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Abstract

Predicting human gaze scanpaths is crucial for understand-
ing visual attention, with applications in human-computer
interaction, autonomous systems, and cognitive robotics.
While deep learning models have advanced scanpath pre-
diction, most existing approaches generate averaged behav-
iors, failing to capture the variability of human visual explo-
ration. In this work, we present ScanDiff, a novel archi-
tecture that combines diffusion models with Vision Trans-
formers to generate diverse and realistic scanpaths. Our
method explicitly models scanpath variability by leverag-
ing the stochastic nature of diffusion models, producing a
wide range of plausible gaze trajectories. Additionally, we
introduce textual conditioning to enable task-driven scan-
path generation, allowing the model to adapt to different vi-
sual search objectives. Experiments on benchmark datasets
show that ScanDiff surpasses state-of-the-art methods
in both free-viewing and task-driven scenarios, produc-
ing more diverse and accurate scanpaths. These results
highlight its ability to better capture the complexity of hu-
man visual behavior, pushing forward gaze prediction re-
search. Source code and models are publicly available at
https://aimagelab.github.io/ScanDiff.

1. Introduction

Understanding and predicting human visual attention re-
mains a central problem in computer vision [10, 11, 15, 41,
48], with broad relevance to fields such as human-computer
interaction [35], autonomous driving [52], and cognitive
robotics [54]. Visual attention deployment is a dynamic
and selective mechanism that allows humans to efficiently
process the vast amount of information in complex visual
stimuli. A critical aspect of computational modeling in this
domain involves the prediction of human gaze scanpaths –
the sequences of fixations and saccades that represent the
dynamic process of visual exploration.
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Figure 1. The diffusion process of ScanDiff that generates re-
alistic scanpaths through learned transitions conditioned on image
I and viewing task c.

Models based on deep convolutional [40] and recurrent
architectures [17], as well as more recent Transformer-
based methods [48, 69], have significantly improved the
ability to predict eye movements. These models are effec-
tive in both free-viewing scenarios, where observers explore
without an explicit task, and in visual search, where explo-
ration follows predefined goals. However, most of these
approaches generate scanpaths that reflect an averaged be-
havior, failing to capture the rich variability observed in in-
dividual visual exploration [42, 56, 63]. As noted in [9],
the decision of where to look next at any given moment is
neither entirely deterministic nor completely random. Mod-
eling the effects of randomness allows us to efficiently ad-
dress the influence of complex factors, such as oculomo-
tor biases, traits, and motor response variability, at both
the individual and group levels. Indeed, variability – and
the resulting stochasticity of gaze allocation – goes beyond
merely revealing individual idiosyncrasies, which are sig-
nificant in clinical and psychological studies. It also en-
ables the observer to remain responsive to new signals and
promotes a flexible shift of attention. This flexibility, in
turn, facilitates efficient learning and exploration of the en-
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vironment, an essential capability for autonomous systems
in computer vision and robotics [4, 58].

Recent advances in generative modeling, particularly
diffusion probabilistic models [26, 32], offer a promis-
ing alternative by using stochastic sampling to learn and
generate diverse sequential outputs. Early applications
to scanpath prediction have shown promise in generating
human-like gaze behaviors that capture the inherent vari-
ability of individual scanpaths on 360° images [36, 60]
and text [8]. When combined with the sequence modeling
strengths of Transformer-based architectures [27, 59], these
approaches move beyond deterministic predictions to sim-
ulate a broader range of plausible scanpaths aligned with
cognitive theories of attention [73].

Building on these insights, we propose ScanDiff, a
unified architecture that integrates diffusion models with
Vision Transformers [27, 51] to generate diverse and realis-
tic gaze scanpaths. Unlike existing approaches, ScanDiff
explicitly models scanpath variability by leveraging the
stochastic nature of diffusion models, enabling the genera-
tion of diverse yet plausible gaze trajectories. Furthermore,
our method incorporates textual conditioning and a length
prediction module, allowing the model to flexibly adapt to
diverse visual search objectives within a unified framework.

Through extensive experiments on COCO-FreeView
[68], MIT1003 [37], and COCO-Search18 [16, 65], we
demonstrate that ScanDiff sets a new state of the art
in scanpath prediction across both free-viewing and task-
driven scenarios. Additionally, we present a novel analysis
of the variability of predicted scanpaths, highlighting that
our approach generates highly diverse eye trajectories, bet-
ter capturing human gaze behaviors than competitors. This
is achieved by leveraging existing scanpath prediction met-
rics and incorporating a new measure that penalizes exces-
sive similarity among generated scanpaths.
In summary, our key contributions are as follows:

• A novel diffusion-based architecture that models the in-
herent stochasticity of human gaze, enabling the genera-
tion of diverse and realistic gaze trajectories.

• A unified framework that integrates textual conditioning
and a length prediction module, allowing the model to
adapt to both free-viewing and task-driven scenarios.

