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ABSTRACT

Score-based generative models have recently achieved remarkable success. While
they are usually parameterized by the score, an alternative way is to use a series of
time-dependent energy-based models (EBMs), where the score is obtained from
the negative input-gradient of the energy. Crucially, EBMs can be leveraged not
only for generation, but also for tasks such as compositional sampling or model
recalibration via Monte Carlo methods. However, training EBMs remains chal-
lenging. Direct maximum likelihood is computationally prohibitive due to the
need for nested sampling, while score matching, though efficient, suffers from
mode blindness. To address these issues, we introduce the Diffusive Classifica-
tion (Dif£CLF) objective, a simple method that avoids blindness while remain-
ing computationally efficient. Di £ £CLF reframes EBM learning as a supervised
classification problem across noise levels, and can be seamlessly combined with
standard score-based objectives. We validate the effectiveness of DiffCLF by
comparing the estimated energies against ground truth in analytical Gaussian mix-
ture cases, and by applying the trained models to tasks such as model composition
and recalibration. Our results show that Di ffCLF enables EBMs with higher
fidelity and broader applicability than existing approaches.

1 INTRODUCTION

Probabilistic modeling is a cornerstone of modern machine learning, providing a principled frame-
work to capture complex data distributions and to generate realistic samples. A classical approach is
density estimation, often carried out by explicitly modeling it using Energy-Based Models (EBMs),
where the density is parametrized as the exponential of the negation of a learnable function, referred
to as the energy (LeCun et al., 2006; Kim & Bengio, |2016; Nijkamp et al., 2019; Du & Mordatch)
2019; |Grathwohl et al.l 2020j (Che et al.l 20205 Song & Kingma, |2021). While conceptually appeal-
ing, EBMs are notoriously hard to train due to the intractable normalizing constant that prevents
maximum likelihood estimation, forcing reliance on costly sampling procedures. Despite advances
in amortized and efficient sampling (Du & Mordatchl 2019} Du et al., [2021; |Grathwohl et al., 2021}
Carbone et al.,|2023}; |Senetaire et al.,|[2025)), training EBMs remains computationally challenging.

A popular alternative avoids the difficulty of modeling energies directly by targeting their negative
gradient, the score function. Score matching methods (Hyvarinen, [2005) leverage the fact that the
intractable normalizing constant disappears upon differentiation, making the score easier to estimate.
This approach became especially prominent with the advent of score-based generative models such
as Diffusion Models (Sohl-Dickstein et al.l 2015} [Ho et al.| 2020; |Song et al.| 2021b) and Stochas-
tic Interpolants (Albergo & Vanden-Eijnden, 2023; |Albergo et al., 2023), where a forward noising
process gradually transforms data into pure noise (or another tractable distribution), and sampling
is achieved by reversing this process through a denoising dynamic. Crucially, these denoising dy-
namics depend on the score of the perturbed data distribution, which can be efficiently learned using
Denoising Score Matching (Sohl-Dickstein et al., 2015} |Song et al., 2021b).

Beyond generating samples, estimating the underlying energy function, rather than only the score,
enables a range of downstream applications. Examples include recalibrating generative models via
Monte Carlo methods (Phillips et al., [2024; |[Zhang et al., 2025a) and composing multiple models
(Du et al.l 2023} |Skreta et al., [2025bga [Thornton et al., 2025; |He et al., |2025)), both of which funda-
mentally require access to energies. While prior works (Skreta et al., 2025bja; |[Zhang et al., [2025a;
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He et al.l 2025)) focus on estimating marginal density ratios using only scores, they typically rely on
assumptions such as perfectly learned scores or approximations of transition kernels in small time
steps. In contrast, direct access to the energy often leads to improved performance.

While several works (Salimans & Ho, 2021}, [Phillips et al., 2024}, Thornton et al., 2025)) have ex-
plored training energy-based generative models through score-based objectives, yielding approx-
imations of the energies, these methods face significant limitations. Chief among them is mode
blindness, where the relative proportions of disjoint high-density regions are misrepresented (Wen-
liang & Kanagawa, 2021} Zhang et al.,|2022;|Shi et al.,[2024)). Recent efforts aim to recover energies
of diffusion models directly, but they often demand heavy computation or fragile hyperparameter
tuning (Gao et al.,|2021; Zhang et al.| 2023} Schroder et al.| [2023; Zhu et al., [2024).

Our contributions. We address the problem of training energy-based generative models in a way
that enables direct downstream use of energies. Our main contributions are:

* We introduce the Diffusive Classification (D1 f£CLF) objective, which reframes log-density es-
timation as a supervised classification problem. DiffCLF is lightweight, flexible, and can be
seamlessly combined with classical score-matching objectives.

* We prove that DiffCLF consistently recovers the ground-truth distribution at optimality and,
unlike score-based methods, is not mode-blind.

* We establish connections between Dif £CLF and prior approaches that exploit temporal correla-
tions in stochastic processes to learn energy-based models.

* We demonstrate the effectiveness of DiffCLF across different generative processes and for a
range of downstream tasks, including model recalibration and compositional generation.

2 PRELIMINARY

2.1 GENERAL FRAMEWORK

This work considers stochastic processes on R? for ¢ € [0, T of the form
Vi=Xi+9(1)Z, (1)

where v € C?([0,T]), T denotes the terminal time which may be infinite, (X;); is a stochastic
process from which samples can be drawn at any time ¢, and Z is a standard Gaussian noise inde-
pendent of (X;);. Let ¢; denote the marginal density of X; and p, the marginal density of Y;. This
framework serves as a generic setting, with concrete instances and applications provided later. The
objective is to estimate the densities (p;); up to a normalizing constant, given access only to samples
from X;. To achieve this, a parametric family of energy-based models is introduced

p) () = exp(=UY(n))/ 2], Z{ = exp(F]) = /exp(—U?(yt))dyt, )

where U? : [0, 7] x R? — R is the energy function, parameterized by 6 € © (for instance, neural
networks), and Z? is the associated normalizing constant, which is intractable in general. A natural
approach to estimating this model is Maximum Likelihood (ML) which writes as

Lvi(8) = E¢ [Cmu(6:1)] . Lan(6:1) = —Ep, log pf (Y2)] = By, [U7 (V)] +1log 2 . (3)
Given t € [0, T, taking gradients of Ly (-; ) with respect to 6 yields
Vo LM (0: 1) = By, [V U7 (V)] — By [VoUF (1)) - “)

The difficulty of this approach lies in the second term, which requires sampling from pf. Since
this distribution can be as complex as the original data distribution ¢;, sampling typically demands
expensive Monte Carlo methods, making ML estimation impractical.

An alternative is to exploit the structure of Equation (1) and apply Denoising Score Matching (DSM)
(Sohl-Dickstein et al., [2015; [Song et al., |2021b) which aims at learning the gradient of the log-
density (the score) to recover the energy up to an additive constant as a by-product. Let p, S |z¢) be
the density of Y; conditional on X; = z;. By construction, for all ¢ € [0, T] and x4,y € R

pe(yelme) = N (s 20,72 (8)1g) )
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Using that p;(y:) = [ pe(ye|@e)qe(@e)day, the scorecan then be expressed as
ye — Xi
73 (t)
Equation @) is often referred to as the Tweedie’s formula (Efron,, 2011)). This characterization shows

that the score is a conditional expectation over the posterior distribution of X; given Y;. Building
on this, DSM defines the following loss

Viogpi(y:) = E [vyt log pi(y:| X¢) | Yi =y = E [_

Y, = yt:| . (6)

Lpsm(0) = E¢ [Lpsm(0;1)],  Lpsm(;t) =E [HVlngf(Yt) = Vy, Ingt(Ytlxt)Hz} , (D

where X; ~ ¢; and Y; ~ p;(-|X;). Note that various heuristics exist for designing the time distri-
bution see for instance (Song et al., 2021b; |[Karras et al.| 2022} Kingma & Gaol [2023)). The DSM
objective doesn’t require to compute the normalizing constant or to sample from the model.

The framework introduced in Equation underlies many widely used generative models. The
core idea is to generate new samples via a Markov process, typically formulated as a Stochastic
Differential Equation (SDE), whose marginals coincide with those of Y;. Crucially, constructing
such processes relies on access to the score function V log p;. Below, two concrete and widely used
instances of this framework are presented.

Example 1 : Diffusion Models In Diffusion Models (DMs) (Sohl-Dickstein et al.,[2015; Ho et al.}
2020; [Song et al.| [2021b), the process (X;); is defined as X; = S(t) Xy with Xy ~ 7 and S(0) =
1, where 7 is a distribution with an available dataset of samples, from which new samples are
generated. The noise schedule vy factorizes as y(t) = S(t)o(t) with o(0) = 0, chosen such that
Yy ~ mand Y7 ~ pr where pr is a simple known distribution. This construction induces a noising
(forward) SDE, and, under mild conditions on 7 (Anderson,|1982)), one can derive the corresponding
denoising (backward) SDE satisfied by (Y;):

dY; = [f(t)Y; — g*(t)V1ogp(Yy)] dt + g(t)dW,, Y7 ~pr, ®)

where f(t) = S(t)/S(t), g(t) = S(t)\/26(t)a(t) and (W), is a standard Brownian motion.
Estimating the score function V log p, via DSM allows approximating this SDE which can be
solved backward in time to new samples from 7.

Example 2 : Stochastic Interpolants Stochastic Interpolants (SIs) (Albergo & Vanden-Eijnden,
2023} |Albergo et al.l [2023) generalize diffusion models by constructing generative processes that
interpolate between any two distributions, not necessarily with a Gaussian endpoint. In this setting,
X: = L(Xo, X1) with Xo ~ qo, X1 ~ ¢1, where datasets are available for both ¢ and ¢;. The
interpolation function I is chosen so that X, and X; are recovered at times ¢ = 0 and ¢ = 1, while
~v(0) = v(1) = 0 ensures that Yy ~ ¢go and Y7 ~ ¢;. Under mild assumptions, the dynamics of
(Y;) are given by the SDE

v = [0 = (500 + L35 ) T1ogpu(vi) -+ g(traw:. ©)

where (W;); is a standard Brownian motion, g is any positive function and v; is defined via a
conditional expectation as v;(y;) = E[0:I;(Xo, X1) | Y = y¢]. As in DSM, v; and the score can
be learned via simple regression objectives, and once approximated, the SDE can be integrated to
generate new samples from ¢; El Notably, DMs appear as a special case of this framework.

2.2 WHY MODELING ENERGIES ?

As illustrated by DMs and SIs, the most natural quantity to model is often the score V log p;. How-
ever, directly learning the energies themselves brings several important advantages, with only a few
highlighted below.

"For clarity, we write V log p; (y) as shorthand for V,, log p;(y) whenever no ambiguity arises.
2The transport from ¢; to go can be obtained by changing the sign of the diffusion coefficient in front of the
score in SDE (9), i.e. g(t)?/2 — —g(t)*/2, and integrating from ¢ = 1 to t = 0 with Y1 ~ py.
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Figure 1: Densities, scores, time-scores, and classification posterior probabilities of Gaussian
mixtures with varying weights. From left to right : (1) Reference mixture (blue, weights 2/3-1/3)
and perturbed mixtures (orange, left mode weight ranging in [0.2, 0.8], with transparency propor-
tional to the value) at ¢; = 0.1 under variance-preserving noising (Song et al., |2021b). (2) Scores
remain nearly identical across mixtures, (3) Time-scores show the same limitation, while (4) 3-class
classification posterior probabilities @) (with t9 = 0.5, t3 = 0.7) vary with the mixture weights.

Recalibration of generative models. Energy estimation enables recalibration of trained genera-
tive models such as DMs or SIs. The goal is to compute expectations under a target distribution 7
with known energy (up to a constant), leveraging both a dataset of samples and density information.
When only the energy is available, classical Monte Carlo approaches (e.g., importance sampling,
MCMC) or annealed techniques such as AIS (Jarzynskil 1997} Neall, 2001), SMC (Doucet et al.,
2001; |Del Moral et al., [2006), and RE (Swendsen & Wang, [1986; |Geyer et al., |1991} Hukushima
& Nemotol |1996) rely on intermediate distributions bridging a base law and 7. Recent works con-
struct these bridges using trained energy-based generative models, often diffusion-based: AIS-based
methods (Zhang et al., [2024} |2025a) require only scores, while SMC (Phillips et al., [2024)) and RE
(Zhang et al.| [2025b)) achieve lower-variance estimates by also exploiting energies.

Compositionality. Accurate energy estimation also enables training-free compositional opera-
tions between generative models. Recent work shows that multiple diffusion models trained on
different targets can be combined to form new models of their mixtures or products. Such construc-
tions can be sampled using score-only methods like AIS (Skreta et al. |2025a}b), or more powerful
schemes that exploit both scores and energies, including annealed Langevin dynamics (Du et al.,
2023; |Lee et al., 2023} [Zhu et al., 2024} and SMC (Thornton et al.,[2025}; He et al., [2025)).

