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ABSTRACT

Detecting objects in 3D space using multiple cameras, known as Multi-Camera 3D
Object Detection (MC3D-Det), has gained prominence with the advent of bird’s-
eye view (BEV) approaches. However, these methods often struggle when faced
with unfamiliar testing environments due to the lack of diverse training data en-
compassing various viewpoints and environments. To address this, we propose
a novel method that aligns 3D detection with 2D camera plane results, ensuring
consistent and accurate detections. Our framework, anchored in perspective de-
biasing, helps the learning of features resilient to domain shifts. In our approach,
we render diverse view maps from BEV features and rectify the perspective bias
of these maps, leveraging implicit foreground volumes to bridge the camera and
BEV planes. This two-step process promotes the learning of perspective- and
context-independent features, crucial for accurate object detection across varying
viewpoints, camera parameters and environment conditions. Notably, our model-
agnostic approach preserves the original network structure without incurring addi-
tional inference costs, facilitating seamless integration across various models and
simplifying deployment. Furthermore, we also show our approach achieves sat-
isfactory results in real data when trained only with virtual datasets, eliminating
the need for real scene annotations. Experimental results on both Domain Gener-
alization (DG) and Unsupervised Domain Adaptation (UDA) clearly demonstrate
its effectiveness. Our code will be released.

1 INTRODUCTION

Multi-Camera 3D Object Detection (MC3D-Det) refers to the task of detecting and localizing objects
in 3D space using multiple cameras (Ma et al., 2022; Li et al., 2022a). By combining information
from different viewpoints, multi-camera 3D object detection can provide more accurate and robust
object detection results, especially in scenarios where objects may be occluded or partially visible
from certain viewpoints. In recent years, bird ’s-eye view (BEV) approaches have gained tremendous
attention for the MC3D-Det task (Ma et al., 2022; Li et al., 2022a; Liu et al., 2022; Wang et al.,
2022). Despite their strengths in multi-camera information fusion, these methods may face severe
performance degeneration when the testing environment is significantly different from the training
ones.

Two promising directions to alleviate the distribution shifts are domain generalization (DG) and
unsupervised domain adaptation (UDA). DG methods often decouple and eliminate the domain-
specific features, so as to improve the generalization performance of the unseen domain (Wang et al.,
2023a). Regarding to UDA, recent methods alleviate the domain shifts via generating pseudo la-
bels eccv2022uda,Yuan2023CV PR, Y ang2021CV PRorlatentfeaturedistributionalignmentXu2023CV PR, yan2023ssda.However, withouttrainingdatafromvariousviewpoints, cameraparametersandenvironment, itisverychallengingforpurelyvisualperceptiontolearnperspective−
andenvironment− independentfeatures.

Our observations indicate that 2D detection in a single-view (camera plane) often has a stronger
ability to generalize than multi-camera 3D object detection, as shown in Fig. 1. Several studies
have explored the integration of 2D detection into MC3D-Det, such as the fusion of 2D information
into 3D detectors (Wang et al., 2023d; Yang et al., 2023) or the establishment of 2D-3D consis-
tency (Yang et al., 2022; Lian et al., 2022). Fusing 2D information is a learning-based approach
rather than a mechanism modeling approach and is still significantly affected by domain migration.
Existing 2D-3D consistency methods project 3D results onto the 2D plane and establish consistency.
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Such constraints can compromise the semantic information in the target domain rather than mod-
ifying the geometric information. Furthermore, this 2D-3D consistency approach makes having a
uniform approach for all detection heads challenging. For instance, in the case of centerpoint (Yin
et al., 2021), the final prediction is obtained by combining the outputs of the classification head and
an offset regression head.

Towards Generalizable Multi-Camera 3D Object 
Detection via Perspective Prior

Camera Plane

BEV Plane

Figure 1: Domain gap challenges cause MC3D-
Det sometimes to produce spurious and deterio-
rate depth estimations. By contrast, 2D detectors
typically demonstrate more precise performance
against domain gap, suggesting potential strate-
gies to adjust 3D detector inaccuracies.

To this end, we introduce a perspective debi-
asing framework to modify the feature geome-
try position of BEV space directly, enabling the
learning of perspective- and context-invariant
features against domain shifts. Our approach
involves two main steps: 1) rendering diverse
view maps from BEV features and 2) rectify-
ing the perspective bias of these maps. The
first step leverages implicit foreground volumes
(IFV) to relate the camera and BEV planes,
allowing for rendering view maps with varied
camera parameters. The second step, in the
source domain, uses random camera positions
and angles to supervise the camera plane map
rendered from IFV, promoting the learning of
perspective- and context-independent features.
Similarly, in the target domain, a pre-trained 2D
detector aids in rectifying BEV features. No-
tably, our model-agnostic approach preserves
the original network structure without incurring
additional inference costs, facilitating seamless
integration across various models and simplify-
ing deployment. This reduces development and
maintenance complexity and ensures efficiency
and resource conservation, which are crucial for
real-time applications and long-term, large-scale deployments.

We established the UDA benchmark on MC3D-Det to verify our method and instantiated our frame-
work on BEVDepth, achieving excellent results in both DG and UDA protocol. We also pioneer
the use of training on virtual datasets, bypassing the need for real scene annotations, to enhance
real-world multi-camera 3D perception tasks. In summary, the core contributions of this paper are:

• We propose a generalizable MC3D-Det framework based on perspective debiasing, which
can not only help the model learn the perspective- and context-invariant feature in the
source domain but also utilize the 2D detector further to correct the spurious geometric
features in the target domain.

• We make the first attempt to study unsupervised domain adaptation on MC3D-Det and
establish a benchmark. Our approach achieved the state-of-the-art results on both UDA
and DG protocols.

• We explore the training on virtual engine without the real scene annotations to achieve
real-world MC3D-Det tasks for the first time.

2 RELATED WORKS

2.1 VISION-BASED 3D OBJECT DETECTION

Multi-camera 3D object detection (MC3D-Det) targets to identify and localize objects in 3D space,
received widespread attention (Ma et al., 2022; Li et al., 2022a). Recently, most of MC3D-Det
methods extract image features and project them onto the bird ’s-eye view (BEV) plane for better
integrating the spatial-temporal feature. Orthographic feature transform (OFT) and Lift-splat-shoot
(LSS) provide the early exploration of mapping the multi-view features to BEV space (Roddick
et al., 2019; Philion & Fidler, 2020). Based on LSS, BEVDet enables this paradigm to the detection
task competitively (Huang et al., 2021; Li et al., 2023b;a). BEVformer further designs a transformer
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structure to automatically extract and fuse BEV features, leading to excellent performance on 3D
detection (Li et al., 2022c). PETR series propose 3D position-aware encoding to enable the network
to learn geometry information implicitly (Liu et al., 2022; 2023). These methods have achieved
satisfactory results on the in-distribution dataset but may show very poor results under cross-domain
protocols.