• A comprehensive evaluation that includes a novel analy-
sis of scanpath variability, demonstrating that ScanDiff
outperforms existing methods in capturing the diversity of
human gaze behavior, along with achieving state-of-the-
art results in traditional scanpath prediction metrics.

2. Related Work

Scanpath Prediction. The study of visual attention in com-
puter vision has seen significant progress since the seminal
works in [1, 3, 5, 33]. In particular, research on modeling

scanpaths – i.e., the sequence of gaze fixations and subse-
quent shifts (saccades) – has surged in recent years, with
applications expanding across multiple domains [10].

A considerable amount of research has been dedicated to
predicting scanpaths under free-viewing conditions, where
the observer has no predefined task [2, 7, 14, 17, 23, 33, 41].
Yet, echoing the foundational work in this field, some stud-
ies have shifted focus toward goal-driven attention model-
ing, in which an observer purposively engages in a spe-
cific task, such as locating an object within a scene [13,
23, 48, 66] or searching for targets not present in the im-
age [67, 69]. Other works aimed at simulating human-like
attention in visual question answering [13] and image cap-
tioning tasks [30].

Recent approaches have explored predicting attention
dynamically as a person views an image while hearing a re-
ferring expression specifying the target object [46, 49]. Oth-
ers have used vision-and-language models to jointly predict
scanpaths and generate language-based explanations [15],
or to predict subjective feedback like satisfaction and aes-
thetic quality alongside human attention patterns [43]. No-
tably, some efforts have focused on using diffusion models
to generate scanpaths, though these have been limited to
specific settings, such as reading [8] or viewing 360° im-
ages [36, 60]. To the best of our knowledge, we are the first
to explore the potential of diffusion-based architectures for
free-viewing and visual search tasks in natural scenes.
Diffusion Models for Sequence Modeling. Recently, dif-
fusion models have emerged as one of the most successful
probabilistic generative architectures across various fields,
particularly in computer vision [22]. They have also gained
popularity as a non-autoregressive alternative for model-
ing sequences [64], demonstrating success in generating
various types of sequences, including continuous time-
series [19, 20, 45], text [28, 44], and audio [38]. Notably,
these models have recently been adopted for generating
spatio-temporal data, such as GPS trajectories [61, 74, 75]
and human motion data [18, 57, 72], including eye move-
ment patterns [8, 36, 60]. In contrast to these methods, we
focus on both standard free-viewing and goal-oriented set-
tings, introducing a novel approach that can predict scan-
paths of variable lengths, thereby enabling greater variabil-
ity and more realistic gaze behavior.

3. Proposed Method
Scanpath generation aims to predict the spatial and temporal
dynamics of human eye movements in response to a given
visual stimulus. The generation can be performed under the
free-viewing task or the goal-directed task, as in the case
of object visual search [48, 65, 67], visual question answer-
ing [13] or incremental object referral [49]. We propose
ScanDiff, a novel scanpath prediction architecture based
on diffusion models to generate realistic and diverse gaze

16207



Laptop
Fork
Knife
. . .

Free-Viewing

M
ul

ti-
H

ea
d 

C
ro

ss
 

A
tt

en
tio

n

A
dd

&
 N

or
m

M
ul

ti-
H

ea
d 

A
tt

en
tio

n

A
dd

&
 N

or
m

Fe
ed

Fo
rw

ar
d

A
dd

&
 N

or
m

DINOv2
CLIP Text 
Encoder

Viewing Task    

Gaussian Noise

×M

Visual Stimulus I

Vjoint

R
hw×2d

→ R
hw×d

c

g
θ
:
R

N
×
3
→

R
N
×
d

γθ

lθ

s z0 zt z̃0 s̃

Figure 2. Overview of ScanDiff. Given a stimulus I and a viewing task c, a scanpath s̃ is generated through a diffusion process.

patterns (see Fig. 2). Its multimodal nature enables the uni-
fied prediction of various types of visual attention, seam-
lessly adapting to different viewing tasks and stimuli.

3.1. Preliminaries
Diffusion models are a class of generative models able to
model the ground-truth distribution of a given dataset by
reversing a diffusion process that gradually adds noise to
the input data. They consist of a forward and a backward
process. Given a sample x0 drawn from a real-world data
distribution x0 ∼ q(x), the forward process gradually cor-
rupts the input data by adding Gaussian noise for a number
of timesteps T according to a variance schedule β1, . . . , βT .
This produces, at each timestep t, a latent variable xt with
distribution q(xt | xt−1), defined as:

q(xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

with I being the identity matrix. In the reverse process, the
final goal is to recover x0 by denoising xT . This process is
defined by a Markov chain parameterized by θ:

pθ(x0:T ) := pθ(xT )

T∏
t=1

pθ(xt−1|xt). (2)

In particular, each transition pθ(xt−1|xt) =
N
(
xt−1;µθ(xt, t),Σθ(xt, t)

)
is parameterized by a

function ϕθ, where µθ and Σθ represent the predicted mean
and variance of the true posterior distribution, respectively.
Problem Definition. Given an image or stimulus I ∈
RH×W×3 and a viewing task c, the final objective is to pre-
dict a human-like scanpath represented as an ordered se-
quence of N fixations s = {f1, f2, . . . , fN}. Each fixation
fi consists of a pair (ri,mi), where ri = (xi, yi) ∈ R2 is

the 2D spatial fixation location, while mi ∈ R+ is the fixa-
tion duration. In this work, we propose a non-autoregressive
approach to generate scanpath trajectories by learning a dif-
fusion model ϕθ. Starting from a noisy sample drawn from
a Gaussian distribution, the learned model iteratively refines
it to produce the final scanpath trajectory.

