
Federated Ensemble-Directed Offline Reinforcement Learning

Desik Rengarajan 1 Nitin Ragothaman 1 Dileep Kalathil 1 Srinivas Shakkottai 1

Abstract
We consider the problem of federated offline re-
inforcement learning (RL), where clients must
collaboratively learn a control policy only us-
ing data collected using unknown behavior poli-
cies. Naı̈vely combining a standard offline RL
approach with a standard federated learning ap-
proach to solve this problem can lead to poorly
performing policies. We develop Federated
Ensemble-Directed Offline Reinforcement Learn-
ing Algorithm (FEDORA), which distills the col-
lective wisdom of the clients using an ensemble
learning approach. We show that FEDORA signif-
icantly outperforms other approaches, including
offline RL over the combined data pool, in vari-
ous complex continuous control and real-world
environments.

1. Introduction
Federated learning is a collaborative approach where clients
share their locally trained models (not data) with a central
server. The server combines these models periodically and
returns a federated model to the clients for further improve-
ment (Kairouz et al., 2021; Wang et al., 2021). Federated
learning has been successful in supervised learning, leading
to well-trained models while maintaining privacy and reduc-
ing communication overheads. There has also been interest
in applying federated learning to online reinforcement learn-
ing, wherein clients learn via sequential interactions with
their environments and federating learned policies across
clients (Khodadadian et al., 2022; Nadiger et al., 2019; Qi
et al., 2021). However, such online interactions with real-
world systems are often infeasible, and each client might
only posses pre-collected local operational data. The fun-
damental problem of federated offline RL is to learn the
optimal policy using pre-collected offline data from hetero-
geneous policies at clients, without sharing the data.

1Department of Electrical and Computer Engineering, Texas
A&M University, College Station, Texas, United States. Corre-
spondence to: Desik Rengarajan <desik@tamu.edu>.

Workshop of Federated Learning and Analytics in Practice, colo-
cated with 40 th International Conference on Machine Learning,
Honolulu, Hawaii, USA. Copyright 2023 by the author(s).

Offline RL algorithms (Levine et al., 2020), offer an ap-
proach to learn using existing datasets at each client. How-
ever, we will see that naı̈vely federating such offline RL
algorithms using standard federation approach, such as Fe-
dAvg (McMahan et al., 2017) can lead to a policy that is
even worse than the constituent policies. We hence iden-
tify the following basic challenges of federated offline RL:
(i) Ensemble heterogeneity: Heterogeneous client datasets
will generate policies of different performance levels. It
is vital to capture the collective wisdom of these policies.
(ii) Pessimistic value computation: Offline RL algorithms
employs a pessimistic approach toward computing the value
of state-actions poorly represented in their dataset. However,
federation must be ambitious in extracting the highest values
as represented in the ensemble of clients. (iii) Data hetero-
geneity: Multiple local gradient steps on heterogeneous data
at each client may lead to biased models.

We propose Federated Ensemble-Directed Offline RL Al-
gorithm (FEDORA), which collaboratively produces high-
quality policies. FEDORA recognizes that individual client
policies and critics are of varying qualities, and, attempts
to maximize the overall objective, while regularizing by
the entropy of the weights for combining the constituents.
FEDORA ensures optimism across using the federated and
local critic at each client and so sets ambitious targets to
train against. It addresses data heterogeneity and prunes the
influence of irrelevant data. To the best of our knowledge,
no other work systematically identifies these fundamental
challenges of offline federated RL, or designs methods to
explicitly tackle each of them.

We demonstrate the superior performance of FEDORA on a
variety of high dimensional and challenging environments.
We also demonstrate FEDORA’s excellent performance via
real-world experiments on a TurtleBot (Amsters & Slaets,
2020). We provide our codebase, and video of the robot
experiments via an anonymous github link1.

2. Preliminaries
Federated Learning: The goal of federated learning is to
minimize the following objective, F (θ) = Ei∼P [Fi(θ)]

1https://github.com/DesikRengarajan/
FEDORA

1

https://github.com/DesikRengarajan/FEDORA
https://github.com/DesikRengarajan/FEDORA

Submission and Formatting Instructions for ICML 2023

where θ represents the parameter of the federated (server)
model, Fi denotes the local objective function of client i,
and P is the distribution over the set of clients N . FedAvg
algorithm (McMahan et al., 2017) is a popular method to
solve the objective in a federated way. FedAvg divides
the training process into rounds, where at the beginning
of each round t, the server sends its current model θt to
all the clients, and each client initializes its current local
model to the current server model and performs multiple
local updates on its own dataset Di to obtain an updated
local model θti . The server then averages these local models
proportional to the size of their local dataset to obtain the
server model θt+1 for the next round of federation, as

θt+1 =

|N |∑
i=1

wiθ
t
i , wi =

|Di|
|D|

, |D| =
|N |∑
i=1

|Di|. (1)

Reinforcement Learning: We model RL using the
Markov Decision Process (MDP) framework denoted as
(S,A, R, P, γ, µ), where S is the state space, A is the ac-
tion space, R : S × A → R is the reward function, and
P : S × A × S → [0, 1] denotes the transition proba-
bility function, γ is the discount factor, and µ is initial
state distribution. A policy π is a function that maps states
to actions (deterministic policy) or states to a distribution
over actions (stochastic policy). The goal of RL is to
maximize the infinite horizon discounted reward of pol-
icy π, defined as J(π) = Eπ,P,µ [

∑∞
t=0 γ

tR(st, at)]. The
state-action value function (or Q function) of a policy π at
state s and executing action a is defined as: Qπ(s, a) =
Eπ,P [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a].

Offline Reinforcement Learning: The goal of offline RL is
to learn a policy π only using a static dataset D of transitions
(s, a, r, s′) collected using a behavior policy πb, without any
environment interaction. Offline RL algorithms typically uti-
lize some kind of regularization with respect to the behavior
policy to prevent distribution shift (Levine et al., 2020).

