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Abstract
Retrieval-Augmented Language Models boost001
task performance, owing to the retriever that002
provides external knowledge. Although cru-003
cial, the retriever primarily focuses on seman-004
tics relevance, which may not always be ef-005
fective for generation. Thus, utility-based re-006
trieval has emerged as a promising topic, pri-007
oritizing passages that provide valid benefits008
for downstream tasks. However, due to insuf-009
ficient understanding, capturing passage util-010
ity accurately remains unexplored. This work011
proposes SCARLet, a framework for training012
utility-based retrievers in RALMs, which incor-013
porates two key factors, multi-task generaliza-014
tion and inter-passage interaction. First, SCAR-015
Let constructs shared context on which train-016
ing data for various tasks is synthesized. This017
mitigates semantic bias from context differ-018
ences, allowing retrievers to focus on learning019
task-specific utility and generalize across tasks.020
Next, SCARLet uses a perturbation-based at-021
tribution method to estimate passage-level util-022
ity for shared context, which reflects interac-023
tions between passages and provides more ac-024
curate feedback. We evaluate our approach025
on ten datasets across various tasks, both in-026
domain and out-of-domain, showing that re-027
trievers trained by SCARLet consistently im-028
prove the overall performance of RALMs.029

1 Introduction030

Retrieval-Augmented Language Models (RALMs;031

Lewis et al., 2020) typically comprise two parts:032

the retriever and the generator. The retriever col-033

lects up-to-date task-related external information,034

while the generator incorporates the collected non-035

parametric knowledge into inference. RALMs036

have achieved enhanced performance across vari-037

ous downstream tasks, including question answer-038

ing, fact checking, and dialogue generation (Shao039

et al., 2023; Cheng et al., 2023). As a crucial role,040

the optimization of the retrievers in RALMs has041

become a trending research topic.042

Early RALMs adopt relevance-based retrievers, 043

including both sparse (Robertson and Zaragoza, 044

2009) and dense (Karpukhin et al., 2020) mod- 045

els. However, these retrievers are primarily bi- 046

ased toward semantic relevance (Wu et al., 2024), 047

failing to consider the passage utility and leading 048

to misalignment in RALMs. The utility, measur- 049

ing the valid gain that a passage contributes to the 050

downstream generation (Zhang et al., 2024), can 051

bridge the gap between the retriever and the gener- 052

ator. Some recent works have proposed to optimize 053

retrievers by constructing feedback from genera- 054

tors (Shi et al., 2023; Yu et al., 2023; Wei et al., 055

2024), achieving promising results. Nonetheless, 056

how to align retrievers to better capture utility re- 057

mains an open yet challenging problem. 058

Different from relevance, which is mainly deter- 059

mined by the query and the passage, utility needs a 060

more comprehensive measurement. In this paper, 061

we propose the following two vital yet overlooked 062

factors for utility modeling in RALMs: 063

Multi-task Generalization RALMs need to ac- 064

commodate various downstream tasks, where the 065

utility of a passage can vary accordingly. Exist- 066

ing methods typically optimize retrievers using the 067

pooling strategy, i.e., mixing data from different 068

tasks for training, to learn task-specific retrieval 069

criteria (Lin et al., 2024; Zamani and Bendersky, 070

2024). However, since pooled samples from dif- 071

ferent tasks typically have different contexts, the 072

trained retrievers might tend to capture semantic 073

relevance signals instead of utility features. Such 074

unexpected preference will downgrade the retriev- 075

ers’ generalization ability, especially for those with 076

weaker linguistic capabilities (Liu et al., 2024). 077

Inter-passage Interaction In some complex 078

tasks, the utility of a certain passage cannot be 079

solely determined by itself. For example, when 080

handling multi-hop question-answering tasks, the 081

model should rely on preceding and even succeed- 082
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ing contexts in the reasoning chain to judge a pas-083

sage’s utility. However, the utility signals con-084

structed in previous works either fail to provide085

passage-level feedback (Zamani and Bendersky,086

2024; Sohn et al., 2024) or evaluate each passage087

independently (Yu et al., 2023; Shi et al., 2023),088

leading to imprecise utility measurements.089

In this paper, we propose a novel framework to090

train utility-based retrievers for RALMs, named091

SCARLet, representing shared context attribution092

supervised training for utility-based retrievers.093

Specifically, SCARLet first introduces a training094

data synthesis pipeline. Contrary to the previous095

pooling strategy that mixes training data with differ-096

ent contexts, our pipeline first constructs a shared097

context, and subsequently synthesizes training data098

for various downstream tasks derived from the099

shared context. This method mitigates the semantic100

interference by achieving single-variable control,101

and enables the retriever to focus on learning task-102

specific utility. To better assess the utility of cer-103

tain passages, SCARLet employs a passage-level104

perturbation-based technique, which randomly re-105

moves some passages from the context and mea-106

sures the fluctuations in the generated output. Such107

a design can effectively capture the synergy be-108

tween passages, thereby accurately reflecting their109

utility. Finally, SCARLet collects positive and neg-110

ative samples based on the utility scores and trains111

the retriever in a contrastive way.112

We conduct extensive experiments to evaluate113

the performance gain brought by SCARLet. Our114

experiments adopt ten datasets, covering eight dis-115

tinct tasks that are frequently used for RALMs116

evaluation. The results show that RALMs equipped117

with retrievers trained by SCARLet, consistently118

achieve optimal or suboptimal downstream perfor-119

mance across all datasets. Moreover, further analy-120

sis and case studies demonstrate that SCARLet can121

better capture utility signals.122

To summarize, our main contributions include:123

• We argue that utility should be preferred in124

RALMs and propose two critical factors for125

training utility-based retrievers.126

• We propose SCARLet, a novel framework to127

train utility-based retrievers through shared128

context synthesis and utility attribution.129

• We conduct extensive experiments across vari-130

ous tasks, demonstrating that our proposed131

SCARLet can improve the overall perfor- 132

mance of RALMs. 133

2 Related Work 134

RALMs Large Language Models (LLMs; Brown 135

et al., 2020) exhibit remarkable performance across 136

a wide range of tasks (Zhao et al., 2024; Naveed 137

et al., 2024; Wei et al., 2022). However, LLMs also 138

face the challenge of hallucinations, often perform- 139

ing poorly when addressing factual issues (Huang 140

et al., 2024; Bi et al., 2024). The emergence of 141

RALMs effectively alleviates the weakness of in- 142

sufficient factuality (Gao et al., 2024). A RALM 143

system typically comprise a retriever and a genera- 144

tor, where the retriever recalls external information 145

to enhance the generator to respond more accu- 146

rately. To further optimize RALMs and improve 147

the synergy between the two parts, existing meth- 148

ods generally fall into three categories: 1) overall 149

optimization (Lin et al., 2024; Zamani and Bender- 150

sky, 2024); 2) generator-only optimization (Fang 151

et al., 2024; Yu et al., 2024; Bi et al., 2025); 3) 152

retriever-only optimization (Shi et al., 2023; Yu 153

et al., 2023). Optimizing only the retriever is a 154

more efficient and cost-effective way that offers 155

plug-and-play capabilities, enhancing the overall 156

efficiency and stability of the RALM system. 157

Utility-based Retrieval In RALMs, early explo- 158

ration of retrieval utility focuses on capturing the 159

downstream feedback of generators. Salemi and 160

Zamani (2024) propose supervision based on down- 161

stream task metrics, but fail to provide passage- 162

level utility feedback. Shi et al. (2023); Yu et al. 163

(2023) assess utility of each passage using genera- 164

tor outputs, but they ignore the interactions between 165

passages. Sohn et al. (2024); Wei et al. (2024) 166

employ the generator’s self-reflection to evaluate 167

utility, which may bring hallucinations as the lan- 168

guage models can be dishonest (Madsen et al., 169

2024). Asai et al. (2023); Glass et al. (2022) no- 170

tice the multi-task nature of the retrieval stage, but 171

fail to account for the training biases introduced by 172

contextual differences in the pooling strategy. 173

Therefore, our proposed SCARLet framework 174

comprehensively considers the above issues of 175

multi-task generalization and utility assessment, of- 176

fering a novel pipeline with shared context synthe- 177

sis and utility attribution to effectively train utility- 178

based retrievers in RALMs. 179
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Figure 1: The illustration of SCARLet. The upper left part describes the inference process of RALMs. In SCARLet,
there are three main stages. First, the shared context is constructed by retrieving external corpus based on the seed
data. The synthesizer is instructed with shared context and task information from the task pool, to generate synthetic
data. Next, using the shared context as the data source, SCARLet applies perturbation-based utility attribution on
the generator, and then, based on the utility scores, samples positive and negative passages for retriever training.