2.2 CROSS DOMAIN PROTOCOLS ON DETECTION

Domain generalization or unsupervised domain adaptation aims to improve model performance on
the target domain without labels. Many approaches have been designed for 2D detection, such as
feature distribution alignment or pseudo-label methods (Muandet et al., 2013; Li et al., 2018; Dou
et al., 2019; Facil et al., 2019; Chen et al., 2018; Xu et al., 2020; He & Zhang, 2020; Zhao et al.,
2020). These methods can only solve the domain shift problem caused by environmental changes
like rain or low light. For the MC3D-Det task, there is only one study for domain shift, which
demonstrates that an important factor for MC3D-Det is the overfitting of camera parameters (Wang
et al., 2023a). Essentially, the fixed observation perspective and similar road structures in the source
domain lead to spurious and deteriorated geometric features. However, without additional supervi-
sion, it is very difficult to further extract perspective- and context-independent features on the target
domain.

2.3 VIRTUAL ENGINE FOR AUTOMATIC DRIVING

Virtual engines can generate a large amount of labeled data, and DG or UDA can utilize these virtual
data to achieve the perception of real scenes. According to the requirements, the virtual engine has
better controllability and can generate various scenarios and samples: domain shift (Sun et al., 2022),
vehicle-to-everything (Xu et al., 2022; Li et al., 2022b), corner case (Kim et al., 2022; Wang et al.,
2023c). So, breaking the domain gap between virtual and real datasets can further facilitate the
closed-loop form of visually-oriented planning (Jia et al., 2023). To our best knowledge, there are
no studies that only use virtual engine without real scenes labels for MC3D-Det.

3 PRELIMINARIES

3.1 PROBLEM SETUP

Our research is centered around enhancing the generalization of MC3D-Det. To achieve this goal,
we explore two widely used and practical protocols, namely, domain generalization (DG) and unsu-
pervised domain adaptation (UDA).

• For DG on MC3D-Det task, our primary objective is to leverage solely the labeled data from the
source domain DS = {Xi

s, Y
i
s ,K

i
s, E

i
s} to improve the generalization of model. Here, the i-th

sample contains N multi view images Xi = {I1, I2, ..., IN} (superscript is omitted for clearity) and
the corresponding intrinsic Ki and extrinsic parameters Ei of camera. The labels of source domain
Y i
s includes location, size in each dimension, and orientation.

• For UDA on MC3D-Det task, additional unlabeled target domain data DT = {Xi
t ,K

i
t , E

i
t} can be

utilized to further improve the generalization of model. The only difference between DG and UDA
is whether the unlabeled data of the target domain can be utilized.

3.2 PERSPECTIVE BIAS

To detect the object’s location L = [x, y, z] at the BEV space, corresponding to the image plane
[u, v], most MC3D-Det methods involves two essential steps: (1) get the the image features from
the j-th camera by the image encoder Fimg . (2) map these feature into BEV space and fuse them to
get the final location of objects by BEV encoder Fbev:

L = Fbev(Fimg(I1), ..., Fimg(IN ),K,E)

= Lgt +∆Limg +∆Lbev,
(1)

where Lgt, ∆Limg and ∆Lbev are the ground-truth location and the bias of img encoder (Fimg)
and BEV encoder (Fbev). Both ∆Limg and ∆Lbev are caused by overfitting limited viewpoint,
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Figure 2: The generalizable framework (PD-BEV) based on perspective debiasing. The main
pipeline of BEVDepth is shown in the bottom part of the figure. With the supervision of heatmaps
and virtual depth, the semantic and geometric knowledge is injected into preliminary image features
in advance. Then, implicit foreground volume (IFV) is tailored as a carrier for the camera plane and
the BEV plane. The rendered heatmaps from IFV are supervised by 3D boxes in the source domain
and by the pre-trained 2D detector in the target domain. The green flow means the supervision of the
source domain and the red flow is for the target domain. The RenderNet shares the same parameters.

camera parameter, and similar environments. Without additional supervision in the target domain,
∆Limg and ∆Limg are difficult to be mitigated. So we turn the space bias into the bias of a single
perspective. We show the perspective bias [∆u,∆v] on the uv image plane as:

[∆u,∆v] = = [
ku(u− cu) + bu

d(u, v)
,
kv(v − cv) + bv

d(u, v)
]. (2)

where ku, bu, kv , and, bv is related to the domain bias of BEV encoder ∆LBEV , and d(u, v)
represents the final predicted depth information of the model. cu and cv represent the coordinates
of the camera’s optical center in the uv image plane. The detail proof and discussion in appendix C.
Eq. 2 provides us with several important inferences: (1) the presence of the final position shift can
lead to perspective bias, indicating that optimizing perspective bias can help alleviate domain shift.
(2) Even points on the photocentric rays of the camera may experience a shift in their position on
the uv image plane.

Intuitively, the domain shift changes the BEV feature position and value, which arises due to over-
fitting with limited viewpoint and camera parameters. To mitigate this issue, it is crucial to re-
render new view images from BEV features, thereby enabling the network to learn perspective- and
environment-independent features. In light of this, the paper aims to address the perspective bias
associated with different rendered viewpoints to enhance the generalization ability of the model.

4 METHOD

To reduce bias stated in Eq. 2, we tailored a generalizable framework (PD-BEV) based on per-
spective debiasing as shown in Fig. 2. Our framework is model-agnostic, and we demonstrate its
effectiveness by optimizing BEVDepth as an example.

4.1 SEMANTIC RENDERING

We first introduce how to establish the connection between 2D image plane and BEV space.
However, most MC3D-Det methods utilize the BEV plane representations without height dimen-
sion (Huang et al., 2021; Li et al., 2023a;b), so we propose the implicit foreground volume
for rendering new viewpoints. Specifically, we use a geometry-aware decoder Dgeo to trans-
form the BEV feature Fbev ∈ RC×X×Y into the intermediate feature F

′

bev ∈ RC×1×X×Y and
Fheight ∈ R1×Z×X×Y , and this feature is lifted from BEV plane to an implicit foreground volume
Vifv ∈ RC×Z×X×Y :

Vifv = sigmoid(Fheight) · Fbev. (3)
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Eq. 3 lifts the object on the BEV plane into 3D volume with the estimated height position
sigmoid(Fheight). sigmoid(Fheight) represents whether there is an object at the corresponding
height. Where XYZ is the three-dimensional size of the established BEV feature. Ideally, the
volumes Vifv contain all the foreground objects information in the corresponding position.

