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Abstract

With the rapid development of deep learn-001
ing, Seq2Seq paradigm has become prevalent002
for end-to-end data-to-text generation, and the003
BLEU scores have been increasing in recent004
years. However, it is widely recognized that005
there is still a gap between the quality of006
the texts generated by models and the texts007
written by human. In order to better under-008
stand the ability of Seq2Seq models, evaluate009
their performance and analyze the results, we010
choose to use Multidimensional Quality Met-011
ric(MQM) to evaluate several representative012
Seq2Seq models on end-to-end data-to-text013
generation. We annotate the outputs of five014
models on four datasets with eight error types015
and find that 1) copy mechanism is helpful for016
the improvement in Omission and Inaccuracy017
Extrinsic errors but it increases other types of018
errors such as Addition; 2) pre-training tech-019
niques are highly effective, and pre-training020
strategy and model size are very significant;021
3) the structure of the dataset also influences022
the model’s performance greatly; 4) some spe-023
cific types of errors are generally challenging024
for seq2seq models.025

1 Introduction026

Data-to-text generation is a task of automatically027

producing text from non-linguistic input (Gatt and028

Krahmer, 2018). The input can be in various forms029

such as databases of records, spreadsheets, knowl-030

edge bases, simulations of physical systems.031

Traditional methods for data-to-text generation032

(Kukich, 1983; Mei et al., 2015) implement a033

pipeline of modules including content planning,034

sentence planning and surface realization. Re-035

cent neural generation systems (Lebret et al., 2016;036

Wiseman et al., 2017a) are trained in an end-to-end037

fashion using the very successful encoder-decoder038

architecture (Bahdanau et al., 2014) as their back-039

bone. Ferreira et al. (2019) introduce a systematic040

and comprehensive comparison between pipeline041

and end-to-end architectures for this task and con- 042

clude that the pipeline models can generate better 043

texts and generalize better to unseen inputs than 044

end-to-end models. 045

However, with the rapid development of the 046

Seq2Seq models especially pre-trained models, 047

more and more end-to-end architectures based 048

on Seq2Seq paradigm get state-of-the-art results 049

on data-to-text benchmarks nowadays. Although 050

BLEU score (Papineni et al., 2002), which is based 051

on precision, has been improved dramatically on 052

standard data-to-text benchmarks such as WebNLG 053

(Gardent et al., 2017), ToTTo (Parikh et al., 2020) 054

and RotoWire (Wiseman et al., 2017b) over the re- 055

cent years, it is commonly accepted that, compared 056

with human evaluation, BLEU score can not evalu- 057

ate the models very well. It is too coarse-grained 058

to reflect the different dimensions of the models’ 059

performance and not always consistent with human 060

judgment (Novikova et al., 2017a; Reiter, 2018; 061

Sulem et al., 2018). Moreover, existing human 062

evaluations on data-to-text generation are usually 063

limited in size of samples, numbers of datasets and 064

models, or dimensions of evaluation. 065

In this study, we aim to conduct a thorough and 066

reliable manual evaluation on Seq2Seq-based end- 067

to-end data-to-text generation based on multiple 068

datasets and evaluation dimensions. We want to 069

know the pros and cons of different Seq2Seq mod- 070

els on this task, and the factors influencing the 071

generation performance. Particularly, following 072

MQM (Mariana, 2014), similar to the job on sum- 073

marization evaluation (Huang et al., 2020), we use 074

8 metrics on the Accuracy and Fluency aspects to 075

count errors, respectively. Therefore, compared 076

with existing manual evaluation reports, it is more 077

informative and objective. 078

Using this method, we manually evaluate sev- 079

eral representative models, including Transformer 080

(Vaswani et al., 2017), Transformer with Pointer 081

Generator (See et al., 2017), T5(small&base) (Raf- 082
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fel et al., 2019), BART(base) (Lewis et al., 2019)083
1. We test these models on four common datasets,084