TD3-BC (Fujimoto & Gu, 2021) is a behavior cloning (BC)
regularized version of the TD3 algorithm (Fujimoto et al.,
2018). The TD3-BC objective can be written as

π = argmax
π

UD(π), (2)

where UD(π) = Es,a∼D
[
λQπ(s, π(s))− (π(s)− a)2

]
.

3. Federated Offline Reinforcement Learning
A federated offline RL algorithm aims to learn the optimal
policy using data distributed across clients. We denote the
set of clients as N . Each client i ∈ N has an offline dataset
Di = {(sj , aj , rj , s′j)

mi
j=1} generated according to a behav-

ior policy πb
i . We assume that the underlying MDP model

P and reward function R(·, ·) are identical for all the clients,
and the statistical differences between the offline datasets
Di are only due to the difference in behavior policies πb

i .

In federated offline RL, each client has to learn using its
local data Di, thus we consider a client objective function
that is consistent with a standard offline RL algorithm ob-
jective. Our approach is compatible with most offline RL
algorithms. We choose TD3-BC (Eq. (2)) (Fujimoto & Gu,
2021) as the client objective due to its simplicity and good
empirical performance. We define the federated offline RL
objective as U(πfed) =

∑|N |
i=1 wiUDi

(πfed) where wi are
weights of federation.

One approach to leveraging experiences across users with-
out sharing data would be to combine existing federated
learning techniques with offline RL algorithms. Is such a
naı̈ve federation strategy sufficient to learn an excellent fed-
erated policy collaboratively? Furthermore, is federation
even necessary? In this section, we aim to understand the
challenges of federated offline RL with the goal of designing
an algorithmic framework to address these challenges.

We start with an example illustrating the issues in designing
a federated offline RL algorithm. We consider the Hop-
per environment from MuJoCo (Todorov et al., 2012), with
|N | = 10, |Di| = 5000, and we use the data from the
D4RL dataset (Fu et al., 2020). We consider a setting where
five clients use the data from the hopper-expert-v2 dataset
(generated using a completely trained (expert) SAC pol-
icy) and five clients use the data from the hopper-medium-
v2 dataset (generated using a partially trained (medium)
policy achieving only a third of the expert performance).
The clients and the server are unaware of the quality (ex-
pert or medium) of the data. Fig. 2 shows the perfor-
mance comparison of multiple algorithms, where the mean
and the standard deviation are calculated over 4 seeds.

Algorithm0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
wa

rd

Centralized
Individual (expert)

Individual (medium)
Fed-A

Fed-AC
FEDORA

Figure 2. Performance compari-
son of federated and centralized
offline RL algorithms.

Combining All Data
(Centralized): Combin-
ing data and learning cen-
trally is the ideal sce-
nario in supervised learn-
ing. However, as seen
in Fig. 2, performing
centralized training over
combined data generated
using different behavior
policies in offline RL can
be detrimental. This is consistent with (Yu et al., 2021)
that proves that pooling data from behavior policies with
different expertise levels can exacerbate the distributional
shift between the learned policy and the individual datasets,
leading to poor performance.

Individual Offline RL: Agents learn using their local data
without collaboration. In Fig. 2, we observe that clients with

2

Submission and Formatting Instructions for ICML 2023

0 200 400 600 800 1000
Communication Round

0

2000

4000

6000

8000

10000

Se
rv

er
 R

ew
ar

d

HalfCheetah

0 200 400 600 800 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Hopper

0 200 400 600 800 1000
Communication Round

0

1000

2000

3000

4000

5000
Walker2D

FEDORA Fed-AC-Prox Fed-AC Fed-A HDAFL Centralized

Figure 1. Evaluation on different MuJoCo environments.

either expert or medium data do not learn well and exhibit a
large standard deviation due to insufficient data.

Naı̈ve Federated Offline RL: We perform FedAvg (Eq. (1))
with TD3-BC as the local objective. We conduct experi-
ments where we federate only the actor (Fed-A) or both
the actor and the critic (Fed-AC). Surprisingly, these naı̈ve
strategies result in federated policies that perform worse
than individual offline RL, as seen in Fig. 2.

We now outline the issues of with Federated Offline RL.
1. Ensemble Heterogeneity: Performing offline RL over
heterogeneous data yields a set of policies of different
qualities. It is crucial to leverage the information con-
tained in these varied policies rather than simply averaging
them. However, federation after a single-step local gradi-
ent at each client using weights in the manner of FedAvg,
wi = |Di|/|

∑|N |
i=1 |Di|, is equivalent to solving the offline

RL problem using the combined dataset of all clients (Wang
et al., 2021). This approach leads to poor performance due
to the resulting distribution shift. How should we optimally
federate the ensemble of policies learned by the clients?
2. Pessimistic Value Computation: Most offline RL algo-
rithms involve a pessimistic term with respect to the offline
data for minimizing the distribution shift. Training a client’s
critic using only the local data would make it pessimistic
towards actions poorly represented in its dataset but well
represented in other clients’ data. How do we effectively
utilize the federated critic along with the locally computed
critic to set ambitious targets for offline RL at each client?
3. Data Heterogeneity: Performing multiple local gradient
steps would bias a client’s local model to its dataset. How
should we regularize local policies to prevent this?

4. FEDORA Design Approach
We develop Federated Ensemble-Directed Offline RL Algo-
rithm (FEDORA) that addresses the above issues.