To render semantic features of different viewpoints, we propose the Multi-View Semantic Rendering
(MVSR). Specifically, we first randomly perturb the camera’s position (x+△x, y +△y, z +△z)
and orientation (θyaw +△θyaw, θpitch +△θpitch, θroll +△θroll). Based on the camera’s position
and observation orientation, we generate the coordinate of multiple rays rw,h

i = [xw,h, yw,h, zw,h]
to sample from implicit foreground volumes Vifv and aggregate them into the camera plane feature
Frender:

F (w, h)render =

n∑
i=1

Vifv(x
w,h, yw,h, zw,h), (4)

where rw,h
i = [xw,h, yw,h, zw,h] represents the ray coordinates of w-th row and h-th column camera

plane in the implicit foreground volumes Vifv . The rendered camera plane feature Frender is then
fed into the RenderNet R, which is the combination of several 2D convolutional layers, to generate
the heatmaps hrender ∈ RNcls×W×H and attributes arender ∈ RNcls×W×H . Ncls means the num-
ber of categories. The detailed structure of RenderNet is introduced in appendix B.4. The semantic
heatmaps and attributes can be constrained on the source and target domains to eliminate perspective
bias [∆u,∆v].

4.2 PERSPECTIVE DEBIASING ON SOURCE DOMAIN

To reduce perspective bias as stated in Eq. 2, the 3D boxes of source domain can be used to monitor
the heatmaps and attributes of new rendered view. In addition, we also utilize normalized depth
information to help the image encoder learn better geometry information.

4.2.1 PERSPECTIVE SEMANTIC SUPERVISION

Based on Sec. 4.1, the heatmaps and attributes from different perspectives (the output of RenderNet)
can be rendered. Here we will explain how to regularize them to eliminate perspective bias Eq. 2.
Specifically, we project the object’s box from ego coordinate to the j-th 2D camera plane using the
intrinsic K ′

j and extrinsic parameters E′
j of the rendering process: P̂j = (ud, vd, d) = K ′

jE
′
jP ,

where P̂j and P stand for the object on 2.5D camera plane and 3D space, d represents the depth
between the object and the view’s optical center. Based on the position of the object on the image
plane, the category heatmaps hgt ∈ RNcls×W×H can be generated (Yin et al., 2021). The object’s
dimensions (length, width and height) agt ∈ RNcls×W×H are also projected to the uv plane. Fol-
lowing (Yin et al., 2021), focal loss Focal() (Lin et al., 2017) and L1 loss L1 are used to supervise
the class information and object dimensions on source domain:

Lrender = Focal(hrender, hgt) + L1(arender, agt). (5)

Additionally, we also train a 2D detector for the image feature using 3D boxes by Lps, which uses
the same mapping and supervision methods as above. The only difference is that the 3D boxes are
projected using the original intrinsics K and extrinsics E of the camera. 2D detectors can be further
applied to correct the spurious geometry in the target domain.

4.2.2 PERSPECTIVE GEOMETRY SUPERVISION

Providing the explicit depth information can be effective in improving the performance of multi-
camera 3D object detection (Li et al., 2023a). However, the depth of the network prediction tends to
overfit the intrinsic parameters. So, following (Park et al., 2021; Wang et al., 2023a), we force the
DepthNet to learn normalized virtual depth Dvirtual:

Lpg = BCE(Dpre, Dvirtural),

Dvirtual =

√
1
f2
u
+ 1

f2
v

U
D,

(6)
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where BCE() means Binary Cross Entropy loss, and Dpre represents the predicted depth of Depth-
Net. fu and fv are of v and v focal length of image plane, and U is a constant. It is worth noting
that the depth D here is the foreground depth information provided using 3D boxes rather than the
point cloud. By doing so, The DepthNet is more likely to focus on the depth of foreground objects.
Finally, when using the actual depth information to lift semantic features into BEV plane, we use
Eq. 6 to convert the virtual depth back to the actual depth.

4.3 PERSPECTIVE DEBIASING ON TARGET DOMAIN

Unlike the source domain, there are no 3D labels in the target domain, so the Lrender can’t be
applied. Subtly, the pre-trained 2D detector is utilized to modify spurious geometric BEV feature
on the target domain. To achieve this, we render the heatmaps hrender from the implicit foreground
volume with the original camera parameters. Focal loss is used to constrain the consistency between
the pseudo label of 2D detector and rendered maps:

Lcon = Focal(hrender, hpseudo),

hpseudo =

{
1, h > τ
h, else

,
(7)

where Focal(, ) is original focal loss (Lin et al., 2017). Lcon can effectively use accurate 2D detec-
tion to correct the foreground target position in the BEV space, which is an unsupervised regular-
ization on target domain. To further enhance the correction ability of 2D predictions, we enhanced
the confidence of the predicted heatmaps by a pseudo way.

4.4 OVERALL FRAMEWORK

Although we have added some networks to aid in training, these networks are not needed in in-
ference. In other words, our method is suitable for most MC3D-Det to learn perspective-invariant
features. To test the effectiveness of our framework, BEVDepth (Li et al., 2023a) is instantiated as
our main pipeline. The original detection loss Ldet of BEVDepth is used as the main 3D detection
supervision on the source domain, and depth supervision of BEVDepth has been replaced by Lpg .
In summary, our final loss of our work is:

L = λsLdet + λsLrender + λsLpg + λsLps + λtLcon, (8)

where λs sets to 1 for source domain and sets to 0 for target domain, and the opposite is λt. In other
words, Lcon is not used under the DG protocol.

5 EXPERIMENT

To verify the effectiveness, we elaborately use both DG and UDA protocol for MC3D-Det. The
details of datasets, evaluation metrics and implementation refer to appendix B.

5.1 DOMAIN GENERALIZATION BENCHMARK

For DG protocol, we replicate and compare the DG-BEV (Wang et al., 2023a) and the baseline
BEVDepth (Li et al., 2023a). As shown in Tab. 1, our method has achieved significant improvement
in the target domain. It demonstrates that IFV as a bridge can help learn perspective-invariant fea-
tures against domain shifts. In addition, our approach does not sacrifice performance in the source
domain and even has some improvement in most cases. It is worth mentioning that DeepAccident
was collected from a Carla virtual engine, and our algorithm also achieved satisfactory generaliza-
tion ability by training on DeepAccident. In addition, we have tested other MC3D-Det methods, and
their generalization performance is very poor without special design as shown in Sec. 5.2.

