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Abstract

Contrastive Language-Image Pre-training (CLIP) has become a foundation model
and has been applied to various vision and multimodal tasks. However, recent works
indicate that CLIP falls short in distinguishing detailed differences in images and
shows suboptimal performance on dense-prediction and vision-centric multimodal
tasks. Therefore, this work focuses on improving existing CLIP models, aiming
to capture as many visual details in images as possible. We find that a specific
type of generative models, unCLIP, provides a suitable framework for achieving
our goal. Specifically, unCLIP trains an image generator conditioned on the CLIP
image embedding. In other words, it inverts the CLIP image encoder. Compared
to discriminative models like CLIP, generative models are better at capturing
image details because they are trained to learn the data distribution of images.
Additionally, the conditional input space of unCLIP aligns with CLIP’s original
image-text embedding space. Therefore, we propose to invert unCLIP (dubbed
un2CLIP) to improve the CLIP model. In this way, the improved image encoder
can gain unCLIP’s visual detail capturing ability while preserving its alignment
with the original text encoder simultaneously. We evaluate our improved CLIP
across various tasks to which CLIP has been applied, including the challenging
MMVP-VLM benchmark, the dense-prediction open-vocabulary segmentation task,
and multimodal large language model tasks. Experiments show that un2CLIP
significantly improves the original CLIP and previous CLIP improvement methods.
Code and models are available at https://github.com/LiYinqi/un2CLIP.

1 Introduction

Contrastive Language-Image Pre-training (CLIP) models trained on web-scale datasets have shown
great success in learning transferable representations for image classification [1]. Since their release,
they have been widely adopted for many vision and multimodal tasks, such as open-vocabulary
segmentation [2, 3, 4] and multimodal large language model (MLLM) tasks [5, 6, 7]. These extensions
can be attributed to the learned web-scale knowledge and the vision-language alignment property
of CLIP models. However, CLIP cannot always perform well on these extended, finer-grained
tasks that require more detailed image understanding, as observed in dense vision tasks [2, 8] and
MLLM literature [9]. This phenomenon may be due to CLIP’s training data and objective, where the
global-level image-text contrastive learning makes the image encoder poor at capturing visual details.
To address this problem, some works modify the network architecture at inference time to make
the encoder gather less global information [2, 3, 4], some other works deploy additional visual self-
supervised encoders in dense-vision tasks [10, 11] and MLLM frameworks [9, 12, 13, 14]. Although
effective, these methods do not fundamentally address the problem that CLIP falls short of capturing
visual details. To build finer-grained CLIP models, existing works mainly focus on training new

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/LiYinqi/un2CLIP


unCLIP
Image

Generator

CLIP
Image

Encoder

unCLIP
Image

Generator

CLIP
Image

Encoder

unCLIP
Image

Generator

CLIP Image

CLIP
Image

Encoder

Embedding
Input
Image

(a) unCLIP Training (b) unCLIP Inference (Sampling) (c) un2CLIP Training (CLIP Finetuning)

Input
Image

Input
Image

CLIP Image Generated
Image

CLIP ImageInput
Image

Input
ImageEmbedding Embedding

Figure 1: Comparison of unCLIP [20] and un2CLIP pipelines. (a) (b) unCLIP provides an encoding-
decoding tool for observing which features of the image are disregarded by CLIP (more examples
are shown in Figure 3 of [20]). (c) Our un2CLIP further leverages this framework to improve CLIP,
aiming to recapture the disregarded features. The unCLIP model contains a text to image-embedding
“prior” module for supporting the text-to-image pipeline, which is not used in our work.
CLIP variants with more detailed vision-text supervisions such as region-text alignment [8, 15, 16,
17, 18, 19]. However, collecting high-quality region-text paired datasets in real world is more difficult
than acquiring original CLIP’s image-text pairs, because the former is limited in amount at web and
typically requires human annotation. Besides, re-training CLIP models is costly that we would like to
avoid. Therefore, in this work, we focus on improving existing CLIP models from the vision-centric
perspective using image data only.
Specifically, we find that a specific type of image generation models, unCLIP [20], provides a suitable
framework for achieving our goal. To start with, firstly, unCLIP offers a way to qualitatively visualize
which features are disregarded by the pretrained CLIP image encoder. As illustrated in Figure 1(a),
unCLIP trains an image generator that inverts the CLIP image encoder, taking the CLIP image
embedding as input to generate images. After training, the encoding-decoding pipeline provides us a
tool to observe which features of the image are not captured by the encoder, as shown in Figure 1(b).
Furthermore, this encoding-decoding pipeline not only serves as a tool to observe CLIP’s failures, but
also offers a proper framework to improve CLIP in a vision-centric manner. To be specific, building a
finer-gained CLIP requires enhancing the visual detail capturing ability of its image encoder while
preserving the image-text alignment property at the same time. We note that the unCLIP framework
is suitable for achieving this goal because (1) unCLIP is a generative model learning the underlying
distribution of image data, which enhances its capability in capturing the complexities and variations
in images; (2) unCLIP takes the image embeddings from the output layer of the pretrained CLIP as
its conditional input, which are aligned with their corresponding CLIP text embeddings.
Based on these two properties, we propose to finetune the CLIP encoder in an unCLIP generator
inversion way, as illustrated in Figure 1(c), thereby transferring the generator’s rich visual knowledge
into the encoder and leveraging the remarkable language-alignment property of the unCLIP generator’s
input space. We name our method un2CLIP, since it inverts the unCLIP image generator. Compared to
prior work [21], which improves the CLIP image encoder using a pretrained text-to-image generative
model that has a mismatched input space with CLIP image embeddings, our un2CLIP is designed
within the CLIP-embedding-aligned framework, thereby facilitating more effective finetuning.
Our contributions can be summarized as follows:
• We find that unCLIP provides a suitable framework for improving the CLIP image encoder’s ability

to capture visual details while maintaining its alignment with the language encoding space.
• Based on the above finding, we propose a pure image-based method un2CLIP to improve CLIP,

which finetunes the CLIP image encoder by inverting unCLIP.
• Our experiments show that un2CLIP significantly improves CLIP and outperforms prior methods

on various tasks and benchmarks, including the MMVP-VLM benchmark consisting of CLIP-blind
pairs [9], the dense vision task of open-vocabulary segmentation, and vision-centric MLLM tasks.

