0, 1.0, 1.0) 90.1 68.8 59.1 85.3 81.6 86.6 33.1 36.9 64.4 47.9 65.4
(1.5, 1.0, 1.0) 90.4 69.5 60.3 85.3 85.1 87.8 36.0 36.9 65.5 49.6 66.6
(1.5, 1.2, 1.0) 90.3 69.8 60.4 85.8 85.3 86.9 35.0 39.0 65.9 49.9 66.8
(1.5, 1.5, 1.0) 90.2 70.1 61.1 85.7 86.8 87.7 37.8 38.5 66.7 50.3 67.5
(1.5, 1.5, 1.5) 90.4 70.0 60.8 85.7 85.6 88.2 35.7 39.8 67.3 50.5 67.4

Table 10: Comparison on the transfer learning performance of transfer learning on ImageNet-LT by using
group-wise different values of γ. We use same metric as in Table 1.

where sg(qθ(z+; z)) is a self-normalized importance weights defined in equation 2, and rθ(z
′; z) is

also a self-normalized importance weights defined as

rθ(z
′; z) ∝

{
α exp

(
γfθ(z, z

′)
)

z′ ∼ p(z′|L(z) = L(z′)

(1− α) exp
(
γfθ(z, z

′)
)

z′ ∼ p(z′|L(z) ̸= L(z′)
.

Thus, the RényiSCL loss is equivalent to following in terms of gradient:
ℓRSCL(z; θ) ≡ −Esg(qθ(z+;z)[fθ(z, z

+
i )] + Esg(rθ(z′;z))[fθ(z, z

′)]

Thus, by using higher value of γ, the RSCL loss imposes more weight on hard negative samples,
i.e., the negatives that currently have high similarity fθ(z, z

−). Therefore, alike RényiCL, RényiSCL
performs hard negative mining, but with inter-class instances. Thus, hard negative sampling helps
increase the class separability, and show its effectiveness when used with harder data augmentation.

B EXTENDED RESULTS

B.1 IMAGENET EXPERIMENTS

In Table 9, we report the extended results of Table 4.

B.2 IMBALANCED DATASET

In Table 10, we report the extended results of Table 7. Additionally, verify the effect of group-wise γ
on CIFAR100-LT dataset with imbalance factor of 100 (the description on the dataset is in Table 15).
In Table 11, we report the group-wise accuracy on CIFAR100 test dataset. Similarly, we observe
that using a smaller value of γ for minor group, and a larger value of γ for major group increases
the generalization performance on minor group.

B.3 COARSE-TO-FINE EXPERIMENTS

Coarse-to-fine transfer learning on ImageNet. In Table 12, we report the extended results of
Table 8.

Coarse-to-fine transfer learning on CIFAR10, CIFAR100, TinyImageNet. Here, we show the
experimental results on the small scale coarse-to-fine transfer learning tasks with CIFAR10, CI-
FAR100, and TinyImageNet datasets (see Appendix C.1 for the coarse-labeled dataset and Ap-
pendix C.4 for the details of experimental setup). For baselines, we compare with SupCon (Khosla
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(γmany, γmedium, γfew) Many Medium Few All

(1.5, 1.5, 1.5) 56.1 48.7 43.0 49.6
(1.5, 1.5, 1.0) 57.0 48.6 43.4 50.0
(1.5, 1.2, 1.0) 56.9 51.7 41.6 50.5
(1.5, 1.0, 1.0) 56.9 53.1 40.4 50.6

Table 11: Effect of group-wise γ on CIFAR-100-LT with imbalance factor 100. All models are trained with
ResNet-32 as a backbone. We report the group-wise accuracy by dividing into many (>100 shots), medium (20-
100 shots), and few (<20 shots).

Method IMN C10 C100 FOOD PET FLO CAL CAR AIR DTD SUN Average

Coarse-labeled dataset with Nl = 918

SupCon (Khosla et al., 2020) 58.2 90.3 70.9 59.9 77.3 89.3 89.6 45.3 49.5 68.7 52.0 69.3
SLMLP (Wang et al., 2022) 73.1 94.7 80.1 72.3 90.1 94.7 94.0 63.4 60.8 73.7 62.1 78.6
RényiSCL (Ours) 76.2 94.8 80.9 73.9 91.5 95.7 94.4 72.6 65.1 75.0 62.6 80.6