5.2 UNSUPERVISED DOMAIN ADAPTATION BENCHMARK

To further validate debiasing on target domain, we also established a UDA benchmark and applied
UDA methods (including Pseudo Label, Coral (Sun & Saenko, 2016), and AD (Ganin & Lempitsky,
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Nus → Lyft Source Domain (nuScenes) Target Domain (Lyft)

Method Target-Free mAP↑ mATE↓ mASE↓ mAOE↓ NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ NDS* ↑
Oracle - - - - - 0.598 0.474 0.152 0.092 0.679

BEVDepth ✓ 0.326 0.689 0.274 0.581 0.395 0.114 0.981 0.174 0.413 0.296
DG-BEV ✓ 0.330 0.692 0.272 0.584 0.397 0.284 0.768 0.171 0.302 0.435
PD-BEV ✓ 0.334 0.688 0.276 0.579 0.399 0.304 0.709 0.169 0.289 0.458

Pseudo Label 0.320 0.694 0.276 0.598 0.388 0.294 0.743 0.172 0.304 0.443
Coral 0.318 0.696 0.283 0.592 0.387 0.281 0.768 0.174 0.291 0.435
AD 0.312 0.703 0.288 0.596 0.381 0.277 0.771 0.174 0.288 0.381

PD-BEV+ 0.331 0.686 0.275 0.591 0.396 0.316 0.684 0.165 0.241 0.476
Lyft → Nus Source Domain (Lyft) Target Domain (nuScenes)

Method Target-Free mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑ mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑
Oracle - - - - - 0.516 0.551 0.163 0.169 0.611

BEVDepth ✓ 0.598 0.474 0.152 0.092 0.679 0.098 1.134 0.234 1.189 0.176
DG-BEV ✓ 0.591 0.491 0.154 0.092 0.672 0.251 0.751 0.202 0.813 0.331
PD-BEV ✓ 0.593 0.478 0.150 0.084 0.677 0.263 0.746 0.186 0.790 0.344

Pseudo Label 0.580 0.538 0.153 0.079 0.657 0.261 0.744 0.201 0.819 0.306
Coral 0.574 0.511 0.164 0.105 0.649 0.244 0.767 0.212 0.919 0.302
AD 0.568 0.521 0.161 0.126 0.649 0.247 0.761 0.223 0.902 0.309

PD-BEV+ 0.589 0.489 0.150 0.091 0.672 0.280 0.733 0.182 0.776 0.358
DeepAcci → Nus Source Domain (DeepAccident) Target Domain (nuScenes)

Method Target-Free mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑ mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑
Oracle - - - - - 0.516 0.551 0.163 0.169 0.611

BEVDepth ✓ 0.334 0.517 0.741 0.274 0.412 0.087 1.100 0.246 1.364 0.169
DG-BEV ✓ 0.331 0.519 0.757 0.264 0.408 0.159 1.075 0.232 1.153 0.207
PD-BEV ✓ 0.345 0.499 0.735 0.251 0.425 0.187 0.931 0.229 0.967 0.239

Pseudo Label 0.312 0.522 0.785 0.271 0.393 0.151 1.112 0.238 1.134 0.202
Coral 0.314 0.544 0.796 0.274 0.388 0.164 1.045 0.242 1.104 0.208
AD 0.312 0.539 0.787 0.263 0.391 0.166 1.013 0.251 1.073 0.207

PD-BEV+ 0.344 0.488 0.737 0.248 0.426 0.207 0.862 0.235 0.962 0.260
DeepAcci → Nus Source Domain (DeepAccident) Target Domain (Lyft)

Method Target-Free mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑ mAP↑ mATE↓ mASE↓ mAOE↓ NDS*↑
Oracle - - - - - 0.598 0.474 0.152 0.092 0.679

BEVDepth ✓ 0.334 0.517 0.741 0.274 0.412 0.045 1.219 0.251 1.406 0.147
DG-BEV ✓ 0.331 0.519 0.757 0.264 0.408 0.135 1.033 0.269 1.259 0.189
PD-BEV ✓ 0.345 0.499 0.735 0.251 0.425 0.151 0.941 0.242 1.130 0.212

Pseudo Label 0.323 0.531 0.768 0.271 0.399 0.132 1.113 0.281 1.241 0.185
Coral 0.308 0.573 0.797 0.284 0.378 0.145 1.004 0.254 1.129 0.196
AD 0.304 0.554 0.796 0.274 0.381 0.148 0.997 0.262 1.189 0.197

PD-BEV+ 0.330 0.517 0.737 0.240 0.416 0.171 0.871 0.212 1.043 0.238

Table 1: Comparison of different approaches on DG and UDA protocols. Target-Free means DG
protocol. Pseudo Label, Coral, and AD are applied in DG-BEV on UDA protocol. Following (Wang
et al., 2023a), nuScenes is evaluated according to the original NDS as source domain. Other results
are evaluated only for the ’car’ category by NDS∗.

2015)) on DG-BEV. As shown in Tab. 1, our algorithm achieved significant performance improve-
ment. This is mainly attributed to the perspective debiasing, which fully utilizes the 2D detector
with better generalization performance to correct the spurious geometric information of 3D detec-
tor. Additionally, we found that most algorithms tend to degrade performance on the source domain,
while our method is relatively gentle. It is worth mentioning that we found that AD and Coral show
significant improvements when transferring from a virtual dataset to a real dataset, but exhibit a
decline in performance when testing on real-to-real testing. This is because these two algorithms
are designed to address style changes, but in scenarios with small style changes, they may disrupt
semantic information. As for the Pseudo Label algorithm, it can improve the model’s generalization
performance by increasing confidence in some relatively good target domains, but blindly increasing
confidence in target domains can actually make the model worse.

