
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CIRCUIT TRANSFORMER: A TRANSFORMER THAT
PRESERVES LOGICAL EQUIVALENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Implementing Boolean functions with circuits consisting of logic gates is funda-
mental in digital computer design. However, the implemented circuit must be
exactly equivalent, which hinders generative neural approaches on this task due
to their occasionally wrong predictions. In this study, we introduce a generative
neural model, the “Circuit Transformer”, which eliminates such wrong predic-
tions and produces logic circuits strictly equivalent to given Boolean functions.
The main idea is a carefully designed decoding mechanism that builds a circuit
step-by-step by generating tokens, which has beneficial “cutoff properties” that
block a candidate token once it invalidate equivalence. In such a way, the pro-
posed model works similar to typical LLMs while logical equivalence is strictly
preserved. A Markov decision process formulation is also proposed for optimizing
certain objectives of circuits. Experimentally, we trained an 88-million-parameter
Circuit Transformer to generate equivalent yet more compact forms of input cir-
cuits, outperforming existing neural approaches on both synthetic and real world
benchmarks, without any violation of equivalence constraints.

1 INTRODUCTION

In this work, we are concerned about the feasibility of generative neural models on a foundational
logic problem — circuit realization. Given a Boolean function, it is required to produce a directed
acyclic graph (DAG) that connects basic logic gates (AND, OR, NOT, etc.), whose output exactly
matches the given function. The DAG is also named a circuit1. Circuit realization is not only
of theoretical significance in circuit complexity research (Shannon, 1949; Vollmer, 1999; Sipser,
2013), but also lies in the core of digital design (Wang et al., 2009).

Recently, generative neural models, represented by large language models (LLMs) that recurrently
predict next token, excel in multiple domains from natural conversation to code generation (Pei
et al., 2024; Liu et al., 2023a). However, their feasibility for circuit realization is questionable.
The main barrier is the requirement of strictly preserving logical equivalence. Given a Boolean
function of N inputs, there are 2N possible combinations of input values, and the output of the
realized circuit must be equal to the given function on exactly all the 2N values. An example is
shown in Figure 1. For generative neural models, due to their predictive and data-driven nature,
they occasionally make wrong predictions and fall short in maintaining complex logical relations,
which lead researchers to believe that they are less promising in such equivalence-preserving circuit
realization (Huang et al., 2021). Instead, recent machine learning approaches in this topic mainly
focus on strengthening traditional symbolic methods, replacing certain modules to a learned one to
improve the performance.

In this work, we show that a formal guarantee of logical equivalence is achievable for generative
neural models with next token prediction. A novel mechanism is developed to build a circuit incre-
mentally by predicting a sequence of tokens, which is carefully designed to incorporate beneficial
“cutoff properties”. Given a partially-defined circuit and a candidate token, it is possible to quickly
determine whether adding this candidate token will violate the logical equivalence. In such a way,
when predicting a new token, candidates that invalidate equivalence will be blocked, ensuring the

1More specifically, a combinatorial logic circuit, which is referred to as “circuit” in short in this paper unless
otherwise stated.
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x3 x2 x1 x0 y1 y0 x3 x2 x1 x0 y1 y0
0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1

(a) A Boolean function (y1, y0) = f(x3, x2, x1, x0),
in which x0, x1, x2, x3, y0, y1 ∈ {0, 1}.

x0

x1

x2

x3

g0

g1

(b) An initial valid implementation of the Boolean
function f in Figure 1a, with 7 AND/NAND gates.

x0

x1

x2

x3

g0

g1

(c) A valid implementation of f with 5 AND/NAND
gates, which is optimal in size.

x0

x1

x2

x3

g0

g1

(d) An invalid implementation. In this circuit g0 =
0 ̸= y0 when x = (1, 1, 0, 1).

Figure 1: An example showing how a Boolean function can be implemented by circuits, i.e., cascade
connections of logic gates. and are the AND gate and NOT gate respectively, and is the
NAND gate, an AND gate followed by a NOT gate. The circuits shown in Figure 1b and Figure 1c
are both valid implementations of f , while the latter is more compact in size. The circuit shown in
Figure 1d is invalid, even if the difference is as small as one bit.

logical equivalence to be preserved throughout the generation process. The mechanism is also de-
signed to eliminate “dead ends”, which means adding a valid new token is always possible until
the circuit is completed. Therefore, our proposed mechanism allows smooth generation of circuits
without backtracking, analogous to typical LLM-based natural language generation.

Based on the above mechanism, we propose the Circuit Transformer, which adopts the classical
encoder-decoder Transformer architecture (Vaswani et al., 2017). The Boolean function to be im-
plemented is embedded by the Transformer encoder, and the aforementioned decoding mechanism
is adopted by inserting a masking layer at the end of the Transformer decoder. When predicting the
next token st+1, the masking layer blocks candidates that invalidate equivalence, based on the cur-
rent “cutoff” circuit partially defined by s1, . . . , st. Such a Transformer can be trained in a standard
supervised way, while the equivalence of produced circuits is guaranteed during the inference stage.

Moreover, our proposed approach enables optimization methods to search freely within the equiva-
lence class to optimize a certain objective. Specifically, equivalent circuit generation with a certain
objective can be formulated as a Markov decision process, and an example is provided to minimize
circuit size by designating a proper reward function.

To demonstrate the effectiveness of our proposed techniques, a Circuit Transformer of 88 million
parameters is trained in a supervised way to generate strictly equivalent yet more compact implemen-
tations of given circuits. Experimental results show that the trained model is capable of generating
strictly equivalent implementations for all unseen circuits in the test set, and the size decrease is
close to the traditional method that serves as the supervised signal.

To conclude, we make the following main contributions:

• A decoding mechanism that builds a circuit by a sequence of tokens, with beneficial cutoff
properties that allows logical equivalence to be preserved throughout the decoding process.

• A generative neural model named “Circuit Transformer” adopting the proposed decoding
mechanism as a masking layer, which can be trained normally and preserve equivalence
during the inference stage.

• A formulation of equivalence-preserving circuit optimization as a Markov decision process.
• Extensive experiments on the circuit size minimization problem demonstrating the

equivalence-preserving capability of Circuit Transformer.

2 RELATED WORK

While data-driven AI techniques achieve tremendous success in recent years, they are generally
based on probabilistic prediction that allows occasional mistakes, thus less promising to be di-
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rectly applied to domains requiring exact preciseness, such as theorem proving and circuit design.
Therefore, the mainstream paradigm of AI for such domains is to aid traditional methods in solv-
ing sub-problems that are more relaxed with respect to exactness. For circuit design, such relaxed
sub-problems include SAT solver acceleration (Selsam & Bjørner, 2019; Wang et al., 2023; Zhang
et al., 2020; Guo et al., 2023), circuit representation learning (Zhang et al., 2019; Yang et al., 2022b;
Li et al., 2022; Wang et al., 2022), learning based graph optimization (Neto et al., 2021; Li et al.,
2023), operator sequence scheduling (Yu et al., 2018; Hosny et al., 2020; Grosnit et al., 2022; Zhu
et al., 2020; Yang et al., 2022a), and placement and routing (Mirhoseini et al., 2021; Cheng et al.,
2022).