2.3 ON THE LIMITATION OF SCORE-MATCHING METHODS

While score-based methods learn energies via their gradients, they suffer from fundamental limita-
tions. Perhaps the most critical is the the “blindness” of score matching (Wenliang & Kanagawal,
2021;|Zhang et al., [2022; |Shi et al.,2024): divergences that rely solely on scores, such as the Fisher
divergence, the Stein discrepancy or any SM-based objective, are not valid when distributions have
disjoint supports, since a zero distance does not guarantee equality (Zhang et al., 2022, Theorem
2). Intuitively, the score of a multi-modal distribution captures only local information within each
mode, ignoring other high-probability regions. Consequently, distributions with identical modes but
different mixture weights produce nearly identical scores. Figure [1]illustrates this: Gaussian mix-
tures with differing weights (15¢ panel) yield almost identical scores (2" panel). This limitation
prevents SM objectives from reliably recovering the correct weighting across disconnected regions.

3 LEARNING ENERGIES VIA CLASSIFICATION

In this work, the energy is modeled by jointly learning the time-dependent energy function U? and
the log-normalizing constant F¢ = — log Z¢ P| rather than focusing on the score.

3Note that F? is not the true negative log-normalizing constant, but only a learnable parameter.
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Figure 2: Classification posterior probabilities and associated EBM during training. Red,
green, and blue dots are samples from p;,,p:,,p:,, With learned densities shown as curves
of the same colors. The background encodes posterior probabilities from the classifier (IT))
(RGB channels). The target distribution is a mixture of N'((—1,0),0.02I5) with weight 0.3 and
N((+1,0),0.02I;) with weight 0.7, and the intermediate distributions are obtained via a variance-
preserving noising scheme. As optimization progresses, class separation improves in the back-
ground, enabling accurate recovery of the underlying densities.

Our approach is based on minimizing the following Diffusive Classification (D1 f££CLF) objective

log Pl (Vi)
N
Zj:l p?_j (Vi)

where p{ (y) = exp(—UY{ (y) + F{.) and ¢; are sampled independently and uniformly from [0, 7.
The objective (I0) reformulates the task of estimating the EBM as a multi-class classification prob-
lem. Consider a sample y associated with a label c. If ¢ = 4, this indicates that y was generated from
the marginal distribution at time ¢;. In multinomial logistic regression, the goal is to estimate the
posterior distribution over classes given the data y. Here, the class-conditional probability p(-|c = )
is modeled by pfi. If we further assume that all N labels are equally likely, i.e., p(c =) = 1/N ,
then the posterior probabilities take the following form

N
1
Eclf(9§ N) = ]EtlzN [Eclf(9§ tl:N)]7 ﬁclf(e; tl:N) = _N § Epti P (10)
=1

N

Ple=ily)=plw)/> rl ). (11)

j=1

The categorical cross-entropy of this classifier corresponds exactly to Equation (I0). Figure 2]illus-
trates this in the 3-level setting: given samples from three distinct time steps, the objective solves the
classification problem to progressively separate them, as visualized by the posterior probabilities in
the background. Because the classifier is constructed as a softmax over the EBMs (shown along the
bottom edge of the figure), optimizing this objective also directly learns the marginal distribution
of each sample group. As shown in the rightmost panel of Figure[I] the posterior probabilities (L))
reflect changes in the mixture weights, unlike the score. This highlights that, in contrast to DSM,
the classification objective doesn’t suffer from mode blindness.

Furthermore, Proposition |1| guarantees that the true marginals (p;); are recovered at optimality.

Proposition 1. The minimizer of objective is given by pf* = py, foreveryt € [0, 7).

In the simplest case of two times ¢, ¢’ € [0, T, the objective reduces to binary classification, yielding

1 100 ] 1 [ py (X)) ]
Lag(0; (8, 1) = —=E,, |1 - — 3Ep, |1 t
i(6: (4,1)) = =5 Ey, {ngf(Xt)ij?,(Xt) 27 |8 (X)) + pl(Xe)

1 1
=—-E, |lo
9 P [ 517 exp(—U%(X;) + FY + U (X;) — Ff)}

1 1
—-E,, |lo .
9 P { g1+exp(—Uf(Xt/)+Ff+Uf,(Xt/)—Ff/)}

12)

Computational cost. While the DSM objective requires exactly two neural network evalua-
tions per time samplecﬂ the multi-class classification objective requires V.

*One for the forward pass and one for the backward pass to compute the score with auto-differentiation.
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Consequently, minimizing both Lpgy and Ly simultaneously requires only N + 1 evaluations per
time (/N — 1 more evaluations than DSM). In the binary case, this amounts to just one additional
evaluation compared to DSM, making the computational budgets highly comparable.

Beyond Euclidean spaces. It is noticeable that Di f fCLF remains valid on different processes
and manifolds, since it only requires (p?); to compute the loss. We discuss the case for applying
DiffCLF on continuous-time Markov chains (CMTCs) for discrete diffusion in Appendix [E]

4 CONNECTION TO OTHER WORKS

This section discusses connections between the proposed approach and existing methods. It first
focuses on approaches that constrain higher-order derivatives of the log-density (Section .1}, and
then considers works that directly operate on the log-density itself (Section [d.2). All the losses
introduced, including Di f fCLF, operate on the log-densities, without imposing a hard constraint to
ensure the learned energies are normalized.

4.1 CONSTRAINING OTHER DERIVATIVES OF THE LOG-DENSITY

As highlighted in Section regressing solely against the score is insufficient to recover the full
energy landscape. Our approach tackles this challenge by using a loss that depends directly on the
energy values, while alternative methods attempt to mitigate the same limitations through additional
constraints on the model’s higher-order derivatives.

4.1.1 CONNECTION TO REGRESSING TIME DERIVATIVES OF LOG-DENSITIES.

Time Score Matching. An intuitive direction is to exploit the temporal structure of the process.
This leads to optimizing EBMs so that their time-derivative aligns with that of the true marginals.
We refer to this objective as Time Score Matching (tSM).

Lis(0) = EilLisw(050)]  with Lisw(6;1) = By, [(9ogpf (V) — dlogp (V)] . (13)

Figure [T| shows that, similar to the score, the time-score d; log p; also exhibits blindness of mode-
weights. A theoretical justification is provided in Appendix [C| Moreover, Proposition 2] establishes
that the binary classification loss (I2)) converges to the tSM objective (T3] in the continuous-time
limit (see Appendix for the proof).

Proposition 2. Lett € [0,T") and § > 0, we have

.8
51£(I)1+ 5 (Lag(0;t,t+0) —log2) = Lism(05t) + C', (14)

where C = E,, [(% log pt(Y}))g] is a constant with respect to 0.

DRE-co. However, as with the score, directly regressing the time-score is generally infeasible be-
cause it is intractable in most cases. (Choi et al) 2022, Proposition 4) extends Proposition [2] by
showing that the optimal binary classifier associated with objective (using a general classifier)
can be used to approximate the time-score. In contrast, the proposed approach embeds the param-
eterized marginals directly into the classification problem, bypassing the need to approximate the
time-score altogether.

Conditional Time Score Matching. In parallel, (Yu et al.| [2025; |Guth et al., |2025) propose
an alternative objective, termed Conditional Time Score Matching (CtSM), which leverages the
tractable conditional time score and enjoys the same gradients as the original formulation. For in-
stance, in the DMs case where X; = S(¢) Xy, the time score can be expressed as 0log p;(y;) =
E[0: log p: (y+| X¢)|Y: = y+] where the conditional time-score is

) aXT (Y- X)) IV = Xl® 4() s)

Oy logp (Vi X,) = _dy(t) 7 (t)2 Y(t)2 (b))’
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which leads to the following mean square regression problem
2
Lewsm(0) = EelLasm(@51)],  Lesm(@;t) = E [ (9, logpf (Vi) — i logm(VilX0)*| . 16)

with X; ~ ¢; and Y; ~ p;(:|X;). This derivation closely parallels that of DSM (see Section .
Similar to our approach, |Choi et al.| (2022)) and |Yu et al.| (2025) suggest combining this loss with
DSM (/) to enhance model learning. Further, the conditional time score for SIs follows exactly the
form in Equation ; however, it remains intractable for general (X;); (see Appendix |A|for the
proof and additional details).

4.1.2 LEARNING LOG-DENSITIES WITH SELF-CONSISTENCY.

Another strategy for estimating log-densities is to enforce self-consistency relations implied by the
dynamics of (Y;);. Two main approaches have been explored: one derived from the Fokker—Planck
equation (FPE) and another from Bayes’ rule. These methods typically require stronger assumptions
on the process and are best understood in structured settings such as DMs or SIs. The detailed
introduction and discussion are provided in appendix

Consistency via Fokker-Planck. When (Y}); admits an SDE representation, its marginals fol-
low the FPE, a partial differential equation governing the log-densities (logp;);. Several works
(Sun et al.l [2024; Shi et al., 2024) exploit this by penalizing deviations from the log-density FPE.
While conceptually appealing, this requires backpropagating through time-derivatives, scores, and
Laplacians, leading to high computational cost. Variants mitigate these issues by approximating
derivatives with finite differences (Plainer et al., 2025). Moreover, Appendix |C| shows that such
objectives remain subject to mode blindness, despite claims to the contrary.

Consistency via Bayes’ Rule. An alternative derives from the relation between marginals at two
times s and ¢, p; (ye) sje (Ys|ye) = ps(ys) Pejs(velys) forallyg, y, € RY, where py|s (resp. pyj¢) is the
conditional distribution of Y; given Y, = y, (resp. Y, given Y; = y;). Using approximations of the
conditional distributions given by Euler-Maruyama integration of SDEs (8) or (9) (which depend
on the score), one can regularize (log p{); by enforcing approximate Bayes consistency (He et al.}
20235). However, this method remains valid only when the approximations are sufficiently accurate,
which occurs for s,t close together, precisely the regime where the objective is prone to mode
blindness. In fact, Proposition [3] in Appendix [A.3] shows that the Bayes and FPE regularizations
coincide asymptotically, inheriting the same limitations.

4.2 CONNECTION TO OTHER TRAINING METHODS

Maximum likelihood approaches. While direct ML on a single distribution (3)) is notoriously
difficult, leveraging temporal correlations in (Y3); can help alleviate those limitations. [Noble et al.
(2025) leverage annealed sampling where (p?); defines the annealing path, while Zhang et al.| (2023)
model the joint time—state distribution and use Gibbs transitions across levels. In the DMs case,|Gao
et al.[ (2021); [Zhu et al.| (2024) exploit tractable conditionals py|, to model posteriors as EBM with
pg‘ ; X Dyjs X pY, enabling more efficient ML when ¢ — s — 0. Despite their advantages, these
methods still depend on costly sampling loops.

Noise contrastive estimation. The binary objective closely resembles the well-known Noise
Contrastive Estimation (NCE) framework (Gutmann & Hyvirinen, 2010), with the multi-class ex-
tension (I0) being related to the generalization considered in Matsuda & Hyvirinen| (2019). Intu-
itively, our formulation can be interpreted as using the marginal at time ¢ as the “noise distribution”
when learning the density at ¢’, and vice versa, but in a fully parametric setting. This connection
highlights an additional flexibility of our approach: whenever some marginal densities p, are known
exactly (for example, pr in diffusion models, or pg and p; in stochastic interpolants) these can be
seamlessly incorporated into the learning framework, potentially improving accuracy.
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Table 1: Comparison on synthetic 40-mode Gaussian mixtures. A DM with variance preserving
noising scheme was trained on MOG-40 using the different objectives. We explore different val-
ues of the number of levels N € {2,4,8,16} and ensure equal computational comparison between
methods. We report the classification loss (10), Fisher divergence (FD), and Maximum Mean Dis-
crepancy (MMD) (x100) from the denoising SDE. The classification approach matches DSM in
Fisher divergence and MMD, while yielding markedly better consistency in classification loss.

‘ Lar + Lpswm (ours) Lecism + Lpsm Lpsm
Dim | Lar FD  MMD | La FD MMD | Lar FD  MMD

8| 4.41+0.12 2.00+1.48 0.69+0.59 | 6.80+0.86 5.74+2.21 19.41+0.77 | 9.19+0.33  4.09+3.80 0.99+0.64
16 | 4.194+0.14 2.81+1.38 0.91+0.32 | 8.33+2.36 7.96+2.11 22.62+0.45 | 22.36+0.76  5.49+5.23 1.28+0.56
32| 4.04+0.23 3.68+1.47 1.20+0.44 | 6.13+1.45 10.30+1.95 18.18+1.51 | 85.07+9.53 3.88+3.49 1.20+0.42
64 | 4.01+0.46 4.87+1.95 2.18+1.02 | 7.78+1.64 9.96+1.84 12.67+3.66 | 149.45+33.76 3.93+3.48 1.51+0.15
128 | 4.40+1.00 6.91+2.47 3.54+1.34 | 20.86+4.93 9.42+1.82  5.20+0.34 | 383.53435.99 6.78+5.94 1.99+0.35
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Figure 3: Learned EBMs with SI between a bi-modal and a 40-mode 2D Gaussian mixture.
We use Lpsnt, Losm + Leism, and Lpsy + Lo (DLEECLE, ours). (Left): Learned densities at
t = 0 (top row) and ¢ = 1 (bottom row) for the different methods, showing that Di f fCLF best
captures the target distributions. (Right): Comparison of learned log-densities log pf versus the
exact log p; on exact samples from (Y}); across time in terms of scatter plots and RZ? statistic. Plots
at the left and right edges correspond to ¢ = 0 and ¢ = 1, respectively; the middle shows the
coefficient of determination R? over t € (0, 1), indicating that only Di f fCLF achieves consistently
high agreement with the true log-densities.