Our solution is to follow the principle of maximum entropy
to choose weights that best represent the current knowledge

about the relative merits of the clients’ policies. We prevent
the weights from collapsing over a few clients by adding
an entropy regularization over the weights with temperature
parameter β resulting in the following objective,

U(πfed) =

|N |∑
i=1

wiUDi
(πfed)−

1

β

|N |∑
i=1

wi logwi. (3)

We can then show using a Lagrange dual approach that
this objective is maximized when wi = e

βUDi
(πfed)∑|N|

i=1 e
βUDi

(πfed)
.

Based on these soft-max type of weights suggested by the
entropy-regularized objective, we now design FEDORA. In
what follows, π(t,k)

i denotes the policy of client i in round
t of federation after k local policy update steps. Since all
clients initialize their local policies to the federated policy,
π
(t,0)
i = πt

fed for each client i. We also denote πt
i = π

(t,K)
i ,

where K is the maximum number of local updates. We can
similarly define Q(t,k)

i , Q(t,0)
i = Qt

fed, and Qt
i = Q

(t,K)
i for

the local critic.

Ensemble-Directed Learning over Client Policies: We
utilize the performance of the final local policy J t

i =
Es∼Di

[Qt
i(s, π

t
i(s))] , as a proxy for UDi(πfed). Here, Qt

i

is the local critic after updates. Our approach toward com-
puting Qt

i and πt
i are described later. The accuracy of the

local estimates J t
i are highly dependent on the number of

data samples available at i, thus, we account for the size of
the dataset |Di| while computing weights as follows,

wt
i =

eβJ
t
i |Di|∑|N |

i=1 e
βJt

i |Di|
, πt+1

fed =

|N |∑
i=1

wt
iπ

t
i . (4)

Federated Optimism for Critic Training: A critic based
on offline data suffers from extrapolation errors as state-
action pairs not seen in the local dataset will be erroneously
estimated. Since the federated policy is derived from the set
of local policies, it may take actions not seen in any client’s
local dataset. This problem is exacerbated when the local
policy at the beginning of each communication round is

3

Submission and Formatting Instructions for ICML 2023

initialized to the federated policy. We introduce the notion
of federated optimism to train local critics, wherein critics
leverage the wisdom of the crowd and are encouraged to
be optimistic. We achieve this federated optimism via two
steps. First, we compute the federated critic as follows,

Qt+1
fed =

|N |∑
i=1

wt
iQ

t
i. (5)

Such entropy-regularized averaging ensures that the crit-
ics from clients with good policies significantly influence
the federated critic. Second, for the local critic update, we
choose the target value as the maximum value between the
local critic and the federated critic, given by Q̃

(t,k)
i (s, a) =

max
(
Q

(t,k)
i (s, a), Qt

fed(s, a)
)
, where Q̃

(t,k)
i (s, a) is the

target value of state s and action a at the tth round of federa-
tion after k local critic updates. This ensures that the local
critic has an optimistic (but likely feasible) target seen by
the system. Using this optimistic target in the Bellman error,
we update the local critic as

Q
(t,k+1)
i = argmin

Q
E(s,a,r,s′)∼Di

[(r + γQ̃
(t,k)
i (s′, a′)

−Q(s, a))2],where a′ = π
(t,k)
i (6)

Proximal Policy Update for Heterogeneous Data: An
optimistic critic might erroneously estimate the value of
Q̃

(t,k)
i . Therefore, regularizing the local policy update

w.r.t. both the local data and the federated policy is cru-
cial. For regularization w.r.t. to the local offline data, we
use the TD3-BC loss as the local loss function Llocal(π) =

E(s,a)∼Di
[−Q

(t,k)
i (s, π(s))+ (π(s)− a)2]. We then define

the actor loss Lactor in Eq. (7), where the second term is a
regularization w.r.t. to the federated policy (Li et al., 2020).
The local policy is updated using Lactor,

Lactor(π) = Llocal(π) + E(s,a)∼Di
[(π(s)− πt

fed(s))
2],

πt,k+1
i = argmin

π
Lactor(π). (7)

Decaying the Influence of Local Data: Training on local
data may hamper the updated policy’s performance since
the local dataset may be generated according to a non-expert
behavior policy. Hence, we decay the influence of Llocal (in-
fluence of its local data) by a factor δ if J fed,t

i ≥ J t
i . Where

J fed,t
i = Es∼Di

[Qt
fed(s, π

t
fed(s))] is a proxy for the perfor-

mance of the federated policy. We summarize FEDORA in
Algorithm 1 and 2 (Appendix A).

5. Experimental Evaluation
We conduct experiments to analyze the performance of FE-
DORA. We develop a framework to implement FEDORA
over distributed resources and on a single system. (See Ap-
pendix C). We consider the following baselines. The local

objective of all baselines is TD3-BC (Eq. 2). (i) Fed-A:
Server performs FedAvg over only the actor’s parameters.
(ii) Fed-AC: Server performs FedAvg over the parameters
of both the actor and the critic. (iii) Fed-AC-Prox: We
add a proximal term to Fed-AC, which has been shown
to help in federated supervised learning when clients have
heterogeneous data (Li et al., 2020). (iv) Heterogeneous
Data-Aware Federated Learning (HDAFL) We extend
HDAFL (Yang et al., 2020) to the offline RL setting by
federating only a part of the actor during each round. (v)
Centralized: We perform offline RL (TD3-BC) over the
pooled data from all clients.

Experiments on Simulated Environments: We run experi-
ments on MuJoCo environments (Todorov et al., 2012) with
|N | = 50, and |Di| = 5000. Of these 50 clients, 25 are
provided with data from the D4RL (Fu et al., 2020) expert
dataset, while the other 25 are provided with data from the
D4RL medium dataset. The clients (and the server) are un-
aware of the nature of their datasets. We choose |Nt| = 20
clients at random to participate in each round t of federa-
tion. For each plot, we evaluate the performance with four
different seeds. We provide details in Appendix C. In Fig. 1,
we plot the cumulative episodic reward of the federated
policy during each round of federation. We observe that
FEDORA outperforms all federated baselines and achieves
performance equivalent to or better than centralized training.
Furthermore, the federated baselines fail to learn a good
server policy even after training for many communication
rounds and plateau at lower levels compared to FEDORA,
emphasizing that the presence of heterogeneous data hurts
their performance.

