
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CIRCUIT TRANSFORMER: A TRANSFORMER THAT
PRESERVES LOGICAL EQUIVALENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Implementing Boolean functions with circuits consisting of logic gates is funda-
mental in digital computer design. However, the implemented circuit must be
exactly equivalent, which hinders generative neural approaches on this task due
to their occasionally wrong predictions. In this study, we introduce a generative
neural model, the “Circuit Transformer”, which eliminates such wrong predic-
tions and produces logic circuits strictly equivalent to given Boolean functions.
The main idea is a carefully designed decoding mechanism that builds a circuit
step-by-step by generating tokens, which has beneficial “cutoff properties” that
block a candidate token once it invalidate equivalence. In such a way, the pro-
posed model works similar to typical LLMs while logical equivalence is strictly
preserved. A Markov decision process formulation is also proposed for optimizing
certain objectives of circuits. Experimentally, we trained an 88-million-parameter
Circuit Transformer to generate equivalent yet more compact forms of input cir-
cuits, outperforming existing neural approaches on both synthetic and real world
benchmarks, without any violation of equivalence constraints.

1 INTRODUCTION

In this work, we are concerned about the feasibility of generative neural models on a foundational
logic problem — circuit realization. Given a Boolean function, it is required to produce a directed
acyclic graph (DAG) that connects basic logic gates (AND, OR, NOT, etc.), whose output exactly
matches the given function. The DAG is also named a circuit1. Circuit realization is not only
of theoretical significance in circuit complexity research (Shannon, 1949; Vollmer, 1999; Sipser,
2013), but also lies in the core of digital design (Wang et al., 2009).

Recently, generative neural models, represented by large language models (LLMs) that recurrently
predict next token, excel in multiple domains from natural conversation to code generation (Pei
et al., 2024; Liu et al., 2023a). However, their feasibility for circuit realization is questionable.
The main barrier is the requirement of strictly preserving logical equivalence. Given a Boolean
function of N inputs, there are 2N possible combinations of input values, and the output of the
realized circuit must be equal to the given function on exactly all the 2N values. An example is
shown in Figure 1. For generative neural models, due to their predictive and data-driven nature,
they occasionally make wrong predictions and fall short in maintaining complex logical relations,
which lead researchers to believe that they are less promising in such equivalence-preserving circuit
realization (Huang et al., 2021). Instead, recent machine learning approaches in this topic mainly
focus on strengthening traditional symbolic methods, replacing certain modules to a learned one to
improve the performance.

In this work, we show that a formal guarantee of logical equivalence is achievable for generative
neural models with next token prediction. A novel mechanism is developed to build a circuit incre-
mentally by predicting a sequence of tokens, which is carefully designed to incorporate beneficial
“cutoff properties”. Given a partially-defined circuit and a candidate token, it is possible to quickly
determine whether adding this candidate token will violate the logical equivalence. In such a way,
when predicting a new token, candidates that invalidate equivalence will be blocked, ensuring the

1More specifically, a combinatorial logic circuit, which is referred to as “circuit” in short in this paper unless
otherwise stated.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x3 x2 x1 x0 y1 y0 x3 x2 x1 x0 y1 y0
0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1

(a) A Boolean function (y1, y0) = f(x3, x2, x1, x0),
in which x0, x1, x2, x3, y0, y1 ∈ {0, 1}.

x0

x1

x2

x3

g0

g1

(b) An initial valid implementation of the Boolean
function f in Figure 1a, with 7 AND/NAND gates.

x0

x1

x2

x3

g0

g1

(c) A valid implementation of f with 5 AND/NAND
gates, which is optimal in size.

x0

x1

x2

x3

g0

g1

(d) An invalid implementation. In this circuit g0 =
0 ̸= y0 when x = (1, 1, 0, 1).

Figure 1: An example showing how a Boolean function can be implemented by circuits, i.e., cascade
connections of logic gates. and are the AND gate and NOT gate respectively, and is the
NAND gate, an AND gate followed by a NOT gate. The circuits shown in Figure 1b and Figure 1c
are both valid implementations of f , while the latter is more compact in size. The circuit shown in
Figure 1d is invalid, even if the difference is as small as one bit.

logical equivalence to be preserved throughout the generation process. The mechanism is also de-
signed to eliminate “dead ends”, which means adding a valid new token is always possible until
the circuit is completed. Therefore, our proposed mechanism allows smooth generation of circuits
without backtracking, analogous to typical LLM-based natural language generation.

Based on the above mechanism, we propose the Circuit Transformer, which adopts the classical
encoder-decoder Transformer architecture (Vaswani et al., 2017). The Boolean function to be im-
plemented is embedded by the Transformer encoder, and the aforementioned decoding mechanism
is adopted by inserting a masking layer at the end of the Transformer decoder. When predicting the
next token st+1, the masking layer blocks candidates that invalidate equivalence, based on the cur-
rent “cutoff” circuit partially defined by s1, . . . , st. Such a Transformer can be trained in a standard
supervised way, while the equivalence of produced circuits is guaranteed during the inference stage.

Moreover, our proposed approach enables optimization methods to search freely within the equiva-
lence class to optimize a certain objective. Specifically, equivalent circuit generation with a certain
objective can be formulated as a Markov decision process, and an example is provided to minimize
circuit size by designating a proper reward function.

To demonstrate the effectiveness of our proposed techniques, a Circuit Transformer of 88 million
parameters is trained in a supervised way to generate strictly equivalent yet more compact implemen-
tations of given circuits. Experimental results show that the trained model is capable of generating
strictly equivalent implementations for all unseen circuits in the test set, and the size decrease is
close to the traditional method that serves as the supervised signal.

To conclude, we make the following main contributions:

• A decoding mechanism that builds a circuit by a sequence of tokens, with beneficial cutoff
properties that allows logical equivalence to be preserved throughout the decoding process.

• A generative neural model named “Circuit Transformer” adopting the proposed decoding
mechanism as a masking layer, which can be trained normally and preserve equivalence
during the inference stage.

• A formulation of equivalence-preserving circuit optimization as a Markov decision process.
• Extensive experiments on the circuit size minimization problem demonstrating the

equivalence-preserving capability of Circuit Transformer.

2 RELATED WORK

While data-driven AI techniques achieve tremendous success in recent years, they are generally
based on probabilistic prediction that allows occasional mistakes, thus less promising to be di-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

rectly applied to domains requiring exact preciseness, such as theorem proving and circuit design.
Therefore, the mainstream paradigm of AI for such domains is to aid traditional methods in solv-
ing sub-problems that are more relaxed with respect to exactness. For circuit design, such relaxed
sub-problems include SAT solver acceleration (Selsam & Bjørner, 2019; Wang et al., 2023; Zhang
et al., 2020; Guo et al., 2023), circuit representation learning (Zhang et al., 2019; Yang et al., 2022b;
Li et al., 2022; Wang et al., 2022), learning based graph optimization (Neto et al., 2021; Li et al.,
2023), operator sequence scheduling (Yu et al., 2018; Hosny et al., 2020; Grosnit et al., 2022; Zhu
et al., 2020; Yang et al., 2022a), and placement and routing (Mirhoseini et al., 2021; Cheng et al.,
2022).

Nonetheless, there are a few research works (Schmitt et al., 2021; 2023; d’Ascoli et al., 2023) that
attempt to generate circuits or logical expressions directly via next token prediction models. How-
ever, feasibility guarantee is not considered in these work, resulting in different extent of constraint
violation in their reported result. In (Schmitt et al., 2021), 20% - 70% generated circuits violate
the input specification in different datasets, while a follow-up work (Schmitt et al., 2023) mitigates
the invalid percentage to 16% - 65% with pre-trained language models. In (d’Ascoli et al., 2023),
5% - 10% cases failed to be fully recovered when the number of operators are between 25 and 50.
Apart from the low-level circuit generation, many researchers focus on transferring the software
code generation capability of LLM to high-level hardware code generation, but these methods still
suffer from functional inequivalence (Liu et al., 2023b; Thakur et al., 2024; Pei et al., 2024; Liu
et al., 2024).

There are also research works that guarantee the feasibility of solutions via action masking, espe-
cially for problems involving routing such as maze game, traveling salesman problem, and vehicle
routing problem (Nazari et al., 2018; Kool et al., 2019; Duan et al., 2020). However, these prob-
lems are usually intuitive to be sequentially modelled, allowing action masks to simply filter invalid
actions such as wall-hitting directions and already visited cities. Action masking techniques under
complicated constraints have yet to be explored.

For sequential representation of gate-level circuits, existing formats include graph-based ones like
AIGER (Biere, 2007) and BLIF (Berkeley, 1992), and code-based ones like Verilog (Thomas &
Moorby, 2008) and VHDL (Skahill, 1996). However, they can only be validated once the content is
given in full, lacking the “cutoff properties” that will be discussed in Section 4.