including E2E (Novikova et al., 2017b), WebNLG085

(Gardent et al., 2017), WikiBio (Lebret et al., 2016),086

ToTTo (Parikh et al., 2020). Thus we can discuss087

the effectiveness of the pre-training method, some088

essential techniques and the number of parame-089

ters. We can also compare the differences between090

datasets and how they influence the models’ perfor-091

mance. Empirically, we find that:092

1. Pre-training: Pre-training is powerful and ef-093

fective which highly increases the ability of094

the Seq2Seq paradigm on the data-to-text task.095

2. Size: The size of the model makes difference096

to the results. Particularly, T5-base achieves097

the best scores on both automatic and human098

evaluations.099

3. Essential Techniques: The copy mechanism100

can make noticeable improvements for the101

basic Seq2Seq model, decreasing word-level102

errors such as Omission and Inaccuracy Ex-103

trinsic. But it also introduces more Addition104

errors sightly.105

4. Dataset Structure: The structure of the dataset106

also influences the model’s understanding of107

the sequence greatly. Content-controlled gen-108

eration is still a little hard for the Seq2Seq109

models.110

5. Error Type: The most common mistakes of111

Seq2Seq models on data-to-text task are Omis-112

sion, Inaccuracy Intrinsic and Inaccuracy Ex-113

trinsic, indicating the direction we need to im-114

prove the effectiveness of the model. On the115

other hand, models perform well in fluency.116

The code and annotated data will be released to117

the community.118

2 Related Work119

Data-to-Text Generation Traditional methods120

for data-to-text generation (Kukich, 1983; Mei121

et al., 2015) implement a pipeline of modules in-122

cluding content planning, sentence planning and123

surface realization. Recent neural generation sys-124

tems (Lebret et al., 2016; Wiseman et al., 2017a)125

are trained in an end-to-end fashion using the very126

1Due to limited computing resources, we didn’t evaluate
T5-large and BART-large models.

successful encoder-decoder architecture (Bahdanau 127

et al., 2014) as their backbone. Many Seq2Seq 128

models have demonstrated their effectiveness on 129

data-to-text tasks. Since we want to make a general 130

comparison on Seq2Seq models, we will focus on 131

this method. Moreover, with the development of 132

pre-training methods, more and more work (Kale, 133

2020; Wang et al., 2021; Kale and Rastogi, 2020) 134

began to introduce pre-training model for data-to- 135

text generation. 136

There is some work evaluating and analyzing the 137

data-to-text generation task. Perez-Beltrachini and 138

Gardent (2017) propose a methodology to analyze 139

the data-to-text benchmarks and apply their method 140

to WikiBio, RNNLG (Wen et al., 2016) and IM- 141

AGEDESC (Novikova and Rieser, 2016) datasets. 142

Ferreira et al. (2019) introduce a systematic com- 143

parison between pipeline and end-to-end architec- 144

tures for neural data-to-text generation. Thomson 145

and Reiter (2020) propose a methodology for hu- 146

man to evaluate the accuracy of the generated texts. 147

Sequence-to-Sequence Seq2Seq paradigm is a 148

general and flexible paradigm that is typically 149

implemented by an encoder-decoder framework. 150

Sutskever et al. (2014) discuss sequence to se- 151

quence learning with neural networks. Further- 152

more, there are some representative architectures 153

that have been proposed such as recurrent neural 154

network (Zaremba et al., 2014) and Transformer 155

(Vaswani et al., 2017). Seq2Seq paradigm can nat- 156

urally handle any task, as long as their input and 157

output can be represented as sequences. Therefore, 158

there have been many attempts to apply Seq2Seq to 159

different tasks. More recently, pre-trained models 160

based on Seq2Seq paradigm (Lewis et al., 2019; 161

Raffel et al., 2019) have proved their power on lots 162

of tasks (McCann et al., 2018; Yan et al., 2021). 163

There has been much work analyzing Seq2Seq 164

models which is always task-specific and based 165

on automatic or human evaluation. For example, 166

Huang et al. (2020) analyze the common models’ 167

performance on summarization. 168

To our knowledge, there is few work done 169

to comprehensively evaluate the performance of 170

Seq2Seq models on data-to-text generation. And 171

much work is based on automatic metrics such as 172

ROUGE or BLEU which can be different from 173

human evaluation as some work (Novikova et al., 174

2017a; Reiter, 2018; Sulem et al., 2018) shows. 175

Therefore it is meaningful to manually evaluate 176

representative Seq2Seq models on the data-to-text 177
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task.178

