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Abstract
Existing user studies suggest that different tasks
may require explanations with different proper-
ties. However, user studies are expensive. In this
paper, we introduce XAIsim2real, a generaliz-
able, cost-effective method for identifying task-
relevant explanation properties in silico, which
can guide the design of more expensive user stud-
ies. We use XAIsim2real to identify relevant
properties for three example tasks and validate
our simulation with real user studies.

1. Introduction
Recent literature suggests that explanations with different
properties are useful for different tasks (e.g. Liao et al.,
2022). For example, in an AI-auditing task, the user may
need to check if the AI relied on a forbidden feature, such as
gender, in computing a credit score (e.g. Kaur et al., 2020).
In this case, we want explanations that are faithful; that is,
they reliably capture the underlying behavior of the func-
tion. For a different task, to help a user quickly understand
how a function produces its output, we may want expla-
nations with low complexity, so the user can reason using
the explanation in a limited amount of time (Poursabzi-
Sangdeh et al., 2021).

Unfortunately, identifying which explanation properties are
needed for what tasks remains an open challenge (e.g.
Hase and Bansal, 2020). Prior works produce explana-
tions with specific properties (e.g. Zhou et al., 2021), but
do not test whether these properties improve human task-
performance. Furthermore, many explanation properties,
like “faithfulness”, have multiple different formalizations
in the literature (e.g. Chen et al., 2022b). Given the large
number of properties, it is expensive and impractical to rely
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solely on user-studies for discovering task-relevant ones.

Drawing inspiration from the idea of sim2real used in other
fields, such as robotics (see surveys Höfer et al., 2021; Ka-
dian et al., 2020), in this work, we introduce XAIsim2real,
a generalizable, cost-effective method for identifying task-
relevant explanation properties in-silico that can guide the
design of more expensive user studies. In XAIsim2real:
(1) we choose a set of properties and optimize explanations
for them, (2) we require details on learning and memory
in our proxies for human task-performance (3) we use the
proxy human to identify task-relevant properties. Finally,
we validate insights from our computational pipeline via
user-studies. By linking explanation properties directly to
human task-performance, we hope to discover generaliz-
able knowledge about what type of explanation is help-
ful for which task and why. Furthermore, our experiments
show that our pipeline can serve as a useful precursor to
real human-studies, by reducing a large hypothesis space.

Related Works

Several user-studies test which explanations (selected from
a small set of possibilities) better aid humans in differ-
ent tasks, such as predicting apartment prices (Poursabzi-
Sangdeh et al., 2021; Lage et al., 2019a). In these stud-
ies, properties are carefully pre-selected based on domain
knowledge. In contrast, XAIsim2real allows us to compare
the effect of arbitrary explanation properties on the perfor-
mance of human proxies before running user studies. Many
works provide automatic evaluations of explanation quality
through computing their properties (e.g. Liu et al., 2021;
Bhatt et al., 2021; Nguyen and Martı́nez, 2020; Lukas and
Garcia). But because the proposed property definitions are
not grounded in tasks or evaluated on real human perfor-
mance, there is a lack of consensus on how to formalize
and apply these properties. In contrast, we propose a fully
general approach for explicitly linking explanation prop-
erties to downstream task-performance. Thus, using our
pipeline, we can identify which specific formalization of
which property is useful for which task.

Human proxies have appeared in other areas of inter-
pretable machine learning (Virgolin et al., 2020; Hilgard
et al., 2021; Lage et al., 2018). Unlike us, these human
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proxies are not used to evaluate explanations. Similar to
us, Chen et al. (2022a) simulate user studies with proxy
humans. Unlike us, their simulations do not account for ex-
planation properties. Thus, they do not provide reasons for
why certain explanations, such as LIME, improved human
performance. We focus on mapping of explanation proper-
ties to task-performance. Furthermore, we show by using
a more transparent human proxy model instead of an arbi-
trarily flexible one (an MLP is used in Chen et al. (2022a)),
we can check how our choice of human model affects the
properties to task-performance mapping.