3 PROBLEM DESCRIPTION

In this work, we focus on formally guaranteeing a generative neural model to produce valid circuits
that strictly match a given Boolean function. For an N -input, M -output Boolean function

y = f(x), (1)

in which x = (x1, . . . , xN) ∈ {0, 1}N and y = (y1, . . . , yM) ∈ {0, 1}M , any valid circuit g
implementing the function must be strictly within the equivalence class of f . That is, for any N -
dimensional input x ∈ {0, 1}N (there are 2N of them), the M -dimensional output of the circuit,
denoted as g(x), must be equal to f(x) in an element-wise way. This can be formally described as
g ∈ C(f), in which

C(f) = {g | g(x) = f(x),∀x ∈ {0, 1}N} (2)

is the equivalence class of f . Any violation of the 2N equivalence constraints will disqualify the
circuit as a valid implementation of f . An example with a 4-input, 2-output Boolean function is
shown in Figure 1, in which the produced circuits must satisfy 24 = 16 equality constraints.

4 METHODS

In this section, we start from a general introduction of constrained sequence generation, highlighting
the importance of “cutoff properties” for efficiency. Then we propose a sequential representation of
circuits in Section 4.2 that has such beneficial properties, allowing efficient generation akin to natural
language generation while strictly adhering to equivalence constraints. It is followed by a postpro-
cessing step regarding graph structures in Section 4.3. Given the circuit representation, we show in
Section 4.4 how it can be integrated into the encoding and decoding process of a Transformer model,
forming the Circuit Transformer. Finally, we discuss in Section 4.5 how our proposed approach help
model equivalence-preserving circuit optimization as a Markov decision process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4.1 CONSTRAINED SEQUENCE GENERATION WITH CUTOFF PROPERTIES

80Z0Z0l0Z
7Z0l0Z0Z0
6qZ0Z0Z0Z
5Z0Z0Z0l0
40Z0ZqZ0Z
3Z0Z0Z0Zq
20l0Z0Z0Z
1Z0ZqZ0Z0

a b c d e f g h

Figure 2: A valid solu-
tion of the eight-queen
puzzle, sequentially en-
coded as “dbhegacf”.

In this section, we briefly introduce how to generate sequences s1, . . . , sn,
si ∈ D with constraints, i.e., certain property F (s1, . . . , sn) ∈ {0, 1}
strictly holds. We use the eight-queen puzzle as an illustrative example,
while circuit-specific sequence generation will be followed in the next
section. In this puzzle, we place eight chess queens on an 8 × 8 chess-
board. The queen positions can be encoded as a sequence s1, . . . , s8, in
which the i-th queen is in the i-th row, and si ∈ D = {a, b, c, d, e, f, g, h}
specifies its column index. In this way, queen positions in Figure 2 can
be encoded as “dbhegacf”. The property F (s1, . . . , s8) holds when
no two queens can threaten each other. Out of all 88 possible sequences,
there are 92 of them that the above property holds.

Researchers have already found that “cutoff properties” of the sequential
encoding are critical for generating such constrained sequences efficiently
(Knuth, 2020). They are a series of properties F (s1, . . . , st) for 1 ≤ t <
n, which have the following two characteristics

Characteristic 4.1 (Inheritability). F (s1, . . . , st) is true whenever F (s1, . . . , st+1) is true;

Characteristic 4.2 (Incrementality). F (s1, . . . , st) is fairly easy2 to test, if F (s1, . . . , st−1) holds.

Once a constrained sequence generation task has such properties, it can be solved step-by-step
by selecting proper s1 so that F (s1) holds, proper s2 so that F (s1, s2) holds, proper s3 so that
F (s1, s2, s3) holds, etc, until all s1, . . . , sn are properly selected. In each step, si is selected from a
set

St = {s ∈ D | F (s1, . . . , st−1, s) holds} (3)

which can be easy to compute given F (s1, . . . , st−1) already holds, due to Characteristic 4.2. Such
properties admit the concept of ”partial (cutoff) candidate solutions” (s1, . . . , st), 1 ≤ t < n toward
a full solution, which is often much faster than brute-force enumeration of all complete candidates,
since it can eliminate many candidates halfway with a single test.

Algorithm 1 Constrained Sequence Generation
with Cutoff properties

Input: Domain D, property F (s1, . . . , sn), cutoff prop-
erties F (s1, . . . , st), 1 ≤ t < n.

Output: A sequence with F (s1, . . . , sn) holds.
1: t← 1
2: while t ≤ n do
3: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds}
4: while true do
5: if St ̸= ∅ then
6: Select st from St

7: t← t+ 1
8: break
9: else ▷ The backtrack process

10: t← t− 1
11: St ← St\st
12: end if
13: end while
14: end while
15: return s1, . . . , sn

For the aforementioned example of eight-
queen puzzle, instead of enumerating all 88
placements to find the attack-free sequences,
a much more efficient way is to leverage
the cutoff properties of the sequence encod-
ing, in which F (s1, . . . , st) = “the queens
located at (1, s1), . . . , (t, st) will not attack
each other, 1 ≤ t < 8”. This is fairly
easy to test if F (s1, . . . , st−1) holds, since
we only need to check whether the queen lo-
cated at (t, st) can attack any other queens
located at (1, s1), . . . , (t − 1, st−1). For ex-
ample, when s1 = d and s2 = b, the cut-
off property F (d, b, s3) holds when s3 ∈
S3 = {e, g, h}. Because cutoff properties
reject column and diagonal attacks even on
incomplete boards, it examines only 15,720
possible queen placements out of 88 =
16, 777, 216 to find all valid sequences.

The full algorithm is shown in Algorithm 1.
Note that St in Equation 3 may be empty, which means a “dead end” at step t that cannot proceed.
In this case, we should return back to step t− 1, mark st−1 as a dead end, and select another one in
St−1 if possible (or repeat the following steps if all of them are dead ends).

2This is directly quoted from (Knuth, 2020). “Fairly easy” typically means that the test leverages the fact
that F (s1, . . . , st−1) holds, and only do incremental work to check whether it still holds after adding st.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a ¬a
1 0
0 1
U U

(a) NOT operator

a ∧ b
a

1 0 U

b
1 1 0 U
0 0 0 0
U U 0 U

(b) AND operator

a ∨ b
a

1 0 U

b
1 1 1 1
0 1 0 U
U 1 U U

(c) OR operator

a ≃ b
a

1 0 U

b
1 1 0 1
0 0 1 1
U 1 1 1

(d) SIMEQ operator

Table 1: The truth tables for NOT, AND, OR and SIMEQ operators in three-valued logic.

4.2 A SEQUENTIAL REPRESENTATION OF CIRCUITS WITH CUTOFF PROPERTIES

The main idea of this work is to find a sequential representation of circuits s1, s2, . . . , sn with
aforementioned cutoff properties F (s1, . . . , st; f), 1 ≤ t < n that keep the represented circuit
within the equivalence class of f . In such a way, we can leverage next-token prediction models to
generate tokens step-by-step and validate the logical equivalence in each step, corresponding to line
6 in Algorithm 1. In such a way, the final completed circuit can be guaranteed to be equivalent to f .

However, Algorithm 1 include a “backtrack process” in line 10 and 11, which may lead to back-
and-forth and is not desired for efficient circuit generation. We note that such a process can be
eliminated by assuring St ̸= ∅ all the time, leading to the following desired characteristic for the
sequential representation:
Characteristic 4.3 (Backtrack Elimination). St ̸= ∅ is always guaranteed in line 5 of Algorithm 1.

With such a characteristic, the autoregressive next-token prediction process of circuits can always
proceed forward efficiently, analogous to typical natural language generation.

For tasks requiring exploration of feasible regions for circuits, it is important for a representation of
circuits to cover the widest possible (ideally all) feasible circuits, minimizing the miss of targets due
to the restriction of representation. For example, while we can always generate a strictly equivalent
circuit for a Boolean function f via sum-of-product or product-of-sum forms, such forms are too re-
stricted for any feasible region exploration. Therefore, we have the following desired characteristic:
Characteristic 4.4 (Completeness). For any g ∈ C(f), there exists a sequence s1, . . . , sn that
uniquely represents g.

Now we propose a sequential representation of circuits with cutoff properties, that has all the afore-
mentioned characteristics.

First, while circuits are usually built in a bottom-up manner from inputs to outputs, we notice that the
equivalence constraints are applied on each output of the circuit. That is, given the index of output
i and a input x, a constraint fi(x) = gi(x) is only possible to be validated when the corresponding
circuit output gi has been built. Therefore, we adopt a special top-down order, specifying a cir-
cuit from outputs to inputs, to allow constraint validation throughout the intermediate construction
process. It improves sampling efficiency and equivalence preservance of circuit generation.

Then, to allow indeterminacy in the circuit representation, we include the three-valued logic into the
circuit evaluation process. That is, besides {0, 1}which indicate false and true, there is another truth
value “U” which means unknown. The truth tables of such logic for NOT, AND and OR operators
are shown in Table 1. Additionally, we define a binary operator “SIMEQ” (≃, is similar or equal
to), which is equivalent to the equal operator (=) for {0, 1}, while accommodating U by U ≃ 0 and
U ≃ 1. During the generation process, we relax the equivalence class of f from Equation 2 to

C ′(f) = {g | g(x) ≃ f(x) ∀x ∈ {0, 1}N} (4)

so that the occurrence of U in the output will not violate the constraint. For simplicity, here we as-
sume M = 1 and leave multi-output cases to be discussed later. The generated circuit g is initialized
to be a single constant node U , which we call “wildcard node” as it can potentially represent any
feasible circuits. So initially, g(x) ≡ U no matter what the input x is. This is within the relaxed
feasible region in Equation 4 but provides no information about the circuit structure.