5 NUMERICAL EXPERIMENTS

We begin our numerical study by comparing Di £ fCLF with DSM and CtSM E| on controlled high-
dimensional Gaussian mixtures, before turning to the practical applications outlined in Section [2.2]

DMs and SIs on MOGs. In the mixture of Gaussian (MOG) setting, the closed-form expression of
p¢ is available (see Appendix [FI), allowing us to quantitatively assess approximation errors of dif-
ferent training objectives. In Table[T] we train diffusion models on the 40-mode mixture (MOG-40)
across increasing dimensions. We evaluate the trained models using three metrics: the classifica-
tion loss (I0), which the optimal model should minimize, the Fisher Divergence (FD), measuring
accuracy of the learned score and the Maximum Mean Discrepancy (MMD) (Gretton et al.,|[2012),
reflecting the quality of generated samples. While all objectives achieve comparable FD and MMD,
our method is the only one that consistently achieves low values of the classification loss, thereby
satisfying the self-consistency condition that other approaches fail to capture. In Figure[3] SIs are
trained to bridge MOG-40 and a 2-mode mixture (MOG-2) in 2D. The figure demonstrates that
DiffCLF learns significantly more accurate energies than the baselines. Additional results and
experimental details are provided in Appendix [F2]

3For clarity, Dif £CLF refers to Lpsm + Leir training and CtSM refers Lpsy + Lcism training.
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Figure 4: (Left) OR and AND model composition. 7op: OR composition, Bottom: AND composi-
tion. Red/Blue: input distributions, Green: ground truth, Orange: D1 £ £CLF, Purple: DSM. Results
obtained via 512-step SMC on the product of learned marginals. (Right) SMC-Recalibration met-
rics. Box plots of Sliced Wasserstein (JV,) and Kolmogorov-Smirnov (KS) distances for a 512-step
SMC on the SI between MOG-40 and MOG-2. Optimal scores and velocities are used for kernels,
with learned EBMs for marginals. Dif fCLF consistently outperforms other methods.

Composition. Following |Du et al.| (2023)); Thornton et al.|(2025)), we evaluate Di f fCLF against
DSM on two toy composition tasks shown on the left of Figure ] : an “OR” between two Gaus-
sian mixtures with different weights (top row) and an “AND” between a mixture of rings and uni-
form rectangles (bottom row). We perform composition using standard SMC (Doucet et al.|, 2001}
Del Moral et al.| [2006) with a Metropolized Langevin (MALA) (Roberts & Tweedie, |1996) ker-
nel applied to either the mixture or the product of the learned densities. In this toy setting, this
strategy consistently outperformed the annealed Langevin approach of |Du et al.|(2023) and the dif-
fusion—SMC approach of [Thornton et al.|(2025). As seen in the two right-most columns, models
trained with Di £ £CLF produce substantially better results than DSM, particularly in preserving the
correct proportions of each region, a direct consequence of avoiding mode blindness. Experimental
details are provided in Appendix [F3]

Recalibration. To demonstrate the potential of using trained EBMs for recalibration, we consider
recalibrate the energy-based SI between MOG-40 and MOG-2 by embedding the learned energy
into the SMC framework of Phillips et al.| (2024), which exploits integration of the SDE @I) to en-
hance transitions between levels. Specifically, the algorithm is provided with learned energies from
either D1 £ £CLF, CtSM, or DSM, with the last marginal constrained post-training to match the true
distribution. To focus the comparison solely on the energies, we use the analytical velocity and
score (see Appendix [FI)) to calculate the densities of transitions. As shown in the right part of Fig-
ure[] Dif£CLF yields substantially more accurate samples than DSM and CtSM in all dimensions,
highlighting its advantage for recalibration tasks.

6 CONCLUSION

Energy-based generative models provide a compelling perspective on score-based methods, extend-
ing their utility well beyond pure sample generation to a wide range of downstream applications.
Despite this promise, the existing literature on energy-based training remains limited, with avail-
able methods often being computationally demanding, hyperparameter-sensitive, or biased. This
work introduced the Diffusive Classification (Dif£CLF) objective, a simple, efficient, and unbi-
ased training principle. The method is broadly applicable across different stochastic processes and
integrates seamlessly with existing approaches such as DSM, offering both theoretical clarity and
practical flexibility. Empirical results demonstrate clear advantages of Dif £CLF, resulting in more
accurate and consistent energy estimates, which in turn improves model composition and recali-
bration. Nonetheless, our experiments are limited in scale. Exploring applications to large-scale
tasks such as image modeling, where SMC-based composition has already shown promise (Thorn-
ton et al., [ 2025)), constitutes an exciting direction for future work. Another promising extension lies
in the discrete domain: since DiffCLF remains valid for general stochastic processes, including
Continous-Time Markov Chain, applying it to textual modeling appears especially compelling in
light of recent advances at the intersection of EBMs and DMs (Xu et al., 2025)).
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A ADDITIONAL BACKGROUND

A.1 BACKGROUND AND FOUNDATIONS FOR ITO SDES

In this section, we will introduce the It6 SDEs, its time reversal, and the Fokker Planck Equation.

Forward and Backward Processes of Itd SDEs. Given f : [0,7] x R — R% and g : [0, 7] x
R? — R with regularity, the Ito SDE is defined as

dXt = f(t,Xt)dt + g(t,Xt)th, t e [O,T] s (17)

where (W}).e[o,1) is the standard Wiener process. With additional regularity on f and g (see
(1982)), its time reversal is given as

dXy = [f(t, Xs) — g(t, Xe)g(t, Xy) " Viog pe(Xy)] dt + g(t, X3)dW, (18)

where (Wt)te[o)T] is the time-reversed Wiener process. We denote (p;):e[o,7] as the marginal dis-
tributions admitted by the SDE, starting either from (¢ = 0, Xy ~ pg) or (t = T, X7 ~ pr). For
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simplicity, in the rest of context, we consider the Additive-noise Ito SDEs, i.e. with g(t,z) = g(t),
which gives

(forward SDE) dX; = f(t, X¢)dt + g(t)dWy , (19)
(backward SDE)  dX; = [f(t, X;) — g(t)*V log p¢(X¢)] dt + g(t)dW, . (20)

Fokker Planck Equation. The Fokker Planck Equation (FPE), which is also known as the For-
ward Kolmogorov Equation, describes the density change along the forward SDE as follows

t 2
o) =~V - (F(t @) + LA ) e
where V is the divergence operator and A is the Laplacian operator both with respect to the variable
x. Its log-density version, i.e. log-density FPE is given by

2
i logpu(x) =~V f(x,1) ~ f(z,0) ¥ logp(x) + LU

[V - Vlog py(x) + ||V log pi ()|
(22)

A.2 CONDITIONAL TIME SCORE

This section recaps and extends the analyses of |(Guth et al.| (2025) and |Yu et al.| (2025), provid-
ing a unified presentation of the conditional time score framework. Using the stochastic process
introduced in Equation (T)), the log-density evolution can be written as

Ot log ps(y) = 0y log / q¢(x)pe (y|z)dx (23)

N Ptiy) (/Pt(y|x)8tqt(x) + Qt(ﬂf)apt(yb)dx)

= E[0;log ¢ (X¢) + 0y logp (Y| Xo)|Y: = 9]

where
O log py(y|z) = 9 log N (y; z,~(t)I)

d ly — x|?
= ——log2m —dl -
O ( 5 og dlog~(t) (1)

1) @) @)
while 9; log q;(X;) doesn’t have a general form and therefore should be treated case-by-case.

_ g3y =2l @)

In this work, we mainly discuss special cases of Equation , where (X);c[0,r is deterministic
once the source(s), i.e. X for DMs and (X, X1 ) for SIs, are given. For simplicity, we define { ~
as the source and X; = T;(€) is obtained by a deterministic map T} (see examples bellow). In such
case, the marginal of X can be defined by a Dirac delta

a(z) = / WS — Ti(€))dE = poly) = / H(E)pe(yI T (€))de |

Therefore, Equation (23) can be written as

O log pry) = s log / ()P (yIT(€))de

1

T ) / 1(€)pe (Y| T4(€))Dy log pi (yI Ty (€))d€

p(€ly) o log N (y; Ti(€), () I)d¢
:E[ PRIQRNCS (6))T3tTt()+IIYt (9| 4(t)
t

\

v(t) v(t)? y(@#)2 ()

Ytzy] .
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Example 1: Diffusion Models As introduced in Section (X1): clo.7] in DMs are defined as
X; = S(t)Xo with Xg ~ 7mand S : R — R. Therefore, £ = X, p = 7, and T;(§) = S(¢)&:
W) SWXJ (= SMXo) | lly = SOXoll? 3()

BRCTO R NEETOE vuﬂ' .

Oilogpi(y) =E

Example 2: Stochastic Interpolants As introduced in Section SIs are defined by two ends,
ie. X; = L;(Xo,X1) given (X, X1). Therefore, £ = (Xo, X;), p any coupling of pg, p; with
marginals po, p1, and Ti(§o, &1) = 1e(&o, &)

A(t)  9Le(Xo, X1) " (y — 1i(Xo, X1)) Ly = L(Xo, X[ V(t)]

Oy logpi(y) = E {—dw(t) (1) ~(t)? (1)

(25)

A.3 LEARNING LOG-DENSITIES WITH SELF-CONSISTENCY

In this section, we will introduce two strategies to learn log-densities via enforcing their self-
consistency relations: the Fokker-Planck regularization (Sun et al.l [2024; [Shi et al., |2024} [Plainer,
et al., 2025) and the Bayes (or RNE) regularization |He et al.[(2025). Such relations naturally arise
from the underlying dynamics of the process and can be exploited to design training objectives.
These methods typically rely on stronger assumptions about the generative process Y;, which is why
we primarily focus on the well-structured settings of DMs and SIs.

A.3.1 CONSISTENCY FROM FOKKER—-PLANCK EQUATION

Assume that the dynamic of the process (Y;); can be described by an (additive-noise) It6 SDE
dY; = ay(Ya)dt + Bd W, (26)

where a; : [0,7] x R® — R? and $; : [0,T] — R,. Then the evolution of densities induced by
this process is governed by the Fokker-Planck Equation (FPE), (see Appendix for more details)
given by

2
Ope +V - (upy) — %AP:& =0, 27

where V- is the divergence operator and A is the Laplacian operator both with respect to y.
This formulation arises when the stochastic process admits an SDE representation. For example,
in Diffusion Models we have a;(y) = f(t)y and 8; = g¢(t), while in Stochastic Interpolants
ai(y) = E[0L(Yo, Y1) + AW Z|Y; = y] + 387V Iogpi(y) and B = g(t) ﬂ Although the
Fokker—Planck equation is formulated in terms of the density p,, it can equivalently be rewritten
in terms of the log-density log p; as

2
Oilogps — Fi(pe) =0,  Fi(pe) = % {A log p:(y) + Hth(Z/)HQ} —a-Viegps =V -y .

To enhance the accuracy of (pf )¢, recent works (Sun et al., [2024; [Shi et al., 2024; Plainer et al.,
2025)) propose enforcing its self-consistency by optimizing the following objective

Lrpr(0) = Ei[Lrpe(9;t)], Lrpr(0;t) =E,, [(@ log pf (Y2) — -Ft(pf)(n))2:| : (28)

Although |Shi et al.|(2024) claim that this approach overcomes the blindness of score matching, we
demonstrate in Appendix [C|that it remains susceptible to the same issue. The objective can also be
combined with DSM, and a pretrained score estimator may be directly incorporated into F without
further optimization. However, the method is computationally demanding, as training requires back-
propagating through high-order derivatives of U? (specifically, the time derivative, the score, and the
Laplacian) resulting in a substantial increase in cost. To mitigate this, |[Plainer et al.| (2025]) propose
approximating the time-score using finite differences and estimating the residual term J; with an
unbiased estimator.