Nonetheless, there are a few research works (Schmitt et al., 2021; 2023; d’Ascoli et al., 2023) that
attempt to generate circuits or logical expressions directly via next token prediction models. How-
ever, feasibility guarantee is not considered in these work, resulting in different extent of constraint
violation in their reported result. In (Schmitt et al., 2021), 20% - 70% generated circuits violate
the input specification in different datasets, while a follow-up work (Schmitt et al., 2023) mitigates
the invalid percentage to 16% - 65% with pre-trained language models. In (d’Ascoli et al., 2023),
5% - 10% cases failed to be fully recovered when the number of operators are between 25 and 50.
Apart from the low-level circuit generation, many researchers focus on transferring the software
code generation capability of LLM to high-level hardware code generation, but these methods still
suffer from functional inequivalence (Liu et al., 2023b; Thakur et al., 2024; Pei et al., 2024; Liu
et al., 2024).

There are also research works that guarantee the feasibility of solutions via action masking, espe-
cially for problems involving routing such as maze game, traveling salesman problem, and vehicle
routing problem (Nazari et al., 2018; Kool et al., 2019; Duan et al., 2020). However, these prob-
lems are usually intuitive to be sequentially modelled, allowing action masks to simply filter invalid
actions such as wall-hitting directions and already visited cities. Action masking techniques under
complicated constraints have yet to be explored.

For sequential representation of gate-level circuits, existing formats include graph-based ones like
AIGER (Biere, 2007) and BLIF (Berkeley, 1992), and code-based ones like Verilog (Thomas &
Moorby, 2008) and VHDL (Skahill, 1996). However, they can only be validated once the content is
given in full, lacking the “cutoff properties” that will be discussed in Section 4.

3 PROBLEM DESCRIPTION

In this work, we focus on formally guaranteeing a generative neural model to produce valid circuits
that strictly match a given Boolean function. For an N -input, M -output Boolean function

y = f(x), (1)

in which x = (x1, . . . , xN ) ∈ {0, 1}N and y = (y1, . . . , yM ) ∈ {0, 1}M , any valid circuit g
implementing the function must be strictly within the equivalence class of f . That is, for any N -
dimensional input x ∈ {0, 1}N (there are 2N of them), the M -dimensional output of the circuit,
denoted as g(x), must be equal to f(x) in an element-wise way. This can be formally described as
g ∈ C(f), in which

C(f) = {g | g(x) = f(x),∀x ∈ {0, 1}N} (2)

is the equivalence class of f . Any violation of the 2N equivalence constraints will disqualify the
circuit as a valid implementation of f . An example with a 4-input, 2-output Boolean function is
shown in Figure 1, in which the produced circuits must satisfy 24 = 16 equality constraints.

4 METHODS

In this section, we start from a general introduction of constrained sequence generation, highlighting
the importance of “cutoff properties” for efficiency. Then we propose a sequential representation of
circuits in Section 4.2 that has such beneficial properties, allowing efficient generation akin to natural
language generation while strictly adhering to equivalence constraints. It is followed by a postpro-
cessing step regarding graph structures in Section 4.3. Given the circuit representation, we show in
Section 4.4 how it can be integrated into the encoding and decoding process of a Transformer model,
forming the Circuit Transformer. Finally, we discuss in Section 4.5 how our proposed approach help
model equivalence-preserving circuit optimization as a Markov decision process.
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4.1 CONSTRAINED SEQUENCE GENERATION WITH CUTOFF PROPERTIES

80Z0Z0l0Z
7Z0l0Z0Z0
6qZ0Z0Z0Z
5Z0Z0Z0l0
40Z0ZqZ0Z
3Z0Z0Z0Zq
20l0Z0Z0Z
1Z0ZqZ0Z0

a b c d e f g h

Figure 2: A valid solu-
tion of the eight-queen
puzzle, sequentially en-
coded as “dbhegacf”.

In this section, we briefly introduce how to generate sequences s1, . . . , sn,
si ∈ D with constraints, i.e., certain property F (s1, . . . , sn) ∈ {0, 1}
strictly holds. We use the eight-queen puzzle as an illustrative example,
while circuit-specific sequence generation will be followed in the next
section. In this puzzle, we place eight chess queens on an 8 × 8 chess-
board. The queen positions can be encoded as a sequence s1, . . . , s8, in
which the i-th queen is in the i-th row, and si ∈ D = {a, b, c, d, e, f, g, h}
specifies its column index. In this way, queen positions in Figure 2 can
be encoded as “dbhegacf”. The property F (s1, . . . , s8) holds when
no two queens can threaten each other. Out of all 88 possible sequences,
there are 92 of them that the above property holds.

Researchers have already found that “cutoff properties” of the sequential
encoding are critical for generating such constrained sequences efficiently
(Knuth, 2020). They are a series of properties F (s1, . . . , st) for 1 ≤ t <
n, which have the following two characteristics

Characteristic 4.1 (Inheritability). F (s1, . . . , st) is true whenever F (s1, . . . , st+1) is true;

Characteristic 4.2 (Incrementality). F (s1, . . . , st) is fairly easy2 to test, if F (s1, . . . , st−1) holds.

Once a constrained sequence generation task has such properties, it can be solved step-by-step
by selecting proper s1 so that F (s1) holds, proper s2 so that F (s1, s2) holds, proper s3 so that
F (s1, s2, s3) holds, etc, until all s1, . . . , sn are properly selected. In each step, si is selected from a
set

St = {s ∈ D | F (s1, . . . , st−1, s) holds} (3)

which can be easy to compute given F (s1, . . . , st−1) already holds, due to Characteristic 4.2. Such
properties admit the concept of ”partial (cutoff) candidate solutions” (s1, . . . , st), 1 ≤ t < n toward
a full solution, which is often much faster than brute-force enumeration of all complete candidates,
since it can eliminate many candidates halfway with a single test.

Algorithm 1 Constrained Sequence Generation
with Cutoff properties

Input: Domain D, property F (s1, . . . , sn), cutoff prop-
erties F (s1, . . . , st), 1 ≤ t < n.

Output: A sequence with F (s1, . . . , sn) holds.
1: t← 1
2: while t ≤ n do
3: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds}
4: while true do
5: if St ̸= ∅ then
6: Select st from St

7: t← t+ 1
8: break
9: else ▷ The backtrack process

10: t← t− 1
11: St ← St\st
12: end if
13: end while
14: end while
15: return s1, . . . , sn

For the aforementioned example of eight-
queen puzzle, instead of enumerating all 88
placements to find the attack-free sequences,
a much more efficient way is to leverage
the cutoff properties of the sequence encod-
ing, in which F (s1, . . . , st) = “the queens
located at (1, s1), . . . , (t, st) will not attack
each other, 1 ≤ t < 8”. This is fairly
easy to test if F (s1, . . . , st−1) holds, since
we only need to check whether the queen lo-
cated at (t, st) can attack any other queens
located at (1, s1), . . . , (t − 1, st−1). For ex-
ample, when s1 = d and s2 = b, the cut-
off property F (d, b, s3) holds when s3 ∈
S3 = {e, g, h}. Because cutoff properties
reject column and diagonal attacks even on
incomplete boards, it examines only 15,720
possible queen placements out of 88 =
16, 777, 216 to find all valid sequences.

The full algorithm is shown in Algorithm 1.
Note that St in Equation 3 may be empty, which means a “dead end” at step t that cannot proceed.
In this case, we should return back to step t− 1, mark st−1 as a dead end, and select another one in
St−1 if possible (or repeat the following steps if all of them are dead ends).

2This is directly quoted from (Knuth, 2020). “Fairly easy” typically means that the test leverages the fact
that F (s1, . . . , st−1) holds, and only do incremental work to check whether it still holds after adding st.
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a ¬a
1 0
0 1
U U

(a) NOT operator

a ∧ b
a

1 0 U

b
1 1 0 U
0 0 0 0
U U 0 U

(b) AND operator

a ∨ b
a

1 0 U

b
1 1 1 1
0 1 0 U
U 1 U U

(c) OR operator

a ≃ b
a

1 0 U

b
1 1 0 1
0 0 1 1
U 1 1 1

(d) SIMEQ operator

Table 1: The truth tables for NOT, AND, OR and SIMEQ operators in three-valued logic.