Coarse-labeled dataset with Nl = 753

SupCon (Khosla et al., 2020) 50.1 88.5 66.8 56.1 60.9 88.1 89.2 33.0 45.5 65.1 45.2 63.8
SLMLP (Wang et al., 2022) 70.2 94.4 80.3 71.5 80.0 94.8 94.4 64.5 60.7 73.6 61.6 77.6
RényiSCL (Ours) 74.3 95.0 80.9 73.8 82.4 95.5 95.3 71.8 64.6 73.9 62.8 79.6

Coarse-labeled dataset with Nl = 486

SupCon (Khosla et al., 2020) 48.4 87.2 64.7 55.0 56.1 85.8 86.2 28.6 41.5 64.0 44.8 61.4
SLMLP (Wang et al., 2022) 63.0 92.4 76.2 69.0 68.0 94.1 92.9 56.6 56.9 72.1 59.4 73.7
RényiSCL (Ours) 70.6 93.5 78.9 72.3 74.5 95.1 94.6 64.1 61.3 74.2 62.3 77.1

Table 12: Extended results of Table 8. We use the same metric as in Table 1.

et al., 2020), SLMLP (Wang et al., 2022). In addition, note that Chen et al. (2022) introduced class-
conditional InfoNCE (cNCE) loss to prevent the class-collapse problem and improve the transfer-
ability. Thus, we show the results on SupCon+cNCE, and since cNCE loss can be used for RényiSCL
loss, we also report that one. In case of RényiSCL with cNCE loss, we implement the Rényi diver-
gence variant of cNCE loss. Detailed explanation is provided in section C.3. We use γ = 2.5
for all experiments conducted for both RenyiSCL and joint training of RenySCL and cNCE objec-
tive. In Table 13, we report the results of coarse-to-fine transfer learning experiments. Remark that
RényiSCL outperforms other baseline, and for CIFAR100 and TinyImageNet, RényiSCL attains the
best performance without using additional cNCE loss. Remark that for CIFAR10, there are only
two 2 labels in coarse-labeled dataset, thus the cNCE loss can greatly improve the performance. On
the other hand, when there are sufficiently many classes such as CIFAR100 or TinyImageNet, using
RényiSCL alone suffices to achieve the good performance.
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CIFAR10 CIFAR100 TinyImageNet

Method Fine Coarse Fine Coarse Fine Coarse

SLMLP (Wang et al., 2022) 95.5 79.8 74.4 71.2 61.0 41.2
SupCon (Khosla et al., 2020) 95.5 81.2 72.1 70.1 59.2 54.5
SupCon+cNCE (Chen et al., 2022) 95.0 86.7 72.5 70.9 58.0 47.7

RényiSCL (Ours) 95.6 82.6 74.5 71.4 60.9 58.4
RényiSCL+cNCE 94.3 89.4 74.4 71.3 59.5 56.4

Table 13: Comparison with class-conditional InfoNCE objective (Chen et al., 2022). cNCE denotes class-
conditional InfoNCE objective. For each dataset and method, we report the Top-1 accuracy of fine-label (Fine)
and coarse-label (Coarse). Every experiment use ResNet-18 as backbone.

Dataset # of classes Training Validation Test Metric

CIFAR10 (Krizhevsky et al., 2009) 10 45000 5000 10000 Top-1 accuracy
CIFAR100 (Krizhevsky et al., 2009) 100 45000 5000 10000 Top-1 accuracy
Food (Bossard et al., 2014) 101 68175 7575 25250 Top-1 accuracy
Pets (Parkhi et al., 2012) 37 2940 740 3669 Mean per-class accuracy
Flowers (Nilsback & Zisserman, 2008) 102 1020 1020 6149 Mean per-class accuracy
Caltech101 (Fei-Fei et al., 2004) 101 2525 505 5647 Mean Per-class accuracy
Cars (Krause et al., 2013) 196 6494 1650 8041 Top-1 accuracy
Aircraft (Maji et al., 2013) 100 3334 3333 3333 Mean Per-class accuracy
DTD (split 1) (Cimpoi et al., 2014) 47 1880 1880 1880 Top-1 accuracy
SUN397 (split 1) (Xiao et al., 2010) 397 15880 3970 19850 Top-1 accuracy
EuroSAT (Helber et al., 2019) 10 13500 5400 8100 Average accuracy
ISIC (Codella et al., 2019) 7 5007 2003 3005 Average accuracy

FC100 (Oreshkin et al., 2018) 20 - - 12000 Average accuracy
CUB200 (Cubuk et al., 2020) 200 - - 11780 Average accuracy
Plant Disease (Mohanty et al., 2016) 38 - - 54305 Average accuracy
EuroSAT (Helber et al., 2019) 10 - - 27000 Average accuracy

Table 14: Dataset information for the transfer learning tasks. For FC100, CUB200, Plant Disease, we perform
few-shot learning, otherwise, we perform linear evaluation.