2 Related Works

CLIP and Downstream Applications. CLIP trains a pair of image and text encoders using a
contrastive loss on web-collected image-text pairs, which learns transferable representations and shows
remarkable zero-shot classification performance [1]. Due to its large-scale pretraining and the vision-
language alignment property, CLIP has become a foundation model, widely applied across a variety of
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vision and multimodal tasks, including open-vocabulary semantic segmentation [2, 3, 4, 22, 23, 24],
objet detection [8, 15, 17, 25, 26], text-to-image generation [20, 27, 28, 29], and large-language-
model-based visual question answering [30, 5, 6, 7]. However, recent studies have shown out that
CLIP underperforms on tasks that require fine-grained visual understanding. Tong et al. [9] find
that CLIP struggles to distinguish certain visual patterns, which also impairs the performance of
MLLMs built on top of CLIP. Additionally, [2, 8] claim that CLIP, being trained with the image-level
objective, tends to capture global semantics while neglecting local details, limiting its effectiveness
as a backbone for dense prediction tasks.
Vision-centric CLIP Improvements. To improve CLIP’s ability to perform fine-grained visual
tasks, existing efforts can be broadly categorized into two groups. The first group targets specific
downstream applications. For instance, some works [2, 3, 4] modify CLIP’s image encoder architecture
at inference time to make it gather less global-level information, thereby improving performance on
the pixel-level dense prediction task. Targeted at vision-centric MLLM tasks, works [9, 12, 13, 14]
incorporate additional visual self-supervised encoders, and [31] finetunes the CLIP encoder with
visual supervision within the MLLM framework, to address CLIP’s shortcoming in learning detailed
image representations. Although effective, these approaches are downstream-task-specific and do not
fundamentally resolve CLIP’s intrinsic limitation in modeling detailed visual representations.
On the other hand, another line of work seeks to improve CLIP at the upstream stage by modify-
ing its training data and objectives to produce finer-grained representations. Specifically, several
approaches [8, 15, 16, 17, 18, 19] perform CLIP-like pretraining but align image regions with textual
descriptions, enabling the model to learn more detailed, region-level visual representations. However,
collecting high-quality, large-scale region-text pairs is more challenging than acquiring image-text
pairs, as the former typically requires human annotation, while the latter can be easily sourced via
web scraping. Our work also aims to fundamentally address CLIP’s limitation in capturing visual
details at the upstream level. In contrast to region-level approaches, we rely solely on image data
and leverage generative models to enhance visual detail capturing. The most relevant prior work is
DIVA [21], which uses a pretrained text-to-image generative model whose input mismatches CLIP’s
output to improve CLIP. In comparison, our framework uses a generative model that operates in the
same representation space as CLIP, enabling a more effective and seamless enhancement process.
Generative Models for Representation Learning. Generative models such as diffusion mod-
els [32, 33] trained on large-scale datasets have shown remarkable progress in generating photore-
alistic images [34, 27, 28, 29]. The remarkable generation ability implies that they have accurately
modeled the underlying data distribution and learned effective representations of images. Based on
this motivation, [35, 36, 37, 38, 39] leverage the pretrained generative models as the backbone for
visual perception, and show impressive performance on solving dense vision tasks such as semantic
segmentation and depth estimation. This work also leverages the rich representations in generative
models for visual perception, but we transfer them into an existing discriminative model - CLIP.

3 Method

We first introduce some preliminaries of generative models and unCLIP in Section 3.1, and then
describe our un2CLIP method in Section 3.2.

3.1 Preliminaries

Generative Models. Generative models, or image generation models in specific, are trained to
learn the data distribution of images usually by maximizing the log-likelihood 𝔼𝐱 log 𝑝𝐺(𝐱), or
𝔼𝐱 log 𝑝𝐺(𝐱|𝐜) for conditional generative models, where 𝐺 denotes the generator, 𝐱 stands for images,
and 𝐜 is the conditional input such as class and text.
Diffusion models [32, 33] are one of the popular types of generative models recently. They are
trained to reverse a forward diffusion process, where noises 𝝐 ∼  (𝟎, 𝐈) are gradually added to the
clean image 𝐱 over a number of timesteps 𝑡 = 1,⋯ , 𝑇 . For the reverse process, a denoising network
𝝐𝐺(𝐱𝑡, 𝑡) is trained to estimate the added noise 𝝐 at each timestep, where 𝐱𝑡 is the noisy image at 𝑡.
Finally, the log-likelihood maximization objective is implemented by optimizing a variational bound
of it:

max
𝐺

𝔼𝐱
[

log 𝑝𝐺(𝐱)
]

≈ min
𝐺

𝔼𝐱,𝝐,𝑡
[

||𝝐 − 𝝐𝐺(𝐱𝑡, 𝑡)||22
]

. (1)
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unCLIP: CLIP-embedding-conditioned Generative Model. Given a pretrained CLIP [1] image
encoder 𝐸, unCLIP [20] aims to train a decoder that can invert the encoder 𝐸. The decoder is designed
to be non-deterministic, meaning it can produce multiple images for a given CLIP image embedding.
This allows for a more comprehensive examination of CLIP’s disregarded features. Specifically, the
decoder is implemented as a probabilistic image generator 𝐺 conditioned on the image embeddings
from the output layer of CLIP image encoder, as illustrated in Figure 1(a). In [20], the authors employ
diffusion model as the generator, using the following training objective:

max
𝐺

𝔼𝐱
[

log 𝑝𝐺(𝐱|𝐸(𝐱))
]

≈ min
𝐺

𝔼𝐱,𝝐,𝑡
[

||𝝐 − 𝝐𝐺(𝐱𝑡, 𝑡, 𝐸(𝐱))||22
]

. (2)

3.2 un2CLIP: Improving CLIP via Inverting unCLIP

CLIP models have been widely adopted in many vision and multimodal understanding tasks [2, 5, 6].
However, recent studies have revealed that CLIP falls short in distinguishing certain visual-detail
related patterns [9] and exhibits suboptimal performance in solving dense vision tasks [2, 8]. This
section aims to develop an approach to alleviate this problem.
Since original CLIP models are trained on global-level image-text pairs, developing a new CLIP
variant that focuses on visual details from scratch poses challenges both in designing suitable training
objectives and in collecting training data pairs, where high-quality, open-world region-text or pixel-
text pairs would be difficult to collect. Moreover, re-training CLIP is costly. Therefore, we would like
to improve existing pretrained CLIP models from the vision-centric perspective. To be specific, given
a pretrained CLIP model, we aim to improve its image encoder to capture as many visual details in
images as possible while maintaining its language-alignment property simultaneously.
Goal of Our Problem. Formally, the goal is to maximize the mutual information between an input
image 𝐱 and its embedding 𝐸(𝐱) produced by the CLIP image encoder, subject to a language-alignment
constraint:

max
𝐸

𝐼(𝐱;𝐸(𝐱)), s.t. 𝑑(𝐸(𝐱), 𝐲) → 0, (3)
where 𝐲 denotes the semantic aligned text embedding of 𝐱, produced by the CLIP text encoder, and 𝑑
stands for distance.
Backend of Our Framework. Note that the mutual information in Eq. (3) can be expressed as
𝐼(𝐱;𝐸(𝐱)) = 𝐻(𝐱) − 𝐻(𝐱|𝐸(𝐱)) in terms of entropy 𝐻 . Therefore, max𝐸 𝐼(𝐱;𝐸(𝐱)) in Eq. (3)
equals to

min
𝐸

𝐻(𝐱|𝐸(𝐱)) = min
𝐸

𝔼𝐱
[

− log 𝑝(𝐱|𝐸(𝐱))
]

= max
𝐸

𝔼𝐱
[

log 𝑝(𝐱|𝐸(𝐱))
]