2. XAIsim2real: Connecting Explanation
Properties to Human Performance

Our XAIsim2real consists of four components: (1) a set
of tasks, (2) a set of explanation properties, (3) a compu-
tational proxy of the human that explicitly models mem-
ory and task learning, (4) a set of underlying ML functions
being explained, and (5) a method for optimizing explana-
tions to a given subset of properties. Below, in addition to
defining each XAIsim2real component, we instantiate the
component for our computational and user studies.

Notation. We assume an underlying function ŷ = f(x).
The explanation method, E(f,x), provides the human with
an explanation for function f local to the input x. Though
our pipeline is fully general, here, we focus on a feature at-
tributions, which gives a weight for every input dimension.
For a D-dimensional input x, the explanation E(f,x) is a
D-dimensional weight vector. We use subscripts to denote
explanations selected for a certain property, e.g. a faithful
explanation is denoted Efaithful.

We focus on local tasks – the (real or proxy) human h
make case-by-case decisions. We refer to the informa-
tion available to the human as the human input, denoted
xh = [x, E(f,x), . . .]. We denote human-produced out-
puts for the task as yh = h(xh). Note that the human’s task
yh need not be the same as the function’s output ŷ.

2.1. Component 1: Tasks.

Computational Instantiation. We consider two popular
decision-making tasks from literature: forward prediction
and forbidden features. Prior works indicate that they will
likely require different properties: humans performing for-
ward prediction prefer sparse (Poursabzi-Sangdeh et al.,
2021; Hase and Bansal, 2020) and faithful explanations
(Lertvitt and Toni, 2019), while humans performing forbid-
den features prefer faithful explanations (Liao et al., 2022).

Forward prediction: the human uses an explanation to
predict a function’s output. The human’s input, xh =
[x, E(f,x)], consists of the input x and explanation E. The
human’s target is the function output, y∗h = f(x).

Forbidden features: the human uses an explanation to de-
termine if the function used a forbidden feature to compute
its output. The human’s inputs, xh = [x, E(f,x), f(x)],
consists of the input x, explanation E, and function’s out-
put f(x). The human’s target is binary: did the function
use a forbidden feature (yh = 1) or no (yh = 0). The
correct human answer is y∗h = I {f(x) = f(x without d)},
with d as the forbidden feature.

User Study Instantiation. In our user study, we modify a
toy decision-making scenario related to medically treating
aliens (Lage et al., 2019b; Swaroop et al., 2024). The toy
scenario, rather than a more realistic one, mitigates con-
founding from different levels of task-specific prior knowl-
edge. Furthermore, to mitigate confounding from different
levels of algorithmic mistrust, we refer to explanations as
information from an “alien researcher.”

For forward prediction, users diagnose an alien with imag-
inary physical traits. The diagnosis is binary: healthy or
not. The underlying function determines the true mapping
of physical traits to a diagnosis. We provide explanations as
an “alien researcher’s” advice on how physical traits affect
alien health. In the forbidden features task, users decide
whether or not a doctor relied on a forbidden trait to diag-
nose aliens. Users see the “alien researcher’s” opinion on
traits used by the doctor. The underlying function deter-
mines whether the doctor truly used the trait for diagnosis.
Screenshots of the UI are in Appendix C.1.

2.2. Component 2: Explanation Properties.

Computational Instantiation. We focus on three
properties— robustness, faithfulness, and complexity—
that are most relevant for feature attribution explanations.
There are multiple formalizations for each property; we
choose formalizations that are both commonly used and
can be applied to any feature-based explanation.

Robustness measures the variation in a function’s explana-
tion when the input is perturbed. We use the local-stability
formalization (Alvarez Melis and Jaakkola, 2018). Faith-
fulness evaluates how well the explanation matches the
function’s behavior. We use the local-infidelity formaliza-
tion (Yeh et al., 2019). Complexity is a proxy for the cog-
nitive burden for engaging with the explanation. We use a
sparsity formalization (all equations in App A.1).

