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ABSTRACT

Predicting quantum operator matrices such as Hamiltonian, overlap, and density
matrices in the density functional theory (DFT) framework is crucial for material
science. Current methods often focus on individual operators and struggle with
efficiency and scalability for large systems. Here we introduce a novel deep learn-
ing model, SLEM (strictly localized equivariant message-passing), for predicting
multiple quantum operators that achieves state-of-the-art accuracy while dramat-
ically improving computational efficiency. SLEM’s key innovation is its strict
locality-based design for equivariant representations of quantum tensors while
preserving physical symmetries. This enables complex many-body dependency
without expanding the effective receptive field, leading to superior data efficiency
and transferability. Using an innovative SO(2) convolution and invariant over-
lap parameterization, SLEM reduces the computational complexity of high-order
tensor products and is, therefore, capable of handling systems requiring the f
and g orbitals in their basis sets. We demonstrate SLEM’s capabilities across
diverse 2D and 3D materials, achieving high accuracy even with limited train-
ing data. SLEM’s design facilitates efficient parallelization, potentially extending
DFT simulations to systems with device-level sizes, opening new possibilities for
large-scale quantum simulations and high-throughput materials discovery.

1 INTRODUCTION

Quantum operators, representing observables and the evolution of quantum systems, are the cor-
nerstone of describing the microscopic world. In modern quantum science, the advent of density
functional theory (DFT) (Hohenberg & Kohn (1964); Kohn & Sham (1965)) has elevated single-
particle quantum operators, such as the Kohn-Sham Hamiltonian, density matrix, and overlap ma-
trix, to paramount importance in solving complex problems (Jones (2015)). These operators play a
crucial role in unravelling electronic structures, predicting material properties, and advancing quan-
tum technologies. However, as we tackle larger and more complex systems, these fundamental
operators’ efficient and accurate representation has emerged as a pressing challenge in computation,
demanding new avenues for innovative methodologies.

Recent advances have incorporated machine learning (ML) techniques to accelerate DFT calcula-
tions by directly predicting DFT’s output of quantum operators, including charge density (Unke et al.
(2021)), overlapping matrix (Yu et al. (2023); Unke et al. (2021)), self-energy (Dong et al. (2024)),
wave function (Unke et al. (2021)), and Hamiltonian matrix (Yin et al. (2024); Yu et al. (2023);
Gong et al. (2023); Nigam et al. (2022); Unke et al. (2021); Zhong et al. (2023)). By circumvent-
ing self-consistent DFT calculations, such methods have the potential to scale up the electronic
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Figure 1: Local design of SLEM vs MPNN.(a) MPNN aggregation. (b) SLEM aggregation. Balls:
nodes, sticks: edges, arrows: aggregation. rcut: fixed cutoff; reff: effective cutoff. L: layer index.

structure calculations. Some of the approaches utilize Gaussian regressions (Nigam et al. (2022)),
kernel-based models (Nigam et al. (2022)), and neural networks (Li et al. (2022)) to predict invari-
ant Hamiltonian matrix blocks on localized frames. Notably, powerful equivariant message-passing
neural networks (E-MPNNs) have demonstrated remarkable accuracy (Han et al. (2024); Musaelian
et al. (2023); Batatia et al. (2022); Joshi et al. (2023); Liao & Smidt; Liao et al.; Simeon & De Fabri-
tiis (2024); Passaro & Zitnick (2023); Zitnick et al. (2022)). These networks ensure the output tensor
blocks’ equivariance, respecting atomic systems’ physical priors. Typically, they use iterative up-
dates to build many-body interactions, achieving high accuracy while enlarging the receptive field.
This limits parallelization and, consequently, the model’s scalability. The storage-intensive quantum
tensor prediction tasks exacerbate these limitations, posing considerable challenges for training such
models on large datasets or predicting quantum operators for extensive atomic structures . Fortu-
nately, the electrostatic screening counteracts the long-term dependency in a lot of material systems
(Huckel & Debye (1923); Resta (1977); Ninno et al. (2006)). Therefore, quantum operators can be
decomposed into elements dependent locally on atomic structures, which natrually prefers a strictly
local model that avoids expanding the receptive field. The Allegro model (Musaelian et al. (2023))
applied this concept to build ML interatomic potentials (MLIPs), achieving high accuracy and par-
allelizability. While MLIPs only concern scalars (energy) and vectors (forces) (angular momentum
l = 0 and 1) on each node, predicting quantum operators necessitates targeting both node and edge
features on high-order spherical tensors (even up to l = 6 or 8). This requires locality and repre-
sentability for both node and edge. Another significant challenge is computational complexity. To
equivariantly mix the features of different angular momentum l, tensor products that scale as O(l6)
are required (Passaro & Zitnick (2023)). This makes model training, especially on heavy atoms, ex-
tremely slow. This limitation hinders the development of a unified ML DFT model that generalizes
across the periodic table.

This work presents a novel method, the strictly localized equivariant message-passing model
(SLEM), for efficient representations of quantum operators. SLEM employs a fully localized scheme
to construct high-order node and edge equivariant features for a general representation of quantum
operators, including the Hamiltonian and density matrix. As illustrated in Fig. 1, the model embeds
localized edge hidden states and utilize them to construct localized node and edge features without
including distant neighbours beyond a fixed cutoff range rcut. This design enables the SLEM model
to generalize better, parallelize easier, and scale to larger systems. Additionally, a fast and efficient
SO(2) convolution (Passaro & Zitnick (2023)) is implemented to reduce the O(l6) complexity, with
edge-specific training weights, thereby further enhancing the model’s accuracy. As for the overlap
matrix, it is typically required for property calculations. Previous works have used another E-MPNN
that doubles the network sizes (Zhong et al. (2023)) or extracts it from DFT calculations (Gong et al.
(2023); Yu et al. (2023)), incurring additional costs or incorporating out-of-loop computation steps
that complicate inference. In contrast, we utilized the two-centre integrals and parameterized the
overlap matrix with spherical independent scalars (i.e., Slater-Koster (SK) parameters (Slater &
Koster (1954))). This method, inspired by the work of DeePTB (Gu et al. (2024)), fits the overlap
operator representation with minimal additional cost.

2 RELATED WORKS

Message-passing Neural Networks Message-passing neural networks (MPNNs) (Gilmer et al.
(2017)) have been widely applied in the modelling of atomic systems due to their exceptional ac-
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curacy in capturing the intricate relationships between atomic environments and physical properties
(Schütt et al. (2020)). Previous works have predominantly utilized this scheme, achieving remark-
ably high precision in reported systems (Schütt et al. (2018); Satorras et al. (2021); Han et al. (2024)).
However, as the MPNNs updates, the effective cutoff radius (reff = N×rcut) for each atom’s features
grows linearly with the number of update steps (N ), as shown in Fig. 1. Consequently, the effective
neighbour list scales cubically with reff, making parallelization intractable. Allegro (Musaelian et al.
(2023)) achieved locality by modifying the updating rules by incorporating a hidden pair state that
depends partially on the center atom. While this framework works successfully for scalars and l=1
vectors in potential energy prediction, it requires further improvement for fitting more general edge
and node features. Other local methods avoid iterative updates that enlarge the receptive field, in-
stead creating manually designed descriptors of the local environment (Behler & Parrinello (2007);
Bartók et al. (2010); Thompson et al. (2015); Zhang et al. (2018a); Wang et al. (2018); Zhang et al.
(2018b)). These methods are generally local, but often balance locality and representation capacity.

Equivariant Message Passing Physical quantities, under the law of nature, should be invariant or
equivariant under the spatial and temporal symmetry operations. To model such quantities, a set of
neural network models has been developed utilizing equivariant operations. (Thomas et al. (2018);
Weiler et al. (2018); Kondor et al. (2018); Kondor (2018)) These neural networks possess physical
priors to ensure outputs transform in sync with inputs, making them more generalizable, accurate,
and data-efficient in predicting physical quantities. Formally, an equivariant operation from vector
space X to Y is defined such that:

f(DX [g]x) = DY [g]f(x) ∀g ∈ G,∀x ∈ X

where DX [g] ∈ GL(X) is the representation of group element g on vector space X . Here we
consider O(3) group, then x,y can be composed by irreducible representation (irreps for short) that
are the spherical tensors with angular and magnetic momentum index l,m, and parity p such that
|m| ≤ l. Irreps with the same l support addition/subtraction, while a generalized multiplication is
defined as tensor product (⊗):

(x⊗ y)l3m3
=
∑

m1,m2

C
(l3,m3)
(l1,m1)(l2,m2)

xl1
m1

yl2
m2

Where C
(l3,m3)
(l1,m2)(l2,m2)

are Clebsch-Gordan (CG) coefficients. Conventional tensor product has the
time and memory scales of O(l6max) (Passaro & Zitnick (2023)) where lmax is the maximum angular
momentum in x and y. Such complexity poses great challenges for quantum tensor prediction. For
example, constructing blocks of f -f and g-g orbital pairs require irreps of maximum order l = 6
and l = 8. Such high costs make training for large-size systems nearly impossible.