SNote that oy = vy and B; = /27%(t)~(t) is also a valid choice but we keep the previous decomposition to
make the following proofs easier.
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A.3.2 CONSISTENCY FROM BAYES RULE

A complementary perspective arises by considering the correlation between the distribution at two
consecutive times 0 < s < t < T In this case, the marginal densities of Y and Y; are connected
through Bayes’ rule

Pe(We)psie(Wslye) = ps(Ys)pes(welys),  forall ys,y € R, (29)

where p;|, and p,|; denote the conditional distributions of Y; given Y and Y given Y}, respectively.
Although these conditional distributions are generally intractable, they admit tractable approxima-
tions when (Y%); is defined as the solution of an SDE, as in DMs or SIs. We should first note that
the time-reversal, which generally exists for DMs or SIs, of Equation (26) is written as

dY; = [y (V;) — BEV log py(Yy)]dt + Bed W, (30)

where (Wt)t is a standard Brownian motion in reversed time. By letting § = ¢ — s, one can approx-
imate the transition kernels via an Euler—Maruyama (EM) discretization of the corresponding SDEs

() and (9), yielding
s (-lys) = N (ys + des(ys), 66%14) 31)
psit(lye) ® N (ye — 6 [culye) — BV logpe(ye)] , 0871a) - (32)

In [He et al.| (2025), the authors propose to regularize the sequence (logp?); by minimizing the
squared discrepancy between the logarithm of the two sides of the Bayes rule (29)

LBayes(o) = Es,t[‘cBayes(e; S, t)} )
with

2
Liayes(055,1) = By, [(mgpi(m ~1og pf (Y1) + log pf), (Vi[Y5) — log bl (V3| V7)) ] :

§| , denote approximations of py|, (E_II) and p;|; (13_2|), obtained by replacing V log p;

with its approximation V logp?. As highlighted in He et al.|(2025), for DMs, the specific choices
of f and g allow a closed-form expression for the forward-time kernel p;|s. This yields a more
accurate approximation of the time-forward kernel than the EM scheme (31)) and avoids reliance on
intractable quantities such as the score. However, even in this favorable case, the time-backward ker-
nel remains approximate, introducing bias that breaks self-consistency. Exact self-consistency
is only recovered in the small-step limit (9 — 0), where the EM scheme becomes accurate.

where pfls and p

A.3.3 BAYES AND FOKKER-PLANK REGULARIZATIONS: DISCRETE V.S. CONTINUOUS

Now, we are going to show that Lpayes and Lrpg are asymptotically related as follows:

Proposition 3. Let 6 > 0. In the small step-size regime, the Bayes objective Lpaycs recovers the
Fokker—Planck regularization Lypg, i.e.,

1
lim — s(0; = it) .
lim. = Lpayes(0;t,t +6) = Lrpr(0;t) (33)
The proof is provided at appendix[D.3] This result is also closely related to the derivations in (Skreta
et al., 2025b, Appendix D.2). Building on this observation, Proposition [3| implies that Lpayes iS
either in the small step-size regime, where it remains mode blind, or in the non-small step-size
regime, where it becomes biased.

B ADDITIONAL CONNECTION TO RELATED WORKS

B.1 CONNECTION TO RELATED WORKS IN TRAINING ENERGY-BASED GENERATIVE MODELS
FigureB|illustrates the connections between Di £ £CLF and other existing methods that train energy-

based generative models (usually diffusion models), while Table [2] summurizes the computational
overhead, assumptions/requirements, and mode-blindness issue for those methods.

19



Under review as a conference paper at ICLR 2026

DRE-co DiffCLF (ours)

} *
|_ ________ a i_ ________ a —> converge
| gSM I | EXACT : =3 equivalent
19, logpf = 0, logp; | [ pe = e 1

____________________ * requires approx.

? ?* [Proposition (3)] ¢*
CtSM  FPE-reg % Bayes-reg

Figure 5: Connections between DiffCLF (ours) and other related works.

Table 2: Comparison of properties between Dif fCLF (ours) and related methods. For Number
of Function Evaluation (NFE), we report the actual evaluations when jointly training with Lpgr,
where we treat auto-differentiation costing roughly twice a network forward pass. For DRE-co,
though |Choi et al.|(2022) proposes to directly parameterize the score, we choose to treat it a way for
energy-based training and therefore report the NFE for energy-parameterization, which doubles the
original calculation. For FPE-reg, we follow the approximations made in [Plainer et al.| (2025) and
count their NFE.

Method NFE No approx. Prior knowledge mode-weight
of (py)s aware
DRE-00 (Choi et al 2022) 4 X - X
CtSM (vu et a1} [2025,[Guth et al.|[2025) 2 v 0 Xy X
FPE-reg (painer ct al{[2025) 14 X Induced from known FPE X
Bayes-reg (He etal}2025) 3 X Di|s & Dot X
N-DiffCLF (ours) N+1 v/ - v

DRE-oco (Choi et al.l [2022), CtSM (Yu et al., 2025} |Guth et al., [2025), and FPE-reg (Plainer et al.,
2025) train models such that their time derivatives match the ground-truth ones, which is termed
Time Score Matching (tSM) (Choit et al., 2022)). Jointly training with DSM, the optimality yields
Vlogp! = Vlogp; and 0; log p! = 9; log p;. However, it is not sufficient to reach the optimalit
of log density, i.e. logp} = logp;, especially when the modes are disconnected (see Appendix
for more discussions).

Bayes-reg (He et al.| [2025) leverages the transition kernels for energy-based training, which is guar-
anteed to reach optimal (p?); if training with arbitrary time pairs (¢, #'). However, in practical cases
such as DMs or SIs, the transition kernels can only be approximated when ¢ and ¢’ close enough,
through a Euler-Maruyama discretization of the dynamic’s SDE. Proposition [3] shows that when ¢
and t’ are close enough, Bayes-reg recovers FPE-reg, and therefore, it shares the same issues in tSM.

Dif fCLF treats the energy training as classification tasks, which, in the 2-class case, recovers tSM
in the continuous-time limit (see Proposition [2). In fact, when (¢,t’) in Equation (12) are close
enough, one could approximate

log p, (x) = log p{ () + O, log p{ (x)(t — ') + O(|t — '|*) .
Therefore, the first term in Equation can be approximated as[?]

(%
P (X) } [ 1 ]
E,, |log ———+——2—| =E,, |log , (34
: Pl (X) + i (X) 3 1+ exp(0; log pf (X)(t — ') + O(Jt — ']2))
1 1
~E,, [log <2 + Zat log p? (X)(t — t'))} . (35)
"This is induced by the first order approximation of the log sigmoid function, i.e. log H% = —log2+
2+ 0(2%).
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Analogously, the second term in Equation (I2)) can be approximated as

0
Py (X) ] [ (1 1 0 /
— oo | ®Ep, |log | 5 — ~Oclogpy (X)(t —t) || . (36)
e (X) +pfh (X) : 2 4 '

DRE-cc (Choi et al., [2022) proposes to parameterize a time-score network sy and optimize Equa-
tion (12) with approximations given by Equations and (36):

LDRE-00(0) = Et[LDRE-o0(0;,0)] 37
. 1 1
with LprE—oco(0;t,9) = —ngt [log(1 — he(Y,t,0))] — iEpHré [log hy(Y,t,0)], (38)

]Ept/ log

1 1
hg(Y,t,6) = B + 159(:5,75)6 . 39

B.2 CONNECTION TO MBAR

Computing free-energy differences, differences in log-normalizing constants between two poten-
tials, is a central task in statistical physics and molecular dynamics (Lelievre et al. 2010). In
this section, we first introduce the free-energy estimation problem and the golden standard method
MBAR (Shirts & Choderal, 2008)) and build connection between with Di f £fCLF, which shows that
their difference is the choice of model-parameterization.

Free-energy estimation and MBAR. Given a distribution

1 .
ply) = zexp(=U(y)), with Z= | exp(=U(y))dy
Q
where Q0 C R? is the support and U :  — R is the energy function, the free energy is defined as
the negative log-partition function, i.e.

F=-logZ= /Qexp(—U(y))dy .

While direct estimation of F is difficult, one typically estimates the free-energy difference between
two states A and B with supports Q2 4, Q5 and energy functions U 4, U g respectively,

ZB
Za
The golden-standard method for estimating this free-energy difference is Multi-state Bennett Ac-
ceptance Ratio (MBAR) (Shirts & Choderal, 2008)), which generalizes Bennett Acceptance Ratio
(BAR) (Bennett, [1976) to multi-states by introducing (i) a sequence of intermediate distributions

with tractable energy functions bridging the two states {U;}2_; and (ii) associated samples with

these distributions {y,(f) }fjjﬁc:l such that

AFAB = FA 7FB = log

exp(—U,
Uo=Ua, Un=Ug, puly) = Mv yE ~py

where Z = 2, = [, exp(~Un(y))dy. Let F,, = —log Z,, by defining
exp(—Uyp(y) + Fp,
ple = nly) = o2 =Unl®) * Fu)

Zm:l exp(—Un(y) + Fi)

MBAR treats the free energy estimation problem as a multiclass classification problem with maxi-
mum likelihood

and p(yln) = pn(y) -

Fiy = argmaxEy ) By, [log p(c = ny)]
1:N

exp(=Un(y) + Fy)
o) Ep, | SN
> me1 €XP(=Upn(y) + Fr)

N (k)
1 1 exp(fUn (yn ) + Fn)
~ =S =31 , 40
RN N S K 2 SN e Un(W) + Fo) o

=argmax[E
Fi.n
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which solved using a fixed point iteration (see (Shirts & Choderal |2008, Equation 3)) or using the
Newton-Raphson algorithm (see (Shirts & Chodera, 2008, Equation 6)). Although the optimization

problem is easy to solve, it requires equilibrium samples {y,(f) }. from each intermediate distribution
Dn, Where the intermediate energy functions are usually defined by tempering e.g.

Un(y) = (1= 8.)U0a(y) + B, Up(y) ,withB =0and By =1. 41)
To get equilibrium samples from each intermediate distributions, one typically used annealed

Markov Chain Monte Carlo samplers which are expensive.

Connection between MBAR and Dif£CLF. By comparison with the Dif£CLF objective (40)
and the MBAR objective (I0), one could observe that the difference between MBAR and Dif £CLF
is the model-parameterization.

» In MBAR, the energy functions (U,); [°| are assumed known and the learnable objects are
only the free energies (F})y, i.e.

pi(y) = exp(=Ui(y) + FY) .
* In Dif£CLF, the EBMs are fully parameterized (see Equation (2)).

Besides, the accuracy of MBAR critically depends on the choice of the path, e.g. the anealling
temperatures. Similarly to the recalibration case, learned energies could directly provides a data-
driven approach to construct more effective paths, potentially surpassing hand-crafted designs.

C BLINDNESS OF SCORE MATCHING AND TIME SCORE MATCHING

In this section, we revisit the blindness of score matching, first analyzed in|Wenliang & Kanagawa
(2021); Zhang et al.| (2022)), and show that the problem persists even when matching higher-order
derivatives or the time derivative of the trajectory (log p:);.

Let a set of time-dependent distributions with differentiable densities {g},..., 9} having mutual

disjoint (disconnected) support sets {X}!, ..., X/}, where X/ N &/ = 0 for any i # j H For all

t € [0,T], we define two mixture distributions p; = Zszl akgl and ¢; = Zle BEgk, where
K K

Shoiof =land 3T BF =1

Score Matching is blind. Score Matching is minimizing the Fisher Divergence (FD) between p;
and ¢;. Let ¢t € [0, T, following the (Zhang et al.,[2022, Proposition 1) we have that

FD(ps, qt) := By, [[IV1og pi(Xe) — Viog q:(X0)|| °]
& |VEE, dgle) VS Bl @),
= |

A AR ATAC)

g¢ (w)dx
K
2/»« oot ek

using gi(x;) = 0 and Vgi(x;) = 0 for Vz; € X; when i # j. Therefore, SM (or FD) is ill-defined
on disconnected sets and has the blindness problem.

K
pi(x) - ()
2

afgf (z)dz =0,

Remark 4. The marginal p; needs not be supported on disjoint sets for all t € [0, T). For example,
in DMs the terminal distribution pr is typically Gaussian and thus fully connected. In such cases,
mixture proportions may be correctly estimated. However, at intermediate times where the support
is disconnected, the proportions can be misestimated. Since the objective averages losses across
time, the blindness issue may persist overall.

8For clarity, we change the index of n to a set of discretized time ¢ as in Di f £CLF.
Note that multi-modality could be modified depending on ¢ by simply setting two components and respec-
tive weights equal.
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Higher-order Score Matching is blind. As suggested in|Lu et al.|(2022)), one could minimize the
divergence between the Hessian or Laplacian of log-densities, i.e.

Ep, [HVQ log py(X¢) — V* logqt(Xt)HH or E,, [(Alogpt(Xt) - Aloth(Xt))ﬂ :

where |||/ is the Frobenius norm. Similarly as the previous paragraph, for all ¢ € [0,77] and
x e Xk,

pi() 15 ol V2 (@) — (15, 0l Vgl (@)) Vp(a)T

V?log py(x) = ()2 ,
_ ot @)KVt (@) — oV gF (2)of Vg ()T
(o gk (x))? 7

which doesn’t depend on the weights «. The cases for Laplacian or other higher-order (w.r.t. x)
regression are analogous.