User Study Instantiation. Explanations shown to users
are optimized for specific properties.

2.3. Component 3: Property Optimized Explanations.

Computational Instantiation. We optimize explanations
for a given property (e.g. faithfulness or robustness) for-
malized as a mathematical loss function. In this paper,
rather than solving this optimization algorithmically, we
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Figure 1: An overview of our XAIsim2real pipeline (robot, red arrows) compared to a user study (human, black arrows).

use our knowledge of the underlying functions to directly
identify optimal explanations for different properties. For
example, when the underlying function is linear around
an input, we return, as our explanation, the weights of
the linear function. This explanation will be optimal un-
der any formalization of faithfulness. We consider four
types of faithful explanations: neither sparse nor robust
(Efaithful), sparse but not robust (Esparse), robust but not
sparse (Erobust), and both sparse and robust (Esparse+robust).

User Study Instantiation. Users see the property-
optimized explanations as advice from an “alien re-
searcher.” Users see the same (initially randomly assigned)
type of explanation throughout the entire study.

2.4. Pipeline Component: ML Functions.

Computational Instantiation. We consider two underly-
ing machine learning functions, fbox and fpiece, which we
design to demonstrate the trade-offs between different ex-
planation properties (details in Appendix A.2).

fbox (Figx 3a) is an inherently sparse binary classifier, us-
ing only a small subset of the total features for predictions.
We can be certain that sparse explanations will provide rea-
sonable insights on the function’s computational process.

fpiece is a function for which different features are important
for different inputs. Importantly, in fpiece, many weights are
small but still non-zero. These small effects help us distin-
guish faithful explanations that include all (marginally) im-
portant features and sparse explanations that include only
the most important ones.

User Study Instantiation. In the forward prediction task,
fbox or fpiece determines the mapping from the alien’s phys-
ical traits to a diagnosis. In the forbidden features task,
they represent the doctor’s decision-making process (i.e.
whether the doctor uses the forbidden feature).

2.5. Pipeline Component: Proxy Human Model.

The proxy human model h̃ maps human inputs xh to hu-
man outputs yh. Specifying the proxy human model re-
quires choices of memory model and task learning model.

The memory model makes explicit our assumptions about
how humans process inputs. We formalize this as a data
preproccessing step. The learning model captures how hu-
mans learn a task based on experience. We formalize this
as the process for optimizing h̃ on training data.

Computational Instantiation. We use a decision tree of
up to depth two for h̃, as logic-based models are generally
considered interpretable to humans (and therefore thought
to mimic their decision-making) (Lage et al., 2019a).

We consider two memory models. The first human model,
h̃limited, assumes a limited cognitive budget – the human
can perform a limited number of mathematical operations.
In hlimited, the human computes a partial inner product be-
tween x and E(f,x), only using the two largest feature
attribution weights. Our second model, h̃unlimited, computes
the full inner product. The inner product represents how
the human combines the explanation and the input.

User Study Instantiation. We test both versions of our
memory model. In one user study, we use time pressure
to create conditions under which the human’s cognitive
budget is limited. Specifically, during the study, partic-
ipants see both a global timer for how much time they
have remaining to complete the questions and a local timer
which counted down a “recommended” time per task – total
time divided by total number of questions (Swaroop et al.,
2024). In the other study, no time pressure is applied.

3. Experiments
The explanation property – denoted Efaithful, Esparse, Erobust,
or Esparse+robust – is our independent variable, and the hu-
man’s task-performance is the dependent variable. The re-
maining pipeline components (tasks, functions, inputs) de-
termine the experiment setting.

Computational experiments. We consider eight total set-
tings combining two tasks (forward prediction, forbidden
features), two functions (fbox, fpiece), and two human mod-
els with different cognitive budgets (hlimited, hunlimited) (Sec-
tion 2). Explanations are optimized on a set of 500 points
near the function’s decision boundary. Human models,
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Figure 2: Different tasks require different properties (best explanation changes between plots), and XAIsim2real success-
fully proxies real human performance (orange follows blue). Bars are 95% confidence intervals.

however, are trained on a random subset of 10 of these
points (we report the result of ten trials over these subsets).
Test points are a set of 500 evenly spaced points.