3 MODEL ARCHITECURE

3.1 PARAMETERIZE EQUIVARIANT QUANTUM OPERATORS

The equivariant parameterization of quantum operators Ô, such as the Hamiltonian and density
matrix in the LCAO-based DFT framework, is illustrated in Fig. 2. The matrix element of operator
Ô can be expressed as:

Oi,j
l1,l2,m1,m2

= ⟨i, l1,m1|Ô|j, l2,m2⟩ (1)

Here i and j denote atomic sites, while the angular and magnetic momentum index l,m label the
atomic orbitals of the site. We apply the Wigner-Eckart theorem to decomposes the operator indexed
by l1, l2 into a single index l3 that satisfies |l1 − l2| ≤ l3 ≤ (l1 + l2):

oi,jl3,m3
=

∑

l1,m1,l2,m2

C
(l3,m3)
(l1,m1)(l2,m2)

Oi,j
l1,l2,m1,m2

(2)

Here, the edge (i ̸= j) and node (i = j) features oi,jl3,m3
are grouped by the index m into vectors

of oi,j
c,l with c accounting for multiple tensors for the same l. These features can be computed for

hopping (i ̸= j) and onsite (i = j) elements of the quantum operators. Further, by leveraging
the Hermitian nature of quantum operators, the parameterized elements can be reduced to upper
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Two-body MLP Embedding

<latexit sha1_base64="gwQj9ooKmE2FLxw4S7kh7yhN4D8=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD8YMyhW35i5A1omXkwrkaA7KX/1hzNKIK2SSGtPz3AT9jGoUTPJZqZ8anlA2oSPes1TRiBs/W1w6IxdWGZIw1rYUkoX6eyKjkTHTKLCdEcWxWfXm4n9eL8Xwxs+ESlLkii0XhakkGJP522QoNGcop5ZQpoW9lbAx1ZShDadkQ/BWX14n7cuaV6/V768qjWoeRxHO4Byq4ME1NOAOmtACBiE8wyu8ORPnxXl3PpatBSefOYU/cD5/AK4XjWU=</latexit>ss
<latexit sha1_base64="zv55gq3ruqcf4h/ierUPxjU1vXw=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBahp5KIVI8FLx6r2A9oQ9lsN+3SzSbsToQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDyYZlCtuzV2ArBMvJxXI0RyUv/rDmKURV8gkNabnuQn6GdUomOSzUj81PKFsQke8Z6miETd+trh0Ri6sMiRhrG0pJAv190RGI2OmUWA7I4pjs+rNxf+8XorhjZ8JlaTIFVsuClNJMCbzt8lQaM5QTi2hTAt7K2FjqilDG07JhuCtvrxO2pc1r16r319VGtU8jiKcwTlUwYNraMAdNKEFDEJ4hld4cybOi/PufCxbC04+cwp/4Hz+AKmLjWI=</latexit>

sp

<latexit sha1_base64="WSZ1FG/3mvrH7SCf5n5CRvX423Y=">AAAB6XicbVBNSwMxEJ3Ur1q/qh69BIvQU9kVqR4LXjxWsR/QLiWbZtvQbDYkWaEs/QdePCji1X/kzX9j2u5BWx8MPN6bYWZeqAQ31vO+UWFjc2t7p7hb2ts/ODwqH5+0TZJqylo0EYnuhsQwwSVrWW4F6yrNSBwK1gknt3O/88S04Yl8tFPFgpiMJI84JdZJD0oNyhWv5i2A14mfkwrkaA7KX/1hQtOYSUsFMabne8oGGdGWU8FmpX5qmCJ0Qkas56gkMTNBtrh0hi+cMsRRol1Jixfq74mMxMZM49B1xsSOzao3F//zeqmNboKMS5VaJulyUZQKbBM8fxsPuWbUiqkjhGrubsV0TDSh1oVTciH4qy+vk/Zlza/X6vdXlUY1j6MIZ3AOVfDhGhpwB01oAYUInuEV3tAEvaB39LFsLaB85hT+AH3+AKT8jV8=</latexit>

pp

<latexit sha1_base64="VVX2BA0vkr3t6eGF4Ig1ex0D9LY=">AAACCHicbVDLSgNBEJz1GeNr1aMHB4MQIYRdkegx4MVjBPMg2bDMTmaTSWYfzPQKYcnRi7/ixYMiXv0Eb/6Nk2QPmljQUFR1093lxYIrsKxvY2V1bX1jM7eV397Z3ds3Dw4bKkokZXUaiUi2PKKY4CGrAwfBWrFkJPAEa3qjm6nffGBS8Si8h3HMugHph9znlICWXPPEEcyHYtvlpbY7LOFUTtyUDyfYkbw/gHPXLFhlawa8TOyMFFCGmmt+Ob2IJgELgQqiVMe2YuimRAKngk3yTqJYTOiI9FlH05AETHXT2SMTfKaVHvYjqSsEPFN/T6QkUGoceLozIDBQi95U/M/rJOBfd1MexgmwkM4X+YnAEOFpKrjHJaMgxpoQKrm+FdMBkYSCzi6vQ7AXX14mjYuyXSlX7i4LVSuLI4eO0SkqIhtdoSq6RTVURxQ9omf0it6MJ+PFeDc+5q0rRjZzhP7A+PwBuE6ZHQ==</latexit>

(Zi, Zj , rij)

Edge SO(2) Layer

Gate

Linear

Embed MLP ⨀

<latexit sha1_base64="g8blrkhS1rqRMgkoceqY5FusEbo=">AAAB/nicbVDLSgMxFM3UV62vUXHlJlgEF1JmRKrLghuXFexD2nHIpJk2NpMZkoxQwoC/4saFIm79Dnf+jZl2Ftp6IHA4517uyQkSRqVynG+rtLS8srpWXq9sbG5t79i7e20ZpwKTFo5ZLLoBkoRRTlqKKka6iSAoChjpBOOr3O88EiFpzG/VJCFehIachhQjZSTfPuhHSI2CUN9l95o+ZL7Gpyzz7apTc6aAi8QtSBUUaPr2V38Q4zQiXGGGpOy5TqI8jYSimJGs0k8lSRAeoyHpGcpRRKSnp/EzeGyUAQxjYR5XcKr+3tAoknISBWYyDyvnvVz8z+ulKrz0NOVJqgjHs0NhyqCKYd4FHFBBsGITQxAW1GSFeIQEwso0VjEluPNfXiTts5pbr9VvzqsNp6ijDA7BETgBLrgADXANmqAFMNDgGbyCN+vJerHerY/ZaMkqdvbBH1ifP+rMlhA=</latexit>

Yij
c,l

<latexit sha1_base64="Xr31ibQV0G6r1kOcLZqJlcNTHtM=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURqS4LblxWsA9oY5lMJ+3YySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUVEiCW2TiEey52NFORO0rZnmtBdLikOf064/vc797iOVikXiTs9i6oV4LFjACNZGGtrVQYj1xA/STnafsodsaNecujMHWiVuQWpQoDW0vwajiCQhFZpwrFTfdWLtpVhqRjjNKoNE0RiTKR7TvqECh1R56Tx4hk6NMkJBJM0TGs3V3xspDpWahb6ZzGOqZS8X//P6iQ6uvJSJONFUkMWhIOFIRyhvAY2YpETzmSGYSGayIjLBEhNtuqqYEtzlL6+SznndbdQbtxe1plPUUYZjOIEzcOESmnADLWgDgQSe4RXerCfrxXq3PhajJavYOYI/sD5/AFduk38=</latexit>