, (4)
where the first equation is according to the definition of the conditional entropy.
By comparing Eq. (4) with Eq. (2), we observe that the pretrained unCLIP model, which takes the
CLIP image embedding 𝐸(𝐱) as input to generate images 𝐱, provides a suitable probability model
𝑝𝐺(𝐱|𝐸(𝐱)) for estimating Eq. (4). This motivates us to adopt the pretrained unCLIP model 𝐺(𝐸(⋅))
as the backend of our framework, enabling us to improve the front-end CLIP image encoder 𝐸(⋅), as
illustrated in Figure 1(c).
Reducing Language-shift During Finetuning. The other factor remaining in our objective (Eq. (3))
is to make embeddings produced by the finetuned image encoder have correct semantics that can
be interpreted by the original CLIP text encoder. Since our framework relies on image data only,
maintaining this language-alignment property poses a nontrivial challenge. For addressing this
challenge, we note that the input space of the unCLIP generator 𝐺 lies within the CLIP image-text
embedding space. Therefore, for reducing the potential language-shift during the image-encoder
finetuning, we freeze the parameters of 𝐺, thereby encouraging the optimized embedding 𝐸(𝐱), when
fed to 𝐺, staying close to 𝐺’s original input domain.
un2CLIP. Taking these together, our CLIP finetuning objective is

max
𝐸

𝔼𝐱
[

log 𝑝𝐺(𝐱|𝐸(𝐱))
]

≈ min
𝐸

𝔼𝐱,𝝐,𝑡
[

||𝝐 − 𝝐𝐺(𝐱𝑡, 𝑡, 𝐸(𝐱))||22
]

. (5)
The training objective can be interpreted as inverting the unCLIP image generator 𝐺, which possesses
strong visual detail representations and has an input space aligned with the embedding space of CLIP.
By optimizing the CLIP image encoder 𝐸 in this unCLIP-inversion (dubbed un2CLIP) framework, we
effectively enhance 𝐸’s ability to capture fine-grained visual information. In practice, when finetuning
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𝐸 using Eq. (5), we inherit the training configuration of the unCLIP diffusion model, such as the
timestep and noise schedule. This is like a replay of the training procedure of unCLIP 𝐺, but here we
freeze the trained 𝐺 and update 𝐸.
Comparison to the Prior Work DIVA [21]. DIVA is a related approach that also leverages pretrained
generative models to enhance CLIP. However, its architecture and optimization differ fundamentally
from ours. DIVA deploys a text-to-image generative model [28] behind the CLIP image encoder.
Notably, the input space of such generators differs from the output space of the CLIP image encoder,
both in embedding dimensionality and, more importantly, in semantic representation. To bridge this
gap, DIVA inserts a trainable projection layer 𝑃 between the encoder and the generator. Its resulting
training objective can be written as max𝐸,𝑃 𝔼𝐱

[

log 𝑝𝐺(𝐱|𝑃 (𝐸(𝐱)))
], which deviates the derived goal

in Eq. (4), where 𝑃 would take away part of the knowledge learned from 𝐺. Therefore, using a
generator that is misaligned with the CLIP embedding space may be suboptimal for improving the
CLIP image encoder.

4 Experiments

4.1 Experimental Setup

Pretrained CLIP and unCLIP Models. Since Ramesh et al. [20] do not provide official unCLIP code
and models, we use an open-sourced implementation, Stable unCLIP1, in our experiments. Stable
unCLIP provides two pretrained models conditioned on different CLIP image embeddings - OpenAI
CLIP ViT-L-14@224 [1] and OpenCLIP ViT-H-14@224 [40], respectively. For evaluating the
generality of our method within other CLIP backbones, we train another unCLIP model, conditioned
on SigLIP ViT-SO-14@384 [41], based on the above open-sourced implementation. Besides, we find
in a preliminary toy experiment (in Section B.1) that the encoders of OpenAI CLIP ViT-L-14@224
have a similar embedding space to OpenAI CLIP ViT-L-14@336 [1], therefore, for saving the
computational cost of training new unCLIP models, we use the same existing Stable unCLIP for
finetuning both of them. More details of these pretrained Stable unCLIP models are provided in
Section B.2.
un2CLIP Training Details. un2CLIP is trained on 8 Nvidia-A100-40GB GPUs with a global batch
size of 32, learning rate of 3e-7, using AdamW optimizer. For a fair comparison, we train un2CLIP on
the CC3M dataset [42] over 1 epoch following [21], taking around 15∼32 hours for different model
types. The remaining hyper-parameters are kept the same as the training configuration of Stable
unCLIP in the codebase.
Compared Methods. In addition to the original CLIP models, we mainly compare to the pioneering
work DIVA [21] in this field that uses generative models to improve pretrained CLIP models. Different
from ours, DIVA uses a pretrained text-to-image generative model as the backend, whose input space
is misaligned to CLIP image encoders’ output space. We also note that, most recently, there exists
a contemporaneous work to ours named GenHancer [43]. GenHancer does not leverage existing
well-trained generative models but trains imperfect generative models themselves for improving CLIP,
which is different from DIVA and our un2CLIP. More detailed discussions of the relationships and
differences to DIVA and GenHancer are given in a separate section at Section A. In this section, for
a more comprehensive comparison, we also present the results of GenHancer for reference but are
dimmed in gray due to contemporaneity.
Evaluated Tasks and Benchmarks. We evaluate on several tasks to which CLIP has been applied
and require more detailed image understanding ability, including the image-level MMVP-VLM
benchmark [9] evaluating whether some detailed visual patterns are successfully captured (Section 4.2),
the pixel-level dense vision-language inference task [2, 3, 4] (Section 4.3), and multimodal large
language model related tasks [6, 7] (Section 4.4). Detailed introductions to these tasks and benchmarks
are provided in corresponding subsections. For completeness, we also present the results on the
classical evaluation tasks of CLIP, i.e., zero-shot classification and retrieval, in Section 4.5.

1Url: https://github.com/Stability-AI/stablediffusion/blob/main/doc/UNCLIP.MD. Due to built upon the
text-to-image model Stable Diffusion [28], Stable unCLIP has an additional conditional text encoder. We feed it
the empty string during un2CLIP training.
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4.2 CLIP-Blind Pair (MMVP-VLM Benchmark) Evaluation

We first evaluate our finetuned CLIP models on the MMVP-VLM benchmark [9]. The benchmark
covers 9 visual patterns, each comprising 15 image pairs (30 images) accompanied by textual descrip-
tions. The image pairs are collected in an adversarial manner to the original CLIP model, which are
proximate in CLIP feature space but distant in the feature space of a visual self-supervised model
(DINOv2 [44]). Only if both of the images are assigned to the accurate captions can a pair be deemed
a correct case.
The results are presented in Table 1. Our method achieves the best average performance across
different CLIP models. Notably, un2CLIP significantly outperforms the original CLIP models and the
previous DIVA method. This indicates that un2CLIP is a general and effective method in improving
CLIP to distinguish more detailed visual differences in images. Our performance also matches and
slightly outperforms the contemporaneous work GenHancer.
Table 1: MMVP-VLM benchmark evaluation. The benchmark contains 9 visual patterns that
original CLIP models often misinterpret: ☼: Orientation and Direction, Û: Presence of Specific
Features, L: State and Condition, �: Quantity and Count, ,: Positional and Relational Context, h:
Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �: Viewpoint and
Perspective. † denotes our reproduced results using official codes correspondingly.
CLIP Model Resol. #Params Method ☼ Û L � , h Ô k � Avg

OpenAI ViT-L-14 2242 427.6M
Original 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
DIVA 13.3 20.0 40.0 6.7 20.0 53.3 46.7 20.0 13.3 25.9