3 Models and Datasets179

We conduct experiments using five representative180

Seq2Seq models on four commonly used data-to-181

text datasets and evaluate the generated texts ac-182

cordingly. Note that we do not use models that183

are designed for specific data sets or data struc-184

tures (Moryossef et al., 2019; Rebuffel et al., 2020;185

Puduppully and Lapata, 2021), but adopt models186

that allow inputs of different formats and struc-187

tures, which brings convenience to comparison on188

different data sets. Besides, most specific mod-189

els for data-to-text generation are actually based190

on these typical Seq2Seq models (Ferreira et al.,191

2019; Rebuffel et al., 2020), which also proves the192

rationality of our selection of these models.193

3.1 Models194

We choose to explore and compare Transformer,195

Pointer Generator, BART and T5’s performance196

on data-to-text generation and explore the role of197

copy mechanism by comparing Transformer and198

Pointer Generator, the benefits brought by the pre-199

training technique by comparing Transformer with200

T5 and BART, the influence of the different pre-201

training methods by comparing BART and T5, the202

power of parameter size by comparing T5-base and203

T5-small.204

Transformer Transformer (Vaswani et al., 2017)205

is widely used in natural language processing and206

has shown its potential on many tasks. It uses207

self-attention and multi-head attention which let a208

model draw from the state at any preceding point209

along the sequence. The attention layer can access210

all previous states and weigh them according to a211

learned measure of relevancy, providing relevant212

information about far-away tokens. There are also213

some experiments with Transformer as the baseline214

model (Zhao et al., 2020) for data-to-text genera-215

tion. Moreover, many improved models for data-216

to-text generation are also based on Transformer217

(Wang et al., 2020; Zhu et al., 2019). Therefore, it218

is worth and reasonable to explore the performance219

of Transformer on the data-to-text task.220

Pointer Generator Pointer Network is first pro-221

posed by Vinyals et al. (2015) and See et al. (2017)222

introduce Pointer Generator based on it. Pointer223

Generator can generate words from the vocabu-224

lary through the generator or copy content from225

the source through the pointer, which addresses 226

the problem that Seq2Seq models tend to repro- 227

duce factual details inaccurately. Copy mecha- 228

nism is widely used in data-to-text tasks and has 229

achieved great success (Marcheggiani and Perez- 230

Beltrachini, 2018; Rebuffel et al., 2020; Puduppully 231

et al., 2019). Parikh et al. (2020) and lots of other 232

work also use the Pointer Generator as the baseline 233

model. Therefore, the Pointer Generator is a rep- 234

resentative model for data-to-text generation. We 235

implement the Pointer Generator based on Trans- 236

former so it can utilize the advantage of the copy 237

mechanism. 238

BART BART (Lewis et al., 2019) uses a standard 239

Seq2Seq Transformer architecture with a bidirec- 240

tional encoder like BERT (Devlin et al., 2018) and 241

a left-to-right decoder like GPT (Radford et al., 242

2018). The pre-training task involves randomly 243

shuffling the order of the original sentences and 244

a novel in-filling scheme, where spans of text are 245

replaced with a single mask token. With the novel 246

pre-training method and a large number of parame- 247

ters, BART achieves state-of-the-art on many tasks 248

(Lewis et al., 2020; Siriwardhana et al., 2021). Our 249

results show that BART can perform very well on 250

data-to-text generation too. 251

T5 T5 (Raffel et al., 2019) is an encoder-decoder 252

model pre-trained on a multi-task mixture of un- 253

supervised and supervised tasks and for which 254

each task is converted into a text-to-text format 255

whose basic architecture is Transformer. It achieves 256

state-of-the-art on multiple tasks, which shows the 257

power of the large pre-training model and Seq2Seq 258

paradigm. T5-3b (Kale, 2020) obtains the best 259

result on ToTTo dataset. T5-large with a two- 260

step fine-tuning mechanism (Wang et al., 2021) 261

achieves state-of-the-art on WebNLG benchmark. 262

We carry out experiments on T5-small which has 263

60M parameters and T5-base which has 220 pa- 264

rameters to explore the power of model size. 265

3.2 Datasets 266

We use the datasets commonly used in data-to-text 267

task in the experiments, including E2E, WebNLG, 268

WikiBio and ToTTo. They have different forms and 269

characteristics, which can give a comprehensive 270

comparison of models. The summary of these data- 271

to-text datasets is shown in Table 1. 272

E2E The input of E2E dataset (Novikova et al., 273

2017b) is the information about the restaurant, and 274
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Dataset Train Size Domain Target Quality Target Source Content Selection
E2E 50.6K Restaurants Clean Annotator Generated Partially specified

WikiBio 583K Biographies Noisy Wikipedia Not specified
WebNLG 25.3K 15 DBPedia categories Clean Annotator Generated Fully specied

ToTTo 120K Wikipedia (open-domain) Clean Wikipedia (Annotator Revised) Annotator Highlighted

Table 1: Summary of data-to-text datasets (Parikh et al., 2020) used in this study