C IMPLEMENTATION DETAILS

C.1 DATASET INFORMATION

In Table 14, we list the information on the datasets that we used for transfer learning experiments
of fine-grained object classification and cross-domain few-shot learning in Section 5.1. In Table 15,
we list the information on the datasets that we used for experiments in Section 5.2. In Table 16, we
list the information on the datasets that we used for experiments in Section 5.3.

C.2 EXPERIMENT ON IMAGENET

Implementation details of RényiSCL on ImageNet. We use ResNet50 (He et al., 2016) for all
of our experiments. We use two layer projection MLP with dimension 4096-256. For optimization,
we use LARS (You et al., 2017) optimizer with base learning rate of 0.8 (i.e., the learning rate is
multiplied by base learning rate × batch size / 256), and decay by cosine learning rate schedule,
and the weight decay is 1e-6. For the similarity function, we use cosine-similarity with temperature
τ = 0.2. Following (Khosla et al., 2020), we use memory queue of size 65536 (without using
momentum encoder). For data augmentation, we use base data augmentation from (Chen et al.,
2020b; Grill et al., 2020; Lee & Shin, 2022), and further applied RandAugment (Cubuk et al., 2020)
and multi-crop Caron et al. (2020) data augmentation. For the hyperparameters, we use α = 0.001
and γ = 2.0 for all of our experiments.

Re-implementation of SupCon and SLMLP. To reproduce SupCon (Khosla et al., 2020), we
use same setting for RényiSCL, and only changed γ to 1.0. To reproduce SLMLP (Wang et al.,
2022), we use same setting for RényiSCL, except that we use prototypical layer for cross-entropy
based classification. Given that the output of projection MLP is of dimension 256, the prototypical
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Dataset # of training data # of classes Max. # sample Min. # sample

CIFAR-100-LT (Cao et al., 2019) 10.8K 100 500 5
ImageNet-LT (Liu et al., 2019) 115.8K 1000 1280 5
iNaturalist (Van Horn et al., 2018) 437.5K 8142 1000 2

Table 15: Information for long-tailed dataset. Max. # sample and Min. # sample indicate the number of
samples in the most frequent and the rarest class, respectively.

Dataset # of coarse classes # of fine classes

CIFAR-10 (Krizhevsky et al., 2009) 10 2
CIFAR-100 (Krizhevsky et al., 2009) 100 20
TinyImageNet (Le & Yang, 2015) 200 52
ImageNet (Deng et al., 2009) 1000 918, 753, 486

Table 16: Dataset information for coarse-to-fine transfer experiment.

layer is a linear layer with dimension 256 × 1000, and is ℓ2-normalized throughout the training.
The temperature for cosine cross-entropy loss is 0.2, and we use same optimizer as in RényiSCL
experiment. Lastly, we use all the same data augmentation setup for each RényiSCL, SupCon, and
SLMLP.

Baselines. We list the information on the baselines that we compared in Table 1:

• SimCLR (Chen et al., 2020b): results excerpted from their original paper.

• BYOL (Grill et al., 2020): results excerpted from their original paper.

• NNCLR (Dwibedi et al., 2021): results excerpted from their original paper.

• SwAV (Caron et al., 2020): use checkpoints from their official code1.

• DINO (Caron et al., 2021): use checkpoints from their official code2.

• MoCo v3 (Chen et al., 2021): use checkpoints from their official code3.

• ResNet-Strikes-Back (Wightman et al., 2021): use checkpoints from their official code4.

• RényiCL (Lee & Shin, 2022): we reproduced the results from their original paper.

• SupCon (Khosla et al., 2020): use checkpoints from their official code 5.

• SupCon+SSL (Islam et al., 2021): use checkpoints from their official code 6.

• LOOK (Feng et al., 2021): results excerpted from their original paper.

• Exemplar V2 (Zhao et al., 2020): use checkpoints from their official code 7.

Transfer learning. For linear evaluation on fine-grained object classification, we use the same
data augmentation that we used for linear evaluation on the ImageNet dataset. For optimization, we
ℓ2-regularized L-BFGS, where the regularization hyperparameter search is done on logarithmically
spaced values 10−6 to 105, and fine the best hyperparameter by testing on the validation set. Then,
we train a linear classifier using both training and validation splits and report the test accuracy using
the metric instructed in Table 1. The maximum number of iterations is 5000 and we use the previous
solution as an initial point, i.e., a warm start, for the next step. For few-shot learning experiments,
we perform logistic regression on the top of frozen representations and use N ×K support samples
without fine-tuning and data augmentation in a N -way K-shot episode.