Procedure for user studies. Our study is conducted via
Prolific, an online crowdsourcing platform. We host each
task as a separate study. Within a task, we use a between-
subjects design, and users are randomized to different ex-
planation types. We recruit 32 participants per task (8 par-
ticipants per explanation type). All studies in our paper are
approved by the Internal Review Board at Harvard Univer-
sity, protocol number IRB15-2076.

A participant experiences “train” and “test” phases in our
user-study, which mirrors in-silico train and test. Dur-
ing training, users interact with ten practice questions for
which correct decisions are given. They are instructed to
form a decision-making strategy and can click through the
practice problems until they feel prepared to proceed (there
is no time pressure). During testing, participants answer
thirty questions. Explanations in the test phase have the
same properties as those shown in training. This process
matches our simulation, in which each human model is
trained and tested on one type of explanation.

3.1. Results

Using XAIsim2real, we reduce many hypotheses to a
few promising candidates for user-studies. Our compu-
tational experiments test the human model’s performance
in eight possible settings. Three settings resulted in in-
teresting hypotheses: (1) for forward prediction with fbox
and hlimited, humans will perform best with Esparse, (2) for
forward prediction with fbox and hunlimited, humans will per-
form equally well with Efaithful and Esparse, (3) for forbidden
features with fpiece, regardless of human model, humans
will perform best with Efaithful.

We design user-studies for the above three settings, since,
in each, the proxy human performed better with one ex-
planation than the others (blue bars in Figure 2). In the
remaining settings (full results in Appendix B.1), different
explanation types did not yield different proxy human per-

formance, eliminating the need to run user studies.

The performance of computational proxies transfers to
humans. The goal of the human proxy is not to perfectly
model human decision-making, but rather, to provide a suf-
ficient proxy for ranking explanation properties (by task
performance). In Figure 2, we provide evidence that our
proxy model was sufficient; the ordering of explanation
properties under our proxy humans (orange) matches the
ordering under real humans (blue). Specifically, on for-
ward prediction, Esparse is best when there is time pressure
(see Figure 2c), while Efaith does similarly well when the
time pressure is removed (see Figure 2b). This confirms
our hypothesis. As expected, in Figure 2a, Efaith is best for
forbidden features. Overall, we expect (and see that) real
humans perform slightly worse than their proxies.

4. Conclusion
In this paper, we introduce XAIsim2real, a sim2real ap-
proach for connecting explanation properties to human
task-performance. We demonstrate XAIsim2real by ad-
dressing two research questions: (1) can we computa-
tionally link explanation properties to tasks? and (2) can
we link the performance of computational proxies for hu-
mans to the performance of real humans? For (1), we use
XAIsim2real to identify three tasks where we see, compu-
tationally, that different explanation properties are helpful
for different tasks. For (2), we verify the property-task re-
lationships we identify in-silico using user-studies.

This work is a proof-of-concept for an important research
direction: efficiently identifying helpful explanation prop-
erties for human decision-making. Future work includes
running studies on larger samples to measure statistical sig-
nificance. The tasks, functions, and properties we used
were hand-picked based on where we expected to see large
effects; in future, we will explore more functions as well as
algorithmic means to optimize explanations for properties.
We will also explore human proxies other than a decision-
tree, to test whether our results are robust to the choice of
model.
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A. Details of Computational Instantiations
A.1. Definitions of Explanation Properties

Robustness measures the variation in a function’s explanation when small changes are made to the input. We consider a spe-
cific formalization called local stability (Alvarez Melis and Jaakkola, 2018), which encapsulates many other formalizations
of robustness as specializations (Chen et al., 2022b).

local-stability(E, f,x, r) = max
∥x−x′∥≤r

∥E(f,x)− E(f,x′)∥
∥x− x′∥

. (1)

The hyperparameter r defines the “locality” of the definition; the bigger the r, the more globally unchanging the explanation
must be to evaluate well.