the output is its natural language description. It275

consists of more than 50K combinations and the276

average length of the output text is 8.1 words.277

WikiBio WikiBio (Lebret et al., 2016) is a per-278

sonal biography dataset containing more than 70K279

examples. The input is the infobox from Wikipedia,280

and the output is the first sentence of the biography.281

The average length of the output text is 26.1 words.282

WebNLG The WebNLG challenge (Gardent283

et al., 2017) consists of mapping sets of RDF triples284

to text. The latest WebNLG dataset contains more285

than 40K data-text pairs. The average length of the286

output text is 22.3 words.287

ToTTo ToTTo (Parikh et al., 2020) is an open-288

domain English table-to-text dataset with over289

120,000 training examples that proposes a con-290

trolled generation task: given a Wikipedia table291

and a set of highlighted table cells, produce a one-292

sentence description.293

4 Evaluation Method294

We first evaluate models’ performance using auto-295

matic metric BLEU (Papineni et al., 2002), and the296

BLEU scores are comparable to the mainstream297

research. Then, we use human evaluation similar298

to PolyTope (Huang et al., 2020) to further ana-299

lyze and evaluate the performance of the models300

on different datasets.301

BLEU is a precision-based metric for evaluating302

the quality of generated text and it is widely used303

by work on data-to-text generation.304

Multidimensional Quality Metric (MQM) (Mari-305

ana, 2014) is a framework for describing and defin-306

ing custom translation quality metrics. It defines307

flexible issue types and a method to generate qual-308

ity scores. Based on MQM, Huang et al. (2020) in-309

troduce an error-oriented fine-grained human eval-310

uation method PolyTope. It defines five issue types311

about accuracy, three issue types about fluency and312

three error severity rules. After annotating every313

generated sentence with these error types and sever-314

ity, we finally calculate an overall score to evaluate315

the model’s performance.316

4.1 Issue Type 317

According to the MQM principle, we define error 318

types in two aspects: accuracy and fluency. Errors 319

related to accuracy mean the generated text is not 320

faithful to the original data or does not reflect the 321

critical information totally from the original data. 322

This type consists of five sub-types: 323

Addition The generated text contains unneces- 324

sary and irrelevant fragments from the source data. 325

Omission The key point does not exist in the 326

output. 327

Inaccuracy Intrinsic Terms or concepts appear- 328

ing in the original data are distorted in the output. 329

Inaccuracy Extrinsic The generated text shows 330

the content which does not exist in the source data. 331

Positive-Negative Aspect The generated text is 332

positive, whereas the source data represents a nega- 333

tive statement and vice versa. 334

Fluency aspect evaluates the linguistic quality of 335

the generated text, which is a primary natural lan- 336

guage requirement. It consists of three sub-types: 337

Duplication Unnecessarily repeat a word or 338

longer part of the text. 339

Word Form Problems related to the form of 340

words, including consistency, part of speech, tense 341

and so on. 342

Word Order Problems about the order of words 343

in outputs. 344

One example output with errors on WebNLG 345

dataset is shown in Table 2. 346

4.2 Severity 347

Severity describes how severe a particular error is. 348

There are three levels: Minor, Major and Critical. 349

Each specific error in the sentence will be allocated 350

a severity. It is decided by the annotator and will 351

be considered as a weight to score the quality of 352

the annotated sentence automatically. 353
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Input Model’s Output
Object: Austin Texas

Property: is Part Of Subject: Texas
Object: Texas

Property: language Subject: English language
Object: Austin Texas

Property: is Part Of Subject: Williamson County Texas