Vij
<latexit sha1_base64="+/mbHVB/o0tnwJ6QN05BC8Avcpc=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyURqS4LblxWsA9oY5lMJ+3YySTMTIQa8iVuXCji1k9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUVEiCW2TiEey52NFORO0rZnmtBdLikOf064/vc797iOVikXiTs9i6oV4LFjACNZGGtrVQYj1xA9Smt2n7CEb2jWn7syBVolbkBoUaA3tr8EoIklIhSYcK9V3nVh7KZaaEU6zyiBRNMZkise0b6jAIVVeOg+eoVOjjFAQSfOERnP190aKQ6VmoW8m85hq2cvF/7x+ooMrL2UiTjQVZHEoSDjSEcpbQCMmKdF8ZggmkpmsiEywxESbriqmBHf5y6ukc153G/XG7UWt6RR1lOEYTuAMXLiEJtxAC9pAIIFneIU368l6sd6tj8VoySp2juAPrM8fboSTjg==</latexit>

eij
<latexit sha1_base64="FG/y6sdDVDHuagM/SDpUhI4zTYE=">AAAB9XicbVBNSwMxFHxbv2r9qnr0EiyCp7IrUj0WvHisYFuh3ZZsmm1Ds8mSZJWy7P/w4kERr/4Xb/4bs+0etHUgMMy8x5tMEHOmjet+O6W19Y3NrfJ2ZWd3b/+genjU0TJRhLaJ5FI9BFhTzgRtG2Y4fYgVxVHAaTeY3uR+95EqzaS4N7OY+hEeCxYygo2VBv0Im0kQpiIbpCwbVmtu3Z0DrRKvIDUo0BpWv/ojSZKICkM41rrnubHxU6wMI5xmlX6iaYzJFI9pz1KBI6r9dJ46Q2dWGaFQKvuEQXP190aKI61nUWAn85R62cvF/7xeYsJrP2UiTgwVZHEoTDgyEuUVoBFTlBg+swQTxWxWRCZYYWJsURVbgrf85VXSuah7jXrj7rLWdIs6ynACp3AOHlxBE26hBW0goOAZXuHNeXJenHfnYzFacoqdY/gD5/MHORSS8g==</latexit>

ni
<latexit sha1_base64="fp8Wob3fVqBAtZiFemRT/4bwuUk=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiQi1WXBjcsK9gFtLJPppB07mYSZiVhDvsSNC0Xc+inu/BsnbRbaemDgcM693DPHjzlT2nG+rZXVtfWNzdJWeXtnd69i7x+0VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPrnK/80ClYpG41dOYeiEeCRYwgrWRBnalH2I99oP0MbtL2X02sKtOzZkBLRO3IFUo0BzYX/1hRJKQCk04VqrnOrH2Uiw1I5xm5X6iaIzJBI9oz1CBQ6q8dBY8QydGGaIgkuYJjWbq740Uh0pNQ99M5jHVopeL/3m9RAeXXspEnGgqyPxQkHCkI5S3gIZMUqL51BBMJDNZERljiYk2XZVNCe7il5dJ+6zm1mv1m/NqwynqKMERHMMpuHABDbiGJrSAQALP8Apv1pP1Yr1bH/PRFavYOYQ/sD5/AIvCk6E=</latexit>

xij

Hidden SO(2) Layer

Gate

Linear

⨁

Latent MLP

⨀

Layer Norm

Embed MLP

<latexit sha1_base64="m5M9SqffKMlX7Tin7KeY17dHV70=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4qCURqS4Lbly4qGAf0MYymU7asZMHMxMxhPgrblwo4tYPceffOGm70NYDA4dz7uWeOW7EmVSW9W0sLa+srq0XNoqbW9s7u+befkuGsSC0SUIeio6LJeUsoE3FFKedSFDsu5y23fFl7rcfqJAsDG5VElHHx8OAeYxgpaW+Wer5WI1cL33M7lJ2X7k+sbO+Wbaq1gRokdgzUoYZGn3zqzcISezTQBGOpezaVqScFAvFCKdZsRdLGmEyxkPa1TTAPpVOOgmfoSOtDJAXCv0ChSbq740U+1Imvqsn86hy3svF/7xurLwLJ2VBFCsakOkhL+ZIhShvAg2YoETxRBNMBNNZERlhgYnSfRV1Cfb8lxdJ67Rq16q1m7NyvTKrowAHcAjHYMM51OEKGtAEAgk8wyu8GU/Gi/FufExHl4zZTgn+wPj8AX1TlJs=</latexit>

xij,L�1
<latexit sha1_base64="Yy5c9wVAa9ZghpISrNbEW0oGjTw=">AAACAXicbVBNS8NAEJ3Ur1q/ol4EL8EieKglEakeC148eKhgP6CNYbPdtEs3m7C7EUqIF/+KFw+KePVfePPfuGl70NYHA4/3ZpiZ58eMSmXb30ZhaXllda24XtrY3NreMXf3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2R1e5334gQtKI36lxTNwQDTgNKEZKS5550AuRGvpByrP7lFZuTp3MS3GFZZ5Ztqv2BNYicWakDDM0PPOr149wEhKuMENSdh07Vm6KhKKYkazUSySJER6hAelqylFIpJtOPsisY630rSASuriyJurviRSFUo5DX3fm98p5Lxf/87qJCi7dlPI4UYTj6aIgYZaKrDwOq08FwYqNNUFYUH2rhYdIIKx0aCUdgjP/8iJpnVWdWrV2e16uV2ZxFOEQjuAEHLiAOlxDA5qA4RGe4RXejCfjxXg3PqatBWM2sw9/YHz+ADJclqs=</latexit>

ni,L�1
c,l

<latexit sha1_base64="BUAy31GnDCftdH7V+E3sHg+X3FU=">AAACAnicbVBNS8NAEJ3Ur1q/op7ES7AIHmpJRKrHghcPHirYD2hj2Ww37drNJuxuhBKCF/+KFw+KePVXePPfuGlz0OqDgcd7M8zM8yJGpbLtL6OwsLi0vFJcLa2tb2xumds7LRnGApMmDlkoOh6ShFFOmooqRjqRICjwGGl744vMb98TIWnIb9QkIm6Ahpz6FCOlpb651wuQGnl+0kpvE3pXuTp20n6CKyztm2W7ak9h/SVOTsqQo9E3P3uDEMcB4QozJGXXsSPlJkgoihlJS71YkgjhMRqSrqYcBUS6yfSF1DrUysDyQ6GLK2uq/pxIUCDlJPB0Z3awnPcy8T+vGyv/3E0oj2JFOJ4t8mNmqdDK8rAGVBCs2EQThAXVt1p4hATCSqdW0iE48y//Ja2TqlOr1q5Py/VKHkcR9uEAjsCBM6jDJTSgCRge4Ale4NV4NJ6NN+N91low8pld+AXj4xvcWZcH</latexit>

Vij,L�1
c,l

<latexit sha1_base64="m5M9SqffKMlX7Tin7KeY17dHV70=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSK4qCURqS4Lbly4qGAf0MYymU7asZMHMxMxhPgrblwo4tYPceffOGm70NYDA4dz7uWeOW7EmVSW9W0sLa+srq0XNoqbW9s7u+befkuGsSC0SUIeio6LJeUsoE3FFKedSFDsu5y23fFl7rcfqJAsDG5VElHHx8OAeYxgpaW+Wer5WI1cL33M7lJ2X7k+sbO+Wbaq1gRokdgzUoYZGn3zqzcISezTQBGOpezaVqScFAvFCKdZsRdLGmEyxkPa1TTAPpVOOgmfoSOtDJAXCv0ChSbq740U+1Imvqsn86hy3svF/7xurLwLJ2VBFCsakOkhL+ZIhShvAg2YoETxRBNMBNNZERlhgYnSfRV1Cfb8lxdJ67Rq16q1m7NyvTKrowAHcAjHYMM51OEKGtAEAgk8wyu8GU/Gi/FufExHl4zZTgn+wPj8AX1TlJs=</latexit>

xij,L�1

<latexit sha1_base64="nSSz1lZOGSWUWKMyOd6Bbb4vZy4=">AAACAHicbVBNS8NAEJ34WetX1IMHL8EieCglEakeC148eKhgP6CNYbPdtGs3m7C7EUrIxb/ixYMiXv0Z3vw3btoctPXBwOO9GWbm+TGjUtn2t7G0vLK6tl7aKG9ube/smnv7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen446vc7zwSIWnE79QkJm6IhpwGFCOlJc887IdIjfwgbWf3KX2o3mReiqss88yKXbOnsBaJU5AKFGh65ld/EOEkJFxhhqTsOXas3BQJRTEjWbmfSBIjPEZD0tOUo5BIN50+kFknWhlYQSR0cWVN1d8TKQqlnIS+7szPlfNeLv7n9RIVXLop5XGiCMezRUHCLBVZeRrWgAqCFZtogrCg+lYLj5BAWOnMyjoEZ/7lRdI+qzn1Wv32vNKoFnGU4AiO4RQcuIAGXEMTWoAhg2d4hTfjyXgx3o2PWeuSUcwcwB8Ynz/0M5aV</latexit>