Given the initial circuit, the sequential generation process acts as refining the circuit g by recursively
replacing a wildcard node to a specific one st ∈ D, which can be either a new logic gate or a new
primary input. For a new logic gate, all its inputs will be initialized to wildcard nodes that need
further refinement. With the proposed top-down approach, the values of g(x) for all x ∈ {0, 1}M in
Equation 4 can always be evaluated throughout the construction process, following the truth tables
in Table 1. Note that the introduction of three-valued logic also enables short-circuit evaluation with
unknown values. For an AND gate c(x) = a(x) ∧ b(x), if one of the inputs (a(x) or b(x)) is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

U g

(a) The initial
circuit.
S0 = {∧,∧},
s0 = ∧.

g
U

U

(b) Step 1.
S1 = {x0,∧,∧},
s1 = ∧.

g

U

U

U

(c) Step 2.
S2 = D,
s2 = x2 .

g

x2

U

U

(d) Step 3.
S3 = {x0, x1, x2,∧,∧},
s3 = x1 .

g

x2

x1

U

(e) Step 4.
S4 = {∧,∧},
s4 = ∧.

g

x2

x1

U

U

(f) Step 5.
S5 = {x0,∧,∧},
s5 = ∧.

g

x2

x1

U

U

U

(g) Step 6.
S6 = D,
s6 = x2 .

g

x2

x1

U
U

(h) Step 7.
S7 = {x0, x1, x2,∧,∧},
s7 = x1 .

g

x2

x1

U

(i) Step 8.
S8 = {x0,∧,∧},
s8 = x0 .

g

x2

x1

x0

(j) The generated cir-
cuit.

Figure 3: An example showing how a strictly feasible circuit can be built with our proposed se-
quential representation with cutoff properties. f(x2, x1, x0) is a Boolean function with f(0, 0, 1) =
f(1, 1, 1) = 1 and f(x2, x1, x0) = 0 otherwise. D = {x0, x0, x1, x1, x2, x2,∧,∧}, U denotes the
wildcard node. The next wildcard node to be replaced is marked in red. St = {s ∈ D |
F (s1, . . . , st−1, s; f) holds}. The selection of st from St is based on a masked probability dis-
tribution estimated via a trained Circuit Transformer, which will be elaborated in Section 4.4.

evaluated to be 0 given specific x, then c(x) = 0 no matter what the other input is evaluated, even
if it is U . The same logic applies for the OR gate when one of the inputs is evaluated to be 1.

Then, the cutoff properties F (s1, . . . , st; f) holds if and only if the circuit partially defined by
s1, . . . , st, denoted as g(t), is in the relaxed equivalence class of f in Equation 4. More specifically,
for all x ∈ {0, 1}M , the output of the constructed circuit g(t) is similar or equal to f(x). That is,

F (s1, . . . , st; f) =

{
1, if g(t)(x) ≃ f(x), ∀x ∈ {0, 1}N
0, otherwise

(5)

For the ending criteria, as a wildcard node can potentially be any circuit, only when all the wildcard
nodes are recursively replaced by specific ones, can the sequence uniquely represent a circuit, which
marks the end of the generation process. For the order of replacement when multiple wildcard nodes
exist, we follow a fixed order that prioritizes those with the largest distance from the output and the
left child of a gate over the right one. For multi-output cases, we generate the circuit for each output
separately, and combine them together via node merging which will be discussed in the next section.

For the selection of logic gates (vocabulary list) in the sequential representation, a standard setting
is the combination of AND and NOT gates, which can express all possible truth tables of Boolean
functions (termed “functional completeness”), and is also commonly adopted in standard circuit
formats such as AIGER (Biere, 2007). Therefore, we adopted this setting. Additional types of
gates can be further included to adapt to different circuit settings, which is left as a future work.
An alteration is that we merged the NOT gate with the AND gate and primary inputs. Instead
of assigning the NOT gate an individual token, each primary inputs and the AND gate has two
versions: the original ones (x1, . . . , xN ,∧) and the inverse ones (x1, . . . , xN ,∧), so the vocabulary
list contains 2N + 2 tokens in total3. That is,

D = {x1, x1, . . . , xN , xN ,∧,∧}. (6)
This allows us to significantly shorten the sequence with a moderate increase of vocabulary size.

An example of our proposed representation and cutoff properties are shown in Figure 3. We leave
the proof of Characteristic 4.1, 4.2, 4.3 and 4.4 in Section A.2. Given Equation 5, we can compute
St in a time complexity of O(N · 2N · d) with a cache mechanism exploiting Characteristic 4.2. d is
the depth of the wildcard node to replace at step t. The detail is leaved in Section A.3.

4.3 FROM TREES TO DIRECTED ACYCLIC GRAPHS

In the previous section, we proposed a sequential representation of circuits based on recursive re-
placement of wildcard nodes in a top-down manner. Such an approach implicitly assumes that a
logic gate would always have a single outgoing edge, restricting the generated circuits to be highly
hierarchical with tree structures. However, multi-fanout gates do commonly exist in real-world logic
circuits, which shape circuits as directed acyclic graphs (DAGs).

In this section, we show how we extend our method to generate DAG circuits. We notice that a
DAG can be “unfolded” to one or more trees once we duplicate every node with outdegree larger

3This does not include special tokens such as [EOS] and [PAD] in Transformer models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

than one, so that every node has at most one outgoing edge. For example, the orange node in the
left DAG of Figure 4 is duplicated into two individual nodes, where its two outgoing edges are as-
signed respectively. Reversely, one or more trees can also be transformed to a DAG by merging
nodes with structural equivalence. For circuits, such a bidirectional transition will not change the
Boolean function it represents. Therefore, we generate a DAG circuit by firstly generating its un-
folded tree representation, and then merging equivalent nodes in the generated tree representation.
In logic circuit design, different nodes can be not only structurally equivalent but also functionally
equivalent (Mishchenko et al., 2005), which means that their outputs represent the same Boolean
functionality. Functionally equivalent nodes can thus be merged as a single node even if they have
different underlying structures. Our approach mainly leverages the functional equivalence.

4.4 NEURAL ENCODING OF CIRCUITS AND CIRCUIT TRANSFORMER

unfold

merge

DAG Tree(s)

Figure 4: Transition between a DAG and one or
more trees.

While we can deserialize our proposed sequen-
tial representation to a DAG circuit via node
merging, we can also serialize a given DAG cir-
cuit to our proposed sequential representation
in a similar manner, via a depth-first traversal
with node duplication. Given a DAG circuit,
we start a traversal from each of its primary out-
puts, and visit each connected gate in a depth-
first and recursive manner. Backtracking occurs
when a primary input is reached. Importantly,
such a traversal is memory-less, i.e., visited nodes will not be labelled during the traversal, thus a
node will appear multiple times in the trajectory if its fan-out is larger than one, corresponding to
the node duplication in the previous section. When the process is finished, the traversal trajectory
s1, . . . , sn is the sequential representation of the unfolded tree version of the original DAG circuit.
Note that such an unfolding process may lead to long sequences, especially for nodes with large
number of outgoing edges. A more compact representation is left as future work.

For Transformer models to process the sequential representation, it is important to provide an effi-
cient positional encoding for each node to indicate its position in the circuit. In this work, we utilize
the path from the primary output to a given node to indicate the node’s position. To achieve this, we
follow (Shiv & Quirk, 2019) that encodes the path as a stack of one-hot encodings (“10” for the first
input and “01” for the second input). More details are left in the appendix.

With all the circuit encoding and generation techniques introduced above, we propose the Circuit
Transformer, an end-to-end Transformer model that generates a functionally equivalent circuit of a
Boolean function. The Transformer adopts the classical encoder-decoder Transformer architecture
(Vaswani et al., 2017). The Boolean function to be implemented is specified as a circuit, and encoded
by the Transformer encoder with the aforementioned encoding approach. The Transformer decoder
adopted the mechanism in Section 4.2 by inserting a masking layer before the final softmax layer,
which reflects St. When predicting the next token st+1, the masking layer blocks candidates that
invalidate equivalence, based on the current “cutoff” circuit partially defined by s1, . . . , st. The
Transformer is trained in a standard supervised way, which minimize the cross entropy between
the predicted distribution and the ground truth. Moreover, node merging proposed in Section 4.3 is
applied to the decoding process on-the-fly to transform the unfolded tree representation to a DAG
circuit, whose details can be found in Algorithm 4 in the appendix. The training and inference stage
is shown in Figure 5. We denote a trained Circuit Transformer as

PCT(s | s1, . . . , st; f)
in which

∑
s∈St+1

PCT(s | s1, . . . , st; f) = 1 and PCT(s | s1, . . . , st; f) = 0,∀s ∈ D\St+1. The
input circuit specifying f is omitted for simplicity.