Object: Williamson County Texas

Property: largest City Subject: Round Rock Texas
Object: Williamson County Texas

Property: county Seat Subject: Georgetown Texas

Austin is part of Williamson County Texas
where the English is spoken .

The largest city in Williamson County is Georgetown.

Table 2: Example output with Inaccuracy Intrinsic and Omission errors. The Georgetown is not the largest city
but the county Seat so it is the Inaccuracy Intrinsic error. And the generated text do not mention the county Seat so
there is an Omission error.

Minor Errors that do not affect content availabil-354

ity or understandability. For example, we regard355

the repetition of function words as an error, but this356

error will not affect the understanding of the text,357

so we think this error is Minor.358

Major Errors that affect content availability or359

comprehensibility but do not make content unus-360

able. For example, we think additional attributes361

will not make the content unsuitable for the purpose362

although it may cause the reader to make additional363

efforts to understand the intended meaning.364

Critical Errors that make content unsuitable for365

use thoroughly. Each error type can make the text366

completely unusable when it is too severe. For ex-367

ample, when the critical elements in the sentence368

are missing or too many errors are misleading peo-369

ple’s understanding, we think this error is the key.370

4.3 Calculation371

Given original data and generated text, annotators372

are required to find all errors in the sentence and373

label them with error types and severity. After374

the work is done for all samples, the error score of375

every type and an overall system performance score376

will be calculated automatically with the below377

equations:378

EScoret =

∑
e∈Et

αe × Le

wordcount
(1)379

Score = (1−
∑
t∈T

EScoret)× 100 (2)380

where T is the set of error types and Et is the set381

of all error segments of type t. αe is the deduction382

ratio which is set 1:3:7 for the three severity levels:383

Minor, Major and Critical. Le is the word length of384

the error2. wordcount is the total number of words 385

in samples. We can see the highest system perfor- 386

mance score can reach 100 if there is no error in the 387

sentences, and it is the higher the better. Through 388

this method, we can get Score, an overall eval- 389

uation of each model, and error scores EScoret 390

that indicate each error type’s punishment for the 391

overall score. 392

4.4 Human Annotation 393

After training and testing, we hire five annotators 394

with satisfactory levels in reading from eight can- 395

didates. They are all highly educated enough to 396

understand structured data and tables, and their 397

English level is also very high to understand the 398

text. Before formal annotation, we conduct detailed 399

training to make them have a clear understanding of 400

various errors and the severity of PolyTope frame- 401

work. Examples used in training do not appear in 402

the final annotation. In order to ensure objectiv- 403

ity and impartiality, they know nothing about the 404

name, architecture, BLEU score of the model and 405

dataset in the process of annotation. 406

During testing, annotators are asked to locate 407

every error’s position, point out the type of the 408

error, choose the severity of the error and explain 409

the reason. We check their answers and score them. 410

Through the overall performance in the test, we 411

select the best five annotators and ensure all of 412

them really understand our evaluation method and 413

have the ability to do the annotation work. 414

For each dataset, we select 80 data-text pairs and 415

input them into each model respectively. There 416

are four datasets and five models, so we have 1600 417

texts to annotate. Each text is annotated by two 418

2Note that we set the length of an Omission error to 1.
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E2E WikiBio WebNLG ToTTo Average
Transformer 76.88 81.31 76.32 45.41 69.98
Pointer-GEN 86.97 82.98 78.76 54.57 75.82