Vij,L
c,l

<latexit sha1_base64="DfiBOiLUFAZIeTwleSA+jN/E/kM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KCURqS4Lbly4qGAf0MYymU7asZMHMxO1xHyKGxeKuPVL3Pk3TtostPXAwOGce7lnjhtxJpVlfRtLyyura+uFjeLm1vbOrlnaa8kwFoQ2SchD0XGxpJwFtKmY4rQTCYp9l9O2O77I/PY9FZKFwY2aRNTx8TBgHiNYaalvlno+ViPXSx7T24TdVa7Svlm2qtYUaJHYOSlDjkbf/OoNQhL7NFCEYym7thUpJ8FCMcJpWuzFkkaYjPGQdjUNsE+lk0yjp+hIKwPkhUK/QKGp+nsjwb6UE9/Vk1lQOe9l4n9eN1beuZOwIIoVDcjskBdzpEKU9YAGTFCi+EQTTATTWREZYYGJ0m0VdQn2/JcXSeukateqtevTcr2S11GAAziEY7DhDOpwCQ1oAoEHeIZXeDOejBfj3fiYjS4Z+c4+/IHx+QOXNZQp</latexit>

xij,L

<latexit sha1_base64="DfiBOiLUFAZIeTwleSA+jN/E/kM=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KCURqS4Lbly4qGAf0MYymU7asZMHMxO1xHyKGxeKuPVL3Pk3TtostPXAwOGce7lnjhtxJpVlfRtLyyura+uFjeLm1vbOrlnaa8kwFoQ2SchD0XGxpJwFtKmY4rQTCYp9l9O2O77I/PY9FZKFwY2aRNTx8TBgHiNYaalvlno+ViPXSx7T24TdVa7Svlm2qtYUaJHYOSlDjkbf/OoNQhL7NFCEYym7thUpJ8FCMcJpWuzFkkaYjPGQdjUNsE+lk0yjp+hIKwPkhUK/QKGp+nsjwb6UE9/Vk1lQOe9l4n9eN1beuZOwIIoVDcjskBdzpEKU9YAGTFCi+EQTTATTWREZYYGJ0m0VdQn2/JcXSeukateqtevTcr2S11GAAziEY7DhDOpwCQ1oAoEHeIZXeDOejBfj3fiYjS4Z+c4+/IHx+QOXNZQp</latexit>

xij,L
<latexit sha1_base64="Yy5c9wVAa9ZghpISrNbEW0oGjTw=">AAACAXicbVBNS8NAEJ3Ur1q/ol4EL8EieKglEakeC148eKhgP6CNYbPdtEs3m7C7EUqIF/+KFw+KePVfePPfuGl70NYHA4/3ZpiZ58eMSmXb30ZhaXllda24XtrY3NreMXf3WjJKBCZNHLFIdHwkCaOcNBVVjHRiQVDoM9L2R1e5334gQtKI36lxTNwQDTgNKEZKS5550AuRGvpByrP7lFZuTp3MS3GFZZ5Ztqv2BNYicWakDDM0PPOr149wEhKuMENSdh07Vm6KhKKYkazUSySJER6hAelqylFIpJtOPsisY630rSASuriyJurviRSFUo5DX3fm98p5Lxf/87qJCi7dlPI4UYTj6aIgYZaKrDwOq08FwYqNNUFYUH2rhYdIIKx0aCUdgjP/8iJpnVWdWrV2e16uV2ZxFOEQjuAEHLiAOlxDA5qA4RGe4RXejCfjxXg3PqatBWM2sw9/YHz+ADJclqs=</latexit>

ni,L�1
c,l

<latexit sha1_base64="1gEl/IOnNfiRQo0LQ/m96zC2F9E=">AAACAXicbVBNS8NAEJ3Ur1q/ol4EL8EieKglEakeC148eKhgP6CNZbPdtGs3m7C7EUqIF/+KFw+KePVfePPfuKk5aOuDgcd7M8zM8yJGpbLtL6OwsLi0vFJcLa2tb2xumds7LRnGApMmDlkoOh6ShFFOmooqRjqRICjwGGl744vMb98TIWnIb9QkIm6Ahpz6FCOlpb651wuQGnl+wtPb5K5ydeyk/QRXWNo3y3bVnsKaJ05OypCj0Tc/e4MQxwHhCjMkZdexI+UmSCiKGUlLvViSCOExGpKuphwFRLrJ9IPUOtTKwPJDoYsra6r+nkhQIOUk8HRndq+c9TLxP68bK//cTSiPYkU4/lnkx8xSoZXFYQ2oIFixiSYIC6pvtfAICYSVDq2kQ3BmX54nrZOqU6vWrk/L9UoeRxH24QCOwIEzqMMlNKAJGB7gCV7g1Xg0no034/2ntWDkM7vwB8bHNzPrlqw=</latexit>

nj,L�1
c,l

<latexit sha1_base64="nSSz1lZOGSWUWKMyOd6Bbb4vZy4=">AAACAHicbVBNS8NAEJ34WetX1IMHL8EieCglEakeC148eKhgP6CNYbPdtGs3m7C7EUrIxb/ixYMiXv0Z3vw3btoctPXBwOO9GWbm+TGjUtn2t7G0vLK6tl7aKG9ube/smnv7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen446vc7zwSIWnE79QkJm6IhpwGFCOlJc887IdIjfwgbWf3KX2o3mReiqss88yKXbOnsBaJU5AKFGh65ld/EOEkJFxhhqTsOXas3BQJRTEjWbmfSBIjPEZD0tOUo5BIN50+kFknWhlYQSR0cWVN1d8TKQqlnIS+7szPlfNeLv7n9RIVXLop5XGiCMezRUHCLBVZeRrWgAqCFZtogrCg+lYLj5BAWOnMyjoEZ/7lRdI+qzn1Wv32vNKoFnGU4AiO4RQcuIAGXEMTWoAhg2d4hTfjyXgx3o2PWeuSUcwcwB8Ynz/0M5aV</latexit>

Vij,L
c,l

<latexit sha1_base64="Ki3XZmANkoASrn0llRYiYtDOE8Q=">AAACAHicbVBNS8NAEJ34WetX1IMHL8EieCglEakeC148eKhgP6CNYbPdtGs3m7C7EUrIxb/ixYMiXv0Z3vw3btoctPXBwOO9GWbm+TGjUtn2t7G0vLK6tl7aKG9ube/smnv7bRklApMWjlgkuj6ShFFOWooqRrqxICj0Gen446vc7zwSIWnE79QkJm6IhpwGFCOlJc887IdIjfwgJdl9Sh+qN5mX4irLPLNi1+wprEXiFKQCBZqe+dUfRDgJCVeYISl7jh0rN0VCUcxIVu4nksQIj9GQ9DTlKCTSTacPZNaJVgZWEAldXFlT9fdEikIpJ6GvO/Nz5byXi/95vUQFl25KeZwowvFsUZAwS0VWnoY1oIJgxSaaICyovtXCIyQQVjqzsg7BmX95kbTPak69Vr89rzSqRRwlOIJjOAUHLqAB19CEFmDI4Ble4c14Ml6Md+Nj1rpkFDMH8AfG5w8L0Jak</latexit>

eij,L
c,l

Node

⨀Embed MLP

SO(2) Layer

Gate

Linear

<latexit sha1_base64="6DsLYgJMBKoPb/p3R02ZPYBE7cQ=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8SNgViR4DXjxGMA9IljA7mU2GzMwu8xDCkl/w4kERr/6QN//G2WQPmljQUFR1090VpZxp4/vf3tr6xubWdmmnvLu3f3BYOTpu68QqQlsk4YnqRlhTziRtGWY47aaKYhFx2okmd7nfeaJKs0Q+mmlKQ4FHksWMYJNLfW3FoFL1a/4caJUEBalCgeag8tUfJsQKKg3hWOte4KcmzLAyjHA6K/etpikmEzyiPUclFlSH2fzWGTp3yhDFiXIlDZqrvycyLLSeish1CmzGetnLxf+8njXxbZgxmVpDJVksii1HJkH542jIFCWGTx3BRDF3KyJjrDAxLp6yCyFYfnmVtK9qQb1Wf7iuNi6LOEpwCmdwAQHcQAPuoQktIDCGZ3iFN094L96797FoXfOKmRP4A+/zBy7fjkg=</latexit>X
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Figure 2: Design of the SLEM model. (a) Hierarchical structure of the model. Starts with the atomic
number Zi, the radial and spherical part of the shift vector rij and Yij

c,l, the initialized hidden fea-
tures xij , Vij , along with edge and node features eij , ni, are generated. The two-body hidden fea-
tures predict the SK parameters constructing (off-)diagonal blocks for the overlap operator. Others
features are then iteratively updated using the designed strictly localized updating scheme. (b)-(d)
shows the hidden update (b), edge update (c), and node update (d). Node and edge features are used
to construct the diagonal blocks for quantum operators.

triangular blocks. This is almost half the demanding storage. Then, we standardised oi,j
c,l to balance

the variance. Formally:
oi,j
c,l = σ

Zi,Zj

c,l ôi,j
c,l + µ

Zi,Zj

c,l δl,0 (3)

Here, Zi, Zj are the atom species of atom i and j, σZi,Zj

c,l and µ
Zi,Zj

c,l are norm and bias value for
each atom and atom-pair. These values are derived from the dataset statistics and applied as weights
and biases in an atom/bond type-specific scaling layer. This step helps to resolve the unbalanced
norms across diagonal and off-diagonal elements of quantum operators while facilitating using a
ReLU-activated network to learn the normalized radial dependent decaying function from 1 to 0.