1https://github.com/facebookresearch/swav
2https://github.com/facebookresearch/dino
3https://github.com/facebookresearch/moco-v3
4https://github.com/rwightman/pytorch-image-models/
5https://github.com/HobbitLong/SupContrast
6https://github.com/asrafulashiq/transfer_broad
7https://github.com/nanxuanzhao/Good_transfer
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C.3 EXPERIMENTS ON IMBALANCED DATASET

Dataset. ImageNet-LT (Liu et al., 2019) is a long-tailed version of ImageNet (Deng et al., 2009),
generated by subsampling ImageNet following Pareto distribution (Reed, 2001) with power value
α = 6. It consists of 115.8K images and contains 1000 categories. The number of samples per each
class varies from 5 to 1280. iNaturalist (Van Horn et al., 2018) is a real-world large-scale dataset,
which contains 437.5K images from 8142 classes. CIFAR100-LT (Cao et al., 2019) is a manually
crafted imbalanced subset from CIFAR100 (Krizhevsky et al., 2009), which follows the exponential
distribution. The severity of the imbalance is controlled by the imbalance factor, which is a ratio
between the number of samples of the most frequent and rare classes.

Implementation of RényiSCL. Our implementation is based on PaCo (Cui et al., 2021). PaCo
introduced learnable class prototypes W = {wk}Ck=1 where wk ∈ Rd stands for the k-th class
prototype. Then, let the similarity function defined as follows:

f(z, z′) =

{
z⊤z′ + log qy z′ ∈ {wk}Ck=1

h(z)⊤h(z′)
τ∥h(z)∥∥h(z′)∥ z′ ∼ p(z)

,

where y = L(z) be class of z, and qy is a class rebalancing ratio, i.e., qy =
ny∑C

k=1 nk
, where nk

is a number of data points in k-th class. Then for M positives z+i ∼ p(z+i |L(z) = L(z+i )), i =
1, . . . ,M , and K negatives z−j ∼ p(z−j |L(z) ̸= L(z−j )), j = 1, . . . ,K, the original PaCo objective
is defined by the supervised contrastive learning with consideration of class prototypes:

ℓPaCo(z) = − 1

βM + 1

( M∑
i=1

βf(z, z+i ) + f(z, wy)

)
+ log

( M∑
i=1

ef(z,z
+
i ) +

K∑
j=1

ef(z,z
−
j ) +

C∑
k=1

ef(z,wk)

)
,

where y = L(z) is a ground-truth class of z, and β is a hyperparameter that balances the power
of contrast between instances (i.e., z with z′ ∼ p(z)), and class prototypes wk. Then, we adapt
RényiSCL loss to the PaCo objective as follows:

ℓRSCL(z) =− 1

γ − 1
log

1

βM + 1

( M∑
i=1

βe(γ−1)f(z,z+
i ) + e(γ−1)f(z,wy)

)

+
1

γ
log

( M∑
i=1

eγf(z,z
+
i ) +

K∑
j=1

eγf(z,z
−
j ) +

C∑
k=1

eγf(z,wk)

)
We set γ as (γmany, γmed, γfew) = (1.5, 1.5, 1.0) for ImageNet-LT and 1.1 on every group for iNatu-
ralist dataset. We experiment with γ ∈ {1.1, 1.2, 1.5}, and we choose the best hyperparameter. We
use β = 0.05 for both dataset, following Cui et al. (2021).

Model. We use ResNet-32, ResNeXt-50, and ResNet-50 backbone for each CIFAR100-LT,
ImageNet-LT, and iNaturalist dataset, respectively. For CIFAR experiment, we train the model for
400 epochs with SGD optimizer with learning rate 0.05, momentum 0.9, and weight decay 5e-4. We
decrease the learning rate with factor of 0.1 at epoch 320 and 360. For ImageNet-LT experiment,
we also use SGD optimizer for 400 epochs. The initial learning rate is 0.02, is decayed by cosine
learning rate schedule.The weight decay is 5e-4. We use the same configuration for iNaturalist with
ImageNet-LT, except that weight decay is 1e-4.

Baselines. We list the baseline models that we compared in Table 5:

• τ -norm (Kang et al., 2020): use checkpoints from their official code8.
• KCL (Kang et al., 2021), TSC (Li et al., 2022) : we reproduce the ResNeXt-50 model with

the official TSC impementation9.
• PaCo (Cui et al., 2021) : use checkpoints from their official code10.