T5-small 86.04 86.28 93.92 85.44 87.92
T5-base 96.36 91.38 94.10 88.59 92.61

BART-base 91.55 86.37 93.43 90.71 90.52
Average 87.56 85.66 87.31 72.94

Table 3: Human evaluation scores of each model on each dataset (higher means better).

E2E WikiBio WebNLG ToTTo
Transformer 56.74 43.39 27.95 33.49
Pointer-GEN 61.57 49.39 27.54 35.28

T5-small 62.88 49.45 55.66 45.35
T5-base 59.96 49.12 59.48 48.91

BART-base 62.66 53.25 52.84 48.22

Table 4: BLEU Scores of each model on every dataset
(higher means better).

different annotators respectively and if the differ-419

ence of their error scores is too large, the text will420

be abandoned and a new text will be selected to421

join the evaluation. They are not allowed to com-422

municate with each other in the annotation process.423

They can choose to abandon the texts that confuse424

them, and these texts will be replaced by candidate425

texts. Each annotator must label all the five outputs426

generated by five models of one input sequence at427

a time to keep equality. In general, we strive to428

balance the fairness and quality of the evaluation.429

5 Result Analysis430

We evaluate the five models mentioned above on431

four datasets using the above metrics. The overall432

human evaluation score and BLEU score of each433

model on each dataset are shown in Table 3 and434

Table 4, respectively. The detailed error scores of435

different error types are shown in Table 5. We can436

compare the performance of the models to see the437

influence of the pre-training technique, the copy438

technique and the mode size. Comparing the results439

on different datasets using the same model, we can440

discover how the structured data input influences441

the performance of the Seq2Seq models. Moreover,442

we can also analyze the detailed error scores to443

find out the weakness and advantages of specific444

models.445

5.1 Copy Mechanism446

Through comparing the results of Pointer Gener-447

ator and Transformer on all datasets, we can see448

that the copy mechanism has an noticeable effect 449

on the improvement of the results. It improves the 450

generation performance on all the datasets. Par- 451

ticularly, it reduces the Inaccuracy Intrinsic error 452

score by about 3 or 4 points on three datasets (E2E, 453

WebNLG and ToTTo), as shown in Table 5. It is 454

easy to understand because using copy mechanism, 455

the model can generate words from the vocabu- 456

lary through the generator or copy content from 457

the source through the pointer. Pointer Generator 458

with copy mechanism reduces almost all types of 459

errors compared with vanilla Transformer such as 460

Duplication error. The reason may be that the copy 461

mechanism can interpolate vocabulary level proba- 462

bility with copy probability, reducing reliance on 463

previous outputs. 464

We can observe that the improvement of Pointer 465

Generator over Transformer is the largest on ToTTo 466

dataset. This may be related to ToTTo’s need to 467

pay more attention to the highlighted part of the 468

input sequence, which emphasizes controllability. 469

Nevertheless, it is interesting that Addition error 470

is increased slightly compared with Transformer. 471

The likely reason may be that the auto-regressive 472

decoder tends to copy longer sequences from the 473

source and it is hard to interrupt the copy action. 474

5.2 Pre-training 475

In Table 3, we can see almost all the pre-training 476

models outperform the non-pre-training models by 477

a large margin among all the datasets except E2E 478

dataset which may be too simple to evaluate the 479

ability of models. The reason why the pre-training 480

models can achieve better scores may be that they 481

have learned helpful knowledge from lots of raw 482

texts. And the pre-training method also helps the 483

models become more powerful. BART and T5 are 484

both pre-trained on tasks where spans of text are 485

replaced by masked tokens. The models must learn 486

to reconstruct the original document. According 487

to the average scores of all the datasets, we can 488
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dataset model Addition Duplication Extrinsic Intrinsic Omission Positive-Negative Aspect Word Form Word Order