4.5 EQUIVALENCE-PRESERVING CIRCUIT OPTIMIZATION AS A MARKOV DECISION PROCESS

An important application of equivalent circuit generation is to optimize circuits with respect to
certain objectives. For example, one important problem is to find a compact implementation of a
Boolean function f with minimal number of logic gates (the circuit size minimization problem).
That is

min |g| s.t. g ∈ C(f), (7)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

softmax

Encoder

Attention Layer

Attention Layer

⋀ ⋀ 𝑥1 𝑥2 ⋀ 𝑥2 𝑥3

0
0
0
0

1
0
0
0

1
0
1
0

0
1
1
0

0
1
0
0

1
0
0
1

0
1
0
1

Tree-based
Positional Encodings

Sequential
Representation

……

S ⋀ 𝑥1 ⋀ 𝑥2 𝑥3

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

1
0
0
1

0
1
0
1

Decoder

Attention Layer

Attention Layer

……

Masking Layer

⋀ 𝑥1 ⋀ 𝑥2 𝑥3 EGround Truth

Masked Probability
Distribution

DAG Representation
of a Circuit

𝑥1

𝑥2

𝑥3

𝑔′

𝑥1

𝑥2

𝑥3

𝑔

Encoder

Attention Layer

Attention Layer

⋀ ⋀ 𝑥1 𝑥2 ⋀ 𝑥2 𝑥3

0
0
0
0

1
0
0
0

1
0
1
0

0
1
1
0

0
1
0
0

1
0
0
1

0
1
0
1

……

Decoder

Attention Layer

Attention Layer

……

Masking Layer

E

𝑔′

0
0
0
0

1
0
0
0

0
1
0
0

1
0
0
1

0
1
0
1

⋀ 𝑥1 ⋀ 𝑥2 𝑥3S

𝑥1

𝑥2

𝑥3

𝑔 𝑈

0
0
0
0

⋀ 𝑥1 ⋀ 𝑥2 𝑥3

𝑈

𝑔′
𝑈

𝑥1
𝑈

𝑈

𝑔′

𝑥1

𝑈

𝑥1
𝑥2

𝑈

𝑔′

𝑥1
𝑥2

𝑥3

𝑔′𝑔′

Masked Probability
Distribution

Predicted Next Token

softmax

𝑆0

𝑠0

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4

(a) Training stage

softmax

Encoder

Attention Layer

Attention Layer

⋀ ⋀ 𝑥1 𝑥2 ⋀ 𝑥2 𝑥3

0
0
0
0

1
0
0
0

1
0
1
0

0
1
1
0

0
1
0
0

1
0
0
1

0
1
0
1

Tree-based
Positional Encodings

Sequential
Representation

……

S ⋀ 𝑥1 ⋀ 𝑥2 𝑥3

0
0
0
0

0
0
0
0

1
0
0
0

0
1
0
0

1
0
0
1

0
1
0
1

Decoder

Attention Layer

Attention Layer

……

Masking Layer

⋀ 𝑥1 ⋀ 𝑥2 𝑥3 EGround Truth

Masked Probability
Distribution

DAG Representation
of a Circuit

𝑥1

𝑥2

𝑥3

𝑔′

𝑥1

𝑥2

𝑥3

𝑔

Encoder

Attention Layer

Attention Layer

⋀ ⋀ 𝑥1 𝑥2 ⋀ 𝑥2 𝑥3

0
0
0
0

1
0
0
0

1
0
1
0

0
1
1
0

0
1
0
0

1
0
0
1

0
1
0
1

……

Decoder

Attention Layer

Attention Layer

……

Masking Layer

E

𝑔′

0
0
0
0

1
0
0
0

0
1
0
0

1
0
0
1

0
1
0
1

⋀ 𝑥1 ⋀ 𝑥2 𝑥3S

𝑥1

𝑥2

𝑥3

𝑔 𝑈

0
0
0
0

⋀ 𝑥1 ⋀ 𝑥2 𝑥3

𝑈

𝑔′
𝑈

𝑥1
𝑈

𝑈

𝑔′

𝑥1

𝑈

𝑥1
𝑥2

𝑈

𝑔′

𝑥1
𝑥2

𝑥3

𝑔′𝑔′

Masked Probability
Distribution

Predicted Next Token

softmax

𝑆0

𝑠0

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝑒0 𝑒1 𝑒2 𝑒3 𝑒4

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4

(b) Inference stage
Figure 5: The training and the inference stage of the Circuit Transformer. In the inference stage, the
positional encoding et at step t is computed on-the-fly based on the position of the current token st
in the partially defined circuit. The mask St+1 for predicting the next token st+1 is computed based
on Equation 3 given the previous tokens s1, . . . , st and the cutoff property F (s1, . . . , st; f). “S” and
“E” denote the [START] and [END] tokens in Transformer model.

where |g| is the number of logic gates (NOT gates are not counted to align with the mainstream
research setting) in g. Under our proposed sequential representation, it can be achieved by attaching
an immediate reward function R(s1, . . . , st, s) to the generation of token s at step t, so that the sum
of the reward function throughout the generation reflects the objective. In this way, the generation
process can be regarded as a deterministic Markov decision process, in which the state at step t is
the generated tokens (s1, . . . , st), the set of actions available from the state is St in Equation 3, the
immediate reward is R(s1, . . . , st, s), and the next state is (s1, . . . , st, s) with probability 1. The
process terminates once (s1, . . . , st) represents a unique circuit with all wildcard nodes replaced.

Such a formulation has two key advantages. First, the feasibility of the generated circuit is guaran-
teed once the process terminates. No effort is required to penalize infeasible cases via crafting the
reward function. Second, the size of the available action set is at most 2N+2, in which N , the num-
ber of inputs, is usually moderately small in practice. Other circuit representations typically assign
a unique ID to each logic gate to describe their adjacency, requiring the size of available actions to
be proportional to the number of gates, which is usually significantly larger than N .

For the circuit size minimization problem in Equation 7, the immediate reward function can be
defined as

R(s1, . . . , st, s) = ∆ +

{
−1, s = ∧ or s = ∧
0, otherwise

(8)

in which ∆ reflects the refinement due to equivalent node merging. Given a depth-first replace-
ment order of wildcard nodes in Section 4.2, the node merging process in Section 4.3 can be done
simultaneously with the generation process, whose details are left in the appendix.

Given the reward function, we can adopt Monte-Carlo tree search (MCTS) to maximize the cumu-
lative reward

∑
t R(s1, . . . , st) while strictly preserve the equivalence. Each search node will be

“simulated” once to obtain a value v, which is the estimated cumulative reward when choosing the
path from the root node to this node. Each node also stores four values: the average value Q(s), the
number of visits N(s), the immediate reward R(s) and the prior probability P (s). When selecting
a child a for the node s, MCTS make a balance between exploitation and exploration by assigning
each child a PUCT score (Silver et al., 2017) as follows

PUCT(a) = Q(a) + cP (a)

√
N(s)

1 +N(a)
(9)

in which c is a hyperparameter (set to 1 in our case). P (a) is a prior probability of selecting a,
allowing nodes with larger P (a) obtain higher score. We adopt Circuit Transformer to estimate
P (a) as well as conducting simulation to get the value v. The procedure is shown in Algorithm 2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Algorithm 2 Circuit Generation with Circuit Transformer and Monte-Carlo Tree Search
Input: The Boolean function f to be realized. Circuit Transformer PCT(st|s1, . . . , st−1; f). Immediate re-

ward function R(s1, . . . , st). Number of playouts K.
Output: An improved sequential representation of circuit

Create a root search node r, initialize vmax as a small number, BestSeq ← [].
for i = 1, 2, . . . ,K do

Starting from r, iteratively selects a child node with the largest PUCT score, until reaching a leaf node l.
Set v ← R(r) + · · ·+R(l)
if l has been simulated before then

Expand l by adding all valid tokens {s ∈ D | F (r, . . . , l, s; f) holds} as its children
Compute prior probability P (a) for each child a of l via P (a)← PCT(a | r, . . . , l; f)
Initialize Q(a)← 0, N(a)← 0 for each child a of l
Select the child c with the largest PUCT score and set R(c)← R(r, . . . , l, c), v ← v +R(c)

else
Set c← l

end if
while c ̸= EOS do

Set c← argmaxs PCT(s | r, . . . , c; f), and then set v ← v +R(r, . . . , c)
end while
if v > vmax then vmax ← v,BestSeq ← [r, . . . , c]
for s = c, . . . , r do

Set Q(s)← (Q(s) ·N(s) + v)/(N(s) + 1), N(s)← N(s) + 1
end for

end for
Return BestSeq

5 EXPERIMENTS

In this section, we supervisedly train a Circuit Transformer to solve the circuit size minimization
problem in Equation 7, generating equivalent yet more compact forms of input circuits, and conduct
extensive experiments on both synthetic and real datasets to evaluate its feasibility and optimality.

We conduct the experiments on 8-input, 2-output circuits, which can specify (22
8

)2 = 1.34 · 10154
different Boolean functions. Optimizing a circuit while exactly matching one of the functions is
challenging. Such a size is out of the capacity of current exact solvers and significantly larger than
the typical sub-circuit size (4-6 inputs and one output) for traditional divide-and-conquer methods.
Effective end-to-end optimization on such a circuit size leads to enhancement of global optimality
for large circuit optimization (Li & Dubrova, 2011; Zhu et al., 2023).