We present ablation studies and additional experiments in
Appendix D due to space constraints.
Real-World Experiments on TurtleBot: We evaluate the
performance of FEDORA on a TurtleBot (Amsters & Slaets,
2020) to collaboratively learn a control policy to navigate
waypoints while avoiding obstacles using offline data dis-
tributed across multiple robots. This scenario is relevant
to real-world applications such as cleaning robots where
collaborative learning is essential because a single robot
might not have enough data/seen diverse scenarios to learn
from, and sharing data comes with privacy concerns.

Figure 3. TurtleBot3
Burger.

We collect data in the real-world us-
ing four behavior policies with vary-
ing levels of expertise (Fig. 4(a).).
We train over 20 clients for 100 com-
munication rounds, each consisting
of 20 local epochs (Fig. 4(c)). Fig.
4(b) shows the trajectories obtained
by the learned policies of different al-
gorithms in the real-world. FEDORA
is able to successfully reach the target by avoiding the ob-

4

Submission and Formatting Instructions for ICML 2023

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Robot pose - X (m)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ro
bo

t p
os

e
- Y

 (m
)

Start
Target

Behavior 1
Behavior 2

Behavior 3
Behavior 4

(a) Trajectories of behavior policies

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
Robot pose - X (m)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

Ro
bo

t p
os

e
- Y

 (m
)

Start
Target
FEDORA

Fed-AC-Prox
Fed-AC

Fed-A
HDAFL

(b) Trajectories of learned policies

0 20 40 60 80 100
Communication Round

250

200

150

100

50

0

50

Se
rv

er
 R

ew
ar

d

Fed-A
Fed-AC

Fed-AC-Prox
HDAFL

FEDORA

(c) Comparison with baselines

Figure 4. Real-world experiments on a TurtleBot.

stacle. We provide more details in Appendix E. We discuss
limitations and societal impact of our work in Appendix F.

6. Conclusion
We presented an approach for federated offline RL with
heterogeneous client data. We solved multiple challeng-
ing issues by systematically developing a well-performing
ensemble-directed approach entitled FEDORA, which ex-
tracts the collective wisdom of the policies and critics and
discourages excessive reliance on irrelevant local data. We
demonstrated its performance on several simulation and
real-world tasks.

7. Acknowledgement
This work was supported in part by NSF Grants CNS
1955696 and ECCS 2038963, ARO Grant W911NF-19-
1-0367, ARL Grant W911NF-21-2-0064. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

Portions of this research were conducted with the advanced
computing resources provided by Texas A&M High Perfor-
mance Research Computing.

References
Amsters, R. and Slaets, P. Turtlebot 3 as a robotics education

platform. In Robotics in Education: Current Research
and Innovations, pp. 170–181. Springer, 2020.

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T.,
and Lane, N. D. Flower: A friendly federated learning
research framework. arXiv preprint arXiv:2007.14390,

2020.

Chen, X., Zhou, Z., Wang, Z., Wang, C., Wu, Y., and Ross,
K. Bail: Best-action imitation learning for batch deep
reinforcement learning. Advances in Neural Information
Processing Systems, 33:18353–18363, 2020.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S. and Gu, S. S. A minimalist approach to offline
reinforcement learning. Advances in neural information
processing systems, 34:20132–20145, 2021.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596,
2018.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep
reinforcement learning without exploration. In Interna-
tional conference on machine learning, pp. 2052–2062,
2019.

Hebert, L., Golab, L., Poupart, P., and Cohen, R. Fedformer:
Contextual federation with attention in reinforcement
learning. arXiv preprint arXiv:2205.13697, 2022.

Hu, Y., Hua, Y., Liu, W., and Zhu, J. Reward shaping
based federated reinforcement learning. IEEE Access, 9:
67259–67267, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

5

Submission and Formatting Instructions for ICML 2023

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143, 2020.

Khodadadian, S., Sharma, P., Joshi, G., and Maguluri, S. T.
Federated reinforcement learning: Linear speedup under
markovian sampling. In International Conference on
Machine Learning, pp. 10997–11057, 2022.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020a.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020b.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine Learning and Systems,
2:429–450, 2020.

Lim, H.-K., Kim, J.-B., Ullah, I., Heo, J.-S., and Han, Y.-H.
Federated reinforcement learning acceleration method
for precise control of multiple devices. IEEE Access, 9:
76296–76306, 2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282, 2017.

Nadiger, C., Kumar, A., and Abdelhak, S. Federated re-
inforcement learning for fast personalization. In 2019
IEEE Second International Conference on Artificial Intel-
ligence and Knowledge Engineering (AIKE), pp. 123–127.
IEEE, 2019.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Qi, J., Zhou, Q., Lei, L., and Zheng, K. Federated rein-
forcement learning: techniques, applications, and open
challenges. arXiv preprint arXiv:2108.11887, 2021.

Qin, R., Gao, S., Zhang, X., Xu, Z., Huang, S., Li, Z.,
Zhang, W., and Yu, Y. Neorl: A near real-world bench-
mark for offline reinforcement learning. arXiv preprint
arXiv:2102.00714, 2021.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. In International Conference on
Learning Representations, 2021.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In Proceedings of
the 32nd International Conference on Machine Learning,
volume 37, pp. 1889–1897, 2015.

Tarasov, D., Nikulin, A., Akimov, D., Kurenkov, V., and
Kolesnikov, S. CORL: Research-oriented deep offline
reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”, 2022. URL https:
//openreview.net/forum?id=SyAS49bBcv.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In IEEE/RSJ interna-
tional conference on intelligent robots and systems, pp.
5026–5033, 2012.