E2E

Transformer 2.52 0 5.46 7.14 5.97 0 0 2
ptr-gen 2.41 0.33 1.66 3.56 2.45 0 0.92 1.66

T5-small 0.99 0 0 5.18 5.06 1.75 0 0.95
T5-base 0 0 0 1.6 1.11 0 0 0.91

BART-base 0.81 0 0.81 1.53 3.73 0 0 1.53

WikiBio

Transformer 0.38 1.53 4.52 2.73 8.82 0.67 0 0
ptr-gen 1.47 0.86 3.51 2.97 7.70 0.49 0 0

T5-small 0.69 0 1.22 3.35 8.44 0 0 0
T5-base 0 0 1.32 2.17 4.83 0 0.28 0

BART-base 0.15 0 1.15 2.70 9.61 0 0 0

WebNLG

Transformer 1.02 2.84 1.89 10.44 7.03 0 0.44 0
ptr-gen 3.90 2.69 0 6.38 7.27 0 0 0.97

T5-small 0 0.69 0 4.56 0.81 0 0 0
T5-base 0 0 0.34 3.50 1.49 0.54 0 0

BART-base 0 0 0.44 4.45 1.66 0 0 0

ToTTo

Transformer 4.38 2.38 11.03 17.02 19.74 0 0 0
ptr-gen 11.01 1.31 9.11 13.47 7.48 0 3.01 0

T5-small 0 0 0 5.36 9.19 0 0 0
T5-base 0 0 1.86 4.38 4.38 0 0 0.76

BART-base 0 0 1.79 2.41 2.66 0 0 2.41

Table 5: Error score of each error type for each model on 80 data-text pairs of every dataset. The results are scored
based on manual evaluation and retained to two decimal places. Lower means better. Errors may be approximated
to 0 because there are too few errors.

say that T5-base may be the best Seq2Seq model489

among our experimented models and BART-base is490

not far behind. And the models achieve the highest491

score on different datasets: BART-base is the best492

on ToTTo and T5-base is the best on the other493

datasets relatively.494

Figure 1: Comparison results of pre-trained models
with different numbers of parameters (higher means
better).

5.3 Model Size495

It is evident that the parameter quantity is the criti-496

cal factor to the pre-trained model’s performance.497

BART-base has 139M parameters, T5-base has498

220M parameters and T5-small has 60M param-499

eters only. With the same architecture and same500

pre-training method, T5-base totally outperforms501

T5-small. Due to pre-training methods and other502

factors, T5-base and BART-base achieve the best503

results on different datasets. But on average, T5-504

base is the best. The relation between model size 505

and the performance on different datasets is shown 506

in Figure 1. The only exception mentioned above is 507

ToTTo, where BART-base achieves the best results. 508

One of the likely reasons is the pre-training strat- 509

egy of BART which helps it have better denoising 510

and reconstruction ability. Another reason will be 511

mentioned below. 512

5.4 Dataset 513

We can compare the difficulty level of the datasets 514

by the average and the highest scores of all mod- 515

els. In Table 3, the ToTTo dataset has the lowest 516

average score of 72.9. And the highest score on it 517

achieved by BART-base is 90.7 which is also the 518

lowest among all the datasets. ToTTo is made as a 519

controlled generation task that given a Wikipedia 520

table and a set of highlighted table cells, the model 521

needs produce a one-sentence description of the 522

highlighted part. It is much more complicated than 523

other datasets describing all the given structured 524

data. Maybe it is a bit confusing for models to 525

find out what actually should be noticed, although 526

the scores of the pre-training models are still very 527

high. And the gap between pre-training models and 528

non-pre-training models is the biggest on ToTTo 529

among all datasets which indicates that the simple 530

non-pre-training models can not handle the com- 531

plex controlled generation very well. Of course 532

the quantity of the data-text pairs and the length 533

of the input and output sequence also influence the 534

models’ performance. 535
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Addition Duplication Extrinsic Intrinsic
Average Scores 1.48 0.63 2.30 5.25

Omission Positive-Negative Aspect Word Form Word Order
Average Scores 5.97 0.17 0.23 0.56

Table 6: Average error score of each error type across all models and datasets (lower means better).