The detailed parameter setting of the Circuit Transformer model are as follows. The embedding
width and the size of feedforward layer are set to 512 and 2048 following (Vaswani et al., 2017),
while the number of attention layers is set to 12, leading to 88.2 million total parameters, a moderate
size that allows efficient training and evaluation on a single, customer-grade GPU. The vocabulary
size is 20 (8 inputs and the AND gate, with their inverse, plus [EOS] and [PAD]). Batch size is set
to be 128. The maximum length of the input and output sequence is set to be 200. To evaluate the
effectiveness of tree positional encoding (TPE) in Section 4.4, we trained Circuit Transformers with
and without TPE. The maximal depth of tree positional embeddings is set to be 32. The implemen-
tation is based on (Yu et al., 2020). During inference, the prediction of tokens from distributions is
deterministic (the token with the largest probability is selected) for reproducibility.

We also trained two baseline Transformer models with exactly the same experimental settings, ex-
cept employing different sequential representation of circuits as follows:

• Boolean Chain (Knuth, 2015): a representation that is extensively applied in SAT-based op-
timization techniques. A chain is initialized by all the primary inputs of the circuit, and each
gate is represented by two prior indices in the chain, indicating the source of its two inputs.

• AIGER (Biere, 2007): a popular representation of logic circuits with AND and NOT gates.
We follow the tokenization setting in (Schmitt et al., 2021), representing an AND gate by
three tokens followed by a special new line token.

To train and evaluate the Circuit Transformer model, we build a large dataset containing 15 million
randomly generated 8-input, 2-output circuits. The supervised signals (i.e., the equivalent circuits
that are optimized in size) are generated by the Resyn2 command in ABC (Brayton & Mishchenko,
2010), a representative optimization flow for circuit size minimization. The detail of random circuit
generation is left in the appendix. 89% of the data is for training, 1% is for validation and 10% is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Methods Random circuits IWLS FFWs
Unsuccessful cases Avg. size Unsuccessful cases Avg. size

Boolean Chain 5.07% (5.07%) 15.25 11.36% (11.26%) 17.24
Boolean Chain (beam size = 16) 2.16% (2.16%) 14.89 6.34% (6.29%) 17.15
Boolean Chain (beam size = 128) 1.91% (1.91%) 14.87 5.97% (5.94%) 17.15
AIGER 4.32% (4.32%) 15.14 8.35% (7.77%) 17.19
AIGER (beam size = 16) 1.85% (1.85%) 14.87 4.62% (4.37%) 17.12
AIGER (beam size = 128) 1.71% (1.71%) 14.86 4.24% (3.99%) 17.12
Circuit Transformer w/o TPE 2.14% (0%) 15.02 6.63% (0%) 17.33
Circuit Transformer 1.14% (0%) 14.79 4.76% (0%) 17.17
Circuit Transformer (K = 10) 0.20% (0%) 14.02 2.83% (0%) 16.92
Circuit Transformer (K = 100) 0.17% (0%) 13.73 2.63% (0%) 16.73
Resyn2 (ground truth for training) / 14.56 / 16.82

Table 2: Results on 10,240 randomly generated circuits, and 10,240 fanout-free windows randomly
sampled from the IWLS 2023 benchmark. For unsuccessful cases, the percentage in the bracket
corresponds to failures due to equivalence constraint violation. All results of Circuit Transformers
show zero violation of equivalence constraints. K denotes the total number of playouts in Monte-
Carlo tree search. All the models are supervisedly trained on the Resyn2 optimized circuits.

reserved for testing. All the Transformer models are trained on the training set sufficiently for 5
epochs on a single NVIDIA GeForce RTX 4090 graphic card for 75 hours.

We employ both a synthetic dataset and real EDA benchmarks to evaluate the performance:

• Random circuits: 10,240 circuits are randomly sampled from the test set of the aforemen-
tioned randomly generated dataset. The average size is 25.83± 5.38.

• IWLS FFWs: we transform the IWLS 2023 benchmark (Mishchenko, 2023) into circuits
represented by AND and NOT gates by the script suggested in (Mishchenko & Chatterjee,
2022), and extract 1.5 million 8-input, 2-output fanout-free windows (FFWs), a kind of sub-
structure of large circuits (Zhu et al., 2023). Then we randomly sample 10,240 circuits from
the extracted FFWs. The average size is 18.01± 6.47.

To enhance the performance of the Transformer models in comparison, two heuristics search tech-
niques are applied. Monte-Carlo tree search in Algorithm 2 is applied for Circuit Transformer to
evaluate our proposed MDP formulation in Section 4.5. For Transformer models trained on Boolean
chain and AIGER, applying MCTS is significantly more inefficient due to the large set of available
actions discussed in Section 4.5, so we adopt Beam search as an alternative, which finds the most
probable sequence by maintaining a fixed size (beam size) of candidates.

The results are presented in Table 2, with a more detailed version in Section A.8. On both syn-
thetic and real datasets, the Circuit Transformer surpasses two other Transformer models in terms
of feasibility (measured by the percentage of unsuccessful cases) and optimality (measured by the
average circuit size). The two baseline models generate unsuccessful circuits for various reasons,
including equivalence constraint violations, cycles in circuits, or incomplete specifications, with the
most common issue being that the generated circuit is complete and valid but not strictly equiva-
lent to the original. In contrast, the Circuit Transformer’s exact precision is empirically shown by
zero violation of complex equivalence constraints. The only reason for unsuccessful cases is that
wildcard nodes are not fully replaced within the given maximum sequence length of 200. Case
studies can be found in the appendix. Regarding heuristic search enhancement, while beam search
significantly improved feasibility, consistent with findings in (Schmitt et al., 2021), the issue of non-
equivalence remained prevalent. Conversely, Monte-Carlo tree search in the Circuit Transformer
not only substantially reduced unsuccessful cases but also significantly improved the average circuit
size, sometimes producing circuits more compact than the ground truth with a moderate number of
playouts.

6 CONCLUSION

In this work, we make an important advancement towards achieving precise generative AI for logic
tasks, demonstrating that complex hard-constraint satisfaction is attainable for next-token prediction
models when a proper formulation of the constrained problem is established. Inspired by the cutoff
properties, we introduce a novel approach to the fundamental problem of equivalent circuit genera-
tion, enabling next-token prediction models to generate new logic circuits while strictly adhering to
complex equivalence constraints. Future works includes extending such methodology to other fun-
damental constrained problems, integrating current models into industrial large circuit optimizers,
and exploiting more compact representation of circuits such as BDDs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

UoC Berkeley. Berkeley logic interchange format (blif). Oct Tools Distribution, 2:197–247, 1992.

Armin Biere. The AIGER And-Inverter Graph (AIG) format version 20071012. Technical Report
07/1, Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr.
69, 4040 Linz, Austria, 2007.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
Computer Aided Verification, pp. 24–40, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.
ISBN 978-3-642-14295-6.

D. Chai and A. Kuehlmann. Building a Better Boolean Matcher and Symmetry Detector. In Pro-
ceedings of the Design Automation & Test in Europe Conference, volume 1, pp. 1–6, March 2006.
doi: 10.1109/DATE.2006.243959. ISSN: 1558-1101.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Informa-
tion Processing Systems, 35:26350–26362, 2022.

Stéphane d’Ascoli, Samy Bengio, Josh Susskind, and Emmanuel Abbé. Boolformer: Symbolic
Regression of Logic Functions with Transformers, September 2023. URL https://arxiv.
org/abs/2309.12207v1.

Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui Xu.
Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’20, pp. 3054–3063, New York, NY, USA, 2020. Association for Computing
Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403356. URL https://doi.
org/10.1145/3394486.3403356.

Antoine Grosnit, Cedric Malherbe, Rasul Tutunov, Xingchen Wan, Jun Wang, and Haitham Bou
Ammar. Boils: Bayesian optimisation for logic synthesis. In 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1193–1196, 2022.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and
Junchi Yan. Machine Learning Methods in Solving the Boolean Satisfiability Problem. Ma-
chine Intelligence Research, 20(5):640–655, October 2023. ISSN 2731-5398. doi: 10.
1007/s11633-022-1396-2. URL https://link.springer.com/article/10.1007/
s11633-022-1396-2.

Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 581–586, 2020.

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuan-
fan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong
Yang, and Yu Wang. Machine learning for electronic design automation: A survey. ACM Trans.
Des. Autom. Electron. Syst., 26(5), jun 2021. ISSN 1084-4309.

Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability. Addison-
Wesley Professional, 2015.

Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 5: Mathematical Pre-
liminaries Redux; Introduction to Backtracking; Dancing Links. Addison-Wesley Professional,
2020.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxBFsRqYm.

Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate: Learning
neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 667–672, 2022.

11

https://arxiv.org/abs/2309.12207v1
https://arxiv.org/abs/2309.12207v1
https://doi.org/10.1145/3394486.3403356
https://doi.org/10.1145/3394486.3403356
https://link.springer.com/article/10.1007/s11633-022-1396-2
https://link.springer.com/article/10.1007/s11633-022-1396-2
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nan Li and Elena Dubrova. AIG Rewriting Using 5-Input Cuts. arXiv:1108.3675 [cs], August
2011. URL http://arxiv.org/abs/1108.3675. arXiv: 1108.3675.