Vázquez-Canteli, J. R., Dey, S., Henze, G., and Nagy, Z.
Citylearn: Standardizing research in multi-agent rein-
forcement learning for demand response and urban energy
management. arXiv preprint arXiv:2012.10504, 2020.

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D., et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021.

Wang, Q., Xiong, J., Han, L., Liu, H., Zhang, T., et al.
Exponentially weighted imitation learning for batched
historical data. Advances in Neural Information Process-
ing Systems, 2018.

Wang, X., Li, R., Wang, C., Li, X., Taleb, T., and Leung,
V. C. Attention-weighted federated deep reinforcement
learning for device-to-device assisted heterogeneous col-
laborative edge caching. IEEE Journal on Selected Areas
in Communications, 39(1):154–169, 2020.

Wu, Y., Tucker, G., and Nachum, O. Behavior regu-
larized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Xie, Z. and Song, S. Fedkl: Tackling data heterogene-
ity in federated reinforcement learning by penalizing kl
divergence. IEEE Journal on Selected Areas in Commu-
nications, 41(4):1227–1242, 2023.

6

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv

Submission and Formatting Instructions for ICML 2023

Yang, L., Beliard, C., and Rossi, D. Heteroge-
neous data-aware federated learning. arXiv preprint
arXiv:2011.06393, 2020.

Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Levine,
S., and Finn, C. Conservative data sharing for multi-
task offline reinforcement learning. Advances in Neural
Information Processing Systems, 34:11501–11516, 2021.

Zhou, D., Zhang, Y., Sonabend-W, A., Wang, Z., Lu, J., and
Cai, T. Federated offline reinforcement learning. arXiv
preprint arXiv:2206.05581, 2022.

7

Submission and Formatting Instructions for ICML 2023

Appendix
We present several results and details in the appendix that illustrates the performance and further describe FEDORA. These
include, the FEDORA algorithm (Appendix A), related works (Appendix B), details of our experimental setup (Appendix
C), additional experiments studying different components of FEDORA and illustrating its performance in different settings
(Appendix D), details of our real-world experiments using a TurtleBot (Appendix E), and discussion on limitations, societal
impact and future work (Appendix F).

A. FEDORA: Algorithm

Algorithm 1 Outline of Client i’s Algorithm

1: function train client(πt
fed, Qt

fed)
2: π

(t,0)
i = πt

fed, Q
(t,0)
i = Qt

fed
3: for 1 ≤ k < K do
4: Update Critic by one gradient step w.r.t. Eq. (6)
5: Update Actor by one gradient step w.r.t. Eq. (7)
6: end for
7: Decay Llocal by δ if J fed,t

i ≥ J t
i

8: end function

Algorithm 2 Outline of Server Algorithm

1: Initialize π1
fed, Q

1
fed

2: for t ∈ 1 . . . do
3: Send πt

fed and Qt
fed to i ∈ N

4: Sample Nt ⊂ N
5: for i ∈ Nt do
6: i.train client (πt

fed, Q
t
fed)

7: end for
8: Compute πt+1

fed and Qt+1
fed for clients in Nt using Eq. (4) and (5) respectively.

9: end for

B. Related Work
Offline RL:The goal of offline RL is to learn a policy from a fixed dataset generated by a behavior policy (Levine et al.,
2020). One of the key challenges of the offline RL approach is the distribution shift problem where the state-action visitation
distribution of learned policy may be different from that of the behavior policy which generated the offline data. It is known
that this distribution shift may lead to poor performance of the learned policy (Levine et al., 2020). A common method used
by offline RL algorithms to tackle this problem is to learn a policy that is close to the behavior policy that generated the data
via regularization either on the actor or critic (Fujimoto & Gu, 2021; Fujimoto et al., 2019; Kumar et al., 2020a; 2019; Wu
et al., 2019). Some offline RL algorithms perform weighted versions of behavior cloning or imitation learning on either the
whole or subset of the dataset (Wang et al., 2018; Peng et al., 2019; Chen et al., 2020).

Federated Learning: McMahan et al. (McMahan et al., 2017) introduced FedAvg, a federation strategy where clients
collaboratively learn a joint model without sharing data. A generalized version of FedAvg was presented in (Reddi et al.,
2021). A key problem in federated learning is data heterogeneity wherein clients have non-identically distributed data,
which causes unstable and slow convergence (Wang et al., 2021; Karimireddy et al., 2020; Li et al., 2020). To tackle the
issue of data heterogeneity, (Li et al., 2020) proposed FedProx, a variant of FedAvg, where a proximal term is introduced
reduce deviation by the local model from the server model. (Karimireddy et al., 2020) tackled client drift in local updates
caused by data heterogeneity using control variates.

Federated Reinforcement Learning: Federated learning has recently been extended to the online RL setting. (Khodadadian

8

Submission and Formatting Instructions for ICML 2023

et al., 2022) analyzed the performance of federated tabular Q-learning. (Qi et al., 2021) combined traditional online RL
algorithms with FedAvg for multiple applications. Some works propose methods to vary the weighting scheme of FedAvg
according to performance metrics such as the length of a rally in the game of Pong (Nadiger et al., 2019) or average return
in the past 10 training episodes (Lim et al., 2021) to achieve better performance or personalization. (Wang et al., 2020)
proposed a method to compute weights using attention over performance metrics of clients such as average reward, average
loss, and hit rate for an edge caching application. (Hebert et al., 2022) used a transformer encoder to learn contextual
relationships between agents in the online RL setting. (Hu et al., 2021) proposed an alternative approach to federation
where reward shaping is used to share information among clients. (Xie & Song, 2023) proposed a KL divergence-based
regularization between the local and global policy to address the issue of data heterogeneity in an online RL setting.