Time Score Matching can be blind. The Time Score Matching (see Appendix for details)
objective can be written for any ¢ € [0, 7] as

Ep, [(ﬁt log pi(X¢) — O logqt(Xt))Z] =

Z/Xk< tla;gt( )) (Z; 1Btgt( ))) ozfgf(x)d:z:, (42)

gt ()

where 8t(2§(:1 ol g7 () can be expanded by leveraging gi(z;) =0forany z; € X; and i # j

Zaigi = (af)gf (x +Zaf8fgt ., Voexf, (43)

hence,

E,, [(8,5 log p(X;) — 0, log Qt(Xt))Q}

K k) gk K g4 kY ok K pig j 2
. (Oray) gy ($)+Z_j:1 o Ogi(z)  (OuBF)gf (@ )JFZ] 1 B 0vgi (z) k k
‘Z/Xk( oFok (@) - Ao (@) ) s (o)
X dak  aBF X, cddgl@) X, 800l @)
> ( F T ) @z,

which can be 0 in some cases. For example, if the mixture weights «, 8 are time-independent (as in
DMs) and the supports of g; vary only slowly over time (also typical in DMs), then the loss becomes
mode-blind.

The Fokker-Planck regularization is mode blind. When p;, ¢; are generated from the same 1t
SDE, say dX; = f(t,X;)dt + g(t, X;)dW,, starting from py, go respectively, the Fokker-Planck
Equation (see Appendix [A.T)) tells us

O logpy(z) = =V - f(t,2) — f(t, ) Viogp(z) + %g(t,w)Tg(t,x) (A log py () + IIVlogptllz) ,

1
Orlog gi(w) = =V - f(t,2) = f(t,2) TV logau(a) + 39(t,2) Tg(t,2) (Alog ar(w) + |V Iog ar]|*) -
Therefore, the FPE regularization is equivalent to regressing a combination of (i) the score and its

squared norm, and (ii) the Laplacian, which are all mode-blind. Therefore, FPE regularization in
such cases is blind in this case.
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Alleviating the blindness of score matching. Several approaches have been proposed to address
mode blindness. [Zhang et al.| (2022)) introduce an auxiliary noise distribution m and minimize the
Fisher divergence between mixtures of (7, m) and (p?,m), which indirectly enforces proximity
between 7 and p?. Similarly, Schroder et al|(2023) propose the energy discrepancy, a contrastive
objective between 7 and its noisy counterpart that provably avoids blindness (see (Schroder et al.}
2023|, Figure 1)). However, both methods hinge on the careful design and tuning of the auxiliary
noise distribution or kernel, limiting their scalability in practice.

D PROOFS OF PROPOSITIONS [I], 2], AND [3]

D.1 PROOF OF PROPOSITION(I]

Proposition 5. Let N € N* and t1.y € [0, T)". The energy classification loss is defined as

N
Lag(0;t1:8) Z: 72 ptl (;; )(Yz)

where p?(y;) = exp(=U%(y;) + FY). The minimizer of Lo (0;t1.n) is given by p!” = p; for all
tefty,... tn}.

)

Proof. For clarity, we denote for all ¢ € [1, N], we denote p; = p, and p! = p{ . Assume the
supports of {p; };c[1,n] are the same, denoted as 2, one could have

6
ZEPL / Zpt idy : (44)

ZJ 1pj Y} Ej 1pj(y)

One could easily show that p; = p; is the unique maximizer of a constraint optimization problem

i R
maprl log —7—— st Zf\;l pj=1.
) j=1 pj

Let £(prn, A) = SN pilog [pi/ Zj.vzlﬁj] + AN, B — 1) Forall i € [1,N].

oL Di al Pk Di
A:O<:>—fg —_—~ — A=0<+= —-1-A=0,
Op; Y23 §. i

k=1 22j=1Dj

which leads to p; /p; = 1 4+ A. Since Zf\; p; = 1, we have p; = p;. Therefore

Z]Em 27 /sz logz Py g,

j=1Pj (y)
where the equality holds when p! (y) = p;(y), for Vt € {t, }_ andy € Q. O

D.2 PROOF OF PROPOSITION[2]

Lemma 6 (Kolmogorov semigroup expansion). Let X, solves the Ito SDE dX, = f(t,X;)dt +
g(t, X)dW; and ¢ € C} . Then with a small time increment 5,

2
El0(Xes) X = 2] = 0(a) +0Le0(x) + & L20(x) +O(?) @s)
or equivalently
52
Ep, s [6(X)] = Ep, [(X)] + 0By, [Lid(X)] + T By, [LF6(X)] + O(6%) , (46)

where L¢ == f(t,") TV + 2g(t,)g(t,-) T A¢ is the time-dependent backward generator.

24



Under review as a conference paper at ICLR 2026

Lemma 7 (Generator-Adjoint Identity). Given the It6 SDE, ¢, and L, defined in lemma@ we have

0
B [£40(X)] = By, [o(X) 3 o (X)] @)
Proposition 8. Lett € [0,T") and § > 0, we have
lim > (Lar(8:,6+6) — log2) = Lisu(031) + C | (48)
50+ 02

where C' = E,, [(% log p(Y2)) } is a constant with respect to 6.

Proof. In the binary case, we first rewrite the classification loss as follows
log pf+5 (z)
Pl (@) + ., 5(@)

E,, [loga(logpf () — log p}, 5(x))] + By, [log o (logpf, s(x) — logp (x))] ¢,
A B

1 (7
Eclf(e,t,t+5) = 2 {Ept [loglﬁ(m +]Ept,+5

) +pt+6( )

where o(z) = 1/(1 4+ e~ #) is the sigmoid function. By Taylor expansion,

B
log pf (z) — log p, 5(x) = —0 log pf (z) + O(5?),
2

logo(z) = —log2 + g — % +0(z%).

Therefore, A and B can be simplified as

e, 8 (9 2
1 — ( = logp!

3o towstle) - (7 vourko)

59 52 (0 ?
B=—log2+E,,_, l28t log p? () — Y ((%logpf(x))

A=—-log2+E,, |-

Next, we use Lemma@with o1(x) = % log p! (z) and ¢2(z) = (& logp! (1:))2 as follows

By [010)] = By | 5108500 + 08y, | 205 towsf0)] -+ 0(6%),

(2 st

Plugging £, , ; [¢1(x)] and E,,_; [2()], B can be written as

Ept+5 [¢2($)] =E,, + O(9).

8 9]
—log2+ Ept [at log p¢ ( )]
52 9 52 9 2 :
+ 5By, |Liglogpt(2)| — Ty, |{ 5o logpi(a) ) | +0(5%). (49
ot 8 ot
Therefore,
52 . 52 0 2 .
A+ B=—2log2+ 5 —E,, {Etat logpt(x)} -7 —E,, (815 log p! (z )) + O(6°).
By lemma the E,, [£:-2 logpf(x)] term could be written as
0 0 5, 9]
By | iy You ()] =By, | o towsto) 5 low(a)|. 50
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which results in
A+ B +2log2

_z E 9, HED : _om, |2 o( )91 (z)| | +0(5%)
- 4 Dt 5t ngt z Dt at ngt xz at og pe(®

82 . 4 o 2 o 2 5
- (E (g7 00tta) = gyroumi@)) |45, | (G 10sn(o) | ) + 00

Therefore, given a small time-increment §, the binary-classification loss can be written as

52 0. o 2
Lag(;t,t+9) = ngt o logp; (x) — o log pi(x)

52 o 2 X
+ gEm alogpt(ac) +log2+ O(5°). (51
Since C = %Ept [(% log pt(x))Q] + log 2 is constant w.rt. 6, it recovers the tSM regularization.

O

D.3 PROOF OF PROPOSITION[3]

Proposition 9. Let 6 > 0. In the small step-size regime, the Bayes objective Lpayes recovers the
Fokker—Planck regularization Lypg, i.e.,

1
lim — EBaVeS(G; t,t+ 5) = EFPE(& t) . (52)
§—00 X

Proof of Proposition[3] From Equation (28), we write the full learning objective of the FPE regu-
larzation for reference:

1
Lrpg(0) = / Ep, (@logp?(y)+V~at(y)+at(y)TV10gpf(y)
0

1 1 2
S LAL Vlogpf (y) — §BfIIV10gp?(y)H2> 1dt~ (53)

Now, let’s look at the Bayes regularization. Given the EM discretizations for both the forward
and backward kernels and assume that the (y;—s,y:) are sampled forwardly, i.e. y; =
Yi—s + ou_5(yi—s)0 + Bi_s\/2, where z ~ N(0,1) and 6 > 0. In this case, the forward kernel
should be corrected for the volume change induced by the drift «, i.e.

1

Prje—s(Yelyi—s) = T1ov. at,g(yt,g)N(yt;yt_é + ai-5(ys—5)3, B 501). (54)

Let b;(y) = au(y) — B#V logp:(y), then the log forward and backward kernels can be further
approximated using Taylor expansion around (¢, y;) as follows

1
log pyj¢—s5(yelye—s) = C — §||Z||2 —log(1 40V - —5(yi—s))
1
~ C = gll2l* =0V - auy) + O() (55)

lave—5(ye—5)0 + Be—sVdz — by (y:)d||?

1
Ingtfé\t(ytfélxt) ~C - %'

—C- ﬁllaxyt)a + Biv/6z = by(y:)3 + O(3)|I?
t
o %nzn? - ;;guat(yt) —bi(yo) | - }f”(atm —bi(y2)) +0(9)

(56)
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where C = —%log2r — dlogg(t). Plugging back bi(y) = au(y) — B#V1ogp.(y), the log
Radon—Nikodym derivative can be approximated as

pt|t—6(yt‘yt76) - B

2

1)
log ~ S|V log pe(ye) |2+ BeV/oz TV log pe(ye) — 0V - () + O(8) . (57)
Pt (Yi—s]Tt) 2

In meanwhile, one could Taylor expand the log marginal density log p;—s(y:—s) around (¢, y;)

0
log pt—5(ys—s) =~ log pe(ys) — B log pe(y+)d + V1og pe(ys) " (Yi—s — yt)
1

+ i(yt—é - yt)TV2 Ingt(yt)(yt—(s - yt) + 0(53/2) . (58)

By plugging v — y1—5 = o ()6 + Be/6z + (9(53/2), we have

0
log pr—5(yt—s) = log ps(ye) — ot log pt(y4)d — Vlogpt(yt)Tat(yt)d

2§
— BV62 "V og pe (1) + ’Bt—zTVQ log pi ()2 + O(6%/2) . (59)

2
Now, we could plug all the approximations together, and take the expectation

Pt\t—&(yt|yt—6)

1
“E, [logpt—é(yt—é) — log pt(y:) + log
Pt76|t(yt—5 |2¢)

4]

= (‘i logpt(yt) — V- ay(ye) — Vlogpt(yt)—rf(t, CEt) + = Bt

which recovers the Fokker Plank residual when § — oo, and therefore RNE regularization recovers
the Fokker Plank regularization in the limit. O

E EXTENSION TO DISCRETE DIFFUSIONS

Recent works |Campbell et al.| (2022); Meng et al.| (2023); |Lou et al.| (2023); |Campbell et al.| (2024));
Gat et al.[(2024); |Shaul et al.| (2025)) extend diffusion models to discrete state spaces Y by formulat-
ing the forward noising process as a continuous-time Markov chain (CTMC). A CTMC is specified
by a family of (possibly time-dependent) transition rate matrices (Q:);, a.k.a. generators, where
foreach t: (i) Qr = (Qe(y, ¥'))y,prev, (D) Qe(y,y) = —>_, ., Q¢(y,y’) forany y € Y, and (iii)
Q:(y,y") > 0forally # y' € Y. We write

Y, ~ CTMC(Q)

to mean that Yy ~ po followed by infinitesimal transitions governed by ;. As a stochastic process
starting from a target distribution pg, (Q;): induces a sequence of intermediate marginals (p;)¢,
which satisfy the Kolmogorov forward equation (also called the master equation):

Zpt QY y) = Opr=Qip: - (61)

Analogous to the Stein score in continuous spaces, one can define the concrete score in discrete
spaces as the vector of marginal density ratios

_pey)
Si(y)y = )

In terms of this score, the log-density dynamics admit the compact form

0
9 log pi(y Zpt ) Q:(y',y) ZSt v Qu(y',y) - (62)

27

5 (tr(V? log pu(yr)) + IIVlogpt(yt)||2)> ,

(60)
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Finally, under mild regularity conditions, the time-reversed process (Y;); is again a CTMC with
generator (Q:); (Kelly,|[2011) given by

QL gty
Y, ~ CTMC(Q;), where Qy(y,y') (63)
' (@) ' - Qyy), y=v .
y'#y
Though the marginals (p;); are intractable, one could train time-dependent neural networks s?(y)
to minimize the following Score Entropy (SE) loss

S (Y,
Lon@) =B | S QuViy) (St(Yt)ylog 4 t)y—st(yt)wsf(my) R
yAY, EY St(n)y
(65)

by optimizing the following Conditional Score Entropy loss analogous to DSM

Lose(0;1) = EpoBp | D Qu(Yey) (=Si(YeYo)ylogsf(Ye), +5{(Y2),) |, (66)
y#£Y €Y

where S;(Y;|Yy) is the conditional concrete score, VoLcsg(0;t) = VoLsg(0;t), and py is the
conditional distribution obtained by solving the following ODE

0 .
HePo (ylyo) = Zpﬂo Y |yo)Q:(y',y)  with pojo(ylyo) = 0y, (y)- (67)

Energy-based training. Similar to eq. (2)), one could define a family of EBMs on Y as follows
Pl (ye) = exp(=Uf(wn))/ 20, 2! =exp(F)) = > exp(—Uf(w:)) - (68)
y: €Y

Simply plugging p? into eq. we have

R B o pi(y) | ply)
Losp(0:1) = By By, _ygey Qu(¥iy) ( 51(1i) log L+ B )> (©9)
= BBy | Y. Qu(Ye,y) {S:(Y2)y (UL (y) — U(V2)) + exp(UY(V2) — Uf () }
_lHéYtEY

(70)
Combined with classification loss. Therefore, it is straightforward to combine the classification

loss [10] with Equation (66) to train an energy-based discrete Diffusion model.