After supervising on the normalized features ôi,j
c,l , inverse transform from Eq. 2 is applied to recon-

struct the predicted operator representations such as Hamiltonian and density matrix blocks:

Oi,j
l1,l2,m1,m2

=
∑

l3,m3

C
(l3,m3)
(l1,m1)(l2,m2)

oi,jl3,m3
(4)

The whole procedure satisfies the rotational, translational and reflectional symmetry.

3.2 PARAMETERIZE OF INVARIANT OVERLAP OPERATORS

The overlap matrix, analogous to other quantum operators, is defined as:

Si,j
l1,l2,m1,m2

= ⟨i, l1,m1|j, l2,m2⟩ =
∫

ϕi,l1
m1

(r)ϕj,l2
m2

(r− rij)dr (5)

where ϕi,l
m is the obital from LCAO bases. The overlap matrix also satisfies the equivariance relation.

Since the equivariant dependency comes fully from the bases, it is possible to rotate them to align
with the axis of rij , reducing the angular dependence. Therefore, we can further simplify the matrix
elements into scalars via the relation (Podolskiy & Vogl (2004)):

∫
ϕi,l1
m1

(r)ϕj,l2
m2

(r− rij)dr = s
Zi,Zj

l1,l2,|m1|(rij)δm1,m2
(6)
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Here, the dependency changes to Zi, Zj , and rij , indicating the two-center nature of the overlap in-
tegrals. Parameterizing these distance-dependent radial functions involves encoding atomic species
with radial information and a simple MLP to learn the mapping to target scalars.

fl1,l2,|m|(Zi, Zj , rij) = s
Zi,Zj

l1,l2,|m1|(rij)δm1,m2
(7)

After getting these parameters, we use them to construct the overlap matrix aligned with the bond
axis, and then rotate it back to the original orientation.

3.3 THE SLEM MODEL

The SLEM model architecture is illustrated in Fig. 2. The model maintains a set of features, includ-
ing hidden features xij,L,Vij,L

c,l , node features ni,L
c,l and edge features eij,Lc,l of layer (L). Specifically,

the hidden features consist of a scalar channel xij,L and a tensor channel Vij,L
c,l . The scalar channel

is initialized as an embedded vector containing two-body information, including the atomic species
and the radial distance of the atom pair. These initialized two-body radial features are then mapped
by an MLP to the invariant SK parameters for overlap. For equivariant quantum operators, such as
the Hamiltonian and density matrix, the scalar and tensor channels interact to generate an ordered
atom-pair representations, which are used to construct local node and edge representations. After
iterative updates, the representation is scaled by the statistical norm and biases, thereby achieving
the final prediction.

3.3.1 FEATURE INITIALIZATION

Firstly, the initial scalar hidden feature is computed from the two-body embeddings of atomic species
Zi and Zj , and the radial distance rij , as follows:

xij,L=0 = MLP2-body (1(Zi)||1(Zj)||B(rij)) · u(rij) (8)

Here, || is vector concatenation. Atom species are embedded as one-hot vectors 1(Z), and a set of
trainable Bessel bases B(rij) is utilized to encode the distance rij between atoms i and j. u(rij) are
envelope functions (Batzner et al. (2022)) to add explicit radial dependency. Subsequently, the edge
and hidden features are initialized as weighted spherical harmonics of relative edge vectors:

Vij,L=0
c,l = wc,l

(
LN

(
xij,L=0

))
Yij

l

eij,L=0
c,l = wc,l

(
xij,L=0

)
Yij

l

(9)

Here, the weights are learned from the initialized scalar hidden features xij,L=0. Layer normaliza-
tion LN ensures that the hidden tensor features have a balanced amplitude of each edge. The initial
node features are then computed as linear transformations of the aggregated edge features:

ni,L=0
c,l = Linear


 1√

Navg

∑

j∈N (i)

eij,L=0
c,l


 (10)

Here N (i) and Navg are the neighbouring atoms and the average number of neighbours of atom i.

3.3.2 SPEED UP TENSOR PRODUCT

To integrate the information from the equivariant features, the tensor product is employed in all
updating blocks of the SLEM model. Generally, the tensor product in SLEM is performed with the
concatenated equivariant features f̃ ijc,l and the weighted projection of the edge shift vector rij =

ri − rj on the spherical harmonics function Yij
l . Formally:

f ijc3,l3 = f̃ ijc1,l1 ⊗ wij
c2,l2

Yij
l2

=
∑

c1,l1,l2

w̃ij
c1,l1,l2

∑

m1,m2

C
(l3,m3)
(l1,m1)(l2,m2)

f ij
c1,l1,m1

Y ij
l2,m2 (11)

Here, w̃ij
c1,l1,l2

=
∑

c2
wc1,c2,l1,l2w

ij
c2,l2

are edge-specific parameters for each tensor product oper-
ation. Performing such tensor products on high-order features is computationally intensive. There-
fore, we applied the recently developed SO(2) (Passaro & Zitnick (2023)) convolution to reduce the
computation and storage complexity from O(l6max) to O(l3max) which we refer to the Appendix 18.
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3.3.3 HIDDEN UPDATES

To construct many-body interactions, as in Fig. 2(b), the node features ni
c,l and hidden tensor fea-

tures Vij
c,l would be concatenated and doing tensor product with the projection coefficients of edge

shift vector rij on the spherical harmonics functions. The operation is written formally as:

Ṽij,L
c3,l3

=
(
ni,L−1||Vij,L−1

)
c1,l1

⊗ wij,L
c2,l2

Yij
l2

(12)

Unlike most MPNN, the hidden states xij and Vij
c,l in SLEM depend only on the local environment

of centre atom i, the shift vector rij , and the atomic type and coordinate informations of atom j.
Such a design excludes neighbours of j into hidden states.

After the tensor production, the output features Ṽij,L
c,l will be passed through the gated non-linearity

(Batzner et al. (2022)), and transformed by an “E3linear" (Geiger & Smidt (2022)) layer to mix up
the information across different channels. The new hidden feature will be multiplied by the weights
learned from normalized scalar features to explicitly include the radial information and return as the
updated feature Vij,L

c,l . The scalar hidden features are updated by mixing the 0th order information
from Vij,L

c,l with a latent MLP, which is:

xij,L = MLP
(
xij,L−1||Vij,L

c,l=0

)
· u(rij) (13)

The scalar hidden states xij,L incorporate an explicit decaying envelope function u(rij) and many-
body interactions of scalar and tensor features. This formulation effectively captures the decay
behaviour of each edge irrep feature as a function of radial distance.

3.3.4 NODE UPDATES

The strictly local node representation nij,L
c,l can be constructed naturally from the many-body inter-

active tensor features Vij,L
c,l . We follow the MPNN style to create the message from node j to node

i. Formally:
mij,L

c3,l3
=
(
ni,L−1||Vij,L

)
c1,l1

⊗ wij,L
c2,l2

Yij
l2

(14)

Here again, we exclude the neighbouring information of atom j in mij,L
c3,l3

via the partial updates
of Vij,L

c,l , while maintaining necessary interactions. Each message then is passed through a gated
activation and E3Linear layer, weighted separately by weights learnt from the hidden scalar features,
and aggregated to update the node feature by:

nij,L
c3,l3

= α · nij,L−1
c3,l3

+

√
1− α2

Navg

∑

j∈N (i)

wij
c3,l3

mij,L
c3,l3

(15)

Here α ranged from 0 to 1. The weights here differ from those in hidden updates as they are directly
learnt from xij,L without normalization. Therefore, the absolute radial decay is enforced in the
weights, providing a strong prior that the messages from atoms at shorter distances are generally
more significant. Meanwhile, the update of xij,L, and consequently wij

c3,l3
, depends on the features

Vij,L and ni,L−1, as shown in Eq.13. This structure aligns with the equivariant graph attention
mechanism (Liao & Smidt; Liao et al.) which has demonstrated powerful expressibility in various
tasks. Here wij

c3,l3
corresponding to an attention score computed from Vij,L and ni,L−1. Therefore,

through this update, the dependencies of node features are strictly local.

3.3.5 EDGE UPDATES

The locality of edge features eij,Lc,l can be naturally preserved as long as the node features are strictly
local. By mixing the information of node features on both sides, localized edge updates can be
formulated as follows:

ẽij,Lc3,l3
=
(
ni,L−1||Vij,L||nj,L−1

)
c1,l1

⊗ wij,L
c2,l2

Yij
l2

(16)

6



Published as a conference paper at ICLR 2025

Table 1: MAE (in meV) for Hamiltonian matrix predictions using SLEM and other methods on
materials with LCAO basis up to d orbitals. Numbers in parentheses indicate parameter count.