3 Method180

In this section, we first define the RALMs system,181

then we introduce the SCARLet pipeline.182

3.1 Definitions183

A typical RALM system consists of a retriever and184

a generator. During the retrieval stage, we employ185

a dense retriever based on an encoder Enc with186

parameters ϕ. And the retriever interacts with an187

external corpus C. For a query q, we calculate188

the dot product of the embeddings of q and each189

passage d in C, as follows:190

score (q, d) = Encϕ (q) ·Encϕ (d) , d ∈ C. (1)191

The top-k passages with the highest scores are192

selected and added to the context, denoted as193

D = [d1, . . . , dk]. Note that RALMs need to ac-194

commodate various downstream tasks, for a task195

T and an input x from its dataset, we define the196

query format as q = I ⊕ x, where I denotes the197

instruction description of task T .198

In the generation stage, a language model LM199

with parameters θ serves as the generator. The200

context D is used to enhance generation, ultimately201

producing the predicted output ŷ, as shown below:202

ŷ = LMθ (I ⊕ x⊕D) , (2)203

where ŷ is a sequence and ŷt denotes the t-th token.204

We denote the ground truth of x as y.205

3.2 Overview of SCARLet 206

The overall architecture of our proposed SCARLet 207

is shown in Figure 1, including shared context syn- 208

thesis and training data construction (§3.3), utility 209

attribution modeling (§3.4), as well as data sam- 210

pling and retriever tuning (§3.5). 211

Shared context refers to the common context for 212

data of different tasks in the training stage, which 213

is then used to enhance downstream generation. 214

Previous studies employ the pooling strategy (Lin 215

et al., 2024; Zamani and Bendersky, 2024), where 216

each instance has a distinct context for training. 217

Learning task-specific features to improve multi- 218

task generalization of utility-based retrieval might 219

be disturbed by the semantically relevant noise in- 220

troduced by differences in context, leading to un- 221

expected preference, particularly in retrievers with 222

weaker linguistic capabilities. To tackle the above 223

challenges, our proposed SCARLet adopts a re- 224

verse strategy, first constructing shared context to 225

narrow the semantic gap, and then synthesizing 226

task-specific data based on this context. Sharing 227

context across tasks can highlight utility feature 228

differences, making it easier to learn. Moreover, 229

LLM-driven data synthesis has been shown to be a 230

promising way (Long et al., 2024; Kim and Baek, 231

2025), which can effectively reduce labor costs. 232

Utility attribution modeling refers to local ex- 233

planation techniques to build utility signals from 234
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the downstream generation. More specifically, we235

adopt the contributive attribution model, which236

measures how the input context contributes to the237

model’s output and aligns well with the definition238

of utility in RALMs. Previous research on optimiz-239

ing retrievers from downstream generation, either240

fails to construct passage-level feedback or only241

considers the individual impact of each passage,242

overlooking the synergy effects between passages.243

Therefore, taking the shared context as the source244

data, SCARLet uses a passage-level perturbation-245

based utility attribution approach, where fluctua-246

tions in generation caused by perturbations can247

reflect interactions between passages and then be248

quantified as utility scores.249

3.3 Shared Context Synthesis250

Specifically, we first define a task pool T , which251

is linked to various downstream tasks and their252

datasets, such as multi-hop QA, long-form QA,253

and fact checking. We begin by collecting seed254

data from datasets of T , including task instruc-255

tions, inputs, and ground truth. In line with the256

motivation behind shared context, passages within257

this context need to be closely related to facilitate258

the synthesis of high-quality data. Therefore, we259

employ an approach based on associated entities,260

which extracts entities from the seed data, searches261

their adjacent entities by querying Wikidata1, and262

merges them to obtain a related entity list. We263

then use this list to retrieve relevant passages from264

the Wikipedia corpus, and treat the recalled pas-265

sages as the shared context Dshared. Subsequently,266

we instruct the synthesizer model S to generate267

new training data, using Dshared as the information268

source and task information (including instructions269

and examples) from T . The process is formalized270

as follows:271 (
xnewT1

,ynew
T1

)
, . . . ,

(
xnewTl

,ynew
Tl

)
= S (Dshared, T ) ,

(3)272

where xnewTi
and ynew

Ti
represent input and ground273

truth of the synthetic data of task Ti, respectively. l274

is the total number of tasks in T .275

To improve the quality of synthetic data, the276

task pool T not only provides the task instructions277

but also offers example data. To further improve278

robustness, following Fang et al. (2024); Zhang279

et al. (2024), we also introduce synthetic noise into280

the shared context by instructing the synthesizer to281

generate semantically relevant but useless passages.282

1https://www.wikidata.org
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Figure 2: The performance of the perturbation-based
attribution method on the GTI benchmark. The nDCG
metrics show that it achieves at least about 80% perfor-
mance on three datasets, with some exceeding 90%.

In addition, we incorporate a data filtering step 283

that instructs the synthesizer to eliminate samples 284

containing faults. For more details, please refer to 285

Appendix A. We also provide an example of shared 286

context in Appendix F. 287

3.4 Passage-level Utility Attribution 288

Specifically, the context D recalled by the upstream 289

retriever consists of k passages. To evaluate the util- 290

ity of each individual passage with inter-passage 291

interactions, we adopt a perturbation-based method 292

where we remove certain passages and inspect the 293

changes in the final output. The approach is im- 294

plemented via introducing a perturbation vector 295

v ∈ {0, 1}k, where 0 and 1 indicate whether the 296

corresponding passage is removed or included, re- 297

spectively. However, running all generations of 298

2k possible perturbation vectors can result in sig- 299

nificant computational overhead. Inspired by the 300

method of Local Interpretable Model-agnostic Ex- 301

planations (LIME; Ribeiro et al., 2016; Mardaoui 302

and Garreau, 2021), we first sample n perturbation 303

vectors randomly and then fit a surrogate model for 304

predicting the utility score, as shown below: 305

α̂ ∈ argmin
α∈Rk+1

{
n∑

i=1

(
zi −αTvi

)2
+ λ ∥α∥2

}
,

(4) 306

where we adopt the ridge regression (Hilt and See- 307

grist, 1977) as our surrogate model, α represents 308

the parameters to be fitted, λ is a hyperparame- 309

ter for regularization, and zi is the observed value 310

under vi. More specifically, α(i) denotes the util- 311

ity score of passage di, α(0) represents the inter- 312

cept term. And zi, which quantifies the fluctuation 313

caused by vi, is calculated using the logit values of 314

the tokens in the ground truth y at each time step, 315

as shown below: 316

zi =
∑
t

logit
(
y
(i)
t

)
. (5) 317
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Figure 3: The illustration of the 1D clustering sampling.
Based on the utility score, this method clusters the pas-
sages into three labels: the high-score passages (green)
corresponding to positive samples, the middle-score pas-
sages (orange) that will be discarded, and the low-score
passages (red) corresponding to negative samples.