Xing Li, Lei Chen, Jiantang Zhang, Shuang Wen, Weihua Sheng, Yu Huang, and Mingxuan Yuan.
Effisyn: Efficient logic synthesis with dynamic scoring and pruning. In 2023 IEEE/ACM Interna-
tional Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Mingjie Liu, Teo Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah
Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran, Bryan
Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande, Sid-
dhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Brucek Khailany, Kishor
Kunal, Xiaowei Li, Hao Liu, Stuart Oberman, Sujeet Omar, Sreedhar Pratty, Ambar Sarkar,
Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Kaizhe Xu, and Haoxing Ren. Chip-
nemo: Domain-adapted llms for chip design, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023b.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Outper-
forming gpt-3.5 in design rtl generation with our open-source dataset and lightweight solution,
2024. URL https://arxiv.org/abs/2312.08617.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Alan Mishchenko. alanminko/iwls2023-ls-contest: Problems and Results of IWLS
2023 Programming Contest, 2023. URL https://github.com/alanminko/
iwls2023-ls-contest.

Alan Mishchenko and Satrajit Chatterjee. IWLS 2022 Programming Contest, 2022.
URL https://www.iwls.org/iwls2022/contest/IWLS_2022_Programming_
Contest.pdf.

Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K. Brayton. FRAIGs: A unifying
representation for logic synthesis and verification. Technical report, ERL Technical Report, 2005.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Re-
inforcement Learning for Solving the Vehicle Routing Problem. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
9fb4651c05b2ed70fba5afe0b039a550-Abstract.html.

Walter Lau Neto, Matheus T Moreira, Yingjie Li, Luca Amarù, Cunxi Yu, and Pierre-Emmanuel
Gaillardon. Slap: A supervised learning approach for priority cuts technology mapping. In 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 859–864. IEEE, 2021.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

Frederik Schmitt, Christopher Hahn, Markus N Rabe, and Bernd Finkbeiner. Neural circuit synthesis
from specification patterns. In Advances in Neural Information Processing Systems, volume 34,
pp. 15408–15420. Curran Associates, Inc., 2021.

Frederik Schmitt, Matthias Cosler, and Bernd Finkbeiner. Neural circuit synthesis with pre-trained
language models. In First International Workshop on Deep Learning-aided Verification, 2023.

Daniel Selsam and Nikolaj Bjørner. Guiding High-Performance SAT Solvers with Unsat-Core Pre-
dictions. In Mikoláš Janota and Inês Lynce (eds.), Theory and Applications of Satisfiability Testing
– SAT 2019, pp. 336–353, Cham, 2019. Springer International Publishing. ISBN 978-3-030-
24258-9. doi: 10.1007/978-3-030-24258-9 24.

12

http://arxiv.org/abs/1108.3675
https://arxiv.org/abs/2312.08617
https://github.com/alanminko/iwls2023-ls-contest
https://github.com/alanminko/iwls2023-ls-contest
https://www.iwls.org/iwls2022/contest/IWLS_2022_Programming_Contest.pdf
https://www.iwls.org/iwls2022/contest/IWLS_2022_Programming_Contest.pdf
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Claude. E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, 1949. doi: 10.1002/j.1538-7305.1949.tb03624.x.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Michael Sipser. Introduction to the theory of computation. Cengage Learning, Australia Brazil
Japan Korea Mexiko Singapore Spain United Kingdom United States, third edition, international
edition edition, 2013. ISBN 978-1-133-18779-0 978-1-133-18781-3 978-0-357-67058-3.

Kevin Skahill. VHDL for programmable logic. Addison-Wesley Longman Publishing Co., Inc.,
1996.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems, 29(3):1–31, 2024.

Donald Thomas and Philip Moorby. The Verilog® hardware description language. Springer Science
& Business Media, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng. Electronic design automation: syn-
thesis, verification, and test. The Morgan Kaufmann series in systems on silicon. Morgan Kauf-
mann/Elsevier, Amsterdam Boston, 2009. ISBN 978-0-12-374364-0.

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikku-
lainen. NeuroBack: Improving CDCL SAT Solving using Graph Neural Networks, November
2023. URL http://arxiv.org/abs/2110.14053. arXiv:2110.14053 [cs].

Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality matters in netlist representation learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 61–66, 2022.

Chenghao Yang, Yinshui Xia, Zhufei Chu, and Xiaojing Zha. Logic synthesis optimization sequence
tuning using rl-based lstm and graph isomorphism network. IEEE Transactions on Circuits and
Systems II: Express Briefs, 69(8):3600–3604, 2022a. doi: 10.1109/TCSII.2022.3168344.

Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, and Jianye
Hao. Versatile multi-stage graph neural network for circuit representation. Advances in Neural
Information Processing Systems, 35:20313–20324, 2022b.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450357005.

Hongkun Yu, Chen Chen, Xianzhi Du, Yeqing Li, Abdullah Rashwan, Le Hou, Pengchong Jin,
Fan Yang, Frederick Liu, Jaeyoun Kim, and Jing Li. TensorFlow Model Garden. https:
//github.com/tensorflow/models, 2020.

Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed circuit
design. In International conference on machine learning, pp. 7364–7373. PMLR, 2019.

13

http://arxiv.org/abs/2110.14053
https://github.com/tensorflow/models
https://github.com/tensorflow/models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang. NLocal-
SAT: Boosting Local Search with Solution Prediction. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, pp. 1177–1183, Yokohama, Japan, July 2020.
International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-6-
5. doi: 10.24963/ijcai.2020/164. URL https://www.ijcai.org/proceedings/2020/
164.

Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z. Pan. Exploring logic optimizations
with reinforcement learning and graph convolutional network. In 2020 ACM/IEEE 2nd Workshop
on Machine Learning for CAD (MLCAD), pp. 145–150, 2020.

Xuliang Zhu, Ruofei Tang, Lei Chen, Xing Li, Xin Huang, Mingxuan Yuan, Weihua Sheng, and
Jianliang Xu. A database dependent framework for k-input maximum fanout-free window rewrit-
ing. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2023. doi:
10.1109/DAC56929.2023.10247727.

A APPENDIX

A.1 DETAIL OF BACKTRACKING FRAMEWORK

The basic backtracking algorithm is as follows, extracted from (Knuth, 2020):

Given domain D and properties F (s1, . . . , st), this algorithm visites all sequence s1, s2, . . . , sn that
satisfy F (s1, . . . , sn):

Step 1 [Initialize] Set t← 1, and initialize the data structures needed later.
Step 2 [Enter level t] (Now F (s1, . . . , st−1) holds.) If t > n, visit s1, . . . , sn and go to Step 5,

Otherwise set st ← minD, the smallest element of D.
Step 3 [Try st] If F (s1, . . . , st) holds, update the data structures to facilitate testing

F (s1, . . . , st, st+1), set t← t+ 1, and go to Step 2.
Step 4 [Try again] If st ̸= maxD, set st to the next larger element of D and return to Step 3.
Step 5 [Backtrack] Set t ← t − 1. If t > 0, downdate the data structures by undoing the changes

recently made in Step 3, and return to Step 4. (Otherwise stop.)

We refer to Section 7.2.2 of (Knuth, 2020) for more details about backtracking.

A.2 PROOF OF CHARACTERISTICS

In this section, we demonstrate that our proposed sequential representation has Characteristic 4.1,
4.2, 4.3 and 4.4.

Characteristic 4.1: When F (s1, . . . , st+1; f) is true, the transition from s1, . . . , st+1 to s1, . . . , st
corresponds to reversely replacing a specific node st+1 with a wildcard node. such a replacement
will never break the feasibility, because (1) a wildcard node only represents feasible circuits; (2) the
wildcard node at least have a feasible choice to be set as st+1 as s1, . . . , st+1 is feasible.

Characteristic 4.2: During the generation from step 1 to step t − 1, a cache mechanism can be
employed to cache the truth table of the constructed nodes. Therefore, when F (s1, . . . , st−1; f)
holds and F (s1, . . . , st−1, st; f) needs to be evaluate, we simply traverse the generated circuit in a
bottom-up manner, from the current wildcard node to be replaced to the root, to evaluate g(t)(x) for
all x ∈ {0, 1}N with time complexity of O(N · 2N · d) in which d is the depth of the node. More
details about the cache mechanism can be found in Section A.3.

Characteristic 4.3: Note that the AND gate ∧ and the NAND gate ∧ is always in St in our sequential
representation, as replacing a wildcard node to an AND or NAND gate with two wildcard nodes will
never break the feasibility.

Characteristic 4.4: For all g ∈ C(f), the sequence s1, . . . , sn that represents g is demonstrated in
Section 4.4.

14

https://www.ijcai.org/proceedings/2020/164
https://www.ijcai.org/proceedings/2020/164

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 DETAILS OF THE COMPUTATION OF St

In this section, we introduce how to compute
St = {s ∈ D|F (s1, . . . , st−1, s; f) holds}

in which

F (s1, . . . , st; f) =

{
1, if g(t)(x) ≃ f(x), ∀x ∈ {0, 1}N
0, otherwise

in a time complexity of O(N · 2N ·d), in which d is the depth of the wildcard node to replace at step
t. The computation will not be a bottleneck when N is reasonably small (in our case N = 8).