4.2 A SEQUENTIAL REPRESENTATION OF CIRCUITS WITH CUTOFF PROPERTIES

The main idea of this work is to find a sequential representation of circuits s1, s2, . . . , sn with
aforementioned cutoff properties F (s1, . . . , st; f), 1 ≤ t < n that keep the represented circuit
within the equivalence class of f . In such a way, we can leverage next-token prediction models to
generate tokens step-by-step and validate the logical equivalence in each step, corresponding to line
6 in Algorithm 1. In such a way, the final completed circuit can be guaranteed to be equivalent to f .

However, Algorithm 1 include a “backtrack process” in line 10 and 11, which may lead to back-
and-forth and is not desired for efficient circuit generation. We note that such a process can be
eliminated by assuring St ̸= ∅ all the time, leading to the following desired characteristic for the
sequential representation:
Characteristic 4.3 (Backtrack Elimination). St ̸= ∅ is always guaranteed in line 5 of Algorithm 1.

With such a characteristic, the autoregressive next-token prediction process of circuits can always
proceed forward efficiently, analogous to typical natural language generation.

For tasks requiring exploration of feasible regions for circuits, it is important for a representation of
circuits to cover the widest possible (ideally all) feasible circuits, minimizing the miss of targets due
to the restriction of representation. For example, while we can always generate a strictly equivalent
circuit for a Boolean function f via sum-of-product or product-of-sum forms, such forms are too re-
stricted for any feasible region exploration. Therefore, we have the following desired characteristic:
Characteristic 4.4 (Completeness). For any g ∈ C(f), there exists a sequence s1, . . . , sn that
uniquely represents g.

Now we propose a sequential representation of circuits with cutoff properties, that has all the afore-
mentioned characteristics.

First, while circuits are usually built in a bottom-up manner from inputs to outputs, we notice that the
equivalence constraints are applied on each output of the circuit. That is, given the index of output
i and a input x, a constraint fi(x) = gi(x) is only possible to be validated when the corresponding
circuit output gi has been built. Therefore, we adopt a special top-down order, specifying a cir-
cuit from outputs to inputs, to allow constraint validation throughout the intermediate construction
process. It improves sampling efficiency and equivalence preservance of circuit generation.

Then, to allow indeterminacy in the circuit representation, we include the three-valued logic into the
circuit evaluation process. That is, besides {0, 1}which indicate false and true, there is another truth
value “U” which means unknown. The truth tables of such logic for NOT, AND and OR operators
are shown in Table 1. Additionally, we define a binary operator “SIMEQ” (≃, is similar or equal
to), which is equivalent to the equal operator (=) for {0, 1}, while accommodating U by U ≃ 0 and
U ≃ 1. During the generation process, we relax the equivalence class of f from Equation 2 to

C ′(f) = {g | g(x) ≃ f(x) ∀x ∈ {0, 1}N} (4)

so that the occurrence of U in the output will not violate the constraint. For simplicity, here we as-
sume M = 1 and leave multi-output cases to be discussed later. The generated circuit g is initialized
to be a single constant node U , which we call “wildcard node” as it can potentially represent any
feasible circuits. So initially, g(x) ≡ U no matter what the input x is. This is within the relaxed
feasible region in Equation 4 but provides no information about the circuit structure.

Given the initial circuit, the sequential generation process acts as refining the circuit g by recursively
replacing a wildcard node to a specific one st ∈ D, which can be either a new logic gate or a new
primary input. For a new logic gate, all its inputs will be initialized to wildcard nodes that need
further refinement. With the proposed top-down approach, the values of g(x) for all x ∈ {0, 1}M in
Equation 4 can always be evaluated throughout the construction process, following the truth tables
in Table 1. Note that the introduction of three-valued logic also enables short-circuit evaluation with
unknown values. For an AND gate c(x) = a(x) ∧ b(x), if one of the inputs (a(x) or b(x)) is

5
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U g

(a) The initial
circuit.
S0 = {∧,∧},
s0 = ∧.

g
U

U

(b) Step 1.
S1 = {x0,∧,∧},
s1 = ∧.

g

U

U

U

(c) Step 2.
S2 = D,
s2 = x2 .

g

x2

U

U

(d) Step 3.
S3 = {x0, x1, x2,∧,∧},
s3 = x1 .

g

x2

x1

U

(e) Step 4.
S4 = {∧,∧},
s4 = ∧.

g

x2

x1

U

U

(f) Step 5.
S5 = {x0,∧,∧},
s5 = ∧.

g

x2

x1

U

U

U

(g) Step 6.
S6 = D,
s6 = x2 .

g

x2

x1

U
U

(h) Step 7.
S7 = {x0, x1, x2,∧,∧},
s7 = x1 .

g

x2

x1

U

(i) Step 8.
S8 = {x0,∧,∧},
s8 = x0 .

g

x2

x1

x0

(j) The generated cir-
cuit.

Figure 3: An example showing how a strictly feasible circuit can be built with our proposed se-
quential representation with cutoff properties. f(x2, x1, x0) is a Boolean function with f(0, 0, 1) =
f(1, 1, 1) = 1 and f(x2, x1, x0) = 0 otherwise. D = {x0, x0, x1, x1, x2, x2,∧,∧}, U denotes the
wildcard node. The next wildcard node to be replaced is marked in red. St = {s ∈ D |
F (s1, . . . , st−1, s; f) holds}. The selection of st from St is based on a masked probability dis-
tribution estimated via a trained Circuit Transformer, which will be elaborated in Section 4.4.

evaluated to be 0 given specific x, then c(x) = 0 no matter what the other input is evaluated, even
if it is U . The same logic applies for the OR gate when one of the inputs is evaluated to be 1.

Then, the cutoff properties F (s1, . . . , st; f) holds if and only if the circuit partially defined by
s1, . . . , st, denoted as g(t), is in the relaxed equivalence class of f in Equation 4. More specifically,
for all x ∈ {0, 1}M , the output of the constructed circuit g(t) is similar or equal to f(x). That is,

F (s1, . . . , st; f) =

{
1, if g(t)(x) ≃ f(x), ∀x ∈ {0, 1}N
0, otherwise

(5)

For the ending criteria, as a wildcard node can potentially be any circuit, only when all the wildcard
nodes are recursively replaced by specific ones, can the sequence uniquely represent a circuit, which
marks the end of the generation process. For the order of replacement when multiple wildcard nodes
exist, we follow a fixed order that prioritizes those with the largest distance from the output and the
left child of a gate over the right one. For multi-output cases, we generate the circuit for each output
separately, and combine them together via node merging which will be discussed in the next section.

For the selection of logic gates (vocabulary list) in the sequential representation, a standard setting
is the combination of AND and NOT gates, which can express all possible truth tables of Boolean
functions (termed “functional completeness”), and is also commonly adopted in standard circuit
formats such as AIGER (Biere, 2007). Therefore, we adopted this setting. Additional types of
gates can be further included to adapt to different circuit settings, which is left as a future work.
An alteration is that we merged the NOT gate with the AND gate and primary inputs. Instead
of assigning the NOT gate an individual token, each primary inputs and the AND gate has two
versions: the original ones (x1, . . . , xN ,∧) and the inverse ones (x1, . . . , xN ,∧), so the vocabulary
list contains 2N + 2 tokens in total3. That is,

D = {x1, x1, . . . , xN , xN ,∧,∧}. (6)
This allows us to significantly shorten the sequence with a moderate increase of vocabulary size.