3.2. ScanDiff Model
3.2.1. Forward Process: Scanpath Embedding
Let s ∈ RN×3 be a sequence of N ground-truth fixations.
To enable a structured latent space that better captures tem-
poral and spatial dependencies of the scanpath, we learn a
linear projection gθ : RN×3 → RN×d to map the scanpath s
into an augmented embedding space, thus obtaining the ini-
tial uncorrupted latent variable z0 = gθ(s) ∈ RN×d. Dur-
ing the forward process (see Fig. 1), we gradually corrupt
the whole embedded sequence z0 by adding Gaussian noise
over T timesteps, following a predefined variance sched-
ule. At each timestep t, the noisy latent representation zt is
obtained through a Markovian diffusion process, as defined
in Eq. 1. By the final timestep, the representation zT ap-
proaches an isotropic Gaussian distribution, effectively re-
moving any trace of the original scanpath structure.

3.2.2. Conditional Denoising Process
Scanpath prediction involves the generation of an ordered
sequence of N fixations conditioned on a given stimulus
I and a viewing task c. Therefore, referring to Eq. 2, the
conditioned denoising process can be rewritten as:

pθ(z0:T | I, c) := p(zT )

T∏
t=1

pθ(zt−1 | zt, I, c). (3)

Our model ϕθ is based on an encoder-only Trans-
former [59], modified to incorporate an additional multi-
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head cross-attention layer between the self-attention and
feed-forward layers [53]. This enables the model to effec-
tively condition on the image I and the viewing task c.

Image Encoding. We process each stimulus I ∈ RH×W×3

using a Transformer-based visual backbone v(·) which out-
puts a dense feature map v(I) ∈ Rh×w×dv . Here, h and w
denote the number of patches along the height and width of
the image, respectively, while dv refers to the dimensional-
ity of the visual embedding space.

Task Encoding. Our model features a unified architecture
that seamlessly adapts to different tasks without requiring
any architectural modifications. This flexibility is achieved
by using a text encoder to represent the viewing task c.
Specifically, for the free-viewing task, we represent c as an
empty string. In contrast, for visual search, c corresponds to
the textual label of the target object to look for in the image
(e.g. “laptop”). To extract task representations, we employ
a pre-trained text encoder ψ(·) which maps c to a feature
vector ψ(c) ∈ Rdt in the textual embedding space, where
dt denotes the dimensionality of the textual features.

Multimodal Conditioning. To condition the denoising
process on both the image I and task c, we project the visual
features v(I) and the textual features ψ(c) in a joint multi-
modal embedding space. Following previous works [48],
we first map the visual and textual features into a common
d-dimensional space using two independent linear transfor-
mations. The textual features are then repeated hw times
and concatenated with the visual features along the chan-
nel dimension, resulting in a feature map of size hw × 2d.
Finally, this feature map is linearly projected into a d-
dimensional feature space to obtain the final multimodal
embedding Vjoint ∈ Rhw×d, which effectively combines
visual and task semantic information. This multimodal con-
ditioning enables a unified model to adapt to various tasks,
from free-viewing to visual search. The resulting multi-
modal embedding Vjoint is then passed through the cross-
attention layer of the Transformer. In parallel, zt is aug-
mented with a learnable positional encoding and a sinu-
soidal diffusion timestep embedding. For the sake of sim-
plicity, in what follows, we refer to zt as the combination of
the noisy scanpath embedding, the positional, and the diffu-
sion timestep embeddings.

Unlike previous approaches [36, 60] that directly con-
catenate the noisy gaze sequence with the image em-
bedding, we combine zt and the visual-semantic features
Vjoint only in the cross-attention layer. This design choice
allows the model to dynamically modulate the interaction
between gaze dynamics and visual-semantic information,
rather than enforcing a rigid concatenation.

Scanpath Reconstruction and Length Prediction. The
Transformer encoder output is defined as z̃0 =
ϕθ(zt,Vjoint) ∈ RN×d. The spatial coordinates and the

duration of the fixations are reconstructed starting from the
predicted sample z̃0. Specifically, a feed-forward network
γθ with three linear layers followed by a ReLU activation
function is adopted to decode z̃0 to an approximation of
the original scanpath s̃ = {f̃1, f̃2, . . . , f̃N} , f̃i ∈ R3.
The visual response to a given stimulus and the corre-
sponding scanpath length can vary across subjects. Exist-
ing works that leverage diffusion models for scanpath gen-
eration [36, 60] typically produce fixed-length scanpaths.
In contrast and crucially, we take a different approach: we
introduce a length prediction module in the model architec-
ture, which allows for greater flexibility. In particular, this
module predicts the probability ũi of each token in the re-
constructed sample z̃0 to be valid through a linear function
lθ : RN×d → RN . The final predicted length is equal to the
number of consecutive valid tokens.