First, during the construction process, we name a node s in a circuit as “fixed” if the value of s is
either 0 or 1 (not U) for all possible inputs. Formally,

s is fixed iff s(x) ̸= U,∀x ∈ {0, 1}N

in which s(x) is the value of node s given input x. Therefore, an input node is always fixed. An
intermediate node must be fixed if its left and right child are both fixed. For example, in the partial
sequence [∧ ∧ x1x2], the second ∧ is fixed because its left and right children are x1 and x2, which
are both fixed. The first ∧ is not fixed because its right child is U , its value is U when x1 and x2 are
both 1 (1 ∧ U = U).

𝑈

𝑔(𝒙)

Figure 6: When the wildcard
to replace is the node U in
red, the blue nodes on the left
must be fixed, and the red
nodes on the right must be U .

Recall that during the construction process in Section 4.2, for the
order of replacement when multiple wildcard nodes exist, we follow
a fixed order that prioritizes those with the largest distance from the
output, and prioritizes the left child of a gate over the right one
if they have the same distance. Therefore, the construction process
will only replace a node’s right wildcard child if there is no wildcard
nodes in its left branch. In other words, in the construction process,
when the wildcard node to replace is u, then for any node s on the
path from u to the root,

• If u is in the right branch of s, the left child of s must be
fixed.

• If u is in the left branch of s, the right child of s must be a
wildcard node.

An illustration is shown in Figure 6. To check whether s ∈ D,D =
{x1, x1, . . . , xN , xN ,∧,∧} is a valid token in St, we try to re-
place u with each element in D, and check whether g(t)(x) ≃
f(x),∀x ∈ {0, 1}N by truth table comparison. The truth table
of the fixed nodes (the blue nodes in Figure 6) can be cached by maintaining a cache dictionary
during the construction process. The process is shown in Algorithm 3, which requires d times of
element-wise Boolean computation between two N × 2N matrices.

A.4 DEMONSTRATION OF THE TREE POSITIONAL ENCODING

For example, in Figure 5, the position of the second node in the sequence, i.e., the uppermost AND
gate connecting x1 and x2, can be represented as e2 = [10] (this gate’s output is the first input of the
rightmost AND gate, so “10” is pushed in the encoding stack of the rightmost AND gate, which is
empty), and the position of the fourth node x2 in the sequence can be represented as e4 = [01; e2] =
[0110] (push “01” in e2 as x2 is the second node’s second input) and e6 = [10; e5] = [1001] when
x2 is secondly visited as the fifth node’s first input.

For circuits with multiple primary outputs (M > 1), we initialize the encoding stack of each primary
output with a unique one-hot encoding, as if there is a virtual root node of M children, and each
primary output corresponds to one of the children.

A.5 IMMEDIATE EQUIVALENT NODE MERGING AND FUNCTIONAL EQUIVALENCE
CHECKING

With a depth-first replacement order, we can follow Algorithm 4 to merge equivalent nodes during
the generation process. For functional equivalence checking of two nodes p and q, we check whether

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3 The Computation of St

Input: The truth table t of the Boolean function f to be realized, the wildcard node u to be replaced at time
step t, a cache dictionary d of fixed nodes storing their truth tables.

Output: St

St ← {∧,∧}
b← the truth tables of input nodes x1, x1, . . . , xN , xN

while u is not root do
if u is the left node of its parent then

Set b[s]← b[s] ∧ U ∀s ∈ {x1, x1, . . . , xN , xN}
else

Set b[s]← b[s] ∧ d[l] ∀s ∈ {x1, x1, . . . , xN , xN}, in which l is the left node of u’s parent
end if
if u = ∧ then

Set b[s]← ¬b[s] ∀s ∈ {x1, x1, . . . , xN , xN}
end if

end while
for s ∈ {x1, x1, . . . , xN , xN} do

if there is no zero in b[s] ≃ t then
Add s to St

end if
end for
rturn St

Algorithm 4 Circuit generation with immediate equivalent node merging
Input: The Boolean function f that the generated circuit should be equivalent to. Next token prediction model

P (st|s1, . . . , st−1).
Output: A feasible circuit g satisfying g ∈ C(f).
1: Initialize path as an empty stack of gates, POs as an empty list.
2: Initialize G = ∅ as a set of non-isomorphic gates
3: for t = 1, 2, 3, . . . do
4: Compute a probability distribution of st ∈ D by the next token prediction model

pt ← P (st|s1, . . . , st−1)

5: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds} ▷ St ̸= ∅ is guaranteed by Characteristic 4.3
6: st ← argmaxs∈St pt(s)
7: Initialize st.input1← U, st.input2← U if st is a gate.
8: if path is empty then ▷ the output of st is the primary output of the circuit
9: Append st to POs and push st to path

10: else ▷ st should be the input of the last gate in path
11: s← path.peek() ▷ get the last gate added to path
12: if s.input1 = U then s.input1← st else s.input2← st ▷ replace a wildcard node in st to s
13: if st is a gate then
14: path.push(st)
15: else ▷ st is an input node in x1, x1, . . . , xN , xN . Pop fully constructed gates from path
16: while s.input1 ̸= U and s.input2 ̸= U do
17: if s ∈ G then ▷ Compute the truth table of s to check functional equivalence
18: Update path and POs to replace s with the functional equivalent one in G
19: else
20: Add s to G
21: end if
22: s← path.pop()
23: end while
24: end if
25: end if
26: end for
27: Return the circuit with POs as POs

p(x) = q(x),∀x ∈ {0, 1}N by iterating all x. If there is an x such that p(x) ̸= q(x), then p and q
are not functionally equivalent.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Detailed results for random circuits.

Methods Random Circuits

Unsuccessful
cases

Violation
cases

Average
circuit
size

SD of
circuit
size

% of circuits
strictly smaller
than Resyn2

Average time
per circuit
(s)

Boolean Chain 5.07% 5.07% 15.25 4.52 15.49% 0.010
Boolean Chain (beam size=16) 2.16% 2.16% 14.89 3.86 16.42% 0.048
Boolean Chain (beam size=128) 1.91% 1.91% 14.87 3.82 16.57% 0.369
AIGER 4.32% 4.32% 15.14 6.34 16.22% 0.018
AIGER 1.85% 1.85% 14.87 3.78 16.06% 0.097
AIGER 1.71% 1.71% 14.86 3.73 16.25% 0.734
Circuit Transformer w/o Masking 2.59% 2.59% 14.95 3.83 15.49% 0.010
Circuit Transformer w/o TPE 2.14% 0.00% 15.02 3.83 16.44% 0.018
Circuit Transformer 1.14% 0.00% 14.79 3.48 16.84% 0.018
Circuit Transformer (K=10) 0.20% 0.00% 14.02 2.79 36.15% 0.210
Circuit Transformer (K=100) 0.17% 0.00% 13.73 2.62 46.77% 2.090
Resyn2 (ground truth for training) 0.00% 0.00% 14.56 2.98 0.00% 0.009

A.6 DATASET GENERATION

The process to generate a random circuit is shown in Algorithm 5. We restrict that the length of the
encoded sequence for each circuit should fit all the three sequential representations with a maximal
length of 200, and all the 8 inputs should appear in the circuit. Each circuit has a unique structure,
which is realized by a canonicalization technique (Chai & Kuehlmann, 2006).

A.7 EXPERIMENTS COMPUTE RESOURCES

All the experiments are conducted on a workstation with the following specification:

• CPU: AMD Ryzen™ 9 7950X Desktop Processor (16 cores, 32 threads)
• Memory: 192GB (48GB × 4) DDR5 5200MHz
• GPU: NVIDIA GeForce RTX 4090 × 2

Each Transformer model in the experiments is trained on a single GPU with 75 hours.

A.8 DETAILED EXPERIMENTAL RESULT

More detailed results are shown in Table 3 and Table 4. For all unsuccessful cases, the size of
optimized circuit is regarded as the size of the original circuit (i.e., the model does nothing). For all
the results regarding Circuit Transformer, the time cost of masking layer contributes to 6% of the
total time cost. Note that the decrease of time cost by removing the masking layer is more significant
than 6%, due to the fact that the masking layer “forces” the model to generate longer sequences to
satisfy the constraint, which costs more time. Also note that the size of the Transformer model
significantly impacts the time cost, and the reported time cost only reflects the current size setting
of 88 million parameters. The time cost with heuristics search is generally proportional to the beam
size / search rounds.

A.9 CASE STUDY

To show how the unsuccessful cases looks like for both the baselines and Circuit Transformer, Ta-
ble 5 shows three categories of unsuccessful cases for the baseline Transformer model trained on
AIGER format, and provide an example from the IWLS FFWs dataset for each category. Table 6
shows the only circumstance that Circuit Transformer is unsuccessful, which is the exceeding of the
pre-set maximal sequence length of 200.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Detailed results for IWLS fanout-free windows.