To evaluate the effectiveness of the above utility318

attribution method, we conduct a preliminary exper-319

iment on the GTI benchmark (Zhang et al., 2024),320

which includes three datasets: HotpotQA (Yang321

et al., 2018), Natural Questions (NQ; Kwiatkowski322

et al., 2019), and MSMARCO-QA (Bajaj et al.,323

2018). Each test sample comprises input, ground324

truth, and ten passages including correct passages325

and other noise passages. We use the utility score326

to rank the passages. The results, measured using327

nDCG, demonstrate that our method shows a high328

accuracy in reflecting passage utility, as shown in329

Figure 2. We also compare our method to other at-330

tribution approaches, and our method outperforms331

them by over 20%. For further details of the exper-332

iment, please refer to Appendix B.333

3.5 Sampling and Training334

After calculating the utility score for each passage335

in the shared context, we then collect positive and336

negative samples based on these scores for training337

the retriever. When sorted in descending order of338

the scores, the utility distribution follows an inverse339

S-shaped curve, as depicted in Figure 3. Passages340

with higher scores correspond to positive samples,341

while those with lower scores represent negative342

samples. To effectively sample these two types343

of data, we employ a one-dimensional clustering344

approach. Specifically, we take the utility score list345

as the input and divide it into three clusters: one346

for the positive samples, one for the intermediate347

samples that will be discarded, and another for the348

negative samples. This method can dynamically349

adjust the number of useful passages in the context350

on various tasks and data.351

After obtaining positive and negative samples,352

Dataset Task Corpus Metric

In-domain
NQ (Kwiatkowski et al., 2019) Single-hop QA Wikipedia Accuracy
HotpotQA (Yang et al., 2018) Multi-hop QA Wikipedia Accuracy

ELI5 (Fan et al., 2019) Long-form QA Wikipedia ROUGE-L
FEVER (Thorne et al., 2018) Fact checking Wikipedia Accuracy

WoW (Dinan et al., 2019) Dialogue generation Wikipedia F1
T-REx (Elsahar et al., 2018) Slot filling Wikipedia Accuracy

Out-of-domain
zs-RE (Levy et al., 2017) Relation extraction Wikipedia Accuracy

SciFact (Wadden et al., 2020) Fact checking BeIR Accuracy
Climate-FEVER (Diggelmann et al., 2021) Fact checking BeIR Accuracy

FiQA (Maia et al., 2018) Financial QA BeIR ROUGE-L

Table 1: The datasets used in the main experiment.
Climate-Fever is a four-class classification task, while
the other two fact-checking tasks are binary. For met-
rics, NQ, HotpotQA, T-REx, and zs-RE all calculate
accuracy based on exact substring matching.

following Xiong et al. (2020), the loss function is 353

calculated as follows: 354

L =
∑
x

∑
d+∈D+

∑
d−∈D−

355

l
(
score

(
x, d+

)
, score

(
x, d−

))
, (6) 356

where l represents the cross-entropy loss. 357

4 Experimental Setup 358

This section introduces the main experiment setup, 359

including datasets, baselines and implementation. 360

4.1 Datasets and Evaluation 361

We collect both in-domain and out-of-domain 362

datasets for our experiments. In-domain datasets 363

are utilized for providing seed data to construct syn- 364

thetic training data, while out-of-domain datasets 365

possess different tasks and corpora and are col- 366

lected for further generalization tests. We collect 367

seven datasets from KILT (Petroni et al., 2021), and 368

three from BeIR (Thakur et al., 2021), as detailed 369

in Table 1. All KILT datasets utilize Wikipedia 370

dump dated 2019-08-012 as the corpus. Following 371

Wang et al. (2019), we split the original articles into 372

segments with a maximum length of 100 words, re- 373

sulting in a total of 28,773,800 passages. For test 374

sets of BeIR, we adopt their self-constructed cor- 375

pora. For retrieval, we follow the closed corpus 376

setup(Asai et al., 2023), where RALMs only re- 377

trieve from the corpus of the current dataset. For 378

the test data, we randomly sample 1,000 data from 379

the test split of each dataset. 380

For evaluation metrics, we mainly assess the 381

performance of downstream tasks. For WoW, we 382

2http://dl.fbaipublicfiles.com/BLINK/
enwiki-pages-articles.xml.bz2
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Method
In-domain Out-of-domain

NQ HotpotQA ELI5 FEVER WoW T-REx zs-RE SciFact C-FEVER FiQA
LLaMA-3-8B-Instruct

No retrieval 43.5 36.8 14.8 79.8 9.3 34.5 21.7 68.0 45.8 17.2

Contriever 43.8 36.7 14.5 78.5 8.6 33.6 20.4 70.1 38.2 16.2
BGE 47.5 41.6 15.2 83.5 8.7 36.4 22.7 83.3 44.9 21.0
AARContriever 44.9 39.9 15.0 77.2 8.3 34.4 21.0 73.6 39.2 16.7
REPLUGContriever 43.3 38.9 13.8 80.0 9.4 33.1 22.8 74.6 41.2 18.9

SCARLetContriever 44.6 40.5 15.8 80.6 11.0 35.8 21.0 75.5 42.8 17.7
SCARLetBGE 49.2 47.0 16.3 81.3 12.2 37.0 24.4 82.2 46.1 22.9

Qwen2.5-3B-Instruct
No retrieval 27.4 26.5 15.2 66.1 11.5 26.0 7.3 58.2 40.4 17.7

Contriever 32.6 28.8 14.3 67.0 10.5 27.2 14.3 64.9 31.6 15.5
BGE 46.8 39.6 13.7 78.2 10.4 29.3 15.5 70.6 30.2 18.7
AARContriever 34.1 29.7 13.8 66.6 10.1 28.7 15.2 63.6 32.2 16.1
REPLUGContriever 33.7 34.0 14.0 71.4 12.2 26.9 16.2 61.1 30.6 19.0

SCARLetContriever 38.2 35.4 14.9 70.8 11.7 28.0 19.1 65.3 31.7 17.3
SCARLetBGE 44.9 41.1 15.2 74.3 12.6 29.7 16.6 62.3 33.0 20.4

Table 2: Results of the main experiment across datasets on different downstream generators. AARContriever,
REPLUGContriever, SCARLetContriever represent the baselines initilized from Contriever, and SCARLetBGE repre-
sents the baseline initialized from BGE-base-v1.5. The bold score means the best performance of the corresponding
dataset among baselines within the same generator, while the underline score means the second best.

use F1. For ELI5 and FiQA, we use ROUGE-L.383

For other datasets, we use accuracy.384

4.2 Baselines385

The baselines are categorized into three settings:386

No Retrieval The downstream generators oper-387

ate without any retrieval.388

Vanilla RAG Retrievers are added and the re-389

called passages are incorporated into the generation390

process. We choose two well-trained embedding391

models, Contriever (Izacard et al., 2022) and BGE-392

base-v1.5 (Xiao et al., 2023) as the retrievers.393

Retriever-only Optimization Retrievers are op-394

timized using feedback from the generator. We se-395

lect two recent methods, RePlug (Shi et al., 2023)396

and AAR (Yu et al., 2023), both of which are ini-397

tialized from Contriever.398

We utilize LLaMA-3-8B-Instruct (AI@Meta,399

2024) and Qwen2.5-3B-Instruct (Team, 2024) as400

the generators in RALMs. All retrieval-based base-401

lines use the top-3 passages. Given that some re-402

trievers may not be tuned by instructions, the query403

format for Contriever and its baselines only con-404

tains x, without task instruction I . For BGE and its405

baselines, the query format follows the definition406

in Section 3.1, which contains both x and I .407

4.3 Implementation Details 408

In the shared context synthesis stage, we add the 409

six tasks of the in-domain datasets into the task 410

pool. We then randomly sample 1,000 data from 411

the training split of each dataset to construct the 412

seed dataset. We only consider one-hop relation 413

when searching adjacent entities. For each entity, 414

the top-10 passages are retrieved from C, and the 415

shared context is formed by selecting the top-10 416

passages across all retrieved passages. We utilize 417

gpt-4o-2024-11-20 (OpenAI, 2024) as the synthe- 418

sizer model. For more implementation details and 419

meta data, please see Appendix C. 420

5 Results 421

In this section, we present the results of main exper- 422

iment (§5.1), ablation study (§5.2), retrieval evalu- 423

ation (§5.3), and case study (§5.4). 424

5.1 Overall Performance 425

The main experimental results are shown in Ta- 426

ble 2. Our proposed SCARLet method achieves 427

either optimal or suboptimal performance across 428

various datasets and generators, demonstrating its 429

effectiveness. Our detailed analysis from different 430

perspectives is as follows: 431

In-domain Performance In the evaluation on six 432

in-domain datasets, the retrievers trained by SCAR- 433
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Figure 4: Ablation Study on six in-domain datasets,
using BGE as retriever, with two generators. The values
in the charts correspond to the metrics of each dataset.