GenHancer 13.3 33.3 33.3 20.0 6.7 73.3 46.7 20.0 40.0 31.9
un2CLIP 0.0 33.3 46.7 26.7 13.3 80.0 40.0 20.0 33.3 32.6

OpenAI ViT-L-14 3362 427.9M
Original 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
DIVA 26.7 20.0 33.3 13.3 13.3 46.7 26.7 6.7 40.0 25.2

GenHancer 6.7 20.0 33.3 20.0 6.7 73.3 53.3 26.7 26.7 29.6
un2CLIP 6.7 33.3 46.7 13.3 13.3 80.0 40.0 20.0 20.0 30.4

OpenCLIP ViT-H-14 2242 986.1M
Original 6.7 13.3 53.3 26.7 6.7 73.3 40.0 13.3 26.7 28.9
DIVA† 13.3 13.3 53.3 26.7 6.7 73.3 46.7 13.3 26.7 30.4

GenHancer† 13.3 6.7 46.7 20.0 33.3 80.0 26.7 40.0 33.3 33.3
un2CLIP 26.7 13.3 53.3 20.0 33.3 86.7 46.7 13.3 33.3 36.3

SigLIP ViT-SO-14 3842 878.0M
Original 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DIVA 26.7 33.3 53.3 26.7 13.3 80.0 40.0 26.7 46.7 38.5

GenHancer 26.7 20.0 66.7 33.3 13.3 86.7 40.0 26.7 46.7 40.0
un2CLIP 20.0 20.0 60.0 46.7 26.7 73.3 40.0 26.7 60.0 41.5

4.3 Dense Vision-Language Inference Evaluation

Next, we evaluate on the dense-prediction semantic segmentation task, which is a pixel-level task,
thus evaluating more the detail-capturing ability of CLIP models. The segmentation task also acts as
a helpful tool for qualitatively visualizing the behavior of the improved CLIP models.
Evaluation Setup. We follow training-free open-vocabulary semantic segmentation works [2, 3, 4]
to evaluate our method. By keeping the CLIP model frozen, this setting provides a good way for
diagnosing the model’s pixel-level understanding capabilities. The work [2] first proposes to apply
the pretrained CLIP model [1] to zero-shot semantic segmentation, by comparing the local patches of
image embeddings to the candidate text embeddings. The following works, including MaskCLIP [2],
SCLIP [3], and ClearCLIP [4], modify the inference-time network architecture to improve the perfor-
mance. We employ these different methods, which have different initial performances, to evaluate the
generality of our improved CLIP by substituting the CLIP model with our finetuned one.
Datasets and Metric. Following [2, 3, 4], we employ the mean Intersection over Union (mIoU)
metric and evaluate on eight datasets widely used for open-vocabulary semantic segmentation. These
datasets can be categorized into two groups: (1) Without background category: PASCAL VOC20
(VOC20) [45], PASCAL Context59 (Ctx59) [46], COCO-Stuff (Stuff) [47], Cityscapes (City) [48],
and ADE20K (ADE) [49]; (2) With a background category: PASCAL VOC (VOC21) [45], PASCAL
Context (Ctx60) [46], and COCO Object (Object) [47].
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Table 2: Open-vocabulary semantic segmentation quantitative comparison. Results of DIVA and
GenHancer are obtained using official checkpoints. The CLIP backbone is OpenAI ViT-L-14@336.

Segmentation
Method

CLIP-Improve.
Method

Without background class With a background class AverageVOC20 Ctx59 Stuff City ADE VOC21 Ctx60 Object

CLIP
Original 11.7 3.4 1.7 2.5 0.9 7.7 2.9 3.3 4.3
DIVA 12.0 3.4 1.7 2.5 1.0 7.7 2.9 3.3 4.3

GenHancer 8.4 2.9 1.3 2.7 0.7 4.6 2.5 1.7 3.1
un2CLIP 17.3 5.1 2.6 3.8 1.3 9.3 4.3 4.3 6.0

MaskCLIP
Original 24.7 10.1 7.3 10.3 6.1 21.8 9.2 12.1 12.7
DIVA 25.7 10.4 7.6 10.4 6.3 22.4 9.5 12.6 13.1

GenHancer 13.5 6.4 3.4 9.2 3.7 12.3 5.9 4.9 7.4
un2CLIP 30.0 12.9 8.9 13.1 7.5 25.2 11.6 13.5 15.3

SCLIP
Original 37.3 12.7 8.5 10.2 4.6 28.7 11.9 14.9 16.1
DIVA 37.7 12.8 8.5 10.3 4.6 28.9 11.9 15.0 16.2

GenHancer 21.0 7.7 3.6 6.8 2.2 15.1 7.0 5.3 8.6
un2CLIP 53.8 19.5 12.0 16.1 6.9 38.6 17.9 19.3 23.0

ClearCLIP
Original 72.4 26.0 18.1 22.8 14.2 42.6 23.2 27.1 30.8
DIVA 72.3 25.9 18.1 22.7 14.0 42.6 23.2 27.1 30.7

GenHancer 52.1 22.9 11.8 17.1 10.3 24.2 20.0 10.2 21.1
un2CLIP 76.5 30.5 20.6 26.4 16.0 47.6 27.3 29.6 34.3

Quantitative Results. Table 2 summarizes the performance of different CLIP improvement methods
using different open-vocabulary segmentation methods. We observe that our method un2CLIP
achieves the best results across different datasets and segmentation methods, significantly improving
the performance of using the original CLIP model. Moreover, it is worth noting that switching to
our finetuned model can further achieve an average 3.5 mIoU improvement for the state-of-the-art
ClearCLIP method. We also note that the previous method DIVA achieves smaller improvements,
and the contemporaneous work GenHancer achieves performance drops on this task. The following
visualization results may provide some reasons.
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Figure 2: Open-vocabulary semantic segmentation qualita-
tive comparison.

Qualitative Results. In Figure 2, we
present a qualitative comparison of
the original CLIP model and its im-
provements, using the ClearCLIP seg-
mentation method. It can be seen that:
(1) Although the overall semantics
of the image is correctly predicted
using the original model, there are
many local noises (false predictions)
in the segmentation results. This is
because the original CLIP model is
trained towards a global image un-
derstanding objective, neglecting im-
age details. (2) DIVA’s segmentation
maps are very close to the original
CLIP model, indicating that DIVA
has a relatively conservative finetun-
ing stride, which cannot significantly
improve the pixel-level task’s perfor-
mance. (3) GenHancer helps elim-
inate some noise compared to the
original, but it makes some original-
correctly predicted pixels wrong (e.g.,
the first and third columns), resulting
in the overall weak quantitative re-
sults. (4) After our detail-oriented improvement, part of the false predictions are eliminated, and the
results become smoother, indicating that un2CLIP is an effective upstream finetuning approach for
making CLIP models better at performing dense prediction tasks.
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4.4 Multimodal Large Language Model Evaluation

Lastly, we evaluate whether our finetuned CLIP model can enhance the performance of MLLMs
where CLIP serves as the vision encoder, with a particular focus on vision-centric benchmarks. To
ensure fair comparisons, we adopt the evaluation setup in [21, 43] which test the improved CLIP
using LLaVA-1.5 [7] without modifying LLaVA’s default training configuration. We report results
on the same set of benchmarks [9, 12, 50, 51, 52, 53] used in GenHancer [43] to simplify efforts
in baseline reproduction. Due to the memory constrain of our computing resources, we conduct
experiments based on the 7B-version Vicuna [54]. The results are presented in Table 3. We observe
that the improved visual detail capturing ability of our finetuned CLIP also benefits MLLMs, leading
to improved performance, particularly on vision-centric benchmarks.
Table 3: MLLM benchmark evaluation. Best and second best results are highlighted in bold and
underline. Results on NaturalBench follow the official evaluation protocol [50], which differs from
that in GenHancer [43], resulting in some missing entries. Baseline numbers are taken from [43].