Methods IWLS FFWs

Unsuccessful
cases

Violation
cases

Average
circuit
size

SD of
circuit
size

% of circuits
strictly smaller
than Resyn2

Average time
per circuit
(s)

Boolean Chain 11.36% 11.27% 17.24 6.40 7.71% 0.015
Boolean Chain (beam size=16) 6.34% 6.29% 17.15 6.29 8.42% 0.079
Boolean Chain (beam size=128) 5.97% 5.94% 17.15 6.29 8.48% 0.539
AIGER 8.35% 7.77% 17.19 6.34 8.46% 0.025
AIGER 4.62% 4.37% 17.12 6.26 8.65% 0.149
AIGER 4.23% 3.98% 17.12 6.25 8.59% 0.906
Circuit Transformer w/o Masking 6.56% 6.54% 17.13 6.20 8.69% 0.012
Circuit Transformer w/o TPE 6.63% 0.00% 17.33 6.46 7.46% 0.019
Circuit Transformer 4.76% 0.00% 17.17 6.29 8.78% 0.018
Circuit Transformer (K=10) 2.83% 0.00% 16.92 6.17 17.42% 0.214
Circuit Transformer (K=100) 2.63% 0.00% 16.73 6.07 26.68% 2.168
Resyn2 (ground truth for training) 0.00% 0.00% 16.83 5.57 0.00% 0.008

Reason to
be Unsuc-
cessful

Encoded Input Circuit Ex-
ample

Encoded Output Circuit Ex-
ample

Note

Equivalence
constraint
violation

18 9 13 — 20 18 6 — 22 11 4 — 24 22
15 — 26 20 24 — 28 9 11 — 30 5 15 —
32 28 30 — 34 4 14 — 36 35 31 — 38
37 7 — 40 38 2 — 42 33 41 — 44 43 12
— 46 27 45 — 48 16 8 — 50 48 12 —
52 50 6 — 54 52 10 — 56 54 4 — 58 56
15 — 60 58 3 — [EOS]

18 13 6 — 20 15 4 — 22 18 20 — 24 9
11 — 26 22 24 — 28 21 12 — 30 14 5
— 32 28 31 — 34 2 7 — 36 25 35 — 38
32 37 — 40 27 39 — 42 6 10 — 44 42
20 — 46 3 8 — 48 16 12 — 50 46 48 —
52 44 50 — [EOS]

No node is equiva-
lent to the first out-
put of the input cir-
cuit.

Not in
valid
AIGER
format

18 15 17 — 20 18 2 — 22 12 9 — 24 22
10 — 26 20 24 — 28 14 16 — 30 28 3
— 32 12 8 — 34 32 10 — 36 30 34 —
38 13 9 — 40 38 11 — 42 40 18 — 44
37 43 — 46 45 7 — 48 27 47 — 50 49 4
— 52 3 11 — 54 52 15 — 56 17 7 — 58
57 3 — 60 59 5 — 62 61 15 — 64 2 5 —
66 65 11 — 68 63 67 — 70 69 13 — 72
55 71 — 74 12 3 — 76 74 15 — 78 13 4
— 80 77 79 — 82 14 3 — 84 13 11 —
86 84 15 — 88 83 87 —, 90 89 7 — 92
80 91 — 94 93 17 — 96 72 95 — [EOS]

18 9 2 — 20 10 12 — 22 18 20 — 24 15
17 — 26 22 24 — 28 9 13 —, 30 28 11
— 32 30 24 — 34 8 16 — 36 14 3 — 38
34 36 — 40 38 20 —, 42 33 41 — 44 43
7 — 46 27 45 — 48 47 4 — 50 15 3 —
52 50 11 —, 54 5 2 — 56 55 13 — 58 7
17 — 60 59 3 — 62 61 5 — 64 63 15 —,
66 65 10 — 68 56 67 — 70 53 69 — 72
50 12 — 74 4 13 — 76 73 75 —, 78 15
13 — 80 78 11 — 82 81 37 — 84 83 7
— 86 76 85 17 — 88 76 87 — [EOS]

4 elements rather
than 3 in the second
last line of the out-
put circuit (marked
in bold type).

Exceeding
maximal
sequence
length

18 10 13 — 20 12 14 — 22 19 21 — 24
23 6 — 26 13 14 — 28 12 15 — 30 29
11 — 32 27 31 — 34 33 7 — 36 25 35
— 38 37 8 — 40 38 16 — 42 9 12 — 44
42 17 — 46 8 13 — 48 6 11 — 50 46 48
— 52 45 51 — 54 53 15 — 56 41 55 —
58 8 15 — 60 9 14 — 62 59 61 — 64 63
3 — 66 64 12 — 68 66 17 — 70 8 12 —
72 11 14 — 74 70 72 — 76 60 11 — 78
8 10 — 80 77 79 — 82 81 13 — 84 82
16 — 86 75 85 — 88 87 2 — 90 69 89
— 92 90 5 — 94 93 6 — [EOS]

18 8 16 — 20 13 11 — 22 21 6 — 24 12
15 — 26 22 25 — 28 21 15 — 30 29 7
— 32 12 10 — 34 30 33 — 36 27 35 —
38 18 37 — 40 8 6 — 42 40 20 — 44 12
17 — 46 44 9 — 48 43 47 — 50 49 15
— 52 39 51 — 54 44 3 — 56 8 15 — 58
9 14 — 60 57 59 — 62 54 61 — 64 63 5
— 66 12 8 — 68 14 11 — 70 66 68 —
72 13 16 — 74 9 10 — 76 75 2 — 78 59
11 — 80 72 79 — 82 76 81 — 84 74 83
2 — 86 68 — 88 85 — 90 89 — 88 85
— 86 68 — 90 89 5 — 90 89 2 — 90 68
8 — 90 89 5 — 90 89 89 89 89 89 89 89
89 89 89 89 89 89 89 89 89 89 89 89 89
89 89 89 89 89 89 89 89 89 — 90

No [EOS] appears
in the first 200 to-
kens.

Table 5: Example of unsuccessful cases for the baseline Transformer model trained on the AIGER
format, taken from the IWLS FFWs dataset. “—” denotes the new line token. Index 2, 3, . . . , 16, 17
is reserved for x0, x0, . . . , x7, x7. For the i-th AND node ai (start from 0), index 2(i + 9) denotes
ai and index 2(i+ 9) + 1 denotes ai.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Reason to
be Unsuc-
cessful

Encoded Input Circuit Ex-
ample

Encoded Output Circuit Ex-
ample

Note

Exceeding
maximal
sequence
length

18 19 18 18 2 15 18 6 16 18 18 5 11 18 9
13 19 19 18 19 18 18 9 13 5 18 18 3 14
18 7 17 19 18 18 18 19 19 18 4 12 9 19
19 19 5 12 19 4 13 8 6 16 2 15 19 19 19
18 5 13 8 19 19 19 5 12 19 4 13 9 19 19
18 2 15 18 7 17 19 18 3 14 18 6 16 10 18
18 18 19 3 9 14 4 12 1 [EOS]

18 19 18 18 5 13 18 6 16 18 18 11 9 18
15 2 19 19 18 19 18 18 18 15 2 18 6 16
19 19 4 12 9 19 18 19 5 12 19 4 13 8 19
18 18 5 13 18 9 3 18 18 7 17 14 19 18 18
18 18 19 5 19 5 19 4 13 19 4 12 19 19 5
12 19 10 13 19 19 5 12 19 10 13 19 19
18 7 17 14 19 18 18 18 19 5 19 10 5 19 4
12 19 19 5 12 19 10 13 19 19 5 12 19 10
13 19 19 5 12 19 10 13 18 18 10 10 19
19 18 7 17 14 19 10 19 4 12 19 18 18 18
19 5 19 19 5 19 19 5 19 19 5 19 5 5 18
19 5 4 18 5 5 19 10 4 18 19 5 19 19 5 19
19 5 4 18 5 5 18 19 5 19 5 5 18 19 5 4 18
5 5 18 19 5 19 19 5 19 5

While no equiva-
lence constraint is
violated, no [EOS]
appears in the first
200 tokens.

Table 6: Example of unsuccessful cases for the Circuit Transformer, taken from the IWLS FFWs
dataset. Index 2, 3, . . . , 16, 17 denote x0, x0, . . . , x7, x7. Index 18 and 19 denote ∧ and ∧.

Algorithm 5 Random generation of a k-input, l-output circuit
Input: Number of input k, number of output l, number of steps T .
Output: A randomly generated circuit with k inputs and l outputs.
C ← [I0, I1, . . . , Ik−1]
for i = 1, 2, . . . ,Mstep do

Create an AND node si
Randomly sample two nodes c0, c1 ∈ C without replacement
Set the first input of si as c0 or c0 randomly
Set the second input of si as c1 or c1 randomly
Append si to the end of C

end for
Return the circuit with I0, I1, . . . , Ik−1 as primary inputs and aT−l+1, aM−l+2, . . . , aT as primary outputs.

19

	Introduction
	Related Work
	Problem Description
	Methods
	Constrained Sequence Generation with Cutoff Properties
	A Sequential Representation of Circuits with Cutoff Properties
	From Trees to Directed Acyclic Graphs
	Neural Encoding of Circuits and Circuit Transformer
	Equivalence-Preserving Circuit Optimization as a Markov decision process

	Experiments
	Conclusion
	Appendix
	Detail of Backtracking Framework
	Proof of Characteristics
	Details of the Computation of St
	Demonstration of The Tree Positional Encoding
	Immediate Equivalent Node Merging and Functional Equivalence Checking
	Dataset Generation
	Experiments Compute Resources
	Detailed Experimental Result
	Case Study