3.3. Training and Inference
The training objective L is defined as the combination of
four different components:

L = LVLB + Lrec + Lval + LT . (4)

The first component LVLB aims to minimize the differ-
ence between the uncorrupted sample z0 and the model pre-
diction. Formally, it is defined as:

LVLB =

T∑
t=1

∥z0 − ϕθ(zt,Vjoint)∥2. (5)

This simplification can be derived from the variational
lower bound [8]. To reduce the noise in the optimization
of LVLB we adopt importance sampling [50].

The second term Lrec measures the scanpath reconstruc-
tion error and is defined as the L1 loss between the ground-
truth scanpath s and the reconstructed one s̃:

Lrec = ∥s− s̃∥

=
1

N

N∑
i=1

(|xi − x̃i|+ |yi − ỹi|+ |mi − m̃i|) .
(6)

Here, x̃i and ỹi denote the spatial coordinates of the recon-
structed fixation f̃i, and m̃i is the relative fixation duration.
During training, the ground-truth scanpaths are padded or
truncated to a maximum length of L. The L − N padding
fixations are masked out during the computation of Lrec.

The term Lval represents binary cross-entropy loss for
predicting the validity of each reconstructed fixation:

Lval =
1

L

L∑
i=0

BCE(ui, ũi). (7)

At the final diffusion step, the mean prediction should
converge to zero under the assumption that the noise prior
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follows a standard Gaussian distribution. To stabilize the
diffusion process, we define the loss LT = ∥µ(zT )∥2 which
penalizes any residual bias in the mean prediction at the fi-
nal timestep ensuring it ends in a clean isotropic Gaussian.
This also regularizes training by enforcing theoretical con-
straints otherwise weakened by finite-step approximations.

Sampling a Scanpath. At inference time, our model gen-
erates a scanpath in response to a visual stimulus I and a
viewing task c (e.g. free-viewing or visual-search). We sam-
ple zT ∼ N (0,I) ∈ RN×d and the model ϕθ iteratively
denoises zT to z0. At each sampling step t the multimodal
features Vjoint are fused with zt in the cross-attention layer
to condition the reverse process. After denoising zT into z0,
this is fed through two independent inverse embedding lay-
ers to obtain the predicted scanpath and its relative length
N . To account for the variability in the observational pat-
terns across different subjects, we generate multiple scan-
path trajectories by sampling distinct noisy samples zT .

4. Experimental Results
4.1. Experimental Setup
Datasets. We evaluate our model on both the free-viewing
and visual search tasks. For free-viewing experiments,
we adopt COCO-FreeView [68] and MIT1003 [37], which
comprise 6,202 and 1,003 images, respectively. To train our
model, we combine images from both datasets, using 70%
for training, 15% for validation, and 15% for testing.To as-
sess the performance on the visual search task, we employ
COCO-Search18 [16, 65], which features eye gaze behavior
from 10 people while searching for the presence of a spe-
cific object (among 18 diverse categories) in the scene. Im-
ages are divided into target-present and target-absent splits,
with 3,101 items each. In this setting, we employ the train-
ing, validation, and test sets used in previous works [15, 48].

Evaluation Metrics. The similarity between generated
and human scanpaths is measured through the MultiMatch
(MM) [25, 34], ScanMatch (SM) [21], Sequence Score
(SS) [65], and Semantic Sequence Score (SemSS) [67] met-
rics. In particular, we adopt the same evaluation protocol
proposed in [23] where the distribution of human vs. gen-
erated metrics is compared against the distribution of the
human consistency metrics, using the Kullback-Leibler di-
vergence. Beyond similarity, capturing the diversity of gen-
erated scanpaths is crucial to prevent the model from col-
lapsing into a deterministic solution, thereby preserving the
natural variability observed in human eye movements. To
this end, we adopt two additional metrics: the Individual
Scanpath Recall [69], which we rename as Recall Sequence
Score (RSS), and a newly introduced metric that favors the
diversity of generated scanpaths termed as Diversity-aware
Sequence Score (DSS).

In particular, the RSS measures the extent to which the

generated scanpaths cover the variability of human scan-
paths for a given stimulus. For a human scanpath in the
dataset, it is considered covered if its SS with at least one
generated scanpath surpasses a predefined threshold. The
RSS is then computed as the ratio of covered human scan-
paths to the total number of human scanpaths. This metric
evaluates whether the model can replicate the range of indi-
vidual behaviors observed in humans.