LLM CLIP
Vision-centric Benchmarks General Benchmarks

MMVP
[9]

NaturalBench [50] CV-Bench 2D [12] CV-Bench
3D [12]

POPE [51] SciQA-
IMG[52]

Hallusion
Avg. [53]Acc Q-Acc I-Acc G-Acc ADE20K COCO rand pop adv

Vicuna-7B
Original 24.7 67.3 37.7 43.8 12.7 49.6 60.9 58.7 87.3 86.1 84.2 66.8 27.6
DIVA 31.3 - - - - 51.3 63.4 60.2 87.9 87.0 84.6 66.3 28.6
GenHancer 30.7 - - - - 52.9 63.6 63.2 88.1 86.7 84.6 66.5 28.4
un2CLIP 31.3 68.7 40.0 45.9 15.1 53.9 65.1 61.2 88.0 87.4 85.4 68.4 28.4

4.5 Zero-shot Classification and Retrieval Evaluation

For completeness, we evaluate the improved CLIP models on the two classical tasks: zero-shot image
classification and zero-shot text-image retrieval. It is worth noting, however, that these tasks and
their standard benchmarks (ImageNet-1K [55], CIFAR-10 [56], CIFAR-100 [56], Caltech-101 [57],
SUN397 [58], FGVC Aircraft [59], Stanford Cars [60], Flickr30K [61], and COCO [62]), particularly
those for image classification, are not designed to assess fine-grained visual understanding. Rather,
they tend to favor models that capture high-level, category-discriminative features while ignoring
subtle or classification-irrelevant details. This evaluation setup therefore contrasts with the main
objective of our work, which is to enhance CLIP’s ability to capture visual details as much as possible.
Table 4: Zero-shot classification and retrieval evaluation. Results of DIVA and GenHancer are
obtained using official checkpoints. The CLIP model is OpenAI ViT-L-14@224.

Method Zero-shot Image Classification Image-to-Text
Retrieval@5

Text-to-Image
Retrieval@5

IN-1K C-10 C-100 Cal-101 SUN397 Aircraft Cars Flickr30K COCO Flickr30K COCO
Original 75.5 95.6 75.9 86.7 67.6 31.7 77.9 97.3 79.4 87.3 61.0
DIVA 75.5 95.5 76.3 87.1 67.5 31.6 78.0 97.3 79.7 86.9 61.0
GenHancer 40.2 77.5 44.2 79.3 42.4 7.2 21.0 87.2 61.7 81.6 51.0
un2CLIP 62.4 89.0 65.6 86.8 59.2 22.0 63.3 96.4 77.6 90.1 65.5

As shown in Table 4, our finetuned model, which exhibits significantly enhanced performance on
dense and vision-centric tasks in Section 4.2-4.4, exhibits a noticeable performance drop on zero-shot
classification and comparable results on retrieval. Importantly, this drop in classification accuracy
does not necessarily reflect degraded image-text alignment: Even on relatively simple datasets such
as CIFAR-10, which contains only 10 coarse categories, the performance drop remains evident. In
contrast, on segmentation benchmarks involving a much larger number of classes (e.g., 150-class
ADE20K, 60-class Context), which also rely on the text encoder for label prediction, our fine-tuned
model consistently outperforms the original CLIP (Table 2).
This discrepancy indicates that the observed drop arises from task differences rather than image-text
misalignment. Classification tasks generally favor representations that emphasize dominant foreground
semantics. However, somewhat “unfortunately” from the standpoint of classification, our finetuned
model corrects many cases where the original CLIP mistakenly attends to background regions as
salient foreground objects (see Figure 2). These corrections enhance visual detail understanding but
lead to lower accuracy on conventional classification benchmarks.
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Figure 3: Diffusion loss and MMVP-VLM
performance with respect to training epochs.

Table 5: Ablation studies of un2CLIP.

Method Diffusion
Loss (↓)

MMVP-
VLM (↑)

Original 0.3396 19.3
un2CLIP 0.3378 32.6
+ Proj. layer (random init.) 0.3441 16.3
+ Proj. layer (identity init.) 0.3378 30.4
+ Proj. layer (two stage) 0.3403 30.4
+ Updating generator 𝐺 0.3376 27.4

4.6 Ablation Studies

We conduct ablation studies of our method on the MMVP-VLM benchmark, using OpenAI ViT-L-
14@224 as the baseline model. Before analyzing our method, we first introduce a diagnostic tool that
measures the reconstruction ability of the CLIP-encoding generator-decoding pipeline.
Diffusion Loss as a Diagnostic Tool. We adopt the diffusion loss (Eq. (2), (5)) as a diagnostic metric
to evaluate the reconstruction ability of different CLIP encoders 𝐸 (e.g., before and after finetuning).
A lower loss indicates that the encoder captures more details from the input image, leading to a better
reconstruction. To compute the expectation term 𝔼𝐱,𝝐,𝑡 in practice, we random sample noises 𝝐 and
timesteps 𝑡 (with 𝐱 from the test set). However, since random sampling can affect result comparability,
to make the results comparable, we pre-sample and store two sets of (20) random (𝝐, 𝑡) pairs for
each 𝐱, and use the same sets across all evaluation trials (e.g., before and after finetuning). This
pre-storing strategy makes the metric analogous to the “test loss” used in [63, 64]: although it shares
the same formulation as the training objective (Eq. (5)), it is computed with fixed randomness and
test images. In contrast, the training loss is unsuitable for comparison because 𝝐 and 𝑡 vary across
iterations, leading to non-comparable results.
Does Better Reconstruction Lead to Better Recognition? To answer this question, we first train
our default un2CLIP over different epochs and plot their losses and MMVP-VLM performances.
As presented in Figure 3, we observe that models with smaller losses achieve better recognition
performances. The reason behind this is that the diffusion loss is a lower bound of the generative
models’ likelihood 𝔼𝐱

[

log 𝑝𝐺(𝐱|𝐸(𝐱))
], which directly relates to our finetuning goal of capturing

more visual details, as introduced in Section 3.2. Notably, since calculating the diffusion loss does
not require task labels, it can be used as a tool for predicting the tendency of task performance when
using our default design2.
Introducing Projection Layers. In the previous work DIVA [21], a linear projection layer is inserted
between the CLIP image encoder and the generative model, because DIVA uses a pretrained text-
to-image model whose input space mismatches the CLIP image embedding in terms of embedding
dimension and semantics. The projection layer is trained together with CLIP during finetuning. We
investigate the impact of introducing a projection layer into our framework. Since the input space
of unCLIP has already been aligned with CLIP image embeddings, inserting a projection layer is
actually not needed in our framework and may break the alignment. Our experiments verified this.
As shown in Table 5, we first conduct an experiment using randomly initialized weights for the linear
projector. Since the inserted projector alters the data flow in the pretrained CLIP-unCLIP model,
it achieves a higher loss than the original, causing downgraded performance. We further modify
the initialization to be an identity weight matrix with zero bias, making it as if the projector does
not exist at the beginning of finetuning. This modification enables the framework to make progress,
as shown in Table 5. However, once the projector is updated, the alignment between the encoder’s
output and the generator’s input does not hold, and it may taking away part of the knowledge learned
from the generator, leading to suboptimal performance compared to our default method. We also
experimented with a two-stage training strategy for the projector, following [6], where the projector
is trained first and then frozen during the image encoder finetuning. This approach yields slightly
worse performance than our default setting. We attribute this to the fact that projection layers are
unnecessary in our framework, as the image encoder and generator are already aligned in unCLIP.
Even when the projector is pretrained separately, it remains challenging for it to fully reproduce the
naturally aligned encoder-generator environment established in unCLIP.