F EXPERIMENTAL DETAILS

F.1 GAUSSIAN MIXTURES AND CLOSED FORM EXPRESSIONS FOR DMS AND SIS

Mixture of Gaussians (MOG) is distribution haVing the following density

zwn (@1 10: %)

Diffusion Models case. In DMs, we require the exact marginal density, which is a convolu-
tion of the noising kernel and the target distribution. Assume the noising kernel is pyo(y:|yo) =

N (ys; S(t)yo, v(t)*14), we have
N

pe(ye) = /po(yo)pt\o(ytlyo)dyo = waN (Y S(t)pan, S)* S0 +7(1)a) , (71

n=1

again a MOG. Therefore the marginal density and score are tractable.
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Stochastic Interpolant case. In SIs, we consider py(y) = ZL W N (Y5 i, L) and py (y) =

Zf\le W N (Y; fim, 2m) are both MOGs with independent coupling and a linear interpolation
Ii(yo,y1) = (1 — t)yo + ty1, therefore

Pe(yt) Z//po(yo)p1(y1)N(yt;It(ymyl),’y(t)zld)dyodyl (72)

—Zanwm (15 (1= E)pn =+ i, (1= )28, + 25, +9(0)°1a) ,  (73)

allowing exact marginal density and score calculation. Moreover, we require the velocity in Sls,
which is E[0: I (Yo, Y1)|Y: = y:] = E[Y1 — Yo|Y: = v:]. To get the analytical velocity, notice that

N M (n,m)
1% n,
p Yo, Y1 | yt Z z Tn,m yt ([Zy/?:| ) |f1€”t 'm)] E|(tE nl)) ) (74)

n=1m=1 1|t

WpWm N (Y finm, S,
7Tn,m(yt) - N Mn i (yt Bn,m TL,M) s (75)

Z Z Wy Wiy N(yt;ﬂn’,m’v Sn/,m’)

n'=1m’=1

with
finm = (1= )i + tfim (76)
Spom = (1= 1)2%, + 2%, + (1)1, (77)
ps™ = g+ (1= 1) S0 b (Yt — finm) » (78)
P = i+ 1Sy (U1 — Finm) (79)

Therefore, the exact velocity in this case is given by

ve(ys) = E[Y1 — Yo | Yy = w4 Z Z Tn,m (Yt) (,Ul‘t " Mé?tm)) . (80)

n=1m=1

F.2 ANALYTICAL COMPARISON WITH DSM oN MOG

In this section, we provide the experimental setup for Gaussian mixture experiments along with
additional results.

F.2.1 GAUSSIAN MIXTURE DESIGN

We study two types of Gaussian mixtures. The first, introduced in Midgley et al.[(2023), is a widely
used benchmark consisting of 40 Gaussians with uniform weights (MOG-40). The means are sam-
pled from U([—40, 40]%), and all components share the same covariance log(1 + €)I . The second,
taken from |Grenioux et al.| (2024); Noble et al.| (2025), is a two-component mixture with modes at
—5x 14 and +5 x 14 (where 1,4 denotes the d-dimensional vector of ones), covariance 5 x 1072, I,
and imbalanced weights 2/3 and 1/3. For training, we standardize these distributions (subtracting
the mean and dividing by the standard deviation).

F.2.2 ARCHITECTURE, TRAINING AND EVALUATION DETAILS

We train log-densities using three settings: (i) Lpsm alone, (ii) a convex combination of Lpgy with
either Lr or Lcism. In the latter case, simply summing the two losses generally worked best.

Diffusion Model. For DMs, we adopt the Variance Preserving (VP) schedule Song et al.[(2021b)
with a linear 5-schedule ending at Bi,,x = 20. Time is discretized linearly into 512 steps between
10~* and 1 — 10~*. We follow the energy parameterization of [Thornton et al.| (2025), use the DSM
weighting from Karras et al.|(2022), and implement a 4-layer MLP of width 128 with sinusoidal time
embeddings|Song et al. (2021b). The conditional t-SM loss is reweighted by 72 /42 as recommended
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Table 3: Comparison of classification and score matching on synthetic Gaussian mixtures.
Mixtures with two modes are trained using the same architecture under DSM as well as conditional
time-score matching and our classification objective, averaged over seeds and number of classifica-
tion levels N € 2,4,8,16 (DSM uses the same number of score evaluations for every IV). We report
the classification loss (I0), Fisher divergence, and MMD (x100) from the denoising SDE (all on
512 time-steps). The classification approach matches DSM in Fisher divergence and MMD, while
yielding markedly better consistency in classification loss.

L + Lpsm Lcism + Losm Lpsm
Dim L FD MMD L FD MMD L FD MMD
8| 4.14+0.02 2.48+2.34 6.94+0.59 5.55+1.27 6.78+43.20 20.45+8.43 17.88+4.13 1.2141.14 5.91+0.68
16 | 3.95+0.04 3.47+3.15 8.57+1.83 | 17.97+9.77  9.15+2.82 22.50+6.13 | 191.78+51.04 0.83+0.74 7.13+0.83
32 | 3.84+0.15 4.86+3.87 11.91+1.00 | 27.05+13.99 10.54+2.99 28.59+2.31 | 194.54+2385 1.04+0.89 8.62+1.15
64 | 3.83+0.52 4.39+1.77 15.30+2.08 | 47.65+22.47 11.57+3.48 27.49+1.93 | 208.32+14.77 1.16+0.89 10.73+1.04
128 | 3.85+0.51 6.86+2.26 17.61+2.09 | 151.48+51.21 17.25+9.12 30.69+3.09 | 1521.54+538.48 3.01+2.30 15.48+0.57

by [Yu et al.| (2025). Models are trained on 60k samples for 500 epochs with DSM only, followed
by 500 epochs with the chosen loss combination. We use a batch size of 2048, Adam optimizer
with learning rate 1073, We average results over two random training seeds. Metrics for sample
quality and log-density estimation are computed on 4096 samples. The Fisher devergence and the
classification objective are computed on the full time-grid. Sampling is performed using the DDIM
denoising kernel |[Song et al.| (2021al).

Stochastic Interpolant. For SIs, we use the linear interpolant I;(xg, 1) = (1 — t)xo + tz1 and
v :t+— 4/t(1 —t) bridging the 40-mode and 2-mode Gaussian mixtures described earlier. Time is
discretized into 512 steps between 1073 and 1 — 1073, The potential is parameterized as

Ug, 00)(t,2) = o7 NN (¢,2) + NN® (¢, 2) ,

where NN?* : [0, 7] x R? — R% and NN?2 : [0, 7] x R? — R are MLPs with depth 4 and width 64
(if d < 32) or 256 otherwise. Time embeddings follow |Song et al.[(2021b). Training proceeds for
10k steps with DSM only, then 50k steps with the chosen objective. We use a batch size of 1024 and
alearning rate of 5 x 10~#, sampling endpoint distributions at each step. To reduce variance in Lpsm
and Lcism, we apply the antithetic trick (Albergo et al., 2023, Appendix 6.1). Results are averaged
over two seeds, and evaluation metrics are computed on 4096 samples. The Fisher devergence and
the classification objective are computed on the full time-grid.

F.2.3 ADDITIONAL RESULTS

In this section, we complete the results of Section [5] with additional metrics and problems.

Diffusion Model While Table [3| provides the same comparison as Table [1| but for the bi-modal
case, Tables [Z_f] and @examine how the number of classification levels affects log-density estimation,
whereas Tables [5]and[7] focus on generation quality.

Stochastic Interpolant Like Figure [3| Figures[6ato [6d] we visualize the determination coefficient
R? between learned log-densities and the ground truth ones across time for each modal, as well
as the log-density log-density scatter plots at two ends which should be a perfect diagonal line in

optimality. In Tables[9]and[8] we report the quality of the estimated log-densities using the stochastic
interpolant model.

F.3 COMPOSITION

In this section, we give the experimental details for the toy composition example from Section 3]

F.3.1 DISTRIBUTIONS DETAILS
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Table 4: Log-density estimation on synthetic 40-mode Gaussian mixtures. We report classi-
fication loss, Fisher divergence, and average Effective Sample Size (ESS). The ESS is computed
between the learned and exact log-densities using exact samples, averaged across time levels. Un-
like Table [T} this table shows results for varying numbers of classification levels N. For fairness,
each setting of N uses the same total number of score evaluations as Lpgy.

Ler + Lpsm Lcism + Lpsm Lpsm
Dim N Lt ESS FD Lt ESS FD Lt ESS FD

8 2[4.61+0.04 89.9%+0.9% 3.61+0.25 | 5.14+0.08 88.2%+0.4% 5.27+0.08 8.80+0.13  90.1%+1.2% 5.4540.83

8 4]4.40+0.03 93.2%=+0.6% 2.50+0.00 | 5.48+0.19 90.6%+0.4% 4.69+0.01 | 9.06+0.05  90.4%+0.1% 4.18+0.20

8 8|4.32+0.00 94.2%=+0.3% 1.20+0.03 | 6.77+0.48 91.9%+0.4% 4.09+0.00 | 9.2040.05 91.6%+1.1% 3.94+0.11

8 16| 4.31+0.00 96.2%+0.3% 0.69+0.01 | 7.83+0.16 92.8%+0.2% 3.92+0.04 9.68+0.08  91.5%+0.1% 2.7840.08
16 2| 4.40+0.05 85.8%+0.7% 4.15+0.11 | 5.17+042 T7.7%+0.4% 8.77+0.26 | 22.36+0.55 84.7%+1.1% 6.83+0.71
16 4|4.22+0.04 86.8%+1.6% 3.37+0.04 | 11.40+2.85 T78.4%+0.4% 8.33+0.17 | 21.45+0.36 85.8%+0.3% 7.13+1.34
16 8|4.09+0.00 88.8%+0.1% 2.26+0.12 | 10.04+1.60 80.8%+0.6% 7.52+0.29 | 22.93+0.46 87.7%+0.9% 4.64+0.89
16 16| 4.05+0.00 91.5%+0.4% 1.48+0.01 | 5.48+0.18 81.6%+0.7% 7.1120.03 | 22.69+0.61 88.9%+0.0% 3.38+0.14
32 2| 4.41+0.04 76.8%+1.1% 4.70+0.11 | 5.66+0.11  67.8%+0.1% 10.19+0.10 | 73.34+0.94 76.4%+0.4% 4.88+0.38
32 414.03+0.07 77.1%+0.4% 4.04+0.03| 6.63+0.38 70.7%+0.1% 9.46+0.35 | 81.87+3.99 81.9%+0.3% 4.43+0.10
32 83.89+0.00 79.7%+0.4% 3.33+0.06 | 6.46+0.26 71.4%+0.4% 9.64+0.43 | 86.24+2.31 80.4%+1.3% 3.49+0.24
32 16 3.83+0.01 84.7%+0.9% 2.65+0.03 | 13.92+2.81 72.7%+0.4% 9.32+0.06 | 98.82+1.74 82.9%+0.4% 2.7240.01
64 2| 4.68+0.34 66.0%+2.9% 5.88+0.13 | 21.254+2.64 55.9%+1.2% 10.10+0.23 | 121.14+12.99 69.5%+2.2% 4.8640.68
64  4|4.04+010 69.0%+0.5% 5.16+0.03 | 62.11+47.56 55.8%+0.1% 10.42+0.02 | 121.76+3.21 71.3%+1.1% 4.00+0.09
64 8 |3.70+0.04 72.8%+0.1% 4.42+0.10 | 34.83+5.43 56.5%+0.1% 10.17+0.03 | 152.74+1.00 72.6%+0.6% 3.57+0.03
64 16| 3.61+0.01 72.3%+0.4% 4.05+0.03 | 85.59+68.72 57.8%+1.4% 10.47+0.27 | 202.18+4.46 75.1%+1.7% 3.28+0.18
128 2|5.98+0.05 54.1%+0.1% 7.30+0.06 | 11.80+2.10 44.7%=+0.0% 9.33+0.00 | 427.77+12.04 60.0%+0.3% 8.34+0.43
128 4| 4.52+0.11 54.6%+0.4% 7.39+0.04 | 17.12+1.23 44.8%+0.0% 9.33+0.01 | 383.60+15.45 62.6%+0.2% 6.88+0.13
128 8 |3.63+0.07 55.8%+0.3% 6.79+0.01 | 54.49+28.78 45.0%+0.1% 9.40+0.01 | 356.38+39.38 61.9%+0.7% 5.83+0.33
128 16 | 3.47+0.01 55.0%40.1% 6.17+0.01 | 24.84+9.45 45.1%+01% 9.5120.10 | 366.36+16.04 62.6%+0.4% 6.09+0.05

Table 5: Generation quality on 40-mode Gaussian mixtures. We report Maximum Mean Discrep-
ancy (MMD) |Gretton et al.| (2012)) (x100), sliced 2-Wasserstein distance (x100), and total variation
(TV) distance between mode-weight histograms (as in|[Noble et al.[(2025))). Results are reported for
varying classification levels V.