The novel DSS we propose extends the standard se-
quence similarity measures by incorporating a term that pe-
nalizes excessive similarity among the generated scanpaths
when humans do not reflect such behavior. Given a set of
generated scanpaths sg and corresponding human scanpaths
sh for a specific visual stimulus, DSS is computed as

DSS(sg, sh) =
SS(sg, sh)

1 + |SS(sg, sg)− SS(sh, sh)|
(8)

where SS is the average sequence score calculated over the
possible combinations of different scanpaths. The denom-
inator penalizes models that produce overly uniform pre-
dictions, encouraging outputs that not only match human
behavior but also reflect its natural variability.
Implementation and Training Details. We employ the DI-
NOv2 ViT-B/14 model [51] as the pre-trained visual back-
bone, considering its rich semantic understanding of the vi-
sual scene. In particular, we use the DINOv2 variant with
registers [24]. To align with its training resolution, we re-
size all images to a resolution of 518 × 518, resulting in a
feature map v(I) of 37×37 patches, with an embedding di-
mension of dv = 768. For textual encoding, we utilize the
pre-trained CLIP ViT-B/32 model [55], which projects the
viewing task c into a feature space of dimension dt = 512.
The modified architecture of the Transformer encoder con-
sists of M = 6 layers, each with 8 attention heads and a
hidden dimension d = 512. The model is trained with the
AdamW optimizer, a batch size of 128, a learning rate set
to 1 × 10−4, a weight decay of 1 × 10−2, and a number of
diffusion steps T = 1000. In addition, a squared-root noise
schedule is adopted. Following previous works [13, 15], the
maximum scanpath length is set to 16. During training, the
spatial coordinates of each fixation are scaled in the range
[0, 1], and fixation durations are retained in seconds.

4.2. Comparison with the State of the Art
We evaluate ScanDiff by comparing it with existing
scanpath prediction models in both free-viewing and vi-
sual search tasks. Our evaluation includes a diverse range
of approaches and architectures, covering both traditional
model-based methods (e.g. Itti-Koch [33], CLE [7], and
G-Eymol [70]) and deep learning-based models (e.g. Path-
GAN [2], IOR-ROI-LSTM [17], DeepGazeIII [41], ChenL-
STM [13], Gazeformer [48], HAT [69], ChenLSTM-
ISP [14], GazeXplain [15], and TPP-Gaze [23]).
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COCO-FreeView MIT1003

MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓

Sh Len Dir Pos Dur Avg w/ Dur w/o Dur w/ Dur w/o Dur Sh Len Dir Pos Dur Avg w/ Dur w/o Dur w/ Dur w/o Dur

Itti-Koch [33] 0.504 0.507 0.237 1.325 - 0.643 - 4.317 - 1.624 1.040 0.702 0.353 2.900 - 1.249 - 3.233 - 6.639
CLE (Itti) [7, 33] 0.052 0.317 0.427 1.966 - 0.691 - 3.576 - 1.747 0.061 0.124 0.414 1.515 - 0.529 - 3.454 - 5.397
CLE (DG) [7, 40] 0.037 0.180 0.323 1.823 - 0.591 - 3.657 - 1.750 0.099 0.038 0.458 1.066 - 0.415 - 2.566 - 6.234
PathGAN [2] 0.070 0.406 1.009 0.073 0.031 0.318 1.210 1.383 0.718 1.012 0.063 0.234 1.603 0.514 0.165 0.516 2.255 1.069 1.087 1.190
G-Eymol [70] 0.583 0.741 1.296 0.550 0.676 0.769 9.350 8.990 8.622 4.127 0.870 0.523 0.444 0.431 0.187 0.491 9.942 2.513 9.799 3.771
IOR-ROI-LSTM [17] 1.107 0.442 0.013 0.444 0.028 0.407 1.540 1.520 0.546 1.005 0.677 0.446 0.021 1.099 0.051 0.459 0.985 0.875 0.437 5.302
DeepGazeIII [41] 0.037 0.016 0.019 0.028 - 0.025 - 0.368 - 0.393 - - - - - - - - - -
ChenLSTM [13] 0.034 0.128 0.105 0.045 0.189 0.100 0.574 0.373 0.344 0.442 0.028 0.073 0.149 0.107 0.110 0.094 0.168 0.161 0.192 0.316
HAT [69] 1.099 0.434 0.042 0.444 - 0.505 - 1.025 - 0.331 1.196 0.522 0.381 2.386 - 1.121 - 2.112 - 1.305
ChenLSTM-ISP [14] 0.038 0.173 0.166 0.077 0.188 0.128 0.683 0.576 0.377 0.579 0.034 0.124 0.175 0.114 0.095 0.108 0.264 0.214 0.267 0.240
GazeXplain [15] 0.151 0.195 0.874 0.164 0.382 0.353 3.915 3.423 2.278 5.616 0.018 0.065 0.079 0.058 0.188 0.082 0.035 0.094 0.072 1.419