5.5 Error Types536

Table 6 shows the average error scores of each error537

type across all models and datasets. From Table538

5 and Table 6, we can find that different types of539

errors have different effects on the performance of540

the models. We can find that Omission Error is the541

most frequent and severe error and its error score is542

almost up to 6. The likely reason is that the input543

sequence is too long, so it is hard to encode all its544

meaning. So the models tend to omit some infor-545

mation from the input. And Inaccuracy Intrinsic546

Error and Inaccuracy Extrinsic Error also can not547

be ignored which are 5.25 and 2.31, respectively.548

From the perspective of the pre-training model, it549

may be because they learn too much from the raw550

texts on pre-training stage and the knowledge lets551

them tend to generate inaccurate texts.552

It is excited that all the models perform very553

well in terms of fluency. The errors of Duplication,554

Word Form and Word Order are very sporadic. This555

shows the Seq2Seq models can generate fluent text556

with the structured input.557

6 BLEU or Human Evaluation?558

We can see that the overall trend of the BLEU559

score is consistent with human evaluation, which560

can basically reflect the overall performance of the561

model. And many conclusions we made above can562

also be proved by the BLEU score. For example,563

the biggest pre-training model T5-base achieves564

the highest BLEU score too among the selected565

models, Pointer Generator with copy mechanism566

still performs better than Transformer and ToTTo567

is still the most difficult dataset.568

Although our primary goal is not to promote a569

human evaluation metric, our dataset with human570

annotations gives us a testbed to analyze the cor-571

relations and differences between automatic and572

human metrics. There have been a lot of discus-573

sions in the community about the unreliability of574

BLEU metric. Sulem et al. (2018) recommend not575

using BLEU on text simplification. They found that576

BLEU scores can neither reflect grammar nor the577

meaning of preservation. Novikova et al. (2017a)578

show that BLEU and some other commonly used 579

indicators are not well consistent with human judg- 580

ment when evaluating NLG tasks. 581

We compute the Pearson correlation coefficients 582

between BLEU score and manual evaluation in 583

terms of Accuracy and Fluency. We categorize the 584

error types into accuracy and fluency aspects ac- 585

cording to the definition in Section 4.1, and use 586

Equation 2 to calculate Accuracy score and Flu- 587

ency score respectively. The Pearson correlation 588

coefficient between BLEU score and Accuracy is 589

0.61 and in Fluency aspect is 0.08. There is a huge 590

gap between them and we can see that BLEU can 591

evaluate Accuracy to a certain extent and it is poor 592

at Fluency. Moreover, the BLEU metric is too 593

coarse-grained to reveal the model’s specific prob- 594

lems, which enlighten us on how to improve the 595

model. Our result is consistent with views of other 596

work. 597

7 Conclusion 598

We empirically compared five representative 599

Seq2Seq models on the data-to-text task using a 600

fine-grained set of human evaluation metrics based 601

on MQM. We aim to make a systematic and com- 602

prehensive evaluation and analysis on end-to-end 603

Seq2Seq models for the data-to-text task. We ana- 604

lyze the effect of milestone techniques such as copy 605

and pre-training, the influence of the dataset and 606

model size and the models’ performance in terms 607

of different types of errors. Our evaluation shows 608

that pre-trained models can generate quite good 609

texts. But there is still much room for improve- 610

ment in this task. Furthermore, the improvement of 611

specific errors is also worth exploring in the future. 612
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