An example of our proposed representation and cutoff properties are shown in Figure 3. We leave
the proof of Characteristic 4.1, 4.2, 4.3 and 4.4 in Section A.2. Given Equation 5, we can compute
St in a time complexity of O(N · 2N · d) with a cache mechanism exploiting Characteristic 4.2. d is
the depth of the wildcard node to replace at step t. The detail is leaved in Section A.3.

4.3 FROM TREES TO DIRECTED ACYCLIC GRAPHS

In the previous section, we proposed a sequential representation of circuits based on recursive re-
placement of wildcard nodes in a top-down manner. Such an approach implicitly assumes that a
logic gate would always have a single outgoing edge, restricting the generated circuits to be highly
hierarchical with tree structures. However, multi-fanout gates do commonly exist in real-world logic
circuits, which shape circuits as directed acyclic graphs (DAGs).

In this section, we show how we extend our method to generate DAG circuits. We notice that a
DAG can be “unfolded” to one or more trees once we duplicate every node with outdegree larger

3This does not include special tokens such as [EOS] and [PAD] in Transformer models.
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than one, so that every node has at most one outgoing edge. For example, the orange node in the
left DAG of Figure 4 is duplicated into two individual nodes, where its two outgoing edges are as-
signed respectively. Reversely, one or more trees can also be transformed to a DAG by merging
nodes with structural equivalence. For circuits, such a bidirectional transition will not change the
Boolean function it represents. Therefore, we generate a DAG circuit by firstly generating its un-
folded tree representation, and then merging equivalent nodes in the generated tree representation.
In logic circuit design, different nodes can be not only structurally equivalent but also functionally
equivalent (Mishchenko et al., 2005), which means that their outputs represent the same Boolean
functionality. Functionally equivalent nodes can thus be merged as a single node even if they have
different underlying structures. Our approach mainly leverages the functional equivalence.

4.4 NEURAL ENCODING OF CIRCUITS AND CIRCUIT TRANSFORMER

unfold

merge

DAG Tree(s)

Figure 4: Transition between a DAG and one or
more trees.

While we can deserialize our proposed sequen-
tial representation to a DAG circuit via node
merging, we can also serialize a given DAG cir-
cuit to our proposed sequential representation
in a similar manner, via a depth-first traversal
with node duplication. Given a DAG circuit,
we start a traversal from each of its primary out-
puts, and visit each connected gate in a depth-
first and recursive manner. Backtracking occurs
when a primary input is reached. Importantly,
such a traversal is memory-less, i.e., visited nodes will not be labelled during the traversal, thus a
node will appear multiple times in the trajectory if its fan-out is larger than one, corresponding to
the node duplication in the previous section. When the process is finished, the traversal trajectory
s1, . . . , sn is the sequential representation of the unfolded tree version of the original DAG circuit.
Note that such an unfolding process may lead to long sequences, especially for nodes with large
number of outgoing edges. A more compact representation is left as future work.

For Transformer models to process the sequential representation, it is important to provide an effi-
cient positional encoding for each node to indicate its position in the circuit. In this work, we utilize
the path from the primary output to a given node to indicate the node’s position. To achieve this, we
follow (Shiv & Quirk, 2019) that encodes the path as a stack of one-hot encodings (“10” for the first
input and “01” for the second input). More details are left in the appendix.

With all the circuit encoding and generation techniques introduced above, we propose the Circuit
Transformer, an end-to-end Transformer model that generates a functionally equivalent circuit of a
Boolean function. The Transformer adopts the classical encoder-decoder Transformer architecture
(Vaswani et al., 2017). The Boolean function to be implemented is specified as a circuit, and encoded
by the Transformer encoder with the aforementioned encoding approach. The Transformer decoder
adopted the mechanism in Section 4.2 by inserting a masking layer before the final softmax layer,
which reflects St. When predicting the next token st+1, the masking layer blocks candidates that
invalidate equivalence, based on the current “cutoff” circuit partially defined by s1, . . . , st. The
Transformer is trained in a standard supervised way, which minimize the cross entropy between
the predicted distribution and the ground truth. Moreover, node merging proposed in Section 4.3 is
applied to the decoding process on-the-fly to transform the unfolded tree representation to a DAG
circuit, whose details can be found in Algorithm 4 in the appendix. The training and inference stage
is shown in Figure 5. We denote a trained Circuit Transformer as

PCT(s | s1, . . . , st; f)
in which

∑
s∈St+1

PCT(s | s1, . . . , st; f) = 1 and PCT(s | s1, . . . , st; f) = 0,∀s ∈ D\St+1. The
input circuit specifying f is omitted for simplicity.

4.5 EQUIVALENCE-PRESERVING CIRCUIT OPTIMIZATION AS A MARKOV DECISION PROCESS

An important application of equivalent circuit generation is to optimize circuits with respect to
certain objectives. For example, one important problem is to find a compact implementation of a
Boolean function f with minimal number of logic gates (the circuit size minimization problem).
That is

min |g| s.t. g ∈ C(f), (7)
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(b) Inference stage
Figure 5: The training and the inference stage of the Circuit Transformer. In the inference stage, the
positional encoding et at step t is computed on-the-fly based on the position of the current token st
in the partially defined circuit. The mask St+1 for predicting the next token st+1 is computed based
on Equation 3 given the previous tokens s1, . . . , st and the cutoff property F (s1, . . . , st; f). “S” and
“E” denote the [START] and [END] tokens in Transformer model.

where |g| is the number of logic gates (NOT gates are not counted to align with the mainstream
research setting) in g. Under our proposed sequential representation, it can be achieved by attaching
an immediate reward function R(s1, . . . , st, s) to the generation of token s at step t, so that the sum
of the reward function throughout the generation reflects the objective. In this way, the generation
process can be regarded as a deterministic Markov decision process, in which the state at step t is
the generated tokens (s1, . . . , st), the set of actions available from the state is St in Equation 3, the
immediate reward is R(s1, . . . , st, s), and the next state is (s1, . . . , st, s) with probability 1. The
process terminates once (s1, . . . , st) represents a unique circuit with all wildcard nodes replaced.

Such a formulation has two key advantages. First, the feasibility of the generated circuit is guaran-
teed once the process terminates. No effort is required to penalize infeasible cases via crafting the
reward function. Second, the size of the available action set is at most 2N+2, in which N , the num-
ber of inputs, is usually moderately small in practice. Other circuit representations typically assign
a unique ID to each logic gate to describe their adjacency, requiring the size of available actions to
be proportional to the number of gates, which is usually significantly larger than N .

For the circuit size minimization problem in Equation 7, the immediate reward function can be
defined as

R(s1, . . . , st, s) = ∆ +

{
−1, s = ∧ or s = ∧
0, otherwise

(8)

in which ∆ reflects the refinement due to equivalent node merging. Given a depth-first replace-
ment order of wildcard nodes in Section 4.2, the node merging process in Section 4.3 can be done
simultaneously with the generation process, whose details are left in the appendix.