DeepGazeIII [41] 0.009 0.017 0.059 0.038 - 0.031 - 0.348 - 0.417 0.025 0.020 0.210 0.074 - 0.082 - 0.210 - 3.878
ChenLSTM [13] 0.715 0.411 0.056 0.129 0.092 0.280 0.116 0.110 0.022 0.093 0.251 0.153 0.181 0.136 0.059 0.156 0.373 0.251 0.284 0.236
GazeXplain [15] 0.346 0.226 0.032 0.033 0.068 0.141 0.049 0.038 0.017 0.007 0.060 0.046 0.065 0.025 0.044 0.048 0.158 0.051 0.128 0.043
TPP-Gaze [23] 0.063 0.017 0.061 0.038 0.010 0.038 0.125 0.226 0.033 0.130 0.039 0.036 0.139 0.068 0.027 0.062 0.244 0.257 0.144 0.280
ScanDiff (Ours) 0.131 0.048 0.021 0.037 0.151 0.078 0.015 0.027 0.013 0.038 0.050 0.015 0.042 0.019 0.072 0.040 0.041 0.065 0.026 0.047

Table 1. Performance comparison of different models on the COCO-FreeView [68] and MIT1003 [37] datasets. Models trained using
identical settings and datasets to ScanDiff are highlighted in gray . Among these, the highest performance for each metric is marked
in bold. Underlined values denote the top overall performance across all models and metrics.

Free-Viewing Results. Table 1 presents a comprehensive
evaluation across the considered free-viewing datasets. For
a fair comparison, the most recent models were re-trained
using identical settings and datasets to ScanDiff. These
results are reported in gray color at the bottom of the table.

For the COCO-FreeView dataset, ScanDiff demon-
strates competitive performance across multiple metrics.
Our approach achieves the best results in the MM-direction
metric among models trained with identical settings. This
indicates the superior ability of our model to predict sac-
cade directions that match human scanpaths. Furthermore,
our model shows strong performance in the MM-position
metric and achieves the best overall SM and SS metrics
when considering fixation duration, demonstrating effective
modeling of temporal dynamics. The MIT1003 dataset re-
sults further validate the effectiveness of ScanDiff. Our
model achieves the highest MM average score among all the
competitors, demonstrating its overall strong performance.
The superior results in SM and SS with duration is con-
firmed also on this dataset, outperforming all competing
methods. This strong performance on the duration-aware
metrics highlights the ability of our model to effectively
represent the temporal aspects of visual attention. The uni-
fied diffusion-based architecture allows capturing both the
spatial patterns of eye movements and their temporal char-
acteristics, enabling more realistic scanpath generation.

Visual Search Results. The results summarized in Ta-
ble 2 demonstrate the superior performance of our proposed
model on the COCO-Search18 dataset across multiple eval-
uation metrics and search scenarios. We evaluate perfor-
mance in both target-present and target-absent conditions,
which represent fundamentally different search behaviors
in human visual attention. In the target-present scenario,
ScanDiff achieves state-of-the-art performance across all

metrics. Most notably, our model exhibits a significant im-
provement in MM distributions, with an average KL diver-
gence of 0.048, which represents a 71.3% reduction com-
pared to the second best model (i.e., GazeXplain at 0.167).
For SemSS, ScanDiff attains KL divergence values of
0.072 and 0.078 with and without duration information,
respectively, demonstrating consistent performance across
temporal aspects of gaze behavior. The target-absent condi-
tion presents a particularly challenging scenario, as human
attention patterns become more exploratory when the target
object cannot be found. Even in this setting, ScanDiff
outperforms all baseline methods by substantial margins.

It is worth noting that while some competing methods
like GazeXplain perform reasonably well in specific met-
rics, they lack the consistent performance across all evalua-
tion dimensions that ScanDiff demonstrates. This con-
sistency across metrics and conditions indicates that our
model better captures the underlying mechanisms of human
visual search behavior in both goal-directed (target-present)
and exploratory (target-absent) scenarios.
Qualitative Results. Fig. 3 shows some qualitative results
comparing ScanDiff with other competitors in both free-
viewing and visual search settings. These results confirm
the effectiveness of our model also from a qualitative point-
of-view, highlighting its ability in generating human-like
eye movement trajectories across diverse scenarios.

4.3. Ablation Studies
To provide insights into the design choices of our model, we
conduct a series of ablation studies examining the impact of
different components on scanpath prediction performance.
Tables 3 and 4 summarize these results across both free-
viewing and visual search tasks.
Effect of Textual and Visual Backbones. We first investi-
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Target-Present Target-Absent

MM ↓ SM ↓ SS ↓ SemSS ↓ MM ↓ SM ↓ SS ↓ SemSS ↓

Avg w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur Avg w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur

PathGAN [2] 0.513 1.891 2.451 0.808 0.939 0.313 0.468 0.125 0.792 0.357 0.498 0.944 0.212 0.465
ChenLSTM [13] 0.197 0.011 0.236 0.040 0.262 0.084 0.162 0.075 0.010 0.012 0.036 0.775 0.044 0.677
Gazeformer [48] 0.281 0.027 0.340 0.119 0.268 0.131 0.208 0.089 0.061 0.075 0.102 0.245 0.085 0.139
HAT [69] 0.118 - 0.263 - 0.148 - 3.837 0.052 - 0.063 - 0.097 - 3.472
ChenLSTM-ISP [14] 0.174 0.013 0.306 0.015 0.257 0.043 0.097 0.082 0.028 0.146 0.063 0.727 0.052 0.561
GazeXplain [15] 0.166 0.023 0.237 0.070 0.232 0.140 0.188 0.046 0.062 0.048 0.038 0.191 0.043 0.206
TPP-Gaze [23] 0.524 1.618 3.218 0.579 1.590 0.554 1.147 0.098 0.511 0.529 0.242 0.325 0.093 0.164

Gazeformer [48] 0.251 0.045 0.508 0.048 0.349 0.095 0.262 0.526 1.184 1.688 0.319 0.520 0.671 1.043
GazeXplain [15] 0.167 0.010 0.238 0.050 0.217 0.092 0.224 0.037 0.030 0.026 0.028 0.146 0.038 0.143
TPP-Gaze [23] 0.507 2.317 3.995 0.893 2.381 0.736 1.605 0.135 0.775 0.887 0.427 0.537 0.231 0.300
ScanDiff (Ours) 0.048 0.037 0.079 0.019 0.074 0.072 0.078 0.020 0.005 0.008 0.008 0.031 0.007 0.024

Table 2. Performance comparison of different models on the COCO-Search18 dataset [16, 65] for both target-present and target-absent
settings. Models trained using identical settings and training splits to ScanDiff are highlighted in gray . Among these, the highest
performance for each metric is marked in bold. Underlined values denote the top overall performance across all models and metrics.

Backbones COCO-FreeView COCO-Search18

Textual Visual MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓ SemSS ↓

Effect of Textual Backbone
RoBERTa DINOv2 0.110 0.181 0.111 0.076 0.143 0.072 0.132

ScanDiff CLIP DINOv2 0.078 0.015 0.013 0.048 0.037 0.019 0.072

Effect of Visual Backbone
CLIP RN50 0.049 0.019 0.029 0.070 0.052 0.031 0.084
CLIP CLIP 0.058 0.199 0.112 0.090 0.079 0.033 0.069

ScanDiff CLIP DINOv2 0.078 0.015 0.013 0.048 0.037 0.019 0.072

Table 3. Performance comparison of different textual and visual
backbones on COCO-FreeView [66] and COCO-Search18 [16]
(TP) datasets. Best results are highlighted in bold.

gate the influence of textual and visual backbones on model
performance. As shown in Table 3, replacing the CLIP text
encoder with RoBERTa [47] leads to a degradation in per-
formance across all metrics on both datasets. This high-
lights the importance of vision-language pre-training for
scanpath prediction, as CLIP’s joint embedding space better
captures the semantic relationships between textual queries
and visual features that guide human attention.

For the visual backbone comparison, we test our model
with ResNet-50-FPN [29], CLIP visual encoder (always
using the ViT-B version), and DINOv2. The results in-
dicate that while ResNet-50 achieves the best MM aver-
age score on COCO-FreeView, DINOv2 consistently out-
performs other visual backbones across most metrics, par-
ticularly on the more challenging COCO-Search18 dataset.
Interestingly, the CLIP visual encoder performs best on the
SemSS metric, suggesting its strength in capturing seman-
tic relationships between fixations and image regions, likely
due to its vision-language pre-training.
Effect of LT Loss Function. We evaluate the contribu-
tion of the diffusion prior alignment loss LT . As shown in
Table 4, including LT improves overall performance, but
the benefits are more pronounced on the COCO-Search18
dataset, where it improves MM, SM and SemSS. This sug-
gests that the convergence loss is particularly valuable for
modeling the sequential nature of fixations in goal-directed

COCO-FreeView COCO-Search18

LT T MM ↓ SM ↓ SS ↓ MM ↓ SM ↓ SS ↓ SemSS ↓

Effect of LT Loss Function
✗ 1000 0.088 0.011 0.009 0.058 0.040 0.018 0.076

ScanDiff ✓ 1000 0.078 0.015 0.013 0.048 0.037 0.019 0.072

Varying Diffusion Timesteps
✓ 200 0.043 0.072 0.064 0.069 0.040 0.023 0.085
✓ 500 0.049 0.145 0.085 0.046 0.050 0.030 0.098
✓ 1500 0.045 0,131 0.122 0.057 0.086 0.061 0.130

ScanDiff ✓ 1000 0.078 0.015 0.013 0.048 0.037 0.019 0.072

Table 4. Ablation study on the effect of alignment loss (LT )
and diffusion timesteps (T ) on COCO-FreeView [66] and COCO-
Search18 [16] (TP) datasets. Best results are highlighted in bold.