5.3 ABLATION STUDY

To further demonstrate the effectiveness of our proposed algorithm, we conducted ablation exper-
iments on three key components: 2D information injection Lps (DII), source domain debiasing
Lrender (SDB), and target domain debiasing Lcon (TDB). DII and MVSR are designed for the
source domain, while TDB is designed for the target domain. In other words, we report the re-
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Nus → Lyft DeepAcci → Lyft

DII SDB TDB mAP ↑ NDS*↑ mAP↑ NDS*↑
0.279 0.433 0.132 0.188

✓ 0.290 0.438 0.143 0.205
✓ 0.300 0.453 0.147 0.209

✓ ✓ 0.304 0.458 0.151 0.212

✓ ✓ ✓ 0.316 0.476 0.171 0.238

Table 2: Ablation study of different modules of PD-BEV. 2D information injection (DII), source
domain debiasing (SDB), and target domain debiasing (TDB). TDB is only used for UDA protocol.
In other words, the bottom line is the UDA result, and the rest is the DG result.

w/o ours w ours

Nus → Lyft mAP ↑ NDS*↑ mAP↑ NDS*↑
BEVDet 0.104 0.275 0.296 0.446

BEVFormer 0.084 0.246 0.208 0.355
FB-OCC 0.113 0.294 0.301 0.454

Table 3: The plug-and-play capability testing of our method. We tested more MC3D-Det algorithms
under the DG and tried to add our algorithm for further improvement.

sults under the UDA protocol only when using TDB, while the results of other components are
reported under the DG protocol. As presented in Tab 2, each component has yielded improvements,
with SDB and TDB exhibiting relatively significant relative improvements. SDB can better capture
perspective-invariant and more generalizable features, while TDB leverages the strong generaliza-
tion ability of 2D to facilitate the correction of spurious geometric features of the 3D detector in
the target domain. DII makes the network learn more robust features by adding supervision to the
image features in advance. These findings underscore the importance of each component in our
algorithm and highlight the potential of our approach for addressing the challenges of domain gap
in MC3D-Det.

5.4 FURTHER DISCUSSION

Here we try to migrate our framework to more MC3D-Det methods to prove the universality capa-
bility. We also give some visualizations to demonstrate the effectiveness of our framework.

(a)

(b)

(c)

(d)

Figure 3: Visualization of heatmaps on target domain: (a) ground-
truth, (b) 2D detector, (c) rendered from IVF, and (d) revised by 2D
detector. The green rectangles indicates that our algorithm has im-
proved the confidence of the detector prediction. The blue rectan-
gles represent unlabeled objects that our algorithm detects. Please
zoom in while maintaining the color.

The plug-and-play capa-
bility of the method. Our
framework is model-agnostic.
Any MC3D-Det algorithm
with image feature and BEV
feature can be embedded with
our algorithm. Our algo-
rithm framework is applied
to BEVDet (Huang et al.,
2021), BEVformer (Li et al.,
2022c) and FB-BEV (Li et al.,
2023b), as shown in Sec. 5.2.
As the results show, our
method can significantly
improve the performance
of these algorithms. This
is because our algorithm
can help the network learn
perspective-invariant features
against domain shifts.

Perspective Debiasing. To
better explain the effect of our

8
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Ground-
Truth

DG-BEV

Ours

(a) Left-Front (b) Front (c) Right-Front (d) Right-Back (e) Back (f) Left-Back
Figure 4: Visualization of final MC3D-Det results. Our approach allows for more accurate detection
and greatly reduces the presence of duplicate boxes. In front (b) and back (e) view, our method
predicts more accurate and fewer duplicate boxes than DG-BEV. In left-back view, our method
detects the location of the object more accurately. Please zoom in while maintaining the color.

perspective debiasing, we visualizes the heatmaps of 2D detector and the IFV in Fig. 3 (UDA proto-
col for Nus→Lyft). In the target domain, the 2D detector has good generalization performance and
can accurately detect the center of the object in Fig. 3 (b). However, the heatmap rendered from the
IFV is very spurious and it is very difficult to find the center of the objectin in Fig. 3 (c). Fig. 3 (d)
shows that rendered heatmaps of IFV can be corrected effectively with 2D detectors.

Ground
Truth

Ours

Figure 5: Detected unlabeled objects. The first line is the 3D box
of the ground-truth, and the second line is the detection result
predicted by our algorithm. The blue box indicates that our al-
gorithm can detect some unlabeled boxes. Please zoom in while
maintaining the color.

Visualization. To better illus-
trate our algorithm, we visual-
ized the final detection results
of our algorithm and DG-BEV.
As shown in Fig. 4, the de-
tection results of our algorithm
are more accurate, especially for
the detection of distant objects.
And our algorithm has fewer du-
plicate boxes, because the 2D
detector can effectively correct
the spurious geometric feature
of the 3D detector and improve
the confidence. We further visu-
alized some interesting cases as
shown in Fig. 5, and our algo-
rithm can even detect some re-
sults that were not labeled in the
original dataset, because the 2D
detector has more generalization performance and further improves the performance of the 3D de-
tector.

6 SUMMARY

This paper proposes a framework for multi-camera 3D object detection (MC3D-Det) based on per-
spective debiasing to address the issue of poor generalization for unseen domains. We firstly render
the semantic maps of different view from BEV features. We then use 3D boxes or pre-trained 2D
detector to correct the spurious BEV features. Our framework is model-agnostic, and we demon-
strate its effectiveness by optimizing multiple MC3D-Det methods. Our algorithms have achieved
significant improvements in both DG and UDA protocols. Additionally, we explored training only
on virtual annotations to achieve real-world MC3D-Det tasks.

9
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A THE DERIVATION DETAILS OF PERSPECTIVE BIAS

To detect the object’s location L = [x, y, z] at the BEV space, corresponding to the image plane
[u, v], most MC3D-Det method involves two essential steps: (1) get the the image features from the
j-th camera by the image encoder Fimg . (2) map these feature into BEV space and fuse them to get
the final location of objects by BEV encoder Fbev:

L = Fbev(Fimg(I1), ..., Fimg(IN ),K,E)

= Lgt +∆Limg +∆Lbev,
(9)

where Lgt, ∆Limg and ∆Lbev are the ground-truth depth and the bias of img encoder (Fimg)
and BEV encoder (Fbev). Before BEV feature fusion, object’s depth d(u, v)img = d(u, v)gt +
∆L(u, v)img needs to be extracted with image encoder, which will cause the domain bias of image
encoder ∆L(u, v)img . Based on the estimated depth d(u, v)img , the object can be lifted to the BEV
space [x′, y′, z′]:

[x′, y′, z′] = E−1K−1[ud(u, v)img, vd(u, v)img, d(u, v)img], (10)

where K and E represent the camera intrinsic and camera extrinsic:

K =

[
f 0 cu
0 f cv
0 0 1

]
,K−1 =

[
1/f 0 −cu/f
0 1/f −cv/f
0 0 1

]

E =

[
cos θ 0 sin θ −tx
0 1 0 −tz

− sin θ 0 cos θ −tz

]
, E−1 =

[
cos θ 0 − sin θ tx
0 1 0 tz

sin θ 0 cos θ tz

]
.