Given the reward function, we can adopt Monte-Carlo tree search (MCTS) to maximize the cumu-
lative reward

∑
t R(s1, . . . , st) while strictly preserve the equivalence. Each search node will be

“simulated” once to obtain a value v, which is the estimated cumulative reward when choosing the
path from the root node to this node. Each node also stores four values: the average value Q(s), the
number of visits N(s), the immediate reward R(s) and the prior probability P (s). When selecting
a child a for the node s, MCTS make a balance between exploitation and exploration by assigning
each child a PUCT score (Silver et al., 2017) as follows

PUCT(a) = Q(a) + cP (a)

√
N(s)

1 +N(a)
(9)

in which c is a hyperparameter (set to 1 in our case). P (a) is a prior probability of selecting a,
allowing nodes with larger P (a) obtain higher score. We adopt Circuit Transformer to estimate
P (a) as well as conducting simulation to get the value v. The procedure is shown in Algorithm 2.
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Algorithm 2 Circuit Generation with Circuit Transformer and Monte-Carlo Tree Search
Input: The Boolean function f to be realized. Circuit Transformer PCT(st|s1, . . . , st−1; f). Immediate re-

ward function R(s1, . . . , st). Number of playouts K.
Output: An improved sequential representation of circuit

Create a root search node r, initialize vmax as a small number, BestSeq ← [].
for i = 1, 2, . . . ,K do

Starting from r, iteratively selects a child node with the largest PUCT score, until reaching a leaf node l.
Set v ← R(r) + · · ·+R(l)
if l has been simulated before then

Expand l by adding all valid tokens {s ∈ D | F (r, . . . , l, s; f) holds} as its children
Compute prior probability P (a) for each child a of l via P (a)← PCT(a | r, . . . , l; f)
Initialize Q(a)← 0, N(a)← 0 for each child a of l
Select the child c with the largest PUCT score and set R(c)← R(r, . . . , l, c), v ← v +R(c)

else
Set c← l

end if
while c ̸= EOS do

Set c← argmaxs PCT(s | r, . . . , c; f), and then set v ← v +R(r, . . . , c)
end while
if v > vmax then vmax ← v,BestSeq ← [r, . . . , c]
for s = c, . . . , r do

Set Q(s)← (Q(s) ·N(s) + v)/(N(s) + 1), N(s)← N(s) + 1
end for

end for
Return BestSeq

5 EXPERIMENTS

In this section, we supervisedly train a Circuit Transformer to solve the circuit size minimization
problem in Equation 7, generating equivalent yet more compact forms of input circuits, and conduct
extensive experiments on both synthetic and real datasets to evaluate its feasibility and optimality.

We conduct the experiments on 8-input, 2-output circuits, which can specify (22
8

)2 = 1.34 · 10154
different Boolean functions. Optimizing a circuit while exactly matching one of the functions is
challenging. Such a size is out of the capacity of current exact solvers and significantly larger than
the typical sub-circuit size (4-6 inputs and one output) for traditional divide-and-conquer methods.
Effective end-to-end optimization on such a circuit size leads to enhancement of global optimality
for large circuit optimization (Li & Dubrova, 2011; Zhu et al., 2023).

The detailed parameter setting of the Circuit Transformer model are as follows. The embedding
width and the size of feedforward layer are set to 512 and 2048 following (Vaswani et al., 2017),
while the number of attention layers is set to 12, leading to 88.2 million total parameters, a moderate
size that allows efficient training and evaluation on a single, customer-grade GPU. The vocabulary
size is 20 (8 inputs and the AND gate, with their inverse, plus [EOS] and [PAD]). Batch size is set
to be 128. The maximum length of the input and output sequence is set to be 200. To evaluate the
effectiveness of tree positional encoding (TPE) in Section 4.4, we trained Circuit Transformers with
and without TPE. The maximal depth of tree positional embeddings is set to be 32. The implemen-
tation is based on (Yu et al., 2020). During inference, the prediction of tokens from distributions is
deterministic (the token with the largest probability is selected) for reproducibility.

We also trained two baseline Transformer models with exactly the same experimental settings, ex-
cept employing different sequential representation of circuits as follows:

• Boolean Chain (Knuth, 2015): a representation that is extensively applied in SAT-based op-
timization techniques. A chain is initialized by all the primary inputs of the circuit, and each
gate is represented by two prior indices in the chain, indicating the source of its two inputs.

• AIGER (Biere, 2007): a popular representation of logic circuits with AND and NOT gates.
We follow the tokenization setting in (Schmitt et al., 2021), representing an AND gate by
three tokens followed by a special new line token.

To train and evaluate the Circuit Transformer model, we build a large dataset containing 15 million
randomly generated 8-input, 2-output circuits. The supervised signals (i.e., the equivalent circuits
that are optimized in size) are generated by the Resyn2 command in ABC (Brayton & Mishchenko,
2010), a representative optimization flow for circuit size minimization. The detail of random circuit
generation is left in the appendix. 89% of the data is for training, 1% is for validation and 10% is

9
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Methods Random circuits IWLS FFWs
Unsuccessful cases Avg. size Unsuccessful cases Avg. size

Boolean Chain 5.07% (5.07%) 15.25 11.36% (11.26%) 17.24
Boolean Chain (beam size = 16) 2.16% (2.16%) 14.89 6.34% (6.29%) 17.15
Boolean Chain (beam size = 128) 1.91% (1.91%) 14.87 5.97% (5.94%) 17.15
AIGER 4.32% (4.32%) 15.14 8.35% (7.77%) 17.19
AIGER (beam size = 16) 1.85% (1.85%) 14.87 4.62% (4.37%) 17.12
AIGER (beam size = 128) 1.71% (1.71%) 14.86 4.24% (3.99%) 17.12
Circuit Transformer w/o TPE 2.14% (0%) 15.02 6.63% (0%) 17.33
Circuit Transformer 1.14% (0%) 14.79 4.76% (0%) 17.17
Circuit Transformer (K = 10) 0.20% (0%) 14.02 2.83% (0%) 16.92
Circuit Transformer (K = 100) 0.17% (0%) 13.73 2.63% (0%) 16.73
Resyn2 (ground truth for training) / 14.56 / 16.82

Table 2: Results on 10,240 randomly generated circuits, and 10,240 fanout-free windows randomly
sampled from the IWLS 2023 benchmark. For unsuccessful cases, the percentage in the bracket
corresponds to failures due to equivalence constraint violation. All results of Circuit Transformers
show zero violation of equivalence constraints. K denotes the total number of playouts in Monte-
Carlo tree search. All the models are supervisedly trained on the Resyn2 optimized circuits.

reserved for testing. All the Transformer models are trained on the training set sufficiently for 5
epochs on a single NVIDIA GeForce RTX 4090 graphic card for 75 hours.

We employ both a synthetic dataset and real EDA benchmarks to evaluate the performance:

• Random circuits: 10,240 circuits are randomly sampled from the test set of the aforemen-
tioned randomly generated dataset. The average size is 25.83± 5.38.

• IWLS FFWs: we transform the IWLS 2023 benchmark (Mishchenko, 2023) into circuits
represented by AND and NOT gates by the script suggested in (Mishchenko & Chatterjee,
2022), and extract 1.5 million 8-input, 2-output fanout-free windows (FFWs), a kind of sub-
structure of large circuits (Zhu et al., 2023). Then we randomly sample 10,240 circuits from
the extracted FFWs. The average size is 18.01± 6.47.

To enhance the performance of the Transformer models in comparison, two heuristics search tech-
niques are applied. Monte-Carlo tree search in Algorithm 2 is applied for Circuit Transformer to
evaluate our proposed MDP formulation in Section 4.5. For Transformer models trained on Boolean
chain and AIGER, applying MCTS is significantly more inefficient due to the large set of available
actions discussed in Section 4.5, so we adopt Beam search as an alternative, which finds the most
probable sequence by maintaining a fixed size (beam size) of candidates.