In the offline RL setting, (Zhou et al., 2022) propose federated dynamic treatment regime algorithm by formulating offline
federated learning using a multi-site MDP model constructed using linear MDPs. However, this approach relies on running
the local training to completion followed by just one step of federated averaging. Unlike this work, our method does not
assume linear MDPs, which is a limiting assumption in many real-world problems. Moreover, we use the standard federated
learning philosophy of periodic federation followed by multiple local updates. To the best of our knowledge, ours is the first
work to propose a general federated offline RL algorithm for clients with heterogeneous data.

C. Experimental Setup
Algorithm Implementation: We use the PyTorch framework to program the algorithms in this work, based on a publicly-
available TD3-BC implementation. The actor and the critic networks have two hidden layers of size 256 with ReLu
non-linearities. We use a discount factor of 0.99, and the clients update their networks using the Adam optimizer with a
learning rate of 3× 10−4. For training FEDORA, we fixed the decay rate δ = 0.995 and the temperature β = 0.1. TD3-BC
trains for 5× 105 time steps in the centralized setup. The batch size is 256 in both federated and centralized training.

The training data for clients are composed of trajectories sampled from the D4RL dataset. In situations where only a fraction
of the clients partake in a round of federation, we uniformly sample the desired number of clients from the entire set.

Federation Structure: We implement FEDORA over the Flower federated learning platform (Beutel et al., 2020), which
supports learning across devices with heterogeneous software stacks, compute capabilities, and network bandwidths. Flower
manages all communication across clients and the server and permits us to implement the custom server-side and client-side
algorithms of FEDORA easily. However, since Flower is aimed at supervised learning, it only transmits and receives a
single model at each federation round, whereas we desire to federate both policies and critic models. We solve this limitation
by simply appending both models together, packing and unpacking them at the server and client sides appropriately.

While ‘FEDORA-over-Flower’ is an effective solution for working across distributed compute resources, we also desire a
simulation setup that can be executed on a single machine. This approach sequentially executes FEDORA at each selected
client, followed by a federation step, thereby allowing us to evaluate the different elements of FEDORA in an idealized
federation setup.

Compute Resources: Each run on the MuJoCo environments (as in Fig. 1) takes around 7 hours to complete when run
on a single machine (AMD Ryzen Threadripper 3960X 24-Core Processor, 2x NVIDIA 2080Ti GPU). This time can be
drastically reduced when run over distributed compute using the Flower framework.

D. Additional Experiments
D.1. Effects of data from multiple behavior policies

0

2000

4000

6000

8000

10000

Se
rv

er
 R

ew
ar

d

HalfCheetah

0

500

1000

1500

2000

2500

3000

3500

Hopper

0

1000

2000

3000

4000

5000

Walker2D
FEDORA Centralized

Figure 5. Comparison of FEDORA and
centralized training with heterogeneous
data.

To understand the effect of data coming from multiple behavior policies on cen-
tralized training, we consider a scenario where 50 clients with datasets of size
|Di| = 5000 participate in federation, with 25 clients having expert data and the
other 25 having random data, i.e., data generated from a random policy. From
Fig. 5, we notice that combining data of all clients deteriorates performance
as compared to FEDORA. This observation highlights the fact that performing
centralized training with data collected using multiple behavior policies can be
detrimental.

9

Submission and Formatting Instructions for ICML 2023

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Se
rv

er
 R

ew
ar

d

Varying local epochs

1 epoch
5 epochs

10 epochs
20 epochs

40 epochs

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying participating clients

10% clients
20% clients

30% clients
40% clients

50% clients

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying the number of expert clients

20% expert
30% expert

40% expert
50% expert

Figure 6. Effect of varying the number of (a) local gradient steps, (b) participating clients in each round, and (c) expert clients in FEDORA.

D.2. Sensitivity to Client Updates and Data Quality

We study the sensitivity of FEDORA to client update frequency and data quality in the Hopper environment in the same
setting as in Fig. 1. Communication efficiency is a crucial to federated learning. Increasing the number of local training
steps can improve communication efficiency, but is detrimental in under heterogeneous data due to client drift (Karimireddy
et al., 2020). In Fig. 6(a), we study the effect of varying the number of local training epochs. We observe that increasing the
number of epochs leads to faster learning, emphasizing that FEDORA can effectively learn with heterogeneous data. Not all
clients may participate in every round of federation due to communication/compute constraints. In Fig.6(b), we evaluate
how FEDORA learns under various fractions of clients’ participation in each round . We observe that FEDORA is robust
towards variations in the fraction of clients during federation. Finally, in Fig. 6(c) we study the effect of data heterogeneity
by varying the percentage of clients with expert datasets. We observe that FEDORA performs well even when only 20% of
the total clients have expert-quality data.

D.3. Importance of Individual Algorithm Component

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

1. Fed-A
2. Fed-AC
3. (2) with weighted actor

4. (3) with optimistic critic
5. (4) with proximal term
6. (5) with decay [FEDORA]

(a) Effect of sequentially adding
one algorithm component at a time

0

500

1000

1500

2000

2500

3000

3500

Se
rv

er
 R

ew
ar

d

no weighted actor
no optimistic critic
no proximal term

no decay
FEDORA

(b) Effect of removing one individual algorithm
components from FEDORA

Figure 7. Ablation Studies.

We perform an ablation study to examine the different components of our algorithm and understand their relative impacts on
the performance of the federated policy. We use the experimental framework with 10 clients and the Hopper environment
described in Section 3, and plot the performance of the federated policy with mean and standard deviation over 4 seeds. The
ablation is performed in two ways: (a) We build up FEDORA starting with Fed-A, the naı̈ve method which federates only
the actor, and add one new algorithm component at a time and evaluate its performance. (b) We exclude one component of
FEDORA at a time and evaluate the resulting algorithm.