(11)

It is worth noting that the camera extrinsic E is simplified. We assume that the camera and ego
coordinate systems are always in the same horizontal plane. Then, the special coordinate [x′, y′, z′]
is:

[x′, y′, z′] = E−1K−1ud(u, v)img, vd(u, v)img, d(u, v)img

= E[
d(u, v)img(u− cu)

f
,
d(u, v)img(v − cv)

f
, d(u, v)img]

= [
d(u, v)img(u− cu) cos θ

f
− d(u, v)img sin θ + tx,

d(u, v)img(v − cv)

f
+ ty,

d(u, v)img(u− cu) sin θ

f
+ d(u, v)img cos θ + tz],

(12)

where d(u, v)img indicates the depth predicted by the image encoder. It is worth mentioning that
this mapping process can be explicit or implicit, but they are all based on the depth information
learned from the single image. After this, the BEV encoder further merges and modifies these to the
final coordinate[x, y, z]:

[x′, y′, z′] = [x, y, z] + ∆Lbev(x, y, z)

= [
d(u, v)img(u− cu) cos θ

f
− d(u, v)img sin θ + tx +∆Lbev(x|x, y, z),

d(u, v)img(v − cv)

f
+ ty +∆Lbev(y|x, y, z),

d(u, v)img(u− cu) sin θ

f
+ d(u, v)img cos θ + tz +∆Lbev(z|x, y, z)],

(13)

where ∆Lbev(x|x, y, z) means that the domain bias of BEV encoder affects the change in the x
dimension. In order to quantitatively describe how domain bias manifests in a single perspective,
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this object are re-projected to the image homogeneous coordinates with d(u, v)img , K and E:

[u′df , v
′df , df ] = KE[x′, y′, z′]

= K[
d(u, v)img(u− cu)

f
+∆Lbev(x|x, y, z) cos(θ) + ∆Lbev(z|x, y, z) sin(θ),

d(u, v)img(v − cv)

f
+∆Lbev(y|x, y, z),

d(u, v)img +∆Lbev(z|x, y, z) cos(θ)−∆Lbev(x|x, y, z) sin(θ)]
= [d(u, v)imgu+∆Lbev(x|x, y, z)(f cos(θ)− cu sin(θ))

+ ∆Lbev(z|x, y, z)(f sin(θ) + cu cos(θ)),

d(u, v)imgv + f∆Lbev(y|x, y, z) + cv∆Lbev(z|x, y, z) cos(θ)
− cv∆Lbev(x|x, y, z) sin(θ),
d(u, v)img +∆Lbev(z|x, y, z) cos(θ)−∆Lbev(x|x, y, z) sin(θ)].

(14)

Then we can calculate individual perspective bias [∆u,∆v] = [u′ − u, v′ − v]. To simplify the
process, let’s first calculate:

[∆udf ,∆vdf , df ] = [(u′ − u)df , (v
′ − v)df , df ]

= [u′df − udf , v
′df − vdf , df ]

= [∆Lbev(x|x, y, z)(f cos(θ) + u sin(θ)− cu sin(θ))

+ ∆Lbev(z|x, y, z)(f sin(θ) + cu cos(θ)− u cos(θ)),

f∆Lbev(y|x, y, z) + (cv − v)(∆Lbev(z|x, y, z) cos(θ)
−∆Lbev(x|x, y, z) sin(θ)),
d(u, v)img +∆Lbev(z|x, y, z) cos(θ)−∆Lbev(x|x, y, z) sin(θ)].

(15)

Then, we can calculate the structure of the perspective bias [∆u,∆v] in the camera plane:

[∆u,∆v] = [
∆Lbev(x|x, y, z)(f + (u− cu) tan(θ)) + ∆Lbev(z|x, y, z)(f tan(θ) + cu − u)

d(u, v)imgsecx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)
,

∆Lbev(y|x, y, z)fsecx(θ) + (∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ))(cv − v)

d(u, v)imgsecx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)

= [
(u− cu)(∆Lbev(x|x, y, z) tan(θ)−∆Lbev(z|x, y, z))

d(u, v)imgsecx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)

+
∆Lbev(x|x, y, z)f +∆Lbev(z|x, y, z)f tan(θ)

d(u, v)imgsecx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)
,

(v − cv)(∆Lbev(x|x, y, z) tan(θ)−∆Lbev(z|x, y, z)) + ∆Lbev(y|x, y, z)fsecx(θ)
d(u, v)imgsecx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)

]

= [
ku(u− cu) + bu

d(u, v)
,
kv(v − cv) + bu

d(u, v)
].

(16)

This final result is too complicated for us to analyze the problem, so we bring in d(u, v)img =
d(u, v)gt +∆L(u, v)img and simplify further:

[∆u,∆v] = [
(u− cu)(∆Lbev(x|x, y, z) tan(θ)−∆Lbev(z|x, y, z))

(d(u, v)gt +∆L(u, v)img)secx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)

+
∆Lbev(x|x, y, z)f +∆Lbev(z|x, y, z)f tan(θ)

(d(u, v)gt +∆L(u, v)img)secx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)
,

(v − cv)(∆Lbev(x|x, y, z) tan(θ)−∆Lbev(z|x, y, z)) + ∆Lbev(y|x, y, z)fsecx(θ)
(d(u, v)gt +∆L(u, v)img)secx(θ) + ∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)

]

= [
ku(u− cu) + bu

d(u, v)
,
kv(v − cv) + bv

d(u, v)
].

(17)
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where d(u, v) = (d(u, v)gt +∆L(u, v)img)secx(θ) +∆Lbev(z|x, y, z)−∆Lbev(x|x, y, z) tan(θ)
represents the predicted depth on [u, v] by the final model, and ku, bu, kv , and, bu is related to the do-
main bias of BEV encoder∆LBEV . Specifically, ku = ∆Lbev(x|x, y, z) tan(θ)−∆Lbev(z|x, y, z),
bu = ∆Lbev(x|x, y, z)f + ∆Lbev(z|x, y, z)f tan(θ), kv = ∆Lbev(x|x, y, z) tan(θ) −
∆Lbev(z|x, y, z), bv = ∆Lbev(y|x, y, z)fsecx(θ).
Here, let’s reanalyze the causes of the model bias and give us why our method works:

• The bias of image encoder ∆d(u, v)img is caused by overfitting to the camera intrinsic parame-
ters and limited viewpoint. The camera intrinsic affects the depth estimation of the network, which
can be solved by estimation the virtual normalization depth as elaborated in Sec. 4.2.2. Limited
viewpoint refers to the fact that the network will reason based on the relationship between the ve-
hicle, the road surface and the background. It is worth mentioning that the viewpoint is difficult to
decouple, because it is difficult to get the image of different views in the real world. However, on
cross-domain testing, both the camera intrinsic parameters and viewpoint will change dramatically,
which will lead to greater bias for image encoder.