The results are presented in Table 2, with a more detailed version in Section A.8. On both syn-
thetic and real datasets, the Circuit Transformer surpasses two other Transformer models in terms
of feasibility (measured by the percentage of unsuccessful cases) and optimality (measured by the
average circuit size). The two baseline models generate unsuccessful circuits for various reasons,
including equivalence constraint violations, cycles in circuits, or incomplete specifications, with the
most common issue being that the generated circuit is complete and valid but not strictly equiva-
lent to the original. In contrast, the Circuit Transformer’s exact precision is empirically shown by
zero violation of complex equivalence constraints. The only reason for unsuccessful cases is that
wildcard nodes are not fully replaced within the given maximum sequence length of 200. Case
studies can be found in the appendix. Regarding heuristic search enhancement, while beam search
significantly improved feasibility, consistent with findings in (Schmitt et al., 2021), the issue of non-
equivalence remained prevalent. Conversely, Monte-Carlo tree search in the Circuit Transformer
not only substantially reduced unsuccessful cases but also significantly improved the average circuit
size, sometimes producing circuits more compact than the ground truth with a moderate number of
playouts.

6 CONCLUSION

In this work, we make an important advancement towards achieving precise generative AI for logic
tasks, demonstrating that complex hard-constraint satisfaction is attainable for next-token prediction
models when a proper formulation of the constrained problem is established. Inspired by the cutoff
properties, we introduce a novel approach to the fundamental problem of equivalent circuit genera-
tion, enabling next-token prediction models to generate new logic circuits while strictly adhering to
complex equivalence constraints. Future works includes extending such methodology to other fun-
damental constrained problems, integrating current models into industrial large circuit optimizers,
and exploiting more compact representation of circuits such as BDDs.
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A APPENDIX

A.1 DETAIL OF BACKTRACKING FRAMEWORK

The basic backtracking algorithm is as follows, extracted from (Knuth, 2020):

Given domain D and properties F (s1, . . . , st), this algorithm visites all sequence s1, s2, . . . , sn that
satisfy F (s1, . . . , sn):

Step 1 [Initialize] Set t← 1, and initialize the data structures needed later.
Step 2 [Enter level t] (Now F (s1, . . . , st−1) holds.) If t > n, visit s1, . . . , sn and go to Step 5,

Otherwise set st ← minD, the smallest element of D.
Step 3 [Try st] If F (s1, . . . , st) holds, update the data structures to facilitate testing

F (s1, . . . , st, st+1), set t← t+ 1, and go to Step 2.
Step 4 [Try again] If st ̸= maxD, set st to the next larger element of D and return to Step 3.
Step 5 [Backtrack] Set t ← t − 1. If t > 0, downdate the data structures by undoing the changes

recently made in Step 3, and return to Step 4. (Otherwise stop.)

We refer to Section 7.2.2 of (Knuth, 2020) for more details about backtracking.

A.2 PROOF OF CHARACTERISTICS

In this section, we demonstrate that our proposed sequential representation has Characteristic 4.1,
4.2, 4.3 and 4.4.

Characteristic 4.1: When F (s1, . . . , st+1; f) is true, the transition from s1, . . . , st+1 to s1, . . . , st
corresponds to reversely replacing a specific node st+1 with a wildcard node. such a replacement
will never break the feasibility, because (1) a wildcard node only represents feasible circuits; (2) the
wildcard node at least have a feasible choice to be set as st+1 as s1, . . . , st+1 is feasible.

Characteristic 4.2: During the generation from step 1 to step t − 1, a cache mechanism can be
employed to cache the truth table of the constructed nodes. Therefore, when F (s1, . . . , st−1; f)
holds and F (s1, . . . , st−1, st; f) needs to be evaluate, we simply traverse the generated circuit in a
bottom-up manner, from the current wildcard node to be replaced to the root, to evaluate g(t)(x) for
all x ∈ {0, 1}N with time complexity of O(N · 2N · d) in which d is the depth of the node. More
details about the cache mechanism can be found in Section A.3.

Characteristic 4.3: Note that the AND gate ∧ and the NAND gate ∧ is always in St in our sequential
representation, as replacing a wildcard node to an AND or NAND gate with two wildcard nodes will
never break the feasibility.

Characteristic 4.4: For all g ∈ C(f), the sequence s1, . . . , sn that represents g is demonstrated in
Section 4.4.
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A.3 DETAILS OF THE COMPUTATION OF St

In this section, we introduce how to compute
St = {s ∈ D|F (s1, . . . , st−1, s; f) holds}

in which

F (s1, . . . , st; f) =

{
1, if g(t)(x) ≃ f(x), ∀x ∈ {0, 1}N
0, otherwise

in a time complexity of O(N · 2N ·d), in which d is the depth of the wildcard node to replace at step
t. The computation will not be a bottleneck when N is reasonably small (in our case N = 8).

First, during the construction process, we name a node s in a circuit as “fixed” if the value of s is
either 0 or 1 (not U ) for all possible inputs. Formally,

s is fixed iff s(x) ̸= U,∀x ∈ {0, 1}N

in which s(x) is the value of node s given input x. Therefore, an input node is always fixed. An
intermediate node must be fixed if its left and right child are both fixed. For example, in the partial
sequence [∧ ∧ x1x2], the second ∧ is fixed because its left and right children are x1 and x2, which
are both fixed. The first ∧ is not fixed because its right child is U , its value is U when x1 and x2 are
both 1 (1 ∧ U = U ).

𝑈

𝑔(𝒙)

Figure 6: When the wildcard
to replace is the node U in
red, the blue nodes on the left
must be fixed, and the red
nodes on the right must be U .

Recall that during the construction process in Section 4.2, for the
order of replacement when multiple wildcard nodes exist, we follow
a fixed order that prioritizes those with the largest distance from the
output, and prioritizes the left child of a gate over the right one
if they have the same distance. Therefore, the construction process
will only replace a node’s right wildcard child if there is no wildcard
nodes in its left branch. In other words, in the construction process,
when the wildcard node to replace is u, then for any node s on the
path from u to the root,

• If u is in the right branch of s, the left child of s must be
fixed.

• If u is in the left branch of s, the right child of s must be a
wildcard node.

An illustration is shown in Figure 6. To check whether s ∈ D,D =
{x1, x1, . . . , xN , xN ,∧,∧} is a valid token in St, we try to re-
place u with each element in D, and check whether g(t)(x) ≃
f(x),∀x ∈ {0, 1}N by truth table comparison. The truth table
of the fixed nodes (the blue nodes in Figure 6) can be cached by maintaining a cache dictionary
during the construction process. The process is shown in Algorithm 3, which requires d times of
element-wise Boolean computation between two N × 2N matrices.

A.4 DEMONSTRATION OF THE TREE POSITIONAL ENCODING

For example, in Figure 5, the position of the second node in the sequence, i.e., the uppermost AND
gate connecting x1 and x2, can be represented as e2 = [10] (this gate’s output is the first input of the
rightmost AND gate, so “10” is pushed in the encoding stack of the rightmost AND gate, which is
empty), and the position of the fourth node x2 in the sequence can be represented as e4 = [01; e2] =
[0110] (push “01” in e2 as x2 is the second node’s second input) and e6 = [10; e5] = [1001] when
x2 is secondly visited as the fifth node’s first input.

For circuits with multiple primary outputs (M > 1), we initialize the encoding stack of each primary
output with a unique one-hot encoding, as if there is a virtual root node of M children, and each
primary output corresponds to one of the children.