2The conclusion would not hold if not following our default design, as shown in the following ablations.
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Updating the Generator 𝐺. As mentioned in Section 3.2, we set the unCLIP generator to be frozen
during the finetuning process, to encourage the finetuned encoder’s outputs stay close to the original
unCLIP’s input space, i.e., the original CLIP image-text embedding space. Here, we examine the
impact of updating the generator together with the encoder. The result is presented in the last row
of Table 5. It can be seen that the full finetuning achieves the best reconstruction, as there are more
parameters that can be tuned. However, similar to the issue of the above-introduced learnable projector,
updating the generator causes the finetuned encoder to move away from the original embedding space,
resulting in a performance drop. In such cases, we cannot expect better recognition performances
when observing better reconstructions.

Input Image Original CLIP + Updating G

Sampled Images Using the Finetuned Models

un2CLIP (left: 0.5, right: 1epoch)

Figure 4: unCLIP generated images using original and
finetuned CLIP models.

Visualization Analysis. We give a visual-
ization analysis of our default method and
some representative ablations. Specifically,
we use the finetuned encoder to perform the
encoding-decoding pipeline on an input im-
age, thereby visualizing which features of the
image are successfully captured. When sam-
pling from different models, we use the same
initial random noise to make the visualization
results comparable. The results are shown in
Figure 4. First, by comparing generated im-
ages of the original CLIP and un2CLIP, it
can be seen that after un2CLIP finetuning,
the main patterns of the images are success-
fully captured, such as orientation of the first
example and spatial position of the second
example. Longer finetuning achieves better
qualitative reconstructions, which aligns with
the quantitative result in Figure 3. On the
other hand, updating 𝐺 achieves a visually comparable or slightly better reconstruction than our
default (e.g., row 2, a better shape of the snowman), but in this case a better reconstruction does not
means a better recognition performance, as analyzed in the previous paragraph.

5 Conclusion

In this paper, we propose an image-based CLIP finetuning method un2CLIP to address the problem
that pretrained CLIP models fall short in capturing visual details. By inverting a generative model that
takes the CLIP image embedding as input, our method enables the finetuned CLIP to gain knowledge
from the powerful generative model while preserving the alignment to its original embedding space
simultaneously. Our method is simple yet effective, based on the key finding that the existing unCLIP
generative model fits exactly to our goal. Extensive experiments across image and pixel level tasks
demonstrate that by changing the original CLIP to our finetuned one, the performance of tasks to
which CLIP has been applied and require visual detail capturing can be significantly improved, such
as open-vocabulary semantic segmentation and vision-centric multimodal understanding.
Limitations. A potential limitation of this work is that finetuning CLIP requires a pretrained unCLIP
model at first. Thankfully, the community has provided some pretrained unCLIP models, which are
built upon widely used CLIP backbones. But if we take the computational cost of training the unCLIP
into consideration, such an additional cost may be tolerable, given that improving the foundation
model CLIP is an upstream work that could benefit many vision-centric downstream tasks where
CLIP has been applied.
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
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Justification: We have released our code and models at https://github.com/LiYinqi/
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• The factors of variability that the error bars are capturing should be clearly stated (for
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run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We introduced our computer resource and overall computational cost in Sec-
tion 4.1. The detailed costs of each experiment are listed in Section B.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and the research conducted in the
paper conform it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We conduct foundational research based on datasets that are public for research
use.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The dataset we use in this paper (CC3M) is a filtered dataset, and the safeguards
of the generative models we use (Stable unCLIP, which is built upon Stable Diffusion) are
also considered by their creator.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the papers of the datasets (CC3M), codes and models (Stable
unCLIP) this paper built upon in Section 4.1. The name of the license is mentioned in
Section B.2.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We have not yet released our assets. We will release our code and models,
together with usage instruction files, once the paper is accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Relationships and Differences to Prior and Contemporaneous Works

This paper leverages generative models to improve CLIP’s visual detail capturing ability. There are
two related works in this direction – one prior [21] and one contemporaneous [43]. We discuss the
relationships and differences with them below. An overview is summarized in Table 6.
Table 6: Comparison with related works. 𝐸 stands for the CLIP image encoder and 𝐺 stands for
the generative model. *: with the generative model frozen.

Work
Architecture

Findings
Generative Model Projector Aligned

with CLIP?
DIVA [21] Large-scale pretrained text-

conditioned model
Trainable
with 𝐸 ✗ -

GenHancer [43] Small-scale projector-incorporated
model trained from scratch

Pretrained
with 𝐺 ✓

Reconstruction ↑
⇏ Recognition ↑

un2CLIP Large-scale pretrained CLIP-image-
embedding-conditioned model Free ✓

Reconstruction ↑
⇒ Recognition ↑ *

Comparison with Prior Work DIVA [21]. DIVA is a pioneering method in this line of research. It
employs a pretrained text-to-image generative model, Stable Diffusion [28], as the backend to improve
CLIP. Since the output space of the CLIP image encoder is not aligned with the conditional input
space of Stable Diffusion, both in terms of embedding dimensionality and semantics, DIVA inserts
a projector between the CLIP encoder and the generative model. The projector is trainable during
CLIP finetuning, which may take away part of the knowledge learned from the generator. Different
from DIVA, we use the unCLIP generative model, which takes the CLIP image embedding as input,
thereby achieving a projector-free framework, enabling a seamless and effective process for CLIP
encoder enhancement.
Comparison with Contemporaneous Work GenHancer [43]. GenHancer is a contemporaneous
work that appeared online on March 25th, 2025. Different from DIVA and our un2CLIP that use
existing well-trained generative models, GenHancer trains generative models from scratch specifically
to improve the CLIP, and draws a main conclusion that “perfect generation (reconstruction) does
not always yield desirable visual representations”. We analyze the key relationships and differences
below:
(1) Relationship in Architecture: Projector-incorporated vs. Projector-free. Similar to DIVA but
different from ours, GenHancer introduces a projector between the CLIP encoder and the generative
model. Unlike DIVA, the projector in GenHancer is pretrained together with the generative model
in a pretraining stage, prior to CLIP finetuning. This design can be interpreted as the projector is
incorporated into the generative model, allowing the generative model’s input to align with CLIP’s
output at the CLIP finetuning stage. Viewed this way, both GenHancer and our un2CLIP achieve an
aligned, seamless encoder-generator pipeline, which facilitates more effective enhancement of the
CLIP image encoder.
(2) Difference in Architecture: Capability of the Generative Model. GenHancer does not utilize
existing large-scale pretrained generative models. Instead, it trains lightweight generative models
from scratch, using the CC3M dataset [42] for a single epoch. In contrast, our method leverages the
pretrained Stable unCLIP model, which is built upon Stable Diffusion and trained with approximately
200,000 A100 hours3. This pretrained backbone offers substantially greater model capacity. Given that
our optimization objective (Eq. (4)) is accurately estimating the conditional distribution 𝑝(𝐱|𝐸(𝐱)), a
more capable generator provides a stronger training signal for improving the CLIP encoder. Moreover,
using a well-trained generator enables visualization of how much the encoder has improved, and could
provide intuitive explanations for the prediction behaviors of the models, through the generated images
via the encoding-decoding pipeline, as demonstrated in Figure 4 of the main paper and Figure 5 of
this appendix, compared with Figure 4 in GenHancer.
(3) Divergent Findings: Relationship between Reconstruction and Recognition Performance.
GenHancer reports that “perfect generation (reconstruction) does not always yield desirable visual