Lt + Lpsm Lcism + Lpsm Lpsm
MMD  Sliced W5 TV MMD Sliced Wy TV MMD  Sliced W, TV
1.34+0.37 6.32+0.28 0.09+0.00 | 1.65+0.28  7.55+0.61 0.15+0.01 | 1.75+0.07 7.74+0.42 0.13+0.00
0.56+0.56 5.88+0.36 0.12+0.00 | 1.41+1.09  7.12+0.94 0.1240.02 | 0.54+0.54 5.70+0.81 0.11+0.01
0.87+0.05 5.2840.19 0.09+0.02 | 1.07+0.03  6.14+0.03 0.1240.01 | 0.46+0.46 5.49+0.37 0.10+0.01
0.00+0.00 4.77+0.68 0.09+0.01 | 1.49+0.13  6.82+0.54 0.11+0.01 | 1.21+0.06 6.34+0.02 0.11+0.01
0.81+0.31 6.15+0.03 0.11+0.00 | 2.40+0.21 10.74+0.55 0.2240.01 | 1.81+0.18 7.50+0.35 0.13+0.00
1.15+0.03 5.86+0.19 0.10+0.01 | 3.18+0.31 11.78+0.81 0.23+0.02 | 1.334+0.58 6.86+0.44 0.12+0.00
1.00+0.17  5.96+0.41 0.10+0.00 | 1.82+0.47  8.85+1.12 0.21+0.01 | 0.80+0.39 5.90+0.68 0.12+0.01

=
3
=

o]
—_

16 16| 0.68+0.41 5.93+0.27 0.09+0.01 | 2.40+0.36  9.39+0.48 0.19+0.02 | 1.1940.49 6.30+0.37 0.11+0.01
32 1.67+0.50 7.51+0.53 0.12+0.01 | 3.11+0.37 12.96+0.85 0.21+0.05 | 1.66+0.28 7.47+0.50 0.14+0.01

1.21+0.12 6.69+0.290 0.11+0.01 | 2.32+0.02 10.92+0.18 0.17+0.03 | 1.404+0.04 6.91+0.00 0.12+0.01
32 0.94+0.22 6.41+0.06 0.10+0.01 | 2.40+0.04 10.90+0.42 0.1840.01 | 1.09+0.22 6.22+0.82 0.09+0.00
32 16 |0.97+0.38 6.22+0.61 0.09+0.01 | 1.86+0.20 9.76+0.36  0.15+0.01 | 0.67+0.16 5.84+0.09 0.10+0.01
64 3.684+0.80 10.41+1.11 0.1540.02 | 12.25+5.58 30.15+10.58 0.52+0.19 | 1.52+0.24 7.40+0.09 0.14+0.01
64 2.1340.18 7.88+0.39 0.13+0.01 | 10.80+0.80 26.86+1.25 0.48+0.00 | 1.65+0.02 8.11+0.45 0.16+0.01
64 1.69+0.11  7.66+0.27 0.12+0.01 | 9.12+0.93 21.78+1.74 0.43+0.04 | 1.414+0.02 7.18+0.09 0.12+0.00
64 16| 1.224+0.25 6.67+0.38 0.10+0.00 | 7.60+2.05 18.46+2.06 0.34+0.09 | 1.46+0.08 6.78+0.59 0.13+0.01

128
128
128
128

5.34+0.27 15.18+1.27 0.16+0.02 | 5.23+0.47 22.31+1.14 0.61+0.01 | 2.37+0.19 9.41+0.26 0.18+0.01
4.27+0.15 13.2940.3¢ 0.15+0.01 | 14.73+0.26 32.63+0.32 0.8040.05 | 2.02+0.13 8.20+0.60 0.15+0.00
2.4240.20 10.51+0.07 0.1240.01 | 22.79+1.63 47.99+4.90 1.11+0.03 | 1.95+0.37 7.61+0.72 0.14+0.00
2.12+0.25 9.72+0.55 0.13+0.01 | 22.97+6.80 42.97+11.55 1.02+0.30 | 1.61+0.01 7.25+0.24 0.12+0.02

(5]
[\
—_
[N R SN S e Re SIS \S e e A L AN SN S o) We CIF S ')

Gaussian mixtures The Gaussian mixtures p4 and pp in the left part of Figure [] (top row) are
both bi-modal. For p 4, the modes are centered at 11 = (—a, +a) and pe = (+a, +a) with weights
0.3 and 0.7, respectively. For pp, the modes are at 11 = (—a, —a) and s = (+a, —a) with weights
0.7 and 0.3. We chose a = 0.5. Both mixtures share identical covariances 1 = Y5 = 0.01 x I5.
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Table 6: Log-density estimation on synthetic 2-mode Gaussian mixtures. We report classification
loss, Fisher divergence, and average Effective Sample Size (ESS). The ESS is computed between
the learned and exact log-densities using exact samples, averaged across time levels. Unlike Table[T]
this table shows results for varying numbers of classification levels N. For fairness, each setting of
N uses the same total number of score evaluations as Lpsy.

L + Lpsm Lcism + Lpsm Lpsm

Dim N| Lar ESS FD Lar ESS FD Lot ESS FD
8 2|4.18+0.01 95.7%+2.3% 2.83+0.19| 5.05+0.67 91.8%+0.1% 5.02+0.38 14.70+1.88  91.6%+0.9% 2.20+0.73
8 4|4.13+0.00 96.5%+0.4% 3.70+0.34 | 4.72+0.49  83.3%+1.5% 7.25+0.15 14.58+1.91  90.9%+1.5% 1.29+0.34
8 8|4.12+0.00 98.2%+0.0% 2.22+0.18 | 6.02+0.43  88.0%+8.3% 5.36+1.63 18.21+1.49 92.6%+1.2% 0.91+0.30
8 16|4.12+0.00 97.5%+01% 1.17+0.17 | 6.39+1.93  85.9%+1.8% 9.50+2.75 24.02+0.36  92.6%=+1.0% 0.4440.00
16  2|4.00+0.00 90.8%+4.0% 2.93+0.61 | 14.16+7.75 66.5%+2.3%  9.32+0.11 157.79+0.87  81.3%=+0.3% 1.19+0.21
16 4]3.94+0.03 95.3%+0.5% 4.49+1.22 | 12.38+3.86 76.9%+3.6% 8.53+0.46 278.78+1.52  82.2%+1.5% 1.08+0.03
16  8|3.94+0.03 92.7%+1.3% 3.99+0.75 | 27.1245.10 73.3%+0.8% 8.74+1.83 156.97+1.03  82.5%+0.5% 0.68+0.08
16 16|3.91+0.04 97.9%+0.4% 2.44+0.13| 18.21+12.30 59.5%+1.5% 10.02+0.01 | 173.58+12.17 83.7%=+0.3% 0.37+0.06
32 213994017 83.8%+3.9% 2.77+0.45| 45.50+9.22 55.3%+6.1% 10.49+0.74 | 164.35+12.67 74.4%+0.9% 1.81+0.55
32 4|3.87+0.06 87.2%+6.5% 4.26+1.03| 27.16+10.23 48.8%+0.5% 10.84+0.00 | 220.25+11.54  75.2%+0.2% 0.98+0.14
32 8|3.70+0.05 90.0%+1.2% 5.10+0.59 | 16.21+3.15 53.1%+4.5% 10.75+0.63 | 185.16+8.36  76.3%+0.1% 0.81+0.05
32 16 |3.81+0.08 87.3%+0.8% 7.30+0.60 | 19.32+8.11  50.5%=+2.0% 10.06+0.60 | 208.39+7.67  76.9%+0.8% 0.54+0.10
64 2|3.72+0.12 78.8%+1.2% 4.53+0.54 | 29.66+11.12  43.7%+0.4% 11.07+0.04 | 214.3148.38  67.1%+0.5% 1.96+0.31
64  4|4.29+084 81.3%+0.0% 3.83+0.66 | 62.44+6.10 45.0%+0.9% 12.10+0.42 | 210.10+3.03  68.2%+0.4% 1.14+0.05
64  8|3.73+0.21 80.9%+6.9% 5.65+2.41 | 43.24+2.78 43.7%=+1.7% 11.22+0.33 | 206.46+2551 69.2%+0.4% 0.84+0.08
64 16|3.57+0.15 75.6%+7.0% 3.54+0.76 | 55.28+35.08 44.2%+0.2% 11.87+0.93 | 202.40+8.05  70.3%+0.6% 0.69+0.02
128 2|3.79+0.13 56.5%+0.7% 6.99+1.01 | 93.67+7.28 37.5%+0.1% 11.27+0.25 | 2192.68+397.10 56.3%+0.3% 4.27+0.34
128  4|4.66+0.14 61.5%+0.7% 5.89+0.50 | 141.52+40.48 36.8%+0.1% 28.36+13.03 | 1637.77+155.21 56.5%+0.3% 3.15+0.71
128 8 |3.66+0.14 57.7%+1.6% 8.87+0.54 | 195.62+16.22 39.6%+2.9% 14.67+1.39 | 1401.30+161.64 56.8%+0.1% 1.95+0.06
128 16 | 3.304+0.03 62.4%+0.6% 5.71+0.41 | 175.09450.85 37.0%+0.7% 14.69+1.52 | 854.42+168.79 56.8%+0.3% 2.66+0.30

Table 7: Generation quality on 2-mode Gaussian mixtures. We report Maximum Mean Discrep-
ancy (MMD) |Gretton et al.| (2012) (x100), sliced 2-Wasserstein distance (x100), and total variation
(TV) distance between mode-weight histograms (as in|[Noble et al.|(2025))). Results are reported for
varying classification levels V.

L + Lpsm Lcism + Losm Lpsm
Dim N | MMD Sliced Wy TV MMD Sliced Wy TV MMD Sliced Wy TV

8 2| 7.42+031 20.82+1.74 0.01x0.01 | 13.79+0.24 15.87+1.78 0.03+0.01 | 6.32+0.78  21.37+1.77 0.01+0.00

8 4| 7.05+0.20 14.28+5.52 0.03+0.00 | 21.67+5.75 47.94422.18 0.11+0.10 | 6.28+0.42 19.70+£3.09 0.02+0.01

8 8| 6.31+0.60 19.07+2.13 0.01+0.00 | 22.03+11.45 48.37+30.22 0.19+0.18 | 5.84+0.49 25.29+6.98 0.02+0.02

8 16| 6.96+0.47 13.43+2.67 0.02+0.01 | 24.33+7.51  59.01+25.17 0.19+0.13 | 5.18+0.01  13.89+0.77 0.01+0.01
16 2] 9.93+2.64 15.48+1.49 0.02+0.00 | 21.18+7.41 68.65+16.57 0.18+0.06 | 7.63+0.78 11.31+7.99 0.00+0.00
16 4] 8.56+1.00 22.40+0.20 0.02+0.01 | 22.40+5.68 46.29+5.80 0.08+0.03 | 7.69+0.43 22.83+6.96 0.04+0.01
16 8] 8.56+1.22 10.92+0.28 0.0140.01 | 19.38+1.92 48.88+25.33 0.06+0.00 | 6.70+0.80 22.80+9.18 0.04+0.02
16 16| 7.25+0.26 13.33+6.27 0.0140.00 | 27.06+5.19 115.65+38.93 0.31+0.15 | 6.504+0.09 17.29+4.43 0.03+0.01
32 2111984045 18.86+4.51 0.0240.01 | 26.50+1.32  76.92+6.78 0.37+0.01 | 9.9940.06 28.01+0.00 0.03+0.01
32 4112274172 18.98+5.11  0.0340.00 | 30.14+0.64 85.84+0.70 0.5740.03 | 9.50+0.17 14.84+2.00 0.01+0.00
32 8 ]11.1940.07 11.4943.99 0.0340.01 | 28.07+3.31  76.61+3.20 0.5440.09 | 7.2940.05 10.69+3.76 0.00+0.00
32 16]12.22+0.30 9.63+3.58 0.01+0.00 | 29.68+0.20 85.34+2.66 0.63+0.03 | 7.71+0.15 26.74+4.60 0.05+0.02
64 2]15.68+1.39 20.10+£3.14 0.01+0.00 | 27.41+2.15  87.37+3.11  0.64+0.01 | 11.62+1.10 19.19+9.18 0.03+0.00
64 4]15.06+1.70 22.11+12.00 0.03+0.03 | 27.12+1.68  86.51+1.15 0.51+0.03 | 11.21+0.29 18.76+5.50 0.00+0.00
64 8 ]15.3942.67 21.27+3.64 0.02+0.01 | 27.09+2.3¢  91.65+4.87 0.67+0.00 | 10.44+0.86 18.83+0.14 0.02+0.01
64 16| 15.07+2.26 23.33+8.53 0.03+0.02 | 28.35+0.95 83.80+2.62 0.55+0.12 | 9.63+0.06 19.02+8.67 0.02+0.01
128 2| 17.21+0.47 31.284820 0.01+0.00 | 29.11+0.04 82.95+0.86 0.67+0.00 | 15.72+0.52 34.61+6.61 0.04+0.02
128 4] 16.78+0.69 32.77+0.65 0.06+0.01 | 31.45+0.19 82.31+6.71  0.66+0.01 | 15.84+0.57 15.26+2.56 0.02+0.01
128 8] 19.74+3.16 49.72+10.95 0.07+0.03 | 32.1845.65 92.22+1.62 0.66+0.00 | 14.99+0.25 31.944+13.94 0.01+0.01
128 16| 16.69+0.72 39.50+0.44 0.05+0.01 | 30.01+0.74  88.74+7.63 0.64+0.02 | 15.38+0.42 22.36+7.18 0.02+0.02