A.5 IMMEDIATE EQUIVALENT NODE MERGING AND FUNCTIONAL EQUIVALENCE
CHECKING

With a depth-first replacement order, we can follow Algorithm 4 to merge equivalent nodes during
the generation process. For functional equivalence checking of two nodes p and q, we check whether
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Algorithm 3 The Computation of St

Input: The truth table t of the Boolean function f to be realized, the wildcard node u to be replaced at time
step t, a cache dictionary d of fixed nodes storing their truth tables.

Output: St

St ← {∧,∧}
b← the truth tables of input nodes x1, x1, . . . , xN , xN

while u is not root do
if u is the left node of its parent then

Set b[s]← b[s] ∧ U ∀s ∈ {x1, x1, . . . , xN , xN}
else

Set b[s]← b[s] ∧ d[l] ∀s ∈ {x1, x1, . . . , xN , xN}, in which l is the left node of u’s parent
end if
if u = ∧ then

Set b[s]← ¬b[s] ∀s ∈ {x1, x1, . . . , xN , xN}
end if

end while
for s ∈ {x1, x1, . . . , xN , xN} do

if there is no zero in b[s] ≃ t then
Add s to St

end if
end for
rturn St

Algorithm 4 Circuit generation with immediate equivalent node merging
Input: The Boolean function f that the generated circuit should be equivalent to. Next token prediction model

P (st|s1, . . . , st−1).
Output: A feasible circuit g satisfying g ∈ C(f).
1: Initialize path as an empty stack of gates, POs as an empty list.
2: Initialize G = ∅ as a set of non-isomorphic gates
3: for t = 1, 2, 3, . . . do
4: Compute a probability distribution of st ∈ D by the next token prediction model

pt ← P (st|s1, . . . , st−1)

5: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds} ▷ St ̸= ∅ is guaranteed by Characteristic 4.3
6: st ← argmaxs∈St pt(s)
7: Initialize st.input1← U, st.input2← U if st is a gate.
8: if path is empty then ▷ the output of st is the primary output of the circuit
9: Append st to POs and push st to path

10: else ▷ st should be the input of the last gate in path
11: s← path.peek() ▷ get the last gate added to path
12: if s.input1 = U then s.input1← st else s.input2← st ▷ replace a wildcard node in st to s
13: if st is a gate then
14: path.push(st)
15: else ▷ st is an input node in x1, x1, . . . , xN , xN . Pop fully constructed gates from path
16: while s.input1 ̸= U and s.input2 ̸= U do
17: if s ∈ G then ▷ Compute the truth table of s to check functional equivalence
18: Update path and POs to replace s with the functional equivalent one in G
19: else
20: Add s to G
21: end if
22: s← path.pop()
23: end while
24: end if
25: end if
26: end for
27: Return the circuit with POs as POs

p(x) = q(x),∀x ∈ {0, 1}N by iterating all x. If there is an x such that p(x) ̸= q(x), then p and q
are not functionally equivalent.
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Table 3: Detailed results for random circuits.

Methods Random Circuits

Unsuccessful
cases

Violation
cases

Average
circuit
size

SD of
circuit
size

% of circuits
strictly smaller
than Resyn2

Average time
per circuit
(s)

Boolean Chain 5.07% 5.07% 15.25 4.52 15.49% 0.010
Boolean Chain (beam size=16) 2.16% 2.16% 14.89 3.86 16.42% 0.048
Boolean Chain (beam size=128) 1.91% 1.91% 14.87 3.82 16.57% 0.369
AIGER 4.32% 4.32% 15.14 6.34 16.22% 0.018
AIGER 1.85% 1.85% 14.87 3.78 16.06% 0.097
AIGER 1.71% 1.71% 14.86 3.73 16.25% 0.734
Circuit Transformer w/o Masking 2.59% 2.59% 14.95 3.83 15.49% 0.010
Circuit Transformer w/o TPE 2.14% 0.00% 15.02 3.83 16.44% 0.018
Circuit Transformer 1.14% 0.00% 14.79 3.48 16.84% 0.018
Circuit Transformer (K=10) 0.20% 0.00% 14.02 2.79 36.15% 0.210
Circuit Transformer (K=100) 0.17% 0.00% 13.73 2.62 46.77% 2.090
Resyn2 (ground truth for training) 0.00% 0.00% 14.56 2.98 0.00% 0.009

A.6 DATASET GENERATION

The process to generate a random circuit is shown in Algorithm 5. We restrict that the length of the
encoded sequence for each circuit should fit all the three sequential representations with a maximal
length of 200, and all the 8 inputs should appear in the circuit. Each circuit has a unique structure,
which is realized by a canonicalization technique (Chai & Kuehlmann, 2006).

A.7 EXPERIMENTS COMPUTE RESOURCES

All the experiments are conducted on a workstation with the following specification:

• CPU: AMD Ryzen™ 9 7950X Desktop Processor (16 cores, 32 threads)
• Memory: 192GB (48GB × 4) DDR5 5200MHz
• GPU: NVIDIA GeForce RTX 4090 × 2

Each Transformer model in the experiments is trained on a single GPU with 75 hours.

A.8 DETAILED EXPERIMENTAL RESULT

More detailed results are shown in Table 3 and Table 4. For all unsuccessful cases, the size of
optimized circuit is regarded as the size of the original circuit (i.e., the model does nothing). For all
the results regarding Circuit Transformer, the time cost of masking layer contributes to 6% of the
total time cost. Note that the decrease of time cost by removing the masking layer is more significant
than 6%, due to the fact that the masking layer “forces” the model to generate longer sequences to
satisfy the constraint, which costs more time. Also note that the size of the Transformer model
significantly impacts the time cost, and the reported time cost only reflects the current size setting
of 88 million parameters. The time cost with heuristics search is generally proportional to the beam
size / search rounds.

A.9 CASE STUDY

To show how the unsuccessful cases looks like for both the baselines and Circuit Transformer, Ta-
ble 5 shows three categories of unsuccessful cases for the baseline Transformer model trained on
AIGER format, and provide an example from the IWLS FFWs dataset for each category. Table 6
shows the only circumstance that Circuit Transformer is unsuccessful, which is the exceeding of the
pre-set maximal sequence length of 200.
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Table 4: Detailed results for IWLS fanout-free windows.

Methods IWLS FFWs

Unsuccessful
cases

Violation
cases

Average
circuit
size

SD of
circuit
size

% of circuits
strictly smaller
than Resyn2

Average time
per circuit
(s)

Boolean Chain 11.36% 11.27% 17.24 6.40 7.71% 0.015
Boolean Chain (beam size=16) 6.34% 6.29% 17.15 6.29 8.42% 0.079
Boolean Chain (beam size=128) 5.97% 5.94% 17.15 6.29 8.48% 0.539
AIGER 8.35% 7.77% 17.19 6.34 8.46% 0.025
AIGER 4.62% 4.37% 17.12 6.26 8.65% 0.149
AIGER 4.23% 3.98% 17.12 6.25 8.59% 0.906
Circuit Transformer w/o Masking 6.56% 6.54% 17.13 6.20 8.69% 0.012
Circuit Transformer w/o TPE 6.63% 0.00% 17.33 6.46 7.46% 0.019
Circuit Transformer 4.76% 0.00% 17.17 6.29 8.78% 0.018
Circuit Transformer (K=10) 2.83% 0.00% 16.92 6.17 17.42% 0.214
Circuit Transformer (K=100) 2.63% 0.00% 16.73 6.07 26.68% 2.168
Resyn2 (ground truth for training) 0.00% 0.00% 16.83 5.57 0.00% 0.008

Reason to
be Unsuc-
cessful

Encoded Input Circuit Ex-
ample

Encoded Output Circuit Ex-
ample

Note

Equivalence
constraint
violation

18 9 13 — 20 18 6 — 22 11 4 — 24 22
15 — 26 20 24 — 28 9 11 — 30 5 15 —
32 28 30 — 34 4 14 — 36 35 31 — 38
37 7 — 40 38 2 — 42 33 41 — 44 43 12
— 46 27 45 — 48 16 8 — 50 48 12 —
52 50 6 — 54 52 10 — 56 54 4 — 58 56
15 — 60 58 3 — [EOS]

18 13 6 — 20 15 4 — 22 18 20 — 24 9
11 — 26 22 24 — 28 21 12 — 30 14 5
— 32 28 31 — 34 2 7 — 36 25 35 — 38
32 37 — 40 27 39 — 42 6 10 — 44 42
20 — 46 3 8 — 48 16 12 — 50 46 48 —
52 44 50 — [EOS]

No node is equiva-
lent to the first out-
put of the input cir-
cuit.