Faithfulness evaluates how well the explanation matches the function’s true behavior. We consider a specific formalization
called Local infidelity (Yeh et al., 2019), which has been applied in literature to analyze a number of explanation methods
(Chen et al., 2022b). Local infidelity evaluates how well the explanation method E can reproduce the behavior of the
function f “locally,” near an input x, instead of over the entire dataset:

local-infidelity(E, f,x, p) = Ep(x′|x) [L ( f(x), g(x′, E(f,x)) )] , (2)

where E is the expectation, and p is a distribution over points centered on x, and L is any loss function appropriate for the
task.

Complexity measures the intricacy of the explanation and is a proxy for the cognitive burden on the human when engaging
with the explanation. We measure the complexity of a feature attribution explanation using sparsity, which counts the
number of non-zero features:

sparsity(E) =

D∑
d

I(E(f,x)d ̸= 0) (3)

Here, D is the number of features, E(f,xd) refers to the attribution of the d-th feature, and I is an indicator function.

A.2. Definitions of functions

(a) fbox function (b) fpiece function (2D example)

Figure 3: Visualization of the two underlying machine learning classification functions we used in our experimental setting.
Different colors are different labels.

Model fbox. This function takes in three input dimensions. At any given input, this function relies on only one input feature
to make a decision. Depending on the input region, the function switches between using one of two input features, x1 or
x2, to generate its output. The switch is determined by a third input feature, x3. Formally, the Box function is defined as
follows:

fbox(x) =


I {x2 > 0.5} , x3 ≤ 0.25

I {x1 > 0.5} , 0.25 < x3 ≤ 0.5

I {x2 > 0.5} , 0.5 < x3 ≤ 0.75

I {x1 > 0.5} , 0.75 < x3

(4)

where I(condition(x)) is the indicator function that returns 1 if condition(x) is true, 0 otherwise. In Eq. 4, the binary
classification depends on either the first x1 or second x2 input feature. The third feature x3 decides which of the two is
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used. For example, the first condition of fbox’s definition says, if x3 is less than 0.25, then the classification returns 1 if x1

is greater than 0.5 and 0 otherwise.

Model fpiece. We define a piecewise linear function with 4 pieces and 10-dimensional inputs as follows:

fpiece(x) =


I
{
x⊤W1: > 0

}
, x1 ≤ 0.25

I
{
x⊤W2: > 0

}
, 0.25 < x1 ≤ 0.5

I
{
x⊤W3: > 0

}
, 0.5 < x1 ≤ 0.75

I
{
x⊤W4: > 0

}
, 0.75 < x1,

(5)

where Wi: refers to the i-th row of the weight matrix, defined as

W =


0 1 −1 0 1 −0.1 0.1 −0.1 0.1 −0.1 −0.7
0 −0.8 −0.2 0.2 0.1 −0.9 −0.1 −0.1 0.1 −0.2 1
0 −0.8 −0.2 0 0.1 −0.9 −0.1 −0.1 0.1 −0.2 1
0 −0.05 1 −0.8 −0.1 0.1 0.9 −0.2 0.1 0.8 −1


B. Full results
B.1. Computational results for all eight settings

Tables 1 and 2 report the human model’s performance on our tasks. In these tables, we find evidence supporting our
hypotheses. Specifically, in Table 1, Efaith is important for the forward prediction task when the human model has no
constraints on the cognitive budget (h̃unlimited). When constraints are introduced (h̃limited), Esparse remain the sole important
feature for fbox. Note Esparse is not helpful for fpiece because the function depends densely on all of the inputs.

Finally, for the forbidden features task in Table 2, Efaith is the most important property for explaining on fpiece, as expected.
Performances on the forbidden features task for fbox are all perfect because we define the forbidden feature to be one that is
always used by fbox (and therefore, there was only one label). This is a scenario in which the explanation did not help the
human model with the task, and thus we expected no difference in performance among the explanation types; this is indeed
the case. This result is an example where the sim2real pipeline informs us that that variation in explanation properties is
unlikely to impact real human performance on the forbidden features task using fbox as the underlying function. Thus, this
would not be a setting we would test in our user studies.