Systems with LCAO-basis up to d-orbitals

Material SLEM DeepH-E3 HamGNN
(0.7M) (4.5M) ( 1.0 M) ( 4.5M) (2.8M)

MoS2 0.34 0.14 0.46 0.55 1.20
Graphene 0.26 0.14 0.40 0.28 0.35
Si(300K) 0.10 0.07 0.16 0.10 0.19

Table 2: MAE (in meV) for Hamiltonian matrix predictions using SLEM and DeepH-E3 models
(Gong et al. (2023)) on materials with LCAO basis up to f and g orbitals. Numbers in parentheses
indicate parameter count. The MAE of HfO2 in DeepH-E3 is absent due to out-of-memory errors.

Systems with LCAO-basis up to f and g-orbitals

Material SLEM DeepH-E3
(1.7M) (1.9M)

GaN 0.21 0.87
HfO2 0.28 -

Similarly, the updated edge features are processed via a gated activation and an E3Linear layer, and
then multiplied with weights learnt from the hidden scalar features (without normalization) as:

eij,Lc3,l3
= α · eij,L−1

c3,l3
+
√
1− α2 · wij

c3,l3
ẽij,Lc3,l3

(17)

The following section focuses on validating the effectiveness of this framework via learning equiv-
ariant DFT Hamiltonians, density matrices and overlap.

4 RESULTS

4.1 BENCHMARK THE ACCURACY AND DATA-EFFICIENCY

Using diverse datasets includes up to g orbitals, we evaluate our model’s performance in fitting
Hamiltonian, density matrix, and overlap matrix. For Hamiltonian, we use systems including 2D
systems of monolayer MoS2 and graphene from existing datasets (Li et al. (2022)), as well as 3D
bulk silicon generated for this study. To test SLEM’s capability with high-order tensors, we also
train the models on generated datasets of bulk GaN and HfO2 systems, which include f and g
orbitals. Structures in the Si, GaN, and HfO2 systems are sampled via molecular dynamics using
neural network potentials (Wang et al. (2018)). For density matrix and overlap matrix evaluations,
we focus exclusively on the datasets of Si, GaN, and HfO2 datasets, as the reported datasets for
MoS2 and graphene lack density and overlap matrix data. Our model supports an atom-specific rcut
setting, each value corresponding to the radial basis cutoff of the numerical atomic orbitals, which
aligns with the setting in the compared method.

Table 1 presents a comparison of mean absolute error (MAE) values in Hamiltonian prediction for
graphene, MoS2, and Si systems, whose LCAO basis extends up to d orbitals, among the SLEM,
DeepH-E3 (Gong et al. (2023)), and HamGNN (Zhong et al. (2023)) methods. Our SLEM model
achieves state-of-the-art accuracy, exhibiting the lowest MAE across all systems. Notably, this high
accuracy is achieved with a relatively small model size of only 0.7 million (M) trainable parameters.
Furthermore, we extended our comparison between the SLEM and DeepH-E3 methods to include
GaN and HfO2 systems, where the LCAO basis extends up to f and g orbitals, respectively. As
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Table 3: MAE for predicting density matrix using SLEM on materials with LCAO basis up to d, f ,
and g orbitals. Model settings align with those in Table 1.

SLEM density matrix model
Materials Silicon GaN HfO2

MAE 8.9e-5 2.3e-5 3.9e-5

Figure 3: Comparison of band structures for a Si MD trajectory snapshot: SLEM prediction vs.
DFT calculation. Predicted band structures are obtained from either diagonalization of the predicted
Hamiltonian or NSCF DFT calculation using predicted charge density, yielding indistinguishable
results. Inset: Visualization of charge density distribution for the same structure.

shown in Table 2, the SLEM model consistently presents the lowest MAE, further demonstrating
its high accuracy and versatility across different orbital complexities. Fig. 3 illustrates the band
structure of silicon structures computed directly from the SLEM-predicted Hamiltonian, where the
eigenvalues are indistinguishable from those obtained using DFT. For the density matrix, fitting re-
sults are presented in Table 3. The results demonstrate very high accuracy (order of 1e-5), approach-
ing the machine precision limit of float32 numbers. In Fig. 3, we use the trained model to predict
the density matrix and visualize its real-space distribution. This capability is particularly important
for applications such as charge distribution analysis or tracking electron transfer. Furthermore, the
predicted density can be directly used for non-self-consistent field (NSCF) DFT calculations. The
resulting band structure for silicon, as an example, is highly accurate and matches the DFT output,
with a MAE of only 1.09 meV in eigenvalues compared to self-consistent DFT results. The overlap
matrix, represented by invariant SK parameters in our SLEM model, achieves exceptionally high
accuracy as demonstrated in Table 4, approaching the machine precision limit for float32 numbers.
Notably, our simplified parameterization enables this high accuracy with only a minimal increase
in model complexity. For instance, in a silicon model designed to fit only the Hamiltonian, our
typical parameter count is 0.7 M. The inclusion of overlap matrix prediction adds merely 0.01 M
parameters, which is about 1.4% in total model size.

Additionally, the strict localization scheme of our SLEM model confers superior data efficiency,
requiring fewer DFT-calculated data points for training. To quantify this efficiency, we conducted
an experiment using randomly split subsets of the original data, comprising 20%, 40%, 60%, and
80% of the full training set. We trained both the SLEM model and DeepH-E3 method on these
subsets and evaluated their performance on consistent validation sets. Results in Table 5 demonstrate
SLEM’s high accuracy across all subsets, thus highlighting its remarkable data efficiency. This
data efficiency implies that SLEM users can generate smaller, more cost-effective training sets.
Moreover, SLEM’s excellent data efficiency and transferability make it particularly well-suited as a
backbone for developing universal DFT models, especially for systems involving heavy elements.
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Table 4: MAE for predicting overlap matrix using SLEM’s parameterization on materials with
LCAO basis up to d, f , and g orbitals. Model settings align with those in Table 1.

SLEM overlap prediction
Materials Silicon GaN HfO2

MAE 5.6e-5 4.7e-5 6.3e-5

Table 5: Comparison of validation MAE (in meV) for SLEM model and DeepH-E3 (Gong et al.
(2023)) method trained on randomly split datasets (Li et al. (2022)) with varying training ratios.
Model settings align with those in Table 1.

MoS2
Partition 100% 80% 60% 40% 20%
SLEM 0.34 0.37 0.39 0.37 0.37

DeePH-E3 0.46 0.72 0.84 1.03 1.46
Graphene

Partition 100% 80% 60% 40% 20%
SLEM 0.26 0.26 0.27 0.21 0.26

DeePH-E3 0.40 0.30 0.33 0.36 0.60

4.2 EFFICIENCY AND SCALABILITY

In materials science, chemistry, and biology, many significant properties emerge in systems con-
taining heavy atoms. These heavy atoms introduce high-order spherical tensors when representing
quantum operators. Scaling to such systems is challenging due to the computational complexity
of tensor products used to construct complex spherical tensors, which scales as O(l6). Conven-
tional tensor production methods struggle with training and inference on systems containing heavy
atoms, making it difficult to model these important phenomena efficiently. Moreover, inferring large
material systems while training with small structures is particularly valuable, which requires paral-
lelising the model inference by assigning partitions of the large atomic structure to multiple GPU
workers. However, most current models struggle with this task. As the receptive fields expand
through iterative graph updates, the minimum size of each partitioned subgraph increases, reducing
the effectiveness of such partitioning. The SLEM model addresses these challenges by efficiently
constructing high-order tensor products and assisting parallelization through its strict locality.

For efficiency, the implementation of SO(2) convolution reduces the tensor product computational
complexity from O(l6) to O(l3), which is then further reduced by the parallelization of matrix
operations to nearly O(l) benefiting from PyTorch. Figure 4 compares the wall time and GPU
memory consumed by tensor product operations using SO(2) convolution versus the conventional
method employed in DeepH-E3 (Gong et al. (2023)) and E3NN (Geiger & Smidt (2022)). The
SO(2) convolution approach demonstrates remarkable superior efficiency, enabling our method to
handle all possible basis choices in LCAO DFT. We also evaluated memory usage and training time
for typical systems, comparing our model with DeepH-E3. The results, displayed in Fig. 5, show
that our model consistently outperforms in both metrics. Notably, the advantage becomes more
pronounced as the basis set size increases, highlighting our method’s scalability. Additionally, the
SLEM model’s strict locality design significantly enhances parallelization. This localized approach
allows for dividing the atomic graph into sub-graphs, enabling independent computation of node
and edge features on separate devices. This is extremely important when expanding DFT simulation
to large systems. In practice, for HfO2 with 4s2p2d2f1g basis, a typical model of 1.7M parameters
can predict the quantum operators for up to 103 atoms on devices with 32GB memory. Despite
linear scaling, the inference on a system with 104 ∼ 107 would require over 300 GB of memory,
necessitating parallelization across multiple GPUs. Therefore, a strictly localized model such as
SLEM holds significant potential for expanding simulation system sizes.
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Figure 4: Comparison of time and memory consumption for different tensor-product implementa-
tions. (a) Time consumption vs. angular momentum (l) for different models, including the SO(2)-
based SLEM model (triangles) with and without radial part (r), DeepH-E3 (cross) (Gong et al.
(2023)), and E3NN (square) (Geiger & Smidt (2022)) models. Inset: Log-scale fit with slopes of 1.2
for the SLEM model and 3.7 for the other two models. (b) Memory consumption vs. l. The SLEM
model demonstrates over two orders of magnitude improvement in both time and memory efficiency
compared to DeepH-E3 and E3NN.
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Figure 5: Comparison of training time per iteration and memory consumption with SLEM and
DeepH-E3 (Gong et al. (2023)) models.