Let achieve the best performance in five datasets434

when using LLaMA-3-8B as the generator, and435

in four datasets when using Qwen-2.5-3B as the436

generator. Except for NQ and FEVER, SCARLet437

consistently outperforms the initial baselines, in-438

cluding Contriever and BGE.439

Out-of-domain Performance In the evaluation440

on four out-of-domain datasets, SCARLet also441

achieves optimal or suboptimal results. Specif-442

ically, SCARLet can still show progress in Sci-443

Fact, Climate-FEVER, and FiQA, whose corpora444

differ from the Wikipedia corpus used in train-445

ing and whose domains are notably different from446

the in-domain datasets, highlighting its generaliza-447

tion across corpora. In addition, SCARLet can448

achieve overall improvements when using two dif-449

ferent downstream LLMs, preliminarily indicating450

its adaptability across generators.451

5.2 Ablation Study452

According to the pipeline of SCARLet, we design453

the ablation experiments from three stages: 1) In454

the data synthesis stage, we evaluate the method455

of removing the step of retrieving adjacent entities,456

and instead directly retrieving the top-k passages457

from the corpus C using only the entities extracted458

from the seed data; 2) In the utility attribution stage,459

since Section 3.4 already compares various attribu-460

tion methods and demonstrates the superiority of461

our perturbation-based approach, we no longer con-462

duct ablation study for this part; 3) In the sampling463

and training stage, we assess the effect of remov-464

ing the one-dimensional clustering step and instead465

directly selecting the highest-scoring passage as466

the positive sample and the five lowest-scoring pas-467

sages as negative samples based on the scores.468

The comparison results, presented in Figure 4,469

show that removing either of the two components470

leads to a significant performance drop. Without471

Method
HotpotQA NQ MSMARCO-QA

NDCG@1 NDCG@5 NDCG@1 NDCG@5 NDCG@1 NDCG@5

Contriever 33.3 48.0 10.0 35.8 16.8 37.0
SCARLetContriever 41.3(+8.0) 52.1(+4.1) 17.5(+7.5) 45.3(+9.5) 21.9(+5.1) 44.1(+7.1)

BGE 70.3 70.1 30.3 60.2 47.8 71.9
SCARLetBGE 72.8(+2.5) 76.7(+6.6) 33.4(+3.1) 64.4(+4.2) 53.2(+5.4) 77.0(+5.1)

Table 3: Evaluation results on GTI, reporting nDCG for
each datasets. Bracketed values indicate the changes in
metrics compared to the initial model.

Model StackExchange Coding Theorem-based

Contriever 10.5 19.6 6.9
SCARLetContriever 13.3(+2.8) 19.2(−0.4) 8.7(+1.8)

BGE 14.9 16.0 8.1
SCARLetBGE 16.2(+1.3) 14.4(−1.6) 9.2(+1.1)

Table 4: Evaluation results on BRIGHT, reporting
nDCG@10 for each datasets. Bracketed values indicate
the changes in metrics compared to the initial model.

Model AMB WQA GAT LSO CSP

Contriever 96.8 80.9 73.2 28.0 36.7
SCARLetContriever 97.5(+0.7) 85.8(+5.1) 71.6(−1.6) 20.9(−7.1) 24.8(−11.9)

BGE 97.3 84.0 77.4 30.1 38.2
SCARLetBGE 98.3(+1.0) 86.1(+2.1) 77.8(+0.4) 27.5(−2.6) 34.9(−3.3)

Table 5: Evaluation results on X2-Retrieval, averaged
nDCG@10 for each datasets. Bracketed values indicate
the changes in metrics compared to the initial model.

adjacent entities retrieval, we believe that the orig- 472

inal entity list may contain insufficient informa- 473

tion, making it challenging to construct a shared 474

context that effectively supports multi-task data 475

synthesis. And the weaker entity associations can 476

disrupt the connection between peer passages in 477

the shared context, ultimately degrading the quality 478

of the synthesized data. Furthermore, without one- 479

dimensional clustering sampling, we suggest that 480

it reduces the number of positive samples, which 481

can be particularly detrimental to retrieval tasks 482

requiring multiple reasoning hops. 483

5.3 Aspects of Retrieval Utility 484

The previous experiment evaluates the overall per- 485

formance improvement of RALMs brought by 486

SCARLet. However, in essence, SCARLet is an 487

optimization method of the retrieval stage. More- 488

over, despite discussing the utility as the valid gain 489

for downstream generation in RALMs, neither ex- 490

isting work nor this study can explicitly define 491

utility-based retrieval. To assess the effectiveness 492

of SCARLet in improving retrieval performance, 493

we select three retrieval benchmarks, each repre- 494

senting a distinct aspect of retrieval utility based 495

on our understanding, as shown below: 496
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Question

…Briley's adaptation of Arthur Miller's play 
"The Crucible" was dropped when Miller's son 
Robert secured production rights; Arthur Miller 
himself wrote the screenplay for the 1996 film...

Passage

Ground Truth
Arthur Miller

Rank #8 by BGE Rank #3 by SCARLetBGE

Who wrote the 1996 American historical drama 
film in which William Preston appeared?

Figure 5: Case Study on HotpotQA. The passage is
ranked variously by different retrievers. Orange text
indicates necessary reasoning information.