Efaithful Erobust Esparse Esparse+rob.

fbox h̃limited 0.69± 0.06 0.67± 0.07 0.88 ± 0.1 0.67± 0.07

h̃unlimited 0.92 ± 0.1 0.67± 0.07 0.88 ± 0.1 0.67± 0.07

fpiece h̃limited 0.51± 0.04 0.54± 0.04 0.51± 0.04 0.54± 0.04

h̃unlimited 0.99 ± 0.0 0.54± 0.04 0.51± 0.04 0.54± 0.04

Table 1: Performance of proxy human on prediction with 95% confidence intervals. Rows are each property optimized
explanation. Higher is better; performance is over 10 trials.

Efaithful Erobust Esparse Esparse+rob.

fbox h̃limited 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

h̃unlimited 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00

fpiece h̃limited 0.94 ± 0.08 0.56± 0.07 0.53± 0.04 0.56± 0.07

h̃unlimited 0.94 ± 0.08 0.56± 0.07 0.53± 0.04 0.56± 0.07

Table 2: Performance of proxy human on forbidden features with 95% confidence intervals. Rows are each property
optimized explanation. Higher is better; performance is over 10 trials.
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B.2. Results of Optimizing Explanations to Properties

In Table 3, we verify that each explanation scores best on the property for which it was optimized. For example, Erobust
and Esparse+robust score best on both robustness metrics (max sensitivity and local robustness) when compared to all other
explanation types. Second, explanations score similarly on properties for which they are not being optimized. For example,
all of the non-sparse explanations (Efaith and Erobust) evaluate to similar levels of sparsity.

Model Property Efaithful Erobust Esparse Esparse+rob.

fbox Local Infidelity 0.01 ± 0.0 0.34± 0.03 0.04 ± 0.01 0.36± 0.03
Sparsity 3.91 ± 0.02 4.00± 0.00 2.0 ± 0.0 2.0 ± 0.0
Local Stability (r = 0.1) 46.34± 17.37 0.0 ± 0.0 59.83± 2.85 0.0 ± 0.0

fpiece Sparsity 9.46± 0.03 9.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0
Local Infidelity 0.0 ± 0.0 0.42± 0.03 0.45± 0.03 0.42± 0.03
Local stability (r = 2) 15.18± 0.30 0.0 ± 0.0 13.09 ± 0.25 0.0 ± 0.0

Table 3: Optimization results. Numbers are mean property values of the explanation at each input, with 95% confidence
intervals. Rows are each property optimized explanation. Lower is more optimized. Bolded numbers are outside the CI
of unbolded numbers. For local stability, r refers to the radius parameter from Eq. 1. For local infidelity, p refers to the
distribution centered on the input point from Eq. 2.

Some values in Table 3 are zero due to our process for optimizing the explanations. The robust explanations produce
a local infidelity score of zero because, to optimize for robustness, we choose a global explanation that is as faithful as
possible. Since these explanations are global, they do not change with the inputs and evaluate to zero under the definition
of local stability in Eq. 1. This also means the sparsity level of each robust explanation is constant and results in zero
variance. Similarly, the sparse explanations have zero variance because, to optimize for sparsity, we always pick the two
largest feature attributions (the sparsity level is always two). Finally, the faithful explanations are zero because, to optimize
for faithfulness, we return the ground-truth weights of the underlying function. Since these weights are the same as the
function, the loss will be zero when evaluated at each point. The non-zero values (Local Infidelity is 0.01 for Efaithful on
fbox) are caused by the fact that we round the optimized weights in our human model.