5 CONCLUSION

This work presents SLEM (Strictly Local Equivariant Message-passing) model, a novel approach
for predicting quantum operator representations in materials science. By employing a strict locality
design and integrating SO(2) convolution, SLEM achieves state-of-the-art performance in predict-
ing Hamiltonians, density matrices, and overlap matrices for diverse materials, including systems
with heavy atoms. The model’s efficiency and scalability open new possibilities for large-scale
quantum simulations and high-throughput materials discovery. Notably, SLEM’s locality enables
efficient parallelization through atomic graph partitioning, potentially extending its applicability to
extremely large systems at device-level scales. SLEM’s intrinsic support for multiple quantum op-
erators, coupled with its novel overlap matrix parameterization, significantly reduces computational
costs and dependence on post-training DFT software. The model demonstrates superior data effi-
ciency and transferability, making it particularly well-suited for developing universal DFT models,
especially for systems involving heavy elements. These advancements position SLEM as a powerful
tool for simulating complex systems in materials science and computational chemistry. Future work
will focus on developing robust sampling methodologies for active learning and integrating SLEM
with existing software ecosystems to fully leverage its capabilities in real-world applications, further
advancing the field of computational materials science.
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CODE AVAILABILITY

The implementation of the SLEM model and its semi-local variant (named LEM) are open-source
and accessible via the DeePTB GitHub repository. To facilitate the integration of DFT outputs
with machine learning models, we have developed and released a supplementary tool, dftio. This
tool enables parallel parsing of DFT outputs into a machine-readable data format, enhancing the
efficiency of data preparation for model training and analysis.
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A BENCHMARK ON QH9

We also train our model on the open molecule Hamiltonian and Overlap dataset, QH9 (Yu et al.
(2024)), to test our method’s accuracy and transferability on a large dataset. We compare our re-
sult with the reported benchmark QHNet, which shows considerable accuracy improvement, as dis-
played in Table. 6. We should notice that our model performs well in the Hamiltonian learning tasks,
by decreasing 1/3 of the error reported previously. The density matrix is inferred from the learned
Hamiltonian since the data is not available in QH9. Our accuracy is only 1/3 of the compared one.

QH9 is an extended electronic structure dataset based on QM9 (Ruddigkeit et al. (2012); Ramakr-
ishnan et al. (2014)), a well-known benchmark for molecular property prediction. QH9 contains
13,081 static structures and 2998 molecular trajectories. We test our method based on the static
out-of-distribution(OOD) tasks defined by QHNet’s paper. In this task, the testing set has a very
different molecular structure and atom number from the ones in the training set. The dataset is split
as 104,001/17,495/9,335. As discussed in Appendix G, we used a semi-local variant of SLEM to
prevent the possible break of strict locality in the molecular system.

Table 6: MAE for Hamiltonian matrix (H) and density matrix (D) prediction.

QH9 dataset benchmark

Method H[10−6Eh] D
all non-diag diag all

LEM 56.57 44.86 155.24 0.0219
QHNet 83.22 80.26 135.63 0.0643

B ON THE STRICT LOCALITY APPROXIMATION

Here we want to further discuss the strict locality approximation made in our method. In the quan-
tum operator learning task, we express the physical operators using an LCAO basis. In this expres-
sion, the theoretical framework of DFT fundamentally supports the strict locality approximation.
In LCAO-based DFT calculations, the Hamiltonian matrix elements exhibit inherent locality. This
locality manifests through two mechanisms: the spatial decay of LCAO basis functions, the electron
neuralized conditions of the physics system, and electronic screening effects especially in condensed
matter systems. These effects make the dependency of the quantum operator elements approximately
local. For periodic systems, particularly metals and semiconductors, electronic screening effectively
reduces long-range Coulomb interactions. The screening length varies by material type around 4 Å
in semiconductors like silicon, and Germanium, and smaller in insulators such as 2.76 Å in Diamond
Therefore, we are safe to choose a cutoff radius to match the sum of basis orbital radii, adequately
captures the correct physical relations. Taking the Hamiltonian matrix elements as an example:

V H
ij =

∫
ϕ∗
i (r −RA) [VH(r) + Vext(r) + Vxc(r)]ϕj(r −RB)dr

The locality is a combination of the LCAO basis, the Hartree term, the external potential, and xc
functional (we ignore the kinetical term for its local nature). Therefore, we need to discuss the
localization as a collective effect, which is contributed by the following properties:
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The decaying behaviour of the LCAO basis. For all LCAO bases (whether GTO, NAO, or
Slater-like), the radial part all decays rapidly with distance. Therefore, the long-range term in
VH , Vext, Vxc’s contribution in the integration (that decays as 1/r) would be decreased fastly (of-
ten exponentially such as in GTO or Slater-like orbital).

The system’s electronic neutralization condition. The electronic neutralization condition re-
quires that the long-term part of the Hartree term and the external term cancel each other. To derive
this, we assign the electron density to the atomic center, by writing as:

n(r) =
∑

I

nI(r −RI)

Then the sum of VH(r), Vext(r) would be:

−
∑

I

ZI

|r −RI |
+
∑

I

∫
nI(r

′ −RI)

|r − r′| dr′

When |r −RI | is large, we can approximate |r − r′| ≈ |r −RI |, therefore:

− ZI

r −RI
+

∫
nI(r

′ −RI)

|r − r′| dr′ ≈ − ZI

|r −RI |
+

ZI

|r −RI |
= 0

The screening effect. we refer to Huckel & Debye (1923); Resta (1977); Ninno et al. (2006) the
study of screening radius Rs, which describes the system’s electrostatic potential’s reaction to the
vibration of charges.

In Resta (1977), the screening radius of typical insulator and semiconductor systems is reported as:
Diamond: 2.76 a.u, Silicon: 4.28 a.u. and Germanium: 4.71 a.u. In Ninno et al. (2006), for some
nanoparticles, the Rs is reported as: Si191H148: 5.36 a.u. and Ge191H148: 5.61 a.u.

These effects altogether motivate us to revise the current method for machine learning electronic
structures and design SLEM, as a strict localized model suitable for learning the correct mapping
from structures to quantum operators with the correct physical priors—a more reliable and data-
efficient method. Meanwhile, we also notice the existing limitation of this method in some special
systems, we refer to the discussion in Appendix G for detail.

C COMPARISON OF SLEM WITH MPNN

Message-passing Neural Networks In the message-passing scheme, atoms are treated as nodes in
graphs, with bonds to neighbouring atoms represented as connected edges within a specified cutoff
radius. The embedded atomic features are processed by trainable functions, generating messages
from each edge to update the embeddings of central atoms. Formally, the MPNN framework can be
summarized as follows:

eij,L = NL

(
ni,L−1,nj,L−1, eij,L−1

)

mij,L = ML

(
ni,L−1,nj,L−1, eij,L

)

ni,L = UL


ni,L−1,

∑

j∈N (i)

mij,L




Here, eij,L represents the edge features, mij,L denotes the messages, and ni,L indicates the node
features at layer L. NL, ML, and UL are the trainable functions for the edge, message, and node
updates. N (i) = {j|rij < rcut} indicates all the neighbour atoms for atom i, with rcut being the
predefined cutoff. This updating framework allows for the construction of many-body interactions
and long-term dependencies, leading to strong performance across various applications. Here we
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reframe the updating rules of SLEM with the MPNN framework, which looks like this:

Vij,L = VL

(
ni,L−1,Vij,L−1

)

eij,L = NL

(
ni,L−1,Vij,L,nj,L−1, eij,L−1

)

mij,L = ML

(
ni,L−1,Vij,L

)

ni,L = UL


ni,L−1,

∑

j∈N (i)

mij,L




Here VL is the neural network for hidden feature construction. This update scheme constructs many-
body interactions to build equivariant edge and node features while preserving the absolute locality
by excluding atoms outside the constant cutoff radius. Such a scheme, in principle, would have much
better transferability, data efficiency, and scalability when we have a strong prior that the input and
output are dependent locally.