GTI This benchmark was introduced in Section497

3.4. Its goal is to evaluate whether retrievers can498

bypass pitfalls of semantic relevance and prioritize499

passages that are useful for answering questions.500

BRIGHT This benchmark focuses on the reason-501

ing implied in retrieval (Su et al., 2024), particu-502

larly for complex queries that require the retriever503

to engage in deep reasoning to identify useful pas-504

sages, beyond simple semantic relevance. Dai et al.505

(2024) also argue that the entailment reasoning506

between passages and queries is essential for en-507

hancing retrieval capabilities. We believe that rec-508

ognizing retrieval utility requires reasoning, such509

as distinguishing task-specific features and deter-510

mining the appropriate number of hops.511

X2-Retrieval This benchmark focuses on re-512

trieval across multiple tasks and scenarios (Asai513

et al., 2023), where understanding the intent be-514

hind user’s queries becomes crucial. We suggest515

that this corresponds to identifying the target utility516

anticipated by the downstream tasks.517

We choose Contriever and BGE as the retriever518

models, using LLaMA-3-8B-Instruct as the down-519

stream generator to implement SCARLet training.520

We compare the performance of the trained retriev-521

ers with the initial retrievers on two benchmarks,522

as shown in Table 3, 4 and 5, respectively. The re-523

sults indicate that SCARLet improves performance524

on some datasets, but its effectiveness is generally525

limited for code-related tasks, such as LinkSo (Liu526

et al., 2018) and CodeSearchNet (Husain et al.,527

2020). The reasons could be: 1) the significant dif-528

ference between the code domain and our selected529

in-domain datasets, which may hinder generaliza- 530

tion; 2) the retriever models used are relatively 531

lightweight, making it susceptible to catastrophic 532

forgetting during training; 3) the optimization is 533

related to downstream generators, but feedback re- 534

lated to the code domain cannot be obtained. 535

5.4 Case Study 536

Multi-hop QA is a task that requires multiple pieces 537

of information and multi-step reasoning to derive 538

the solution (Mavi et al., 2024). Given the charac- 539

teristics of the task, we believe that retrieval utility 540

should point to passages that may contain informa- 541

tion necessary for the reasoning chain. We select 542

a representative example from the test split of the 543

HotpotQA dataset, as shown in Figure 5. To an- 544

swer the question, the reasoning chain is: knowing 545

information about William Preston, identifying the 546

1996 American historical drama he appeared in, 547

finding information about that drama, and deter- 548

mining its writer. Directly relevant information 549

about William Preston is relatively easy to define. 550

However, the shown passage which corresponds 551

to the final reasoning step, has a poor match with 552

the question in terms of semantic relevance. And 553

BGE ranks it 8th. After training by SCARLet, the 554

passage achieves a higher ranking of 3rd. For more 555

case studies, please refer to Appendix E. 556

6 Conclusion 557

This study focuses on utility-based retrieval, a 558

paradigm that moves beyond semantic relevance to 559

prioritize downstream task performance in RALMs. 560

We highlight two key challenges faced by exist- 561

ing research. To solve the limitations, we propose 562

SCARLet, a novel framework to enhance utility- 563

based retrieval. To mitigate semantic interference 564

on utility features during training, SCARLet incor- 565

porates a shared context synthesis method, which 566

narrows the semantic gap between different tasks. 567

To address the issue of inaccurate passage-level util- 568

ity estimation, SCARLet employs a perturbation- 569

based attribution method to capture the synergy 570

between passages. Lastly, SCARLet utilizes a one- 571

dimensional clustering method to sample positive 572

and negative passages for retriever optimization. 573

Through experiments, we demonstrate that SCAR- 574

Let can effectively enhance the overall performance 575

of RALMs, and brings improvements in complex 576

retrieval benchmarks. We hope this study can in- 577

spire further research on utility-based retrieval. 578
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Limitations579

In this study, the scope of downstream tasks is lim-580

ited, covering only several classic datasets. We be-581

lieve that tasks should not be restricted to existing582

datasets, and maybe incorporating a task augmen-583

tation stage could further enhance generalization,584

which we leave for future work. Moreover, there is585

a noticeable decline in retrieval performance in the586

code domain during generalization tests. Therefore,587

future work should also focus on improving the in-588

tegration of different corpus structures. In addition,589

due to memory and time constraints, this study does590

not evaluate larger-scale retrievers and generators.591

Furthermore, apart from GPT-4o, we only try GPT-592

4o-mini as the synthesizer, which performed poorly.593

Models with stronger reasoning capabilities may594

synthesize higher-quality data, potentially leading595

to greater performance improvements.596

Ethics Statement597

The purpose of this study is to enhance the perfor-598

mance of RALMs in several common NLP tasks.599

All datasets and corpora involved are publicly avail-600

able, and we ensure that all used data comply with601

the usage and privacy policies established by the602

original authors. The synthetic data in our method603

is exclusively used for training the retriever model.604

Moreover, given the security assurance of the syn-605

thesizer model, the probability of generating harm-606

ful passages and data is extremely minimal.607
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A Details of Data Synthesis993

The detailed steps of the data synthesis pipeline in994

SCARLet are described as follows:995

Seed Datasets Collection We first collect seed996

data for the data synthesis pipeline. A task pool is997

defined, including the selected tasks and their cor-998

responding datasets. Each task is associated with999

task instruction and retrieval instruction, as shown1000

in Table 6. For each dataset, we randomly sample1001

1,000 instances from its training split, including1002

both input and ground truth. Every sampling uses1003

the same random seed for every dataset.1004

Entities Extraction For each seed data instance,1005

we extract entities for subsequent passages retrieval.1006

We utilize the SpaCy3 toolkit to extract entities1007

from both the input and ground truth. Data in-1008

stances without extractable entities are discarded.1009

Entities Retrieval This stage is to retrieve more1010

relevant entities based on the extracted ones. This1011

serves two purposes: 1) to enhance diversity, and 2)1012

to strengthen relationships between entities, facili-1013

tating better construction of the shared context. We1014

retrieve neighboring entities from Wikidata, consid-1015

ering only the direct related entities of each existing1016

entity. To achieve this, we write the SPARQL query1017

for retrieval, as shown below:1018

1 SELECT ?property ?propertyLabel ?object1019
?objectLabel1020

2 WHERE {1021
3 wd:{id} ?property ?object.1022
4 ?property rdfs:label ?propertyLabel.1023
5 ?object rdfs:label ?objectLabel.1024
6 FILTER(LANG(? propertyLabel) = "en")1025
7 FILTER(LANG(? objectLabel) = "en")1026
8 }1027
9 LIMIT {limit}1028

Passages Retrieval After obtaining the expanded1029

entity list, we retrieve relevant passages based on1030

these entities to construct the shared context.1031

Data Synthesis At this stage, training data is syn-1032

thesized for different tasks in the task pool based1033

on the shared context. First, a synthesizer model is1034

selected, which must possess sufficient reasoning1035

and generation capabilities to ensure the quality1036

of the synthetic data. To help the synthesizer un-1037

derstand the task definition and follow the correct1038

format, we provide task instruction, task descrip-1039

tion, and example data in the prompt. The synthetic1040

3https://spacy.io/

data should include both the input and ground truth. 1041

The prompt template we use is shown in Table 9. 1042

Data Filtering In this stage, the data synthesized 1043

in the previous phase is cleaned to further ensure 1044

data quality and training stability. We prompt the 1045

synthesizer model to check the synthetic data for 1046

logical consistency and format correctness based 1047

on the shared context. The prompt used for this 1048

stage is shown in Table 10. 1049

Passages Enhancement To enhance the robust- 1050

ness of the training, we inject noise into the shared 1051

context. We instruct the synthesizer model to gen- 1052

erate a passage that is semantically relevant but 1053

useless for downstream task, and then add this pas- 1054

sage to the shared context. The prompt used for 1055

this stage is shown in Table 11. 1056

B Details of Utility Attribution 1057

Introduction to Attribution Attribution is a 1058

local-interpretable technique used to provide ev- 1059

idence for the model generation (Li et al., 2023; 1060

Xu et al., 2024). The data source of attribution can 1061

be training data (Han and Tsvetkov, 2022; Weller 1062

et al., 2024), whereas in RALMs, the source is 1063

often retrieved external passages (Shuster et al., 1064

2021; Li et al., 2024), which we denote as context 1065

attribution. Furthermore, contributive attribution 1066

is a form of attribution that quantifies the contri- 1067

bution of each data source unit to the generation 1068

process. It assigns an attribution score to each unit, 1069

where a higher score indicates a greater contribu- 1070

tion. In this study, we propose the SCARLet frame- 1071

work, which employs a perturbation-based attribu- 1072

tion method to estimate the utility score of each 1073

passage within the shared context. Additionally, 1074

we evaluate other attribution methods, including 1075

attention-based method, gradient-based method, 1076

and LLM-based method. 1077

Perturbation-based Method This method is de- 1078

scribed in Section 3.4. Notably, unlike the classical 1079

LIME method, we remove the weight of vi in the 1080

surrogate model, which measures the the cosine 1081

distance from the original text. The reason behind 1082

this is that for different perturbation vectors, the 1083

weight would exacerbate the unfair evaluation of 1084

passage utility, as utility features cannot be directly 1085

measured by semantic relevance. For passages that 1086

are semantically relevant but essentially useless, 1087

the variation they bring would be downweighted, 1088
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Dataset Task Task Instruction Retrieval Instruction

NQ Single-hop QA Answer the question based on the
given passages.