3https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip#environmental-impact
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representations” in its Figure 1. Our conclusion differs, as shown in the ablation studies in Section 4.6
of the main paper. The key distinction lies in how reconstruction quality is measured. We use the
diffusion loss, which is the lower bound of the generative model’s likelihood, as the measurement
for reconstruction as well as our finetuning objective. A lower diffusion loss indicates that more
information is preserved in the encoding-decoding process. Therefore, as for our framework with
freezing the generator during the encoder’s finetuning, better reconstruction leads to improved recog-
nition performance in visual detail tasks, as analyzed in Section 4.6. On the other hand, GenHancer
uses CLIP score [65] as the measurement for both generation and reconstruction. Since the CLIP
score primarily measures image-text alignment rather than pixel-level fidelity, it is more effective
for evaluating text-faithfulness of generated images of text-to-image models, but suboptimal for
evaluating visual reconstruction quality of image-to-image encoding-decoding pipelines.

B Additional Experimental Details

B.1 A Toy Experiment Validating Alignments between OpenAI ViT-L-14@224 and
ViT-L-14@336

As described in Section 4.1 of the main paper, we find that the image and text encoders of OpenAI CLIP
ViT-L-14@224 and OpenAI CLIP ViT-L-14@336 have a similar embedding space. Therefore, we
use the pretrained Stable unCLIP for OpenAI CLIP ViT-L-14@224 to improve both of them,thereby
avoiding the cost of training a separate unCLIP model for OpenAI CLIP ViT-L-14@336.
This observation is based on the following toy experiment, in which we swap the image and text
encoders between the two CLIP models and evaluate the resulting combinations. We use the zero-
shot classification task for this experiment. The results are summarized in Table 7. We find that
(1) the two original models have similar performance, and (2) after swapping their image and text
encoders, the hybrid models retain comparable performance to the originals. These results suggest
that the embedding spaces of the two models are closely aligned. Therefore, for efficiency, we use
the pretrained unCLIP model for OpenAI CLIP ViT-L-14@224 to improve both of them during our
un2CLIP training.
Table 7: Zero-shot classification performance of image-text encoder swapped CLIP models. The
two CLIP models are OpenAI CLIP ViT-L-14@224 and OpenAI CLIP ViT-L-14@336.

Image
Encoder

Text
Encoder

IN-1K
[55]

C-10
[56]

C-100
[56]

Cal-101
[57]

SUN397
[58]

Aircraft
[59]

Cars
[60]

@224 @224 75.5 95.6 75.9 86.7 67.6 31.7 77.9
@336 @336 76.6 94.9 74.4 87.2 68.7 33.4 79.3
@224 @336 75.4 95.5 76.0 86.7 67.7 31.5 78.0
@336 @224 76.5 95.0 74.5 87.2 68.5 33.4 79.4

B.2 Pretrained Stable unCLIP models

We use the code (MIT License)4 and models (CreativeML Open RAIL++-M License)5 of Stable
unCLIP to implement our method. This release includes two pretrained unCLIP models, conditioned
on OpenAI CLIP ViT-L-14@224 [1] and OpenCLIP ViT-H-14@224 [40] image embeddings. These
two models are finetuned versions of the stable-diffusion-2-1 model6, adapted to accept CLIP
image embeddings as conditional inputs. Stable Diffusion is a type of latent diffusion model [28]
that performs denoising in the latent space of a pretrained KL-VAE [66] model. The latent size of
stable-diffusion-2-1, and therefore of the two unCLIP models, is 96×96×4. The details of these
models are summarized in Table 8. As explained in Section 4.1 and Section B.1, we use the same
unCLIP model to improve both the OpenAI CLIP ViT-L-14@224 and OpenAI CLIP ViT-L-14@336
image encoders during our un2CLIP training stage.
As introduced in Section 4.1, to evaluate the generality of our approach across different CLIP back-
bones, we additionally train a new Stable unCLIP model conditioned on SigLIP ViT-SO-14@384 [41]

4https://github.com/Stability-AI/stablediffusion/blob/main/doc/UNCLIP.MD
5https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip
6https://huggingface.co/stabilityai/stable-diffusion-2-1
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Table 8: Model hyper-parameters of Stable unCLIP and training costs.

Conditional Branch Denoising Backbone unCLIP
Training Cost

un2CLIP
Training CostCLIP Image Encoder #Params Input Size #Params

OpenAI CLIP ViT-L-14@224 303 M 96×96×4 869 M Pretrained 30h
OpenAI CLIP ViT-L-14@336 304 M 96×96×4 869 M N/A 30h
OpenCLIP ViT-H-14@224 632 M 96×96×4 870 M Pretrained 32h
SigLIP ViT-SO-14@384 428 M 64×64×4 869 M ∼5d 15h

image embeddings, based on the open-source implementation mentioned above. To reduce training
cost, this model is built upon stable-diffusion-2-1-base7, which operates in a smaller latent
space of 64×64×4. We train this unCLIP model on the CC3M dataset [42], using a global batch size
of 2048 following the configuration of stable-diffusion-2-1-base. The model is trained for
15K iterations (about 10 epochs over CC3M), taking about 5 days with 8 Nvidia-A100-40GB GPUs,
as summarized in the last row of Table 8.

B.3 Computational Costs

The training cost of un2CLIP in each experiment is reported in the rightmost column of Table 8,
where the SigLIP experiment, due to the smaller input size to the main denoising network, has a
relatively faster training speed. The full research project, including some preliminary, failed, ablative,
and downstream task experiments, takes about 3 ∼ 4 times the sum of the reported training costs.