D MORE ON TENSOR PRODUCT

To integrate the information from the equivariant features, the tensor product is employed in all
updating blocks of the SLEM model. Generally, the tensor product in SLEM is performed with the
concatenated equivariant features f̃ ijc,l and the weighted projection of the edge shift vector rij =

ri − rj on the spherical harmonics function Yij
l . Formally:

f ijc3,l3 = f̃ ijc1,l1 ⊗ wij
c2,l2

Yij
l2

=
∑

c1,l1,l2

w̃ij
c1,l1,l2

∑

m1,m2

C
(l3,m3)
(l1,m1)(l2,m2)

f ij
c1,l1,m1

Y ij
l2,m2 (18)

Here, w̃ij
c1,l1,l2

=
∑

c2
wc1,c2,l1,l2w

ij
c2,l2

are edge-specific parameters for each tensor product oper-
ation. Performing such tensor products on high-order features is computationally intensive. There-
fore, we applied the recently developed SO(2) (Passaro & Zitnick (2023)) convolution to simplify,
reducing the computation and storage complexity from O(l6max) to O(l3max). The simplification idea
is intuitive. Yij

l2,m2
are sparse tensors if rotated to align with the edge ij, which is nonzero only

for m2 = 0. Therefore, it is easier to compute the tensor production in the direction of edge ij,
and rotate inversely the output afterwards. This step removes the m2 index from the summation
in Eq. 18. Furthermore, considering the Clebsch-Gordan coefficients with m2 = 0, we find that
C

(l3,m3)
(l1,m1)(l2,0)

= 0 except for m3 = ±m1. This allows further reduction of the summation in Eq. 18
by replacing ±m1 with a single index m. Then the operations can be reformulated formally as:

(
f ij
c,l,m

f ij
c,l,−m

)
=
∑

c′,l′

(
wc,c′,l′,m − wc,c′,l′,−m

wc,c′,l′,−m wc,c′,l′,m

)
·
(

f̃ ij
c′,l′,m

f̃ ij
c′,l′,−m

)

This represents a linear operation on f̃ ij
c′,l′,m′ . By employing this method, high-order tensor products

for l = 8, 9 and even 10 can be efficiently calculated, which is essential for heavy element systems
where the f , g or even higher orbitals are used in the LCAO basis for DFT calculations. Finally, the
weights for the new SO(2) tensor product method are multiplied by edge-specific parameters, where
wij

c′,l′ are mapped by an MLP from hidden scalar features xij,L as w̃ij
c,c′,l′,m = wc,c′,l′,mwij

c′,l′ . This
powerful and efficient tensor product layer facilitates the construction of local interactive updates of
the features.

E DATA GENERATION

In this section, we discuss the data generation process used in experiments of this work. The data
sampling process includes the Hamiltonian, overlap and density matrix of materials Si, GaN, HfO2.

First, we perform an ab initio molecular dynamic simulation based on a neural network force field
using DeePMD (Wang et al. (2018)) and Lammps (Thompson et al. (2022)). A typical input file of
the lammps sampling looks like:
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variable NSTEPS equal 500000
variable THERMO_FREQ equal 100
variable DUMP_FREQ equal 1000
variable TEMP equal 300
variable PRES equal 1.00
variable TAU_T equal 0.10
variable TAU_P equal 0.50

units metal
boundary p p p
atom_style atomic

neighbor 1.0 bin

read_data conf.lammps-data
mass 1 28.085

pair_style deepmd graph.pb
pair_coeff * * Si

thermo_style custom step temp pe ke etotal press vol lx ly lz xy xz yz
thermo ${THERMO_FREQ}
restart 1000000 dpgen.restart

velocity all create ${TEMP} 449414
fix 1 all nvt temp ${TEMP} ${TEMP} 0.1
dump 1 all custom ${DUMP_FREQ} eq.lammpstrj id type x y z vx vy vz

timestep 0.001

run 100000

undump 1
dump 2 all custom ${DUMP_FREQ} sample.lammpstrj id type x y z vx vy vz
run ${NSTEPS} upto

The samples are taken after 105 steps when the system reaches equilibrium.

After the configuration sampling, we then applied ABACUS (Li et al. (2016)) to compute the quan-
tum operators, including the Hamiltonian, density and overlap matrix of each configuration. Among
them, 150 frames are randomly split as the training set, and 30 frames are used for testing. We use
SG15 ONCV numerical atomic orbitals, pseudopotentials (Hamann (2013)), and PBE functionals
(Ernzerhof & Scuseria (1999)) for the DFT calculation. A typical DFT calculation input looks like:

INPUT_PARAMETERS
# Created by Atomic Simulation Enviroment
ntype 1
ecutwfc 100
scf_nmax 100
smearing_method gaussian
smearing_sigma 0.002
basis_type lcao
ks_solver genelpa
mixing_type pulay
mixing_beta 0.7
scf_thr 1e-07
out_chg 1
symmetry 1
calculation scf
out_band 1
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force_thr 0.001
out_stru 1
kspacing 0.08
lspinorb 0
out_wfc_lcao 0
dft_functional pbe
out_mat_hs2 True

After the calculation converged for all, we processed the data format into machine-learning read-
able datasets and started training. The dataset used in this work is uploaded in the opensource
platform AISquare via this link: https://www.aissquare.com/datasets/detail?
pageType=datasets&name=Quantum_Operator_Dataset&id=286.

F CUTOFF SELECTION

The cutoff used in the SLEM model is important since it decides the size of the atom and bond
environment to consider when learning the map from the atomic structure to the quantum operators.
There are two cutoff concepts in the SLEM model. One is the cutoff for the bond rb, which is used
to build the one-to-one correspondence of the graph structure of atomic data to the diagonal and
off-diagonal blocks of the quantum operators. Another one is the cutoff for environment re.

For rb, since the bond whose radial distance beyond rb would all be considered 0, this value should
be fixed according to the LCAO orbital used in DFT data generation. For numerical atomic orbitals
(NAOs), the cutoff is defined clearly in orbital files or DFT software, therefore, we just double
(since two orbitals constitute a bond) and assign the value to each atom as there rb. For Gaussian-
type orbitals (GTOs) and Slater-type orbitals (STOs), since they decay exponentially along radial
distance, we often set some precision threshold during data processing and find the longest bond in
off-diagonal blocks with a value larger than the preset threshold. The length of the bond will be
considered as rb.

The environmental cutoff re is very system dependent. This decides how large atomic/bond envi-
ronments relate to the mapping. This should follow the locality behaviour of the physical system.
For example, in typical periodic crystals such as semiconductors (Si, GaN, etc.), medals (Graphene),
and insulators (HfO2) the re are quite local, therefore, it is safe to set the re = rb. However, when
systems experience strong nonlocality behaviour, re should be very large. One should carefully bal-
ance the efficiency of choosing a large re that ensures strict locality and the usage of a semi-local or
MPNN-based method.

G LIMITATION

The SLEM model, benefiting from the Strictly localized design, performs better in accuracy and
transferability as demonstrated in various datasets. We acknowledge that such a localized hy-
pothesis is most suitable for describing periodic systems, which is commonly adopted in physics,
chemistry and material science research. For confined systems such as molecules, the absence of
screening effect could lead to long-term dependency that is uncovered within prefixed cutoff. In
these cases, the SLEM model wouldn’t perform as well as it does in periodic ones. For gener-
ality, we also proposed a semilocal model called LEM (Localized Equivarient Message-Passing),
where the interaction between distant atoms is included but decays exponentially with their distance,
with a trainable decay factor. All the designed models are ready to use in our GitHub repository:
https://github.com/deepmodeling/DeePTB.

H FUTURE INVESTIGATION

While SLEM demonstrates efficacy across various applications, several areas warrant further inves-
tigation:
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• Sampling Methodology for Active Learning: Scientific computation tasks require high con-
fidence in calculated results, which can be challenging for data-driven approaches. Devel-
oping a robust sampling workflow for active learning is essential for reliability. While
techniques like uncertainty-driven sampling with Gaussian regression (Vandermause et al.
(2020)) or model ensembles (Zhang et al. (2020)) have addressed confidence issues in ma-
chine learning force fields, how to design a sampling workflow specifically for quantum
operator models remains an open question.

• Software Integration for Post-Processing: Integrating the model with existing software is
vital, especially for high-throughput calculations and large atomic systems beyond conven-
tional DFT capabilities. An efficient, parallelizable solver for extracting physical quantities
from the model’s predictions is highly beneficial. While some software based on stochas-
tic techniques (Li et al. (2023); João et al. (2020)) shows promise, an open-sourced and
highly-optimized solution for non-orthogonal bases remains unavailable.

Future research addressing these challenges will further enhance the applicability and reliability of
SLEM and similar quantum operator models in computational materials science and chemistry. We
are excited and look forward to seeing these happen.
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