Retrieve passages to
answer the question.

HotpotQA Multi-hop QA
Answer the question based on the
given passages. You may need to
refer to multiple passages.

Find passages that
provide useful
information to answer
this question.

ELI5 Long-form QA

Answer the question based on the
given passages. The answer needs to
be detailed, paragraph-level, and
with explanations.

Retrieve passages that
provide a piece of good
evidence for the answer.

FEVER Fact Checking

Verify whether the claim is correct
based on the given passages. If it
is correct, output "SUPPORTS", if
it is wrong, output "REFUTES".

Retrieve passages to
verify this claim.

WoW Dialogue Generation

Generate an appropriate, reasonable
and meaningful response based on
previous conversations and the
following relevant passages.

Find passages related to
the conversation topic.

T-REx Slot Filling

Given an entity and an attribute
(or relationship), fill in the
specific value of the attribute
based on the following passages.
The entity and the attribute are
separated by "[SEP]".

Find passages related to
the entities.

SciFact Fact Checking

Verify whether the claim is correct
based on the given passages. If it
is correct, output "SUPPORT", if it
is wrong, output "CONTRADICT".

Retrieve passages to
verify this claim.

zs-RE Relation Extraction

Given an entity and an attribute
(or relationship), fill in the
specific value of the attribute
based on the following passages.
The entity and the attribute are
separated by "[SEP]".

Find passages related to
the entities.

FiQA Financial QA Answer the question based on the
given passages.

Find passages to answer
the question.

Climate-
FEVER Fact Checking

Verify whether the claim is correct
based on the given passages. If it
is correct, output "SUPPORTS", if
it is wrong, output "REFUTES", if
the information is insufficient,
output "NOT_ENOUGH_INFO", if can’t
get a sufficiently confident
judgment, output "DISPUTED".

Retrieve passages to
verify this claim.

Table 6: Task instructions and retrieval instructions of the datasets in the task pool.
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Please first provide the answer based on the
passages that you have ranked in utility and then
write the ranked passages in descending order of
utility in answering the question, like "My rank:
[i]>[j]>...>[k]".

Context: {context}

Question: {query}

Table 7: The prompt template for LLM-based method.

as such passages typically cause greater logit fluc-1089

tuations due to their lack of utility.1090

Attention-based Method This method takes the1091

attention score received by each source unit during1092

inference as the attribution score (Mylonas et al.,1093

2022; Lopardo et al., 2024). We construct the1094

attention-based baseline by averaging the attention1095

values of each token within each passage, as shown1096

below:1097

αdi =
1

K · |di|
∑
t∈di

K∑
i=1

a
(i)
t , t ∈ di, (7)1098

where αdi represents the utility score for passage1099

di, K indicates the number of attention heads, and1100

a
(i)
t indicates the attention value of the t-th token1101

in passage di of the i-th attention head.1102

Gradient-based Method This approach deter-1103

mines the utility scores from the gradient of each1104

token in the source unit during backward prop-1105

agation(Nielsen et al., 2022; Wang et al., 2024).1106

Specifically, we employ the Gradient times Input1107

(G × I; Denil et al., 2015), which computes the1108

score of each token by performing the dot product1109

as follows:1110

fG×I(t) = et · ∇etfLM (x,D) , (8)1111

where et represents the embedding vector of token1112

t, and fLM denotes the function of LM. The utility1113

score of each passage is then obtained by averaging1114

the G× I scores of each token contained within it.1115

LLM-based Method This approach, which can1116

also be referred to as rationale-based method or1117

self-rationalization, is in line with the work of Sohn1118

et al. (2024); Wei et al. (2024), where the LLM1119

generator simultaneously attributes the utility of1120

passages in the context while performing the task.1121

Although this method is theoretically flawed due1122

to the potential influence of hallucinations from1123

Method
HotpotQA NQ MSMARCO-QA

NDCG@1 NDCG@5 NDCG@1 NDCG@5 NDCG@1 NDCG@5

Att.-based 31.54 27.25 29.14 25.77 29.92 22.15
Grad.-based 49.90 38.83 50.58 44.56 59.09 53.35
LLM-based 76.34 76.84 28.35 32.16 31.88 59.97
Pert.-based 93.28 83.04 78.16 84.12 91.65 85.36

w/o G.T. 92.34 81.03 77.85 80.67 91.10 83.73

Table 8: The experimental results comparing various
utility attribution methods on the GTI benchmark. Attn.,
Grad., Pert., and G.T. represent Attention, Gradient,
Perturbation and Ground Truth, respectively.

LLMs (Chen and Shu, 2024), we still believe that 1124

it represents one of the future directions of utility 1125

attribution. Following Zhang et al. (2024), we in- 1126

struct the generator to rank the passages from the 1127

context in a list-wise setup while generating the 1128

answer. The prompt is shown at Table 7. 1129

GTI Benchmark This benchmark (Ground- 1130

Truth Inclusion; Zhang et al., 2024) is designed 1131

to assess the utility of retrieved passages including 1132

three QA datasets: NQ, with 1,868 data; HotpotQA, 1133

with 4,407 data; and MSMARCO-QA, with 3,121 1134

data. It manually constructs 10 passages per query, 1135

including ground truth (correct passages), counter- 1136

factual passages, highly relevant noisy passages, 1137

and weakly relevant noisy passages. We evalu- 1138

ate the above methods on this benchmark using 1139

LLaMA-3-8B-Instruct as the generator, with the ex- 1140

perimental results presented in Table 8. The results 1141

demonstrate that the perturbation-based method 1142

outperforms all other baselines by a significant mar- 1143

gin, highlighting its considerable advantage as an 1144

indicator for utility in RALMs. 1145

Attribution Forms Additionally, we investigate 1146

two different attribution forms: 1) The first form di- 1147

rectly uses the ground truth provided by the dataset 1148

as the output of the generator, which is adopted 1149

in our proposed SCARLet; 2) The second form is 1150

let the generator to produce a response first, fol- 1151

lowed by attribution based on that response. The 1152

first form reflects the contribution of each passage 1153

within the context to the production of the correct 1154

answer. While the second form requires an addi- 1155

tional comparison between the generated response 1156

and the ground truth, where we believe that the 1157

attribution process can be valid only if the the two 1158

are consistent. We compare the performance of the 1159

above two forms in the perturbation-based method, 1160

as shown in Table 8. We find that the performance 1161

difference between the two forms is minimal, but 1162

in terms of mechanism and difficulty of implemen- 1163
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I really love red the colour, it exists at the 
end of the visible spectrum of light!

Red seems like such a bold color.

Yeah, it's a very striking color! 
And did you know that it's also 
associated with a lot of strong 
emotions like passion, love, and 
joy in many cultures?

Input: Previous Dialogue

With top-3 retrieved by SCARLetBGE

……Red is the color at the end of the 
visible spectrum of light, next to orange 
and opposite violet……It is a primary 
color in the RGB color model and the 
CMYK color model, and is the 
complementary color of cyan……

Rank #1 by BGE

……Modern surveys in Europe and the United 
States show red is also the color most commonly 
associated with heat, activity, passion, sexuality, 
anger, love and joy. In China, India and many other 
Asian countries it is the color of symbolizing 
happiness and good fortune……

Rank #1 by SCARLetBGE

Passage 1

Rank #5 by BGE
Rank #2 by SCARLetBGE

Passage 2

It is very bold, it is the manifestation 
of electromagnetic radiation with the 
range of wavelengths or simply 
called light.