C Additional Ablation Studies

C.1 un2CLIP Training (CLIP Finetuning) Dataset

By default, we follow DIVA [21] and use CC3M [42] as the training dataset for fair comparison.
We also note that the concurrent work GenHancer [43] adopts the same setting. However, none of
these works investigate the effect of the training dataset choice, leaving this as an open question. In
this section, we study how the choice of training dataset within our un2CLIP framework affects the
generalizability of the finetuned model. For this ablation, we evaluate not only on the MMVP-VLM
benchmark but also on open-vocabulary segmentation tasks to comprehensively assess generalization.
Training on ImageNet-1K. We first replace CC3M with ImageNet-1K [55], a class-balanced dataset
containing ∼1.3M images across 1000 categories. We keep the total number of training iterations
the same as with CC3M to isolate the effect of dataset content. As shown in Table 9 (segmentation
results averaged over 8 datasets), the ImageNet-finetuned model achieves competitive results with the
CC3M-finetuned one on MMVP-VLM. This may be because the MMVP-VLM dataset is relatively
small, and its image patterns can be well covered by both CC3M and ImageNet training sets. In fact,
part of MMVP-VLM’s images originate from ImageNet, as introduced in [9].
However, on segmentation benchmarks, the ImageNet-finetuned CLIP does not yield consistent
improvements. Notably, ImageNet-1K is a highly structured dataset (e.g., class-balanced, lacking the
“person” class), which differs from web-collected datasets such as CC3M, CLIP’s pretraining dataset
WebImageText [1], and Stable unCLIP’s training dataset LAION-5B [67]. This raises the question of
whether it is the dataset content (distribution) or dataset scale that results in poor generalizability.
Training on 10% CC3M images. To further investigate this question, we train another model using a
randomly sampled 10% subset of CC3M (∼0.3M images), even smaller than ImageNet-1K in scale. As
shown in the last row of Table 9, this model exhibits better generalization than the ImageNet-finetuned
one, suggesting that dataset distribution (e.g., source diversity and similarity to CLIP’s pretraining
data) plays a more crucial role than dataset scale in achieving better generalized finetuned CLIP
models.

7https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Table 9: Ablation study on un2CLIP training datasets.

Method un2CLIP Training
Dataset Scale

MMVP
-VLM

CLIP
Seg.

MaskCLIP
Seg.

SCLIP
Seg.

ClearCLIP
Seg.

Original CLIP N/A 19.3 5.3 14.7 24.0 34.4
un2CLIP - CC3M (default) ∼3 M 32.6 5.8 15.6 25.9 34.8
un2CLIP - ImageNet-1K ∼1.3 M 32.6 5.3 13.9 24.0 33.0
un2CLIP - 10% CC3M ∼0.3 M 31.1 5.8 15.3 25.9 34.5

C.2 Training with Image-Text Data

In addition to the generator-frozen strategy, we further explore using image-text supervision to mitigate
the potential language-shift problem during image encoder finetuning. Specifically, we incorporate
an additional image-text loss into our training objective, updating both the image encoder 𝐸 and
the generator 𝐺. This loss is implemented as the negative cosine similarity between image and text
features from the CLIP encoders, using paired image-text data from CC3M. Jointly optimizing the
two objectives introduces a balancing hyperparameter between the default unCLIP-inversion loss and
the introduced image-text loss, for which we test two values (1 and 0.1).
Before conducting experiments, we note that the added image-text objective may reintroduce the
very issue this paper aims to address: captions often describe coarser-grained semantics than images
themselves, potentially making the finetuned model less sensitive to visual details. Results are
summarized in Table 10. We observe that: (1) Simply combining the two losses with equal weight
(#4) causes a performance drop compared to not introducing the image-text loss (#3), suggesting that
the added supervision indeed hampers the model’s ability to capture visual details, as hypothesized;
and (2) Using a smaller weight for the image-text loss (#5) yields better results, indicating a more
balanced trade-off between visual-detail capturing and image-text alignment during optimization.
However, #5 still falls short of #2. These results demonstrate that our default strategy, leveraging the
image-text aligned space of unCLIP and updating only the encoder, remains simple (no additional
losses or hyperparameter tuning), effective (achieving the best performance), and efficient (fewer
trainable parameters).

Table 10: Effect of incorporating image-text supervision during un2CLIP training.
# Method un2CLIP Training Loss MMVP-VLM
1 Original CLIP N/A 19.3
2 Default (Training 𝐸 only) unCLIP-inversion loss 32.6
3 Training 𝐸 and 𝐺 unCLIP-inversion loss 27.4
4 Training 𝐸 and 𝐺 unCLIP-inversion loss + 1 × image-text loss 25.9
5 Training 𝐸 and 𝐺 unCLIP-inversion loss + 0.1 × image-text loss 28.9

D Additional Qualitative Results

D.1 MMVP-VLM Visualization Results

Figure 5 presents qualitative examples of the MMVP-VLM benchmark. For each case, we also apply
the CLIP-unCLIP encoding-decoding pipeline to both the original and our improved CLIP models, as
done in the visualization analysis paragraph in Section 4.6 of the main paper. These generated images
help provide intuitive explanations for the prediction behaviors of the models – illustrating why the
original (our improved) CLIP model makes incorrect (correct) predictions for some cases.
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Candidate 
Images Original CLIP

Sampled Images
un2CLIPQuery Text

a glass of drink

a jar of drink
butterfly with 
wings closed

snowman 
without clothes

snowman 
with clothes

butterfly with 
wings open

Candidate 
Images Original CLIP

Sampled Images
un2CLIPQuery Text

a sign with black 
background

a sign with red 
background

Figure 5: MMVP-VLM visualization results. Predictions of the original CLIP and our improved
CLIP are shown with red and blue arrows, respectively. Generated images using the CLIP-unCLIP
encoding-decoding pipeline are shown at right, providing visual insight into each model’s predictions.
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D.2 MLLM Visualization Results

Figure 6 presents qualitative examples of MLLM tasks, focusing on vision-centric benchmarks.

Question:

Is the dog wearing number 2 clearly in the lead?

Is there a ladder in the background?

Yes.

Yes.

Yes.

No.

Is the dog wearing number 2 clearly in the lead?

Is there a ladder in the background?

No.

Yes.

No.

Yes.

Original un2CLIP

(A) 2 (B) 1

(C) 3 (D) 0

Question:

How many clocks are in 
the image?

Question:

Considering the relative positions of the 
bowl (annotated by the red box) and 
the broccoli in the image provided, 
where is the bowl locat-ed with respect 
to the broccoli?

(A) Left (B) Right

Question:

CV-Bench 3D

Estimate the real-world distances 
between objects in this image. 
Which object is closer to the 
lamp (highlighted by a red box), 
the nightstand (highlighted by a 
blue box) or the dresser 
(highlighted by a green box)?

(A) nightstand (B) dresser

Question:
Which object is closer to 
the camera taking this 
photo, the table (high-
lighted by a red box) or the 
television (highlighted by a 
blue box)?

(A) table (B) television

CV-Bench 2D

NaturalBench

Question:

Are some fruits cut open or are all the fruits 
uncut?

#1: (a) #1: (a)

Original un2CLIP

MMVP

Original

un2CLIP

(B) television

(A) table

(B) Right

(A) Left

Original

un2CLIP

Original

un2CLIP

(B) dresser

(A) nightstand

#1 #2

#2: (a)(a) Some are cut open     (b) All are uncut #2: (b)

#1 #2

In the picture, how is the snake primarily 
positioned?

(a) Coiled     (b) Head extended

#1: (b) #1: (a)

#2: (b) #2: (b)

Question: Original un2CLIP

Question: Original un2CLIP

(A) 2

(B) 1

Original

un2CLIP

Figure 6: Vision-centric MLLM visualization results.
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