• The bias of BEV encoder ∆d(u, v)bev is indirectly affected by the bias of image encoder. The
changes of viewpoint and environment will lead to the distribution shift of foreground and back-
ground features, which causes degradation of the model. The BEV encoder is to modify the geom-
etry information of the image encoder. Therefore, ∆d(u, v)img will further affect ∆d(u, v)bev .

In summary, the algorithms used often have a tendency to overfit to the viewpoint, camera param-
eters and change, caused by limited real data. Essentially, our aim is to ensure that the features
extracted by the network from different perspectives remain consistent against different viewpoint,
camera parameters and environment. Specifically, we hope that the network can learn perspective-
independent features in the image encoder. Additionally, we expect the instance features to remain
consistent even when observed from different angles or fused with the surrounding environment in
different ways. For the BEV encoder, we anticipate that the instance features will be generalized
when fused in different BEV spatial distributions. These improvements will lead to a more robust
and accurate model.

B DATASETS AND IMPLEMENTATION

B.1 DATASETS.

We evaluate our proposed approach on three datasets, including one virtual and two real au-
tonomous driving datasets: DeepAccident (Wang et al., 2023b), nuScenes (Caesar et al., 2020),
and Lyft (Kesten et al., 2019). Different datasets have different cameras with different intrinsic
parameters and environment as shown in Tab. 4.

Dataset Location Shape Focal Length

DeepAccident Virtual engine (900,1600) 1142,560
nuScenes Boston,SG. (900,1600) 1260

Lyft Palo Alto (1024, 1224),(900,1600) 1109,878

Table 4: Dataset Overview. SG: Singapore.

In order to gain a deeper understanding of the domain shifts the various datasets, we conducted a
separate visualization of each of the three datasets. Specifically, Fig. 6 depicts the DeepAccident
dataset, while Fig. 7 pertains to the nuScenes dataset, and Fig. 8 illustrates the Lyft dataset.

B.2 EVALUATION METRICS.

Following (Wang et al., 2023a), we adopt NDS∗ as a substitute metric for assessing the generaliza-
tion performance of our model. NDS∗ is an extension of the official NDS metric used in nuScenes.
Since the attribute labels and velocity labels are not directly comparable in different datasets, NDS∗

excludes the mean Average Attribute Error (mAAE) and the mean Average Velocity Error (mAVE)
from its computation. Instead, it focuses on evaluating the mean Average Precision (mAP), the mean
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Figure 6: Visualization of DeepAccident. Please zoom in while maintaining the color.

Average Translation Error (mATE), the mean Average Scale Error (mASE), and the mean Average
Orientation Error (mAOE) to measure the model’s performance:

NDS∗ =
1

6
[3mAP +

∑
mTP∈TP

(1−min(1,mTP))], (18)

It is worth noting that all metrics are reported on the validation in the range [-50m, 50m] along the
x-y axes.

B.3 IMPLEMENTATION DETAILS.

To validate the effectiveness of our proposed method, we use BEVDepth (Li et al., 2023a) as our
baseline model. Following the training protocol in (Huang et al., 2021), we train our models using
the AdamW (Loshchilov & Hutter, 2018) optimizer, with a gradient clip and a learning rate of 2e-4.
We use a total batch size of 32 on 8 Tesla 3090 GPUs. The final image input resolution for all datasets
is set to 704×384. We apply data augmentation techniques such as random flipping, random scaling
and random rotation within a range of [−5.4◦, 5.4◦] to the original images during training. It is worth

16



Under review as a conference paper at ICLR 2024

Figure 7: Visualization of nuScenes. Please zoom in while maintaining the color.

noting that the random scaling is with a range of [−0.04,+0.11] for nuScenes and DeepAccident,
and [−0.04,+0.30] for Lyft, which is to better fit the different intrinsic parameters of camera on
different datasets.

B.4 NETWORK STRUCTURE

The new networks introducted in our paper include 2D Detector, BEV decoder and RenderNet. The
network structure of BEVDepth has not changed at all.

• 2D Detector is composed of a three-layer 2D convolution layer and center head detector (Yin
et al., 2021). It takes as input the image features from different cameras and outputs 2D test results,
which are supervised by Lps.

• BEV decoder consists of six layers of 2D convolution with a kernel size of 3, and its feature
channel is 80, except for the last layer, which has 84 channels. It takes as input the BEV features from
the BEV encoder and outputs intermediate feature F

′

bev ∈ RC×1×X×Y and Fheight ∈ R1×Z×X×Y

stated in Sec. 4.1,which is indirectly supervised by Lrender and Lcon.
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Figure 8: Visualization of Lyft. Please zoom in while maintaining the color.

• RenderNet consists of four layers of 2D convolution with a kernel size of 3, and its feature
channel is [256, 256, 128, 7 ∗Ncls]. Here, Ncls represents the number of classes, and each class has
a channel classification header. The remaining six channels respectively represent the position bias
of each dimension and the dimension (length, width, and height) of the object.

C DISCUSSION

C.1 DISCUSSION OF SEMANTIC RENDERING

Semantic rendering has many hyperparameters, which we will discuss here: Perturbed range of
pitch, yaw, roll, and the height of IVF are discussed as shown in Fig. 9. The values of these four
parameters in the paper are 0.04,0.2,0.04 and 4, respectively. Based on this, we make changes to
each parameter separately to see how they affect the final result. Based on Fig. 9, We found that the
effect of the range of yaw ∆θyaw and the height of IVF Z is relatively large. It also shows that it is
effective to synthesize new perspectives from different viewpoints.
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Figure 9: Ablation study of semantic rendering. Perturbed range of pitch ∆θpitch, yaw ∆θyaw, roll
∆θroll and the height of IVF are discussed.

Furthermore, we evaluate the perturbed range of translation (X, Y, Z), and the results are presented
in the table above.

Perturbed X range (m) mAP NDS

[0.0, 0.0] 0.290 0.438
[−1.0, 1.0] 0.295 0.446
[−2.0, 2.0] 0.301 0.453
[−4.0, 4.0] 0.294 0.443

Table 5: Ablation study of perturbed X.

Perturbed X range (m) mAP NDS

[0.0, 0.0] 0.290 — 0.438
[−1.0, 1.0] 0.296 — 0.444
[−2.0, 2.0] 0.304 — 0.457
[−4.0, 4.0] 0.300 — 0.449

Table 6: Ablation study of perturbed X.