Rings mixture The ring distribution is constructed as the product of a uniform distribution on
[0, 2] and a Gaussian distribution on the radius with mean  and variance 02 = 10~2 (with r >> o).
Applying the polar transformation maps this distribution on [0, 27] x R into a ring shape in R
In the left part of Figure ] (bottom row), p4 is defined as a mixture of four such rings with radii
r € {1, 3,5}, where each ring is assigned a weight proportional to its radius. This weighting makes

the rings appear visually balanced in the mixture.
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Figure 6: R? of learned versus exact log-densities for SIs between MoG-40 and MoG-2 across
different dimensions. Complementing Figure[3} which shows detailed 2D scatter plots, this figure
demonstrates that Di f fCLF maintains consistently higher R? as dimensionality increases.

Table 8: Log-density focused metrics for stochastic interpolants. We report classification loss,
time-average ESS, and Fisher divergence for a ST model learned between MOG-40 and MOG-2. The
results present different values of [V but the computational budgets remain equal across methods.

Lo + Lpsm Lcism + Lpsm Lpsm
Dim N Cclf ESS FD ‘cclf ESS FD Cclf ESS FD
8 2(5.26+0.00 91.45%%0.02% 0.1640.00 B - N R N B
8 4|5.24+0.00 91.78%+0.08% 0.16+0.00 - - - - R -
8 8|5.23+0.00 91.83%=+0.07% 0.16+0.00 - - - - - R
8 165.23+0.00 91.96%=+0.20% 0.16+0.00 | 6.54+0.01 5.10%+0.11% 0.96+0.00 | 6.85+0.01 76.91%=+0.07% 0.39+0.00
16  2|4.87+0.00 68.08%+0.14% 0.22+0.00 - - - - - R
16  4|4.86+0.00 70.26%+0.10% 0.23+0.00 - - - - - -
16 8| 4.85+0.00 69.73%+0.14% 0.23+0.00 - - - - - R
16 16| 4.85+0.00 69.44%+0.13% 0.23+0.00 | 8.97+0.01 2.74%+0.01% 1.04+0.00 | 7.33+0.00 46.93%+0.01% 0.46+0.00
32 2|4.47+0.00 88.76%+0.02% 0.06+0.00 - - - - - R
32 4| 4.46+0.00 90.52%=+0.12% 0.05+0.00 . - - - R -
32 8| 4.46+0.00 91.36%=+0.08% 0.05+0.00 - - - - R -
32 16| 4.46+0.00 91.87%=+0.01% 0.05+0.00 | 11.62+0.02 1.35%+0.16% 0.61+0.00 | 5.75+0.00 48.72%=+0.10% 0.30+0.00
64  2|4.12+0.00 71.00%=+0.04% 0.08+0.00 - - - - - R
64  4|4.12+0.00 75.26%+0.26% 0.07+0.00 - - - - - R
64 8 |4.12+0.00 74.01%40.06% 0.07+0.00 - - - - - -
64 16| 4.12+0.00 74.42%+0.34% 0.07+0.00 | 16.52+0.05 0.76%+0.03% 0.43+0.00 | 5.67+0.02 28.38%=+0.14% 0.31+0.00
128 2 3.8140.00 54.51%+0.09% 0.08+0.00 - - - - - R
128 4 3.7940.00 47.37%+0.02% 0.07+0.00 - - - - - R
128 8 3.78+0.00 50.34%=+0.07% 0.07+0.00 . - - - R -
128 16| 3.7840.00 52.65%+0.22% 0.06+0.00 | 21.33+0.00 0.23%+0.00% 0.3840.00 | 67.03+0.12 12.35%+0.07% 0.32+0.00

Uniforms mixture The distribution used as pp in the bottom row of Figure []is an equilibrated

mixture of 4 uniform distributions :
U([1.6,6.0] x [—-1.4,1.4]) and U([—1.4,1.4] x [-6.0, —1.6]).

U([-6.0,—1.6] x [~1.4,1.4]), U([-1.4,1.4] x [1.6,6.0]),
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Table 9: Averaged log-density metrics for stochastic interpolants. We report classification loss
and Fisher divergence across different dimensions. The different computation budgets of Table[8]are
here averaged.

Leis + Lpsm Lcesm + Losm Lpsm
Dim Classif Fisher Classif Fisher Classif Fisher
8 | 5.35+0.07 4.38+0.77 8.59+0.16 40.69+1.88 8.03+0.44  0.37+0.06
16 | 4.88+0.02 5.21+0.93 | 16.10+0.46 42.04+2.17 | 10.15+0.82 0.52+0.09
32 | 4.67+0.10 5.63+0.97 | 30.88+2.49 40.60+2.58 | 17.69+2.56 0.53+0.08
64 | 4.17+0.02 2.71+0.51 | 56.54+2.91 35.63+2.57 9.36+2.82  0.23+0.04
128 | 3.84+0.03 2.66+0.44 | 128.28+8.23 279.37+3.91 | 4.54+0.28 0.24+0.04

Generation of pa
with L.s + Lpsm

Generation of pp
with L.s + Lpsm

Generation of pa
with Lpsm

Generation of pp
with Lpsm

Figure 7: Samples generated by the models trained on the p 4 and pp distribution for the “OR”
composition task. 8192 samples are displayed obtained by discretization of the denoising SDE (8)
using the exponential integrator for 512 steps.

Generation of pa
with Lais + Lpsm

Generation of pp
with L1t + Lpswm

Generation of pa
with Lpsm

Generation of pp
with Lpsm

Figure 8: Samples generated by the models trained on the p4 and pp distribution for the
“AND” composition task. 8192 samples are displayed obtained by discretization of the denoising
SDE @) using the exponential integrator for 512 steps.

F.3.2 MODELS TRAINING

The models follow the energy parameterization of [Thornton et al.[(2025), implemented with a 3-
layer MLP of width 128 and trained under the variance-preserving noising scheme. The DSM
baseline was trained for 500 epochs with a batch size of 4096, while D1 f fCLF was trained for the
same number of epochs using the N' = 4 version of the objective (I0) with a batch size of 1024. Both
models used a learning rate of 10~* and were trained on a dataset of 100k samples. Figures[7|and
[8]show samples generated via their respective denoising SDEs, demonstrating that both approaches
successfully capture all target distributions.

F.3.3 COMPOSITION ALGORITHM DETAILS

A variety of training-free strategies have been proposed to compose diffusion models. Here, we
focus on the ”AND” operator, defined as the product distribution p4,p = pa X pp. The “OR”
operator covered in Sectionis given by pa g = (1/2)pa + (1/2)ps. As emphasized inDu et al |
(2023), if pa(t,-) and pp(t,-) denote the time-dependent marginals obtained by noising p4 and
pg, then their product p4(¢,-) X pp(t,-) is not equal to the marginal of the noised operator p4 g.
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Thus, we do not obtain the correct sequence of marginals for free”. Nevertheless, this construction
defines a valid interpolation: it recovers p4, g at ¢ = 0 and approaches a Gaussian at ¢ = T'.

Based on this observation, Du et al.| (2023) proposed annealed Langevin sampling over this se-
quence, i.e., running an MCMC chain at each noise level, with improved performance when de-
noising steps (via the discretized SDE equation[§|using V1og pa(t,-) + Vlog pp(t, -)) are inserted
between MCMC transitions. Building on this, [Thornton et al.| (2025)) suggested using the discretized
denoising dynamics, (Ithough formally incorrect, as noted above) as a proposal distribution within a
Sequential Monte Carlo (SMC) (Doucet et al.,[2001} |Del Moral et al., 2006) framework.

In this work, we combine the strengths of both approaches: we apply standard SMC to the sequence
pa(t,-) X pp(t,-), using the Metropolis-adjusted Langevin algorithm (MALA) (Roberts & Tweedie,
1996) as the transition kernel. This strategy retains the theoretical guarantees of SMC without
depending on the incorrect denoising kernel, which we found prone to divergence. Concretely,
we run 64 MALA steps at each level, tuning the step size to maintain a 75% acceptance rate, and
perform adaptive resampling with a threshold of 30% (Chopin & Papaspiliopoulos}, 2020).

F.4 RECALIBRATION

In this section, we describe how diffusion models or stochastic interpolants can be integrated into
annealed sampling methods to build unbiased estimators. Let p denote a simple base distribution
(e.g., a Gaussian), and 7 the target distribution, known up to a normalizing constant. Our goal is to
compute expectations E [¢(X)] for a m-measurable test function ¢.

Importance Sampling (IS). A natural approach is Importance Sampling (1S). Provided
supp(p) € supp(n),

X)) = [ do)m(aide = E,fu(X)6(X)] w=r/p. (81)

This yields the Monte Carlo estimator
1 XN
Ex (X)) ~ Z Wig(Xi), Xi~p,

where {X;}¥ | are called particles. When 7 is unnormalized, we use normalized weights W; =
W/ Z W, leading to a biased but consistent estimator. The main drawback of IS is variance

explosion when p poorly overlaps with 7, particularly in high dimensions (Agapiou et al.,[2017).

Annealed Importance Sampling (AIS). To alleviate mismatch between p and m, |Neal| (2001)
introduced Annealed Importance Sampling (AIS). AIS extends the problem to a sequence of distri-
butions and defines an augmented target—proposal pair

K-1 K—-1
m(zo.x) = (o) [[ aercapw(@rialar),  pleox) = p(ar) [T rppsr (@elesa) ,  (82)
k=0 k=0

where {gj1 k}f;()l and {qk‘kﬂ}]i:()l are forward and backward Markov kernels, often chosen
as reversible MCMC kernels (see Neal (2001))). Expectations under 7 can then be expressed as
expectations under 7 and estimated via IS with proposal p

/¢ 20)7 (0.1 ) do: K - (83)

AIS thus interpolates between p and 7 by gradually refining proposals through intermediate distri-
butions.

Sequential Monte Carlo (SMC). A challenge in AIS is weight degeneracy: as k increases, parti-
cles sampled from p may diverge from the marginals of 7, especially in high dimensions. Sequential
Monte Carlo (SMC) (Doucet et al.l [2001; [Del Moral et al., 2006) addresses this by introducing a
sequence of intermediate distributions pj with tractable unnormalized densities which aim to ap-
proximate the marginals of 7 (i.e., px(zx) = [ 7(2o:x )dxo.k—1dzk: k). SMC proceeds by:
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1. running AIS between p and py,
2. resampling particles to match pj using the previous AIS approximation, and

3. running AIS between py, and 7.

This resampling step prevents degeneracy and improves stability. While early methods performed
resampling at every step, modern implementations use adaptive criteria to trigger resampling only
when needed (Chopin & Papaspiliopoulos, [2020).

SMC in DMs and SIs. When dealing with a stochastic process such as Equation (), a natural
construction for annealed methods is to take the conditional distributions of Y;, ., [Y;, as forward
kernels, Y3, |Y;, ., as backward kernels, and the marginals of Y}, as intermediate distributions py,
with Y, ~ mand Y;,, ~ p. DMs and SIs provide this setup by design, as their dynamics satisfy the
endpoint conditions. In the case of DMs,|Zhang et al.|(2025a)) propose using the exact noising kernel
as forward kernel and the discretized denoising SDE (8] as the backward kernel in AIS, requiring
only the score. Extending this principle to SMC, [Phillips et al.| (2024)) additionally incorporate
approximations of the marginals, precisely the focus of this work. In our experiments (Section [3)),
we apply the same idea to Sls: the forward and backward kernels are discretizations of SDE (9),
both depending only on the score, while the marginal approximations required by SMC are learned
either via DSM (7)) or Di££CLF (I0) (with N = 2 levels). We run SMC with 8192 particles and
adaptive resampling.
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