8https://github.com/facebookresearch/classifier-balancing
9https://github.com/LTH14/targeted-supcon

10https://github.com/dvlab-research/Parametric-Contrastive-Learning
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C.4 COARSE-TO-FINE TRANSFER LEARNING

Implementation details on ImageNet For each RényiSCL, SupCon, and SLMLP experiment, we
use the exactly same hyperparameters that we used in Section C.2.

Coarse-labeled TinyImageNet Following Chen et al. (2022), we use the coarse-labeled dataset
of TinyImageNet, which is composed of 52 superclasses. The list of 52 superclasses are following:

• ‘arachnid’, ‘bear’, ‘bird’, ‘bug’, ‘butterfly’, ‘cat’, ‘coral’, ‘crocodile’, ‘crustacean’, ‘dog’,
‘echinoderms’, ‘fish’, ‘frog’, ‘fruit’, ‘fungus’, ‘hog’, ‘marine mammals’, ‘marsupial’, ‘mol-
lusk’, ‘plant’, ‘primate’, ‘rodent’, ‘salamander’, ‘snake’, ‘trilobite’, ‘ungulate’, ‘vegetable’,
‘wild cat’, ‘accessory’, ‘ball’, ‘boat’, ‘building’, ‘clothing’, ‘container’, ‘cooking’, ‘decor’,
‘electronics’, ‘fence’, ‘food’, ‘furniture’, ‘hat’, ‘instrument’, ‘lab equipment’, ‘outdoor
scene’, ‘paper’, ‘sports equipment’, ‘technology’, ‘tool’, ‘toy’, ‘train’, ‘vehicle’, ‘weapon’.

Note that while Chen et al. (2022) originally presented 67 super-classes, we found out some of these
suggested categories do not contain any subclasses. Thus, the actual number of super-classes are 52.

Coarse-labeled CIFAR10 and CIFAR100 The coarse label of CIFAR10 dataset is composed
with 2 super-classes; ‘animals’ and ‘vehicles’, and each has 6 and 4 subclasses, respectively. CI-
FAR100 has 20 superclasses, and each of them contains 5 subclasses. For instance, super-class ‘fish’
includes ‘aquarium fish’, ‘flatfish’, ‘ray’, ‘shark’, and ‘trout’ as its subclasses.

Implementation details on CIFAR10/100 and TinyImageNet datasets. We use ResNet-18 ar-
chitecture (He et al., 2016) adjusted for CIFAR dataset as the backbone; in particular, the kernel size
of the first convolutional layer of 7 × 7 is replaced by 3 × 3, and the max pooling layer is omit-
ted. We use SGD optimizer with learning rate 0.5, cosine learning rate scheduling, batch size 512,
momentum 0.9, and weight decay 1e-4. We train the models for 400 epochs. Data augmentation
methods used in pre-training stage are random resized cropping, horizontal flipping, color jittering,
and grayscale conversion. For evaluation, we freeze the backbone and train the linear layer upon the
learned representation for 100 epochs with learning rate 3.0, cosine learning rate scheduling, batch
size 256, and momentum 0.9 without weight decay. We use random resized cropping and horizontal
flipping for training the linear layer.

For the class-conditional infoNCE (Chen et al., 2022) (cNCE) experiments, we implement the ob-
jective as below:

ℓSupCon(z) = − 1

M

M∑
i=1

f(z, z+i ) + log

( M∑
i=1

exp
(
f(z, z+i )

)
+

K∑
j=1

exp
(
f(z, z−j )

))
.

ℓcNCE(z) = −f(z, z++) + log

( M∑
i=1

exp
(
f(z, z++)

))
.

ℓSupCon+cNCE(z) = (1− λ)ℓSupCon(z) + λℓcNCE(z),

where z++ is a positive instance that is augmented from the same input of z.

Also, for joint training of RényiSCL and cNCE loss experiment, we implement the self-supervised
Rényi contrastive learning (RényiCL) (Lee & Shin, 2022) variant of cNCE, i.e., Rényi-cNCE loss,
which is defined as follows:

ℓ
(α,γ)
RSCL (z) = − 1

γ − 1
log

M∑
i=1

e(γ−1)f(z,z+
i ) +

1

γ
log

( M∑
i=1

eγf(z,z
+
i ) +

K∑
j=1

eγf(z,z
−
j )

)

ℓRenyi−cNCE(z) = −f(z, z++) +
1

γ
log

(
eγf(z,z

++) +

K∑
j=1

eγf(z,z
−
j )

)
ℓRSCL+R−cNCE(z) = (1− λ)ℓRSCL(z) + λℓRenyi−cNCE(z).

We set λ = 0.5 for every experiment following Chen et al. (2022).
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