visual search tasks, where the temporal order of fixations is
more structured compared to free-viewing scenarios.
Validating Diffusion Timesteps. Finally, we investigate
the impact of diffusion timesteps (T ) on model performance
by varying T from 200 to 1500. As shown in Table 4,
T = 1000 achieves the best overall balance across metrics
and datasets. While smaller timesteps (e.g., T = 200) can
achieve better MM scores on COCO-FreeView, they under-
perform on the other spatial metrics. Similarly, T = 500
achieves a slightly better MM score on COCO-Search18,
but at the cost of poorer performance on other metrics. In-
creasing T beyond 1000 (i.e., T = 1500) leads to deterio-
rated performance across most metrics, likely due to over-
fitting to noise patterns. These results highlight the critical
role of properly calibrating the diffusion process: sufficient
timesteps are needed to learn complex distributions, but ex-
cessive noise can degrade the ability of the model to capture
meaningful patterns in scanpath data.

4.4. Scanpath Variability Analysis
Human visual exploration is inherently variable. Individu-
als perceive the same stimulus in different manners depend-
ing on factors such as attention, context, and cognitive pro-
cesses [6, 31]. Capturing such variability is essential for de-
veloping models that accurately reflect the diverse range of
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Figure 3. Comparison of simulated and human scanpaths across different datasets for both free-viewing and visual search tasks. From top
to bottom: results on COCO-FreeView [66], MIT1003 [37], COCO-Search18 TP [16], and COCO-Search18 TA [67] datasets.

COCO-FV MIT1003 TP TA

DSS ↑ RSS ↑ DSS ↑ RSS ↑ DSS ↑ RSS ↑ DSS ↑ RSS ↑

IOR-ROI-LSTM [17] 0.185 0.428 0.264 0.579 - - - -
ChenLSTM [13] 0.174 0.420 0.257 0.534 0.386 0.635 0.247 0.591
Gazeformer [48] - - - - 0.377 0.578 0.206 0.417
HAT [69] - 0.645 - 0.615 - 0.861 - 0.748
ChenLSTM-ISP [14] 0.190 0.501 0.264 0.619 0.423 0.735 0.268 0.670
GazeXplain [15] 0.099 0.032 0.302 0.674 0.406 0.689 0.283 0.716
TPP-Gaze [23] 0.271 0.732 0.313 0.758 0.284 0.516 0.221 0.663
ScanDiff (Ours) 0.277 0.736 0.354 0.815 0.425 0.747 0.312 0.800

Table 5. Analysis of scanpath variability on free-viewing (COCO-
FreeView [66] and MIT1003 [37]) and task oriented datasets
(COCO-Search18 target-present [16] and target-absent [67]).

human traits. However, existing scanpath prediction models
tend to align closely with the statistical mean of human gaze
behavior. While this approach may improve performance
on traditional evaluation metrics, it fails to reflect the nat-
ural variability in human visual attention. Commonly used
metrics such as MM, SM, and SS tend to reward predic-
tions that closely match an aggregated ground truth, thus
favoring models that generate a single representative scan-
path [39]. This is clear in several works [13, 15, 48] where
scanpath models surpass human consistency. Indeed, the
average similarity between ground-truth scanpaths can be
smaller than the average similarity between generated scan-
paths if these well reflect an average behavior.

Building upon these considerations, we present a first
attempt to quantitatively assess the ability of a model to
generate diverse, yet human-like, gaze trajectories. Specif-
ically, for this study, we adopt the DSS and RSS met-
rics introduced in Sec. 4.1. Table 5 reports the results on
both free-viewing and visual search. Notably, ScanDiff

achieves the best overall performance on all settings and
datasets, highlighting its effectiveness in predicting accu-
rate eye movement trajectories well aligned with the hu-
man scanpath variability. Interestingly, the performance
gap between ScanDiff and state-of-the-art methods be-
comes even more evident in the visual search task and fur-
ther supported by qualitative results in the Supplementary
Material. Goal-oriented scanpaths tend to be more deter-
ministic [12, 71], particularly in the target-present setting,
and are generally shorter than those in free-viewing scenar-
ios. Nevertheless, our model effectively captures even the
more subtle variability present in human gaze behavior.

5. Conclusion

In this paper, we introduced ScanDiff, a novel diffusion-
based architecture for scanpath prediction that significantly
advances the state-of-the-art by modeling the inherent
stochastic nature of human visual attention. Experimen-
tal results on multiple benchmark datasets demonstrate that
ScanDiff not only achieves state-of-the-art performance
in traditional scanpath prediction metrics but also generates
more diverse scanpaths that better capture the variability in-
herent in human visual exploration. This diversity is cru-
cial for applications requiring realistic simulation of human
visual behavior, such as human-computer interaction, au-
tonomous systems, and cognitive robotics. These results
highlight the importance of modeling stochasticity in vi-
sual attention deployment, suggesting that future research
in gaze prediction should consider the probabilistic nature
of human gaze beyond deterministic approaches.
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