C. User Study Details
The main study has four parts: (1) instructions; (2) comprehension check questions; (3) a task training phase; and (4)
the main study testing phase. Instructions introduces the scenario and describes each UI element. Comprehension checks
assess whether the participant understands the task well enough to form a proper strategy. For example, for forward
prediction, we ask “According to the [alien] researcher, which measurement would have the biggest effect on the alien’s
health?”, to check that participants know that a higher absolute value means a higher feature attribution. To mirror training
and evaluation in-silico, we include “train” and “test” phases in our user-study. During training, users interact with ten
practice questions for which correct decisions are given. They are instructed to form a decision-making strategy and can
click through the practice problems until they feel prepared to proceed (there is no time pressure during training). During
testing, participants answer thirty questions. Explanations in the test phase have the same properties as the explanations
shown in training. This process matches our simulation, in which each human model is trained and tested on one type of
explanation.

C.1. User Interfaces

In Figure 4, we provide an example of the test phase interface the forward prediction and forbidden features tasks.

In Figure 4a, the first block describes the alien’s measurements, corresponding to the inputs x. The second block contains
the explanations E(f,x). The third block lets the user provide their decision on the diagnosis, which corresponds to h(xh).

In Figure 4b, the first block denotes the forbidden feature. The second block describes the alien’s measurements, corre-
sponding to the inputs x. The third block is the doctor’s diagnosis for the alien, corresponding to ŷ(x). The fourth block
contains the explanations E(f,x). The fifth block lets the user provide their decision on whether the forbidden feature was
used in diagnosis, which corresponds to h(xh).
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C.2. Design Choices in Translating the Simulation Pipeline to Real Users

Some elements of the simulation pipeline are not straightforward to implement on real humans. In this section, we describe
design choices made to align our simulation and real user studies.

Constructing training and test phases. Mirroring the training and evaluation phase in the computational pipeline, we also
include “train” and “test” phases in our user-study. During the training phase, users interact with ten practice questions for
which the correct decisions are given. They are instructed to form a decision-making strategy and can click through these
practice problems until they feel prepared to proceed. These practice problems parallel the ten training points used to train
our decision tree model h̃. There is no time limit or time pressure during this phase.

During the testing phase, participants are asked to provide decisions on thirty questions for which the correct answer is
not given. The explanations during the test phase have the same properties as the explanations during the training phase.
This process closely matches our simulation pipeline, in which each human model is trained and tested on one type of
explanation.

Selection criteria for training points. Because we are limited in the number of examples we could provide, we select
them to be as informative as possible. For example with forward prediction, we find in our pilot studies that users learn
best from input points that are a mix of easy examples clearly belong to one class because they are far from the function’s
decision boundary and harder examples close to the function’s decision boundary. This is opposed to the computational
model h̃, which was trained only on points near the boundary. Note that we can use the decision boundary because we
have full knowledge of the underlying functions, fbox and fpiece; in situations where the underlying function is not known,
one could use the sim2real pipeline to identify a subset of training points that led to highest performance for the synthetic
human and use these points for the user study.

How we picked the thirty test points. We choose the test questions under a mixture of conditions that allow us to test both
Q1 (“linking properties to tasks”) and Q2 (“do simulation results match real human behavior”). Specifically, we choose
ten test questions from each of the following categories:

• Questions for which the human proxy model performed the same, regardless of whether the explanation was robust,
sparse, or faithful.

• Questions for which the human proxy model suggested that real users will perform better with the best explanation
type (according to simulation) than a different explanation type.

• Questions for which the human proxy model suggested that real users will perform worse with the best explanation
type (according to simulation) than with a different explanation type.

The best explanation types refer to the explanations that performed best on the task in the simulation experiments. For
example, the “best” explanation type in the forbidden features task was the faithful explanations. Overall, this collection of
test cases allows us to check whether the real user’s behavior matched the human proxy model. Moreover, by testing these
distinct cases in which we believe that we are giving the real users a combination of useful and less useful explanations,
we can observe the real connection between tasks and properties.
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(a) UI for forward prediction

(b) UI for forbidden features

Figure 4: Example of user interface for the study, test phase, on the forward prediction task of diagnosing aliens. During
the training phase, participants could view a number of these examples, for as long as they wished, with the correct answers
given. There was no timer during the training phase.
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