We observe in Fig. 7a that using priority-weighted averaging of the client’s policy to compute the federated policy (Eq. (4)),
and an optimistic critic (Eq. (5) - (6)) significantly improves the performance of the federated policy. This is consistent

10

Submission and Formatting Instructions for ICML 2023

with our intuition that the most important aspect is extracting the collective wisdom of the policies and critics available
for federation, and ensuring that the critic sets optimistic targets. The proximal term helps regularize local policy updates
(Eq. (7)) by choosing actions close to those seen in the local dataset or by the federated policy. Additionally, decaying the
influence of local updates enables the local policy to leverage the federated policy’s vantage by choosing actions not seen in
the local dataset.

From Fig. 7b, we observe that removing priority-weighted actor from FEDORA causes the steepest drop in performance,
followed by the optimistic critic. Again, this is consistent with our intuition on these being the most important effects.
Excluding the proximal term and local decay also results in a reduction in server performance along with a greater standard
deviation.

D.4. Analysis of Client Performance

0 200 400 600 800 1000
Communication Round

0.000

0.025

0.050

0.075

0.100

Cl
ie

nt
 W

ei
gh

t

HalfCheetah

0 200 400 600 800 1000
Communication Round

0.00

0.02

0.04

0.06

0.08

0.10

Hopper

0 200 400 600 800 1000
Communication Round

0.000

0.025

0.050

0.075

0.100

Walker2D
expert medium

(a) Client ratio

0 200 400 600 800 1000
Communication Round

0.2

0.4

0.6

0.8

1.0

Cl
ie

nt
 D

ec
ay

HalfCheetah

0 200 400 600 800 1000
Communication Round

0.4

0.6

0.8

1.0
Hopper

0 200 400 600 800 1000
Communication Round

0.4

0.6

0.8

1.0
Walker2D

expert medium

(b) Client decay

Figure 8. Analysis of client performance during federation. The average of the performance metric is computed across expert and medium
clients participating in a given round of federation.

We train FEDORA on MuJoCo environments using a setup similar to Section 5 where 20 out of the 50 clients are randomly
chosen to participate in each round of federation. Our goal is to analyze the contribution of clients with expert data and
those with medium data to the learning process. As before, the clients and the algorithm are unaware of the data quality.

We plot the mean weights wt
i across the expert and medium dataset clients participating in a given round of federation in Fig.

8a. We observe that the weights of medium clients drop to 0, while the weights of expert clients rise to 0.1. This finding
emphasizes the fact that clients are combined based on their relative merits.

In Fig. 8b, we plot the mean of the decay value associated with Llocal across participating expert and medium dataset clients.
The decay of both sets of clients drops as training progresses. A reduction in decay occurs each time the local estimate of the
federated policy’s performance J fed,t

i is greater than the estimated performance of the updated local policy J t
i . A decreasing

decay implies that the federated policy offers a performance improvement over local policies more often as the rounds t
advance. Thus, training only on local data is detrimental, and participation in federation can help learn a superior policy.

D.5. Federated Offline RL experiments with CityLearn

11

Submission and Formatting Instructions for ICML 2023

0 25 50 75 100 125 150
Communication Round

20000

30000

40000

50000

Se
rv

er
 R

ew
ar

d

FEDORA
Fed AC + Prox

Fed AC
Fed A

Centralized

Figure 9. Evaluation of algorithms on CityLearn.

Real-world environments often have a large state space and are stochas-
tic in nature. We run federated experiments on CityLearn (Vázquez-
Canteli et al., 2020) to assess the effectiveness of FEDORA on such
large-scale systems. CityLearn is an OpenAI Gym environment with
the goal of urban-scale energy management and demand response,
modeled on data from residential buildings. The goal is to reshape
the aggregate energy demand curve by regulating chilled water tanks
and domestic hot water, two modes of thermal energy storage in each
building. The energy demand of residential buildings changes as com-
munities evolve and the weather varies. Hence, the controller must
update its policy periodically to perform efficient energy management.
Federated learning would allow utilities that serve communities in
close proximity to train a policy collaboratively while preserving user
data privacy, motivating the use of FEDORA for this environment.

In our experiments, we have 10 clients with 5000 training examples such that they all participate in 150 rounds of federation.
The training data for the clients is obtained from NeoRL, an offline RL benchmark (Qin et al., 2021). 5 clients each have
data from the CityLearn High and CityLearn Low datasets, which are collected by a SAC policy trained to 75% and 25% of
the best performance level, respectively. During each round of federation, each client performs 20 local epochs of training.
The server reward at the end of each federation round is evaluated online and shown in Fig. 9. We observe that FEDORA
outperforms other federated offline RL algorithms as well as centralized training, which learns using TD3-BC on the data
aggregated from every client. These findings indicate that FEDORA can perform well in large-scale stochastic environments.

D.6. Effect of multiple behavior policies and proportion of clients participating in federation

0 250 500 750 1000
Communication Round

0
500

1000
1500
2000
2500
3000
3500

Varying participating clients

10% clients
20% clients

30% clients
40% clients

50% clients

Figure 10. Effect of varying the number of participating clients
in each round on FEDORA

In this section, we study the effects of clients having data from
multiple behavior policies for varying proportions of clients
participating in federation. We consider a scenario with 50
clients having Di = 5000 in the Hopper-v2 environment where,

• 12 clients have expert data (samples from a policy trained
to completion with SAC.).

• 12 clients have medium data (samples from a policy trained
to approximately 1/3 the performance of the expert).

• 14 clients have random data (samples from a randomly
initialized policy).

• 12 clients have data from the replay buffer of a policy
trained up to the performance of the medium agent.

We run FEDORA by varying the the percentage of clients participating in each round of federation. We observe that the
FEDORA is fairly robust to the fraction of clients participating in federation even when the fraction is as low as 20%.