Perturbed X range (m) mAP NDS

[0.0, 0.0] 0.290 0.438
[−1.0, 1.0] 0.292 0.441
[−2.0, 2.0] 0.294 0.443
[−4.0, 4.0] 0.284 0.422

Table 7: Ablation study of perturbed X.

The ablation in the table reveals that random translation of the observation position to render a
new perspective can effectively enhance the model’s performance. Notably, the difference between
the camera extrinsic parameters of different datasets primarily pertains to the camera position and
camera yaw angle. Among them, the camera position relative to the ego coordinate of car does not
exceed 2m. Based on the findings presented in Figure 9 and the table above, it can be inferred that
our proposed algorithm can significantly enhance the robustness of the model. In other words, our
perturbation range already includes the camera extrinsic range of the target domain.

C.2 COMPARISON OF DIFFERENT DEPTHS OF SUPERVISION

To further illustrate why we use the depth of the center of the foreground object (3D boxes provided)
instead of the surface depth (LiDAR provided). We modified our algorithm with using different
depth supervision, and it is worth mentioning that both monitors are converted to virtual depth
by Eq. 6 for fair comparison. As shown in Tab. 8, under sim2real, no depth supervision is even
better than LiDAR depth supervision. This is because the depth information provided by the virtual
engine is the object surface, which may project the foreground object of the target domain to the
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Deep supervision DeepAcci → Lyft Nus → Lyft

LiDAR Boxes mAP↑ NDS*↑ mAP↑ NDS*↑
0.162 0.230 0.307 0.461

✓ 0.148 0.212 0.312 0.469
✓ 0.171 0.238 0.316 0.476

Table 8: Comparison of different depth supervision for PD-BEV+.

wrong location on the BEV plane. Without deep supervision, the model will rely more on the BEV
Encoder to learn the relationships between objects and the result will be more robust. It is worth
mentioning that the depth supervision of boxes always achieve clearly optimal results.

C.3 THE COMPARISON WITH 2D-3D CONSISTENT METHOD

The key difference between our render-based method and existing 2D-3D consistency approaches
lies in the following aspects:

Geometric feature correction with less semantic destruction. Our rendering approach enables ac-
curate projection of 2D images to the exact location of the BEV, thereby allowing the network
to modify the geometric position of features with minimal semantic destruction. In contrast, 2D-
3D consistency constraints have a significant impact on the entire network and often result in the
destruction of semantic information. To compare our approach with existing 2D-3D consistency
methods, we selected two representative approaches, namely Hybrid-Det (Yang et al., 2022) and
MVC-Det (Lian et al., 2022). Specifically, we report the unsupervised domain adaptation result
(mAP/NDS) of these methods in nuScenes (source) and Lyft (target) datasets:

Method nuScenes (source) Lyft (target)

mAP NDS mAP NDS

DG-BEV 0.330 0.397 0.284 0.435
MVC-Det 0.314 0.374 0.288 0.437

Hybrid-Det 0.301 0.361 0.292 0.441
Ours 0.331 0.396 0.316 0.476

Table 9: Comparison of methods on nuScenes and Lyft datasets

As shown in the table above, our algorithm achieves excellent performance. Although MVC-Det
and Hybrid-Det exhibit improved performance in the target domain, their results in the source do-
main have deteriorated significantly. This is because other 2D-3D consistency methods enable them
to fine-tune the entire network with semantic destruction. In contrast, our algorithm modifies the
geometric space position of the feature, which leads to relatively stable results in the source domain.

The unified method for any detection head. MC3D-Det offers multiple detection heads, including
a combination of classification and regression (Centerpoint) and end-to-end (DETR) approaches.
However, designing a uniform differentiable mechanism that satisfies 2D-3D consistency is chal-
lenging due to the diverse nature of these detection heads. For instance, in Centerpoint, the final
prediction is obtained by combining the outputs of the classification head and an offset regression
head. It is difficult to supervise the classification head in this case effectively. In contrast, our
approach presents a unified solution through a rendering approach.

Significant improvement on both source and target domains. Our approach is highly effective in im-
proving the performance of both the source and target domains. In the source domain, our approach
utilizes rendering to generate new views with different camera parameters, enabling the network
to learn perspective-independent features. In the target domain, our approach employs a more ro-
bust 2D detector to correct the 3D results by rendering. The other 2D-3D consistency methods do
not have much effect in the source domain because 3D supervision is inherently more accurate and
informative. However, our approach stands out by enabling the supervision of new perspectives
through rendering.
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C.4 MORE EXPERIMENTS ABOUT MC3D-DET

We also conducted experiments on several methods without BEV representation (DETR3D, PETR,
SparseBEV) on cross-domain results (from nuScenes to Lyft) as shown in the table below.

Method w/o ours w/ ours
mAP/NDS mAP/NDS

DETR3D∗ 0.008 / 0.044 0.028 / 0.076
PETR∗ 0.012 / 0.051 0.032 / 0.091

SparseBEV∗ 0.016 / 0.059 0.038 / 0.097
BEVFormer 0.084 / 0.246 0.208 / 0.355

BEVDet 0.104 / 0.275 0.296 / 0.446
FB-BEV 0.113 / 0.294 0.301 / 0.454

BEVDepth 0.114 / 0.296 0.304 / 0.458

Table 10: Comparison of methods with and without ours

Methods with an asterisk (∗) do not have BEV representation, while all others do. For these methods
without BEV representation, we leverage the LSS mechanism in BEVDet to build additional BEV
presentation so that our algorithm can be used to improve these methods. Notably, our algorithm
is model-agnostic; in other words, our algorithm can be applied to any method with image features
and BEV features, as shown in Fig. 2. According to the table, we draw a number of conclusions:

(1) Methods without BEV presentation perform very poorly across domains compared to other algo-
rithms. This can be attributed to their tendency to overfit camera extrinsic parameters in a learning
way. Conversely, methods with BEV representation solely employ camera extrinsic parameters to
project 2D image features into 3D space through a physical modeling form. This approach is highly
resilient to variations in camera extrinsic parameters, thereby increasing its robustness and relia-
bility. In conclusion, the BEV representation can effectively establish the connection of different
perspectives through physical modeling, as opposed to learning. This way enables the model to
have superior cross-domain generalization.

(2) Our algorithm has the potential to enhance the performance of DETR3D, PETR, and SparesBEV
algorithms by rendering the new viewpoints from an auxiliary BEV presentation. This is because
the process of rerendering new perspectives compels the network to acquire a generalizable BEV
representation. The generalizable BEV representation, in turn, encourages the network to learn more
robust visual features that mitigate the impact of overfitting camera parameters.
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