Not in
valid
AIGER
format

18 15 17 — 20 18 2 — 22 12 9 — 24 22
10 — 26 20 24 — 28 14 16 — 30 28 3
— 32 12 8 — 34 32 10 — 36 30 34 —
38 13 9 — 40 38 11 — 42 40 18 — 44
37 43 — 46 45 7 — 48 27 47 — 50 49 4
— 52 3 11 — 54 52 15 — 56 17 7 — 58
57 3 — 60 59 5 — 62 61 15 — 64 2 5 —
66 65 11 — 68 63 67 — 70 69 13 — 72
55 71 — 74 12 3 — 76 74 15 — 78 13 4
— 80 77 79 — 82 14 3 — 84 13 11 —
86 84 15 — 88 83 87 —, 90 89 7 — 92
80 91 — 94 93 17 — 96 72 95 — [EOS]

18 9 2 — 20 10 12 — 22 18 20 — 24 15
17 — 26 22 24 — 28 9 13 —, 30 28 11
— 32 30 24 — 34 8 16 — 36 14 3 — 38
34 36 — 40 38 20 —, 42 33 41 — 44 43
7 — 46 27 45 — 48 47 4 — 50 15 3 —
52 50 11 —, 54 5 2 — 56 55 13 — 58 7
17 — 60 59 3 — 62 61 5 — 64 63 15 —,
66 65 10 — 68 56 67 — 70 53 69 — 72
50 12 — 74 4 13 — 76 73 75 —, 78 15
13 — 80 78 11 — 82 81 37 — 84 83 7
— 86 76 85 17 — 88 76 87 — [EOS]

4 elements rather
than 3 in the second
last line of the out-
put circuit (marked
in bold type).

Exceeding
maximal
sequence
length

18 10 13 — 20 12 14 — 22 19 21 — 24
23 6 — 26 13 14 — 28 12 15 — 30 29
11 — 32 27 31 — 34 33 7 — 36 25 35
— 38 37 8 — 40 38 16 — 42 9 12 — 44
42 17 — 46 8 13 — 48 6 11 — 50 46 48
— 52 45 51 — 54 53 15 — 56 41 55 —
58 8 15 — 60 9 14 — 62 59 61 — 64 63
3 — 66 64 12 — 68 66 17 — 70 8 12 —
72 11 14 — 74 70 72 — 76 60 11 — 78
8 10 — 80 77 79 — 82 81 13 — 84 82
16 — 86 75 85 — 88 87 2 — 90 69 89
— 92 90 5 — 94 93 6 — [EOS]

18 8 16 — 20 13 11 — 22 21 6 — 24 12
15 — 26 22 25 — 28 21 15 — 30 29 7
— 32 12 10 — 34 30 33 — 36 27 35 —
38 18 37 — 40 8 6 — 42 40 20 — 44 12
17 — 46 44 9 — 48 43 47 — 50 49 15
— 52 39 51 — 54 44 3 — 56 8 15 — 58
9 14 — 60 57 59 — 62 54 61 — 64 63 5
— 66 12 8 — 68 14 11 — 70 66 68 —
72 13 16 — 74 9 10 — 76 75 2 — 78 59
11 — 80 72 79 — 82 76 81 — 84 74 83
2 — 86 68 — 88 85 — 90 89 — 88 85
— 86 68 — 90 89 5 — 90 89 2 — 90 68
8 — 90 89 5 — 90 89 89 89 89 89 89 89
89 89 89 89 89 89 89 89 89 89 89 89 89
89 89 89 89 89 89 89 89 89 — 90

No [EOS] appears
in the first 200 to-
kens.

Table 5: Example of unsuccessful cases for the baseline Transformer model trained on the AIGER
format, taken from the IWLS FFWs dataset. “—” denotes the new line token. Index 2, 3, . . . , 16, 17
is reserved for x0, x0, . . . , x7, x7. For the i-th AND node ai (start from 0), index 2(i + 9) denotes
ai and index 2(i+ 9) + 1 denotes ai.
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972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
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Reason to
be Unsuc-
cessful

Encoded Input Circuit Ex-
ample

Encoded Output Circuit Ex-
ample

Note

Exceeding
maximal
sequence
length

18 19 18 18 2 15 18 6 16 18 18 5 11 18 9
13 19 19 18 19 18 18 9 13 5 18 18 3 14
18 7 17 19 18 18 18 19 19 18 4 12 9 19
19 19 5 12 19 4 13 8 6 16 2 15 19 19 19
18 5 13 8 19 19 19 5 12 19 4 13 9 19 19
18 2 15 18 7 17 19 18 3 14 18 6 16 10 18
18 18 19 3 9 14 4 12 1 [EOS]

18 19 18 18 5 13 18 6 16 18 18 11 9 18
15 2 19 19 18 19 18 18 18 15 2 18 6 16
19 19 4 12 9 19 18 19 5 12 19 4 13 8 19
18 18 5 13 18 9 3 18 18 7 17 14 19 18 18
18 18 19 5 19 5 19 4 13 19 4 12 19 19 5
12 19 10 13 19 19 5 12 19 10 13 19 19
18 7 17 14 19 18 18 18 19 5 19 10 5 19 4
12 19 19 5 12 19 10 13 19 19 5 12 19 10
13 19 19 5 12 19 10 13 18 18 10 10 19
19 18 7 17 14 19 10 19 4 12 19 18 18 18
19 5 19 19 5 19 19 5 19 19 5 19 5 5 18
19 5 4 18 5 5 19 10 4 18 19 5 19 19 5 19
19 5 4 18 5 5 18 19 5 19 5 5 18 19 5 4 18
5 5 18 19 5 19 19 5 19 5

While no equiva-
lence constraint is
violated, no [EOS]
appears in the first
200 tokens.

Table 6: Example of unsuccessful cases for the Circuit Transformer, taken from the IWLS FFWs
dataset. Index 2, 3, . . . , 16, 17 denote x0, x0, . . . , x7, x7. Index 18 and 19 denote ∧ and ∧.

Algorithm 5 Random generation of a k-input, l-output circuit
Input: Number of input k, number of output l, number of steps T .
Output: A randomly generated circuit with k inputs and l outputs.
C ← [I0, I1, . . . , Ik−1]
for i = 1, 2, . . . ,Mstep do

Create an AND node si
Randomly sample two nodes c0, c1 ∈ C without replacement
Set the first input of si as c0 or c0 randomly
Set the second input of si as c1 or c1 randomly
Append si to the end of C

end for
Return the circuit with I0, I1, . . . , Ik−1 as primary inputs and aT−l+1, aM−l+2, . . . , aT as primary outputs.
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