D.7. Centralized training with other Offline RL algorithms

Algorithm0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e

Re
wa

rd

CQL
IQL

TD3-BC
FEDORA

Figure 11. Comparison
with Offline RL algo-
rithms

We consider a scenario similar to the one in Fig. 5 for the Hopper-v2 environment with 50 clients,
having |Di| = 5000 participating in federation, where 25 clients have expert data, and 25 clients
have random data. We compare the performance of different Offline RL algorithms over the
pooled data with FEDORA. The algorithms we choose are Conservative Q-Learning for Offline
Reinforcement Learning (CQL) (Kumar et al., 2020b) and Offline Reinforcement Learning with
Implicit Q-Learning (IQL) (Kostrikov et al., 2021) whose implementations are obtained from
the CORL library (Tarasov et al., 2022). We can observe from Fig. 11 that pooling data from
different behavior policies affects both offline RL algorithms.

12

Submission and Formatting Instructions for ICML 2023

E. Details of Real-World Robot Experiments
E.1. Demonstration Data Collection

We train four behavior policies of varying levels of expertise using TRPO (Schulman et al., 2015) on a custom simulator
for mobile robots described in section E.2. The first policy is capable of waypoint navigation but collides with obstacles.
The second policy can reach waypoints while avoiding obstacles present at one fixed position. The third policy has not
fully generalized to avoiding obstacles at various positions. Finally, the fourth policy can navigate to the goal without any
collision. We execute the behavior policies in the real-world by varying the waypoint (target location) and location of the
obstacle to gather demonstration data, which we then use to train FEDORA and other baselines. Each client has a dataset
consisting of 300 data points collected using a single behavior policy. After training, we test the learned policies in the
real-world on a TurtleBot to ascertain its feasibility.

E.2. Simulator Design

We develop a first-order simulator for mobile robots using the OpenAI Gym framework, which enables the training of RL
algorithms. The robot’s pose is represented by its X- and Y-coordinates in a 2D space and its orientation with respect to the
X-axis, θ. The pose is updated using differential drive kinematics

xt+1 = xt +∆t v cos θt
yt+1 = yt +∆t v sin θt
θt+1 = θt +∆t ω,

(8)

where (xt, yt, θt) is the pose at time t, v and w are the linear and angular velocity of the robot respectively, and ∆t is time
discretization of the system.

The simulator uses a functional LIDAR to detect the presence of obstacles. We simulate the LIDAR using a discrete
representation of the robot and obstacles in its immediate environment. For each scanning direction around the LIDAR,
we use Bresenham’s line algorithm to generate a path comprising of discrete points. The simulator determines LIDAR
measurements by counting the number of points along each path, starting from the robot and continuing until it encounters
and obstacle or reaches the maximum range.

The reward function is designed to encourage effective waypoint navigation while preventing collisions. We define a
boundary grid that extends for 1m beyond the start and the goal positions in all directions. The reward function at time t for
navigating to the goal position (xg, yg) is chosen to be

Rt =

+100, if |xt − xg| ≤ thresh and |yt − yg| ≤ thresh

−10, if robot outside boundary
−100, if robot collides
−(c.t.e2t + a.t.et + h.et) +

∑
lidart, otherwise

(9)

where c.t.et is the cross-track error, a.t.et is the along-track error, h.et is the heading error, lidart is the array of LIDAR
measurements at time t, and thresh is the threshold error in distance, chosen as 0.1m. Let the L-2 distance to the goal and
the heading to the goal at time t be dgt and θgt respectively. Then, we have

dgt =
√
(xg − xt)2 + (yg − yt)2,

θgt = tan−1
(

yg−yt

xg−xt

)
,

c.t.et = dgt sin(θg − θt),
a.t.et = |xg − xt|+ |yg − yt|,
h.et = θgt − θt.

(10)

E.3. Mobile Robot Platform

We evaluate the trained algorithms on a Robotis TurtleBot3 Burger mobile robot (Amsters & Slaets, 2020), an open-source
differential drive robot. The robot has a wheel encoder-based pose estimation system and is equipped with an RPLIDAR-A1
LIDAR for obstacle detection. We use ROS as the middleware to set up communication. The robot transmits its state
(pose and LIDAR information) over a wireless network to a computer, which then transmits back the corresponding action
suggested by the policy being executed.

13

Submission and Formatting Instructions for ICML 2023

F. Limitations, Societal Impacts, and Future work
F.1. Limitations and Future Work

In this work, we examine the issue of Federated Offline RL. We make the assumption that all clients share the same MDP
model (transition kernel and reward model), and any statistical variances between the offline datasets are due to differences
in the behavior policies used to collect the data. Moving forward, we aim to broaden this to cover scenarios where clients
have different transition and reward models. To achieve this, we plan to extend ideas from offline meta RL to the federated
learning scenario. Furthermore, we plan to explore personalization in federated offline RL as an extension to our research.
We also believe that our approach may also be useful in the context of federated supervised learning, especially when the
data is sourced from varying qualities, and we intend to formally investigate this in the future as a seperate line of work.

F.2. Ethics Statement and Societal Impacts

In this work, we introduce a novel algorithm for federated offline reinforcement learning. The domain of federated offline
RL offers the potential for widespread implementation of RL algorithms while upholding privacy by not sharing data, as
well as reducing the need for communication. Throughout our study, no human subjects or human-generated data were
involved. As a result, we do not perceive any ethical concerns associated with our research methodology.

While reinforcement learning holds great promise for the application in socially beneficial systems, caution must be exercised
when applying it to environments involving human interaction. This caution arises from the fact that guarantees in such
scenarios are probabilistic, and it is essential to ensure that the associated risks remain within acceptable limits to ensure
safe deployments.

14