Ground truth

Yeah, red is definitely a striking color! Did 
you know that it's also a primary color in 
the RGB and CMYK color models? And 
it's interesting that it's opposite violet on 
the color spectrum.

With top-3 retrieved by BGE

F1 score: 13.64F1 score: 4.17

Figure 6: Case Study on WoW. Blue text indicates clues more relevant to semantics, while orange text highlights
clues more align with the target utility in dialogue generation task. Responses are generated by LLaMA-3-8B. The
generated response augmented by SCARLetBGE achieves a higher F1 score than the response augmented by BGE.

tation, we choose the first form.1164

C Details of Implementation1165

Meta data of data synthesis We present the meta1166

data from the data synthesis pipeline of one run in1167

our experiment, as shown in Table 12. As observed,1168

although the amount of training data is sufficient1169

for tuning the retriever, the SCARLet pipeline leads1170

to data loss at each stage, sometimes resulting in1171

significant loss rates, which causes an increase in1172

costs. The reasons for the loss include issues with1173

the seed data, network problems, model generation1174

errors, among others.1175

Hyperparameters During the data synthesis1176

stage, the temperature of the synthesizer model1177

is set to 0.5. In the utility attribution stage, the1178

number of sampled perturbation vectors n is set1179

to 64, with a perturbation probability of 0.5. Dur-1180

ing training, we set the learning rate as 6e-5, and1181

epochs as 1. All experiments are conducted on1182

NVIDIA A100 GPUs in torch.float32 precision.1183

D Additional Experimental Results1184

The results presented in Table 2 are under the1185

closed corpus setup, i.e., retrievers search passages1186

only from the corpus of the corresponding dataset.1187

In contrast, the pooled corpus setup refers to merg-1188

ing the corpora of different datasets into a single1189

corpus, where all retrieval is performed with the1190

unified corpus. This setup better simulates real-1191

world retrieval scenarios and enables a fairer eval-1192

uation of generalization. The experimental results1193

under the pooled corpus setup are shown in Table 1194

13. All baselines perform similarly to those in the 1195

closed corpus setup, and some outperform them, 1196

demonstrating generalization of SCARLet on the 1197

unified corpus. 1198

E Additional Case Study 1199

The QA tasks typically focus more on precise an- 1200

swers, whereas dialogue tasks prioritize the coher- 1201

ence between the generated response and the pre- 1202

ceding conversation. These two tasks have distinct 1203

retrieval utility, with the latter being more vaguely 1204

defined. To analyze whether the retriever trained 1205

by SCARLet exhibits a diversified retrieval criteria, 1206

we select a case from the test split of the WoW 1207

dataset, as shown in Figure 6. In this case, a re- 1208

triever relying on semantic relevance may primarily 1209

focus on topic words such as "red" and "spectrum". 1210

However, for dialogue generation, it is also crucial 1211

to consider the intent of the previous speaker. Pas- 1212

sage 2 is ranked higher by the retriever trained by 1213

SCARLet, because it is directly tied to the deeper 1214

meaning of the key clue "bold", making it more 1215

helpful in sustaining conversational coherence. At 1216

comparable recall levels, SCARLet prioritizes pas- 1217

sages that offer greater task-specific utility. 1218

F Example of Shared Context 1219

In this section, we provide an example of the shared 1220

context constructed during one run of SCARLet in 1221

our experiment, as shown in Figure 7, along with 1222

its corresponding synthetic data for various tasks, 1223

as shown in Figure 8 and Figure 9. 1224
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Shared Context Example
[1]: Deutsche Telekom AG (; short form in writing only: DT; stylised as ·T···) is a German telecommunications company headquartered 
in Bonn and by revenue the largest telecommunications provider in Europe. Deutsche Telekom was formed in 1996, as the former state-
owned monopoly Deutsche Bundespost was privatised. The company operates several subsidiaries worldwide, including the mobile 
communications brand T-Mobile. As of 2020, the German government holds a 14.5% stake in company stock directly, and another 
17.4% through the government bank KfW. The company is a component of the Euro Stoxx 50 stock market index.

[2]: AT&T was broken up in 1984. In the case of Telecom New Zealand, local loop unbundling was enforced by central government. 
Telkom is a semi-privatised, part state-owned South African telecommunications company. Deutsche Telekom is a former state 
monopoly, still partially state owned. Deutsche Telekom currently monopolizes high-speed VDSL broadband network. The Long Island
Power Authority (LIPA) provided electric service to over 1.1 million customers in Nassau and Suffolk counties of New York, and the 
Rockaway Peninsula in Queens. The Comcast Corporation is the largest mass media and communications company in the world by 
revenue.

[3]: Telkom Indonesia PT Telekomunikasi Indonesia (Persero) Tbk, commonly known as Telkom Indonesia (stylised as Telkom 
Indonesıa) or simply Telkom, is an Indonesian multinational telecommunications conglomerate. Telkom is a semi-privatised, majority 
state-owned company listed on multiple exchanges. It has major businesses in fixed line telephony, internet and data communications. It 
is operated as parent company of the Telkom Group, which is engaged in a broad range of businesses that consist of telecommunication, 
multimedia, property and finance services. Since 2008, Telkom Indonesia began changing its business focus, infrastructure, systems, 
organisation and human resources, as well as the corporate culture, as their effort

[4]: Mannesmann Arcor AG & Co. KG was formed in 1996 as a joint venture between Mannesmann, Deutsche Bank and DBKom, a 
subsidiary of Deutsche Bahn, the national railway operator. After Mannesmann was bought out by Vodafone the company was renamed 
Arcor AG & Co. KG. On 19 May 2008, Vodafone acquired the minority shareholdings of Deutsche Bahn and Deutsche Bank (18.17% 
and 8.18% respectively) to gain full control of Arcor.

[5]: Up to 1998, the telecommunications market in Greece was a monopoly. The market was opened to competitors and OTE was 
gradually privatized. As a result, the Greek government currently holds 10% of the company's stock. Along with the rest of the telecoms 
market, OTE is regulated by the National Telecommunications and Post Commission (Εθνική Επιτροπή Τηλεπικοινωνιών και 
Ταχυδρομείων – EETT). In 2007 Marfin Investment Group acquired 20% of the company, and in March 2008 sold it to Germany's 
Deutsche Telekom which later increased its stake to 25% plus

[6]: federal German government postal administration created in 1947 as a successor to the Reichspost. It was also the major telephone 
company in West Germany. On 1 July 1989, as part of a post office reform, Deutsche Bundespost was split into three entities, one being 
Deutsche Telekom. On 1 January 1995, as part of another reform, Deutsche Bundespost Telekom became Deutsche Telekom AG, and 
was privatized in 1996. As such, it shares a common heritage with the other privatized Deutsche Bundespost companies, Deutsche Post 
(DHL) and Deutsche Postbank. Deutsche Telekom was the monopoly Internet service provider (ISP) for the German Internet

[7]: This was important because local telephone calls in Germany, including dialup access to ISPs, were not offered on a flat price per
call (i.e., unlimited) basis. The flat-rate service was also offered to customers with ISDN connections at the same price as for analog 
service. In Spring 2001, T-Online announced the demise of the flat-rate dialup plan but offered a flat-rate DSL plan in its place. Deutsche 
Telekom (T-Online) was the monopoly Internet Service Provider (ISP) for the German Internet until its privatization in 1995, and the 
dominant ISP thereafter.

[8]: Telefónica Germany Telefónica Germany GmbH & Co. OHG (; also called Telefónica Deutschland ) is a provider of broadband, 
landline and mobile telecommunications in Germany. The company trades as O2 (typeset as O) and O2 DSL (formerly Alice). The 
company was renamed from Telefónica O2 Germany to Telefónica Germany on 1 April 2011 following the completion of a merger with 
HanseNet. Telefónica Germany purchased E-Plus on 1 October 2014, unifying the business under O brand on 3 February 2016. 
Telefónica Germany's main competitors are Telekom Deutschland (Deutsche Telekom's German private customer unit) and Vodafone.

Figure 7: An example of the shared context. Based on this context, SCARLet synthesizes training data, as shown in
Figure 8 and 9.
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Data of Long-form QA

Input: How did Deutsche Telekom become the largest telecommunications provider in Europe?

Ground Truth: Deutsche Telekom's journey to becoming the largest telecommunications provider in Europe is rooted in its 
history and strategic decisions. Formed in 1996 from the privatization of the former state-owned monopoly Deutsche Bundespost, 
Deutsche Telekom capitalized on its already extensive infrastructure and customer base in Germany. Initially, Deutsche 
Bundespost was the major telephone company in West Germany, and its transformation into Deutsche Telekom allowed it to 
leverage its established network and expertise. The company was the monopoly Internet service provider (ISP) for the German 
Internet until its privatization, giving it a significant head start in the digital age.Deutsche Telekom's growth strategy involved 
expanding its services and entering new markets. The company operates several subsidiaries worldwide, including the well-
known mobile communications brand T-Mobile, which has a strong presence in both Europe and the United States. This 
international expansion was crucial in increasing its revenue and market share.Moreover, Deutsche Telekom's ability to adapt to 
technological advancements played a significant role. For instance, the introduction of LTE internet access in 2010 and the 
subsequent rollout of high-speed VDSL broadband network allowed the company to stay ahead of competitors in terms of 
service offerings. Despite facing regulatory pressures and competition, Deutsche Telekom maintained a dominant position by 
continuously upgrading its infrastructure and services.Another key factor was the partial state ownership, with the German 
government holding a significant stake in the company. This relationship provided a level of stability and support that facilitated 
long-term strategic planning and investment.Overall, Deutsche Telekom's combination of historical advantages, strategic 
international expansion, technological innovation, and partial state support enabled it to grow into the largest 
telecommunications provider in Europe by revenue.

Figure 8: The training data of long-form QA, synthesized by SCARLet based on the context in Figure 7.

Data of Multi-hop QA

Input: Which company acquired a 
significant share of OTE in March 
2008?

Ground Truth: Deutsche Telekom

Input: Deutsche Telekom was formed 
in 1984.

Ground Truth: REFUTES

Data of Fact Checking

Input: Deutsche Telekom [SEP] headquarters.

Ground Truth: Bonn

Data of Slot Filling

Figure 9: The training data of multi-hop QA, fact checking and slot filling, synthesized by SCARLet based on the
context in Figure 7.
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You are a strong expert of data synthesis. Below, I will provide the context, the description and an
example of the target task. Your task is to generate a piece of data for the target task based on the
given context. The sections marked with ====xxx begins==== and ====xxx ends==== indicate the start and
end of each respective part. Please note that the data you generate must meet the following criteria:
1. Correctness, which must be logically correct and factually correct.
2. Faithfulness, which must be faithful to the context.
3. Quality, which must be thoughtful and sophisticated, ideally based on multiple paragraphs where
applicable.

Please note that the generated data should follow this specific format:
====New data begins====
Input:
Reference output:
====New data ends====

====Context begins====
{context}
====Context ends====

====Target task description begins====
{task_description}
====Target task description ends====

====Target task example begins====
Input: {task_example_input}
Reference output: {task_example_output}
====Target task example ends====

Please ensure that your output matches the instructions above.

Table 9: The prompt template for data synthesis.

You are tasked with checking whether the following synthetic data of {task_name} task is logically
correct and formatted correctly. The data consists of five parts: task description, example, input,
output, source passages. The input and output of the synthetic data are based on the source passages.
And a reasonable example of {task_name} task is provided, note that it is not based on source
passages. Please check the following:
1. Logical Correctness: Check whether the output correctly solves the input based on the source
passages.
2. Format Correctness: Check whether the input and output of the synthetic data conform to the correct
format presented in the task description and the example.

Task description: {task_description}

Example:
Input: {task_example_input}
Output: {task_example_output}

Now, please check the following synthetic data based on source passages:

Input: {input}
Output: {output}
Source passages: {context}

Please note that if the above synthetic data basically meets the requirements, output "[YES]",
otherwise output "[NO]".

Table 10: The prompt template for data filtering.
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You are a strong expert of data processing. You are tasked with data augmentation to generate noisy
data to enhance training robustness. Below, I will provide you with a piece of data, including task
description, input, and ground truth. Then I will provide you with the context containing the
necessary information to solve the input. You need to deeply understand the data and the context, and
finally generate a passage which is a variant of one passage of the context. The generated passage
needs to be semantically relevant while providing no practical effect in solving the input.

Data:
Input: {data_input}
Ground truth: {data_output}

Context: {context}

Please ensure that the generated passage matches the length of the passages in the context and is a
modified version of its original passage. And the generated passage must follow the format, which is
marked with ====Generated passage begins==== and ====Generated passage ends==== at its start and end.

Table 11: The prompt template for passages enhancement.

NQ HotpotQA ELI5 FEVER WoW T-REx

Entities Extraction
Loss Rate 12.2% 0.6% 24.1% 5.1% 17.1% 9.2%
Averaged Number of Entities 1.7 3.4 5.8 2.0 5.1 1.8

Entities Retrieval
Expansion Rate 91.0% 90.5% 96.0% 89.1% 97.5% 98.0%
Averaged Number of New Entities 5.1 6.5 17.1 3.7 14.9 5.2
Averaged Number of Entities 6.3 9.3 22.2 5.3 19.6 6.9

Data Synthesis
Number of Synthetic Data 5230 5950 4492 5580 4872 5317
Loss Rate 12.8% 0.8% 25.1% 7.0% 18.8% 11.4%

Table 12: Meta data from the synthesis pipeline of one run in our experiment. Loss Rate means the proportion of
discarded data caused by the process. Expansion Rate means the proportion of data with new entities added. In this
run, the data filtering achieves a loss rate of 44.2%, and the total amount of data used for utility attribution is 17,529.

Method
In-domain Out-of-domain

NQ HotpotQA ELI5 FEVER WoW T-REx zs-RE SciFact C-FEVER FiQA
LLaMA-3-8B-Instruct

Contriever 44.0 36.7 14.5 79.2 8.6 33.8 20.9 68.1 38.0 16.5
BGE 48.0 45.4 15.2 85.6 8.8 39.6 24.1 80.2 45.9 20.8
AARContriever 46.2 41.8 15.0 77.8 8.2 35.1 24.2 70.3 42.6 16.7
REPLUGContriever 44.5 39.7 13.8 81.3 9.2 33.7 23.6 72.9 41.0 18.8

SCARLetContriever 45.1 42.0 15.9 80.6 10.4 36.4 22.2 74.7 42.0 17.7
SCARLetBGE 49.8 48.3 16.6 81.2 12.7 37.0 24.7 81.5 45.9 23.1

Qwen2.5-3B-Instruct
Contriever 31.9 28.5 14.2 67.1 10.5 27.1 14.0 66.5 32.8 15.5
BGE 48.5 44.0 13.7 80.4 10.2 34.5 18.6 65.5 37.1 18.6
AARContriever 34.8 30.9 13.8 66.2 10.6 28.3 15.5 63.2 32.0 16.3
REPLUGContriever 34.2 35.8 14.0 71.2 12.8 26.8 16.9 60.6 30.9 18.7

SCARLetContriever 39.3 36.0 14.4 70.0 11.9 28.2 19.1 64.9 31.8 17.3
SCARLetBGE 45.1 44.7 15.6 74.1 12.3 30.1 18.7 64.4 36.3 20.5

Table 13: Results of the main experiment in the pooled corpus setup. The unified corpus includes corpora of
Wikipedia dump, BeIR-SciFact, BeIR-ClimateFEVER and BeIR-FiQA.
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