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Abstract

Rectified flow is a generative model that learns smooth transport mappings between
two distributions through an ordinary differential equation (ODE). The model
learns a straight ODE by reflow steps which iteratively update the supervisory flow.
It allows for a relatively simple and efficient generation of high-quality images.
However, rectified flow still faces several challenges. 1) The reflow process is
slow because it requires a large number of generated pairs to model the target
distribution. 2) It is well known that the use of suboptimal fake samples in reflow
can lead to performance degradation of the learned flow model. This issue is
further exacerbated by error accumulation across reflow steps and model collapse
in denoising autoencoder models caused by self-consuming training. In this work,
we go one step further and empirically demonstrate that the reflow process causes
the learned model to drift away from the target distribution, which in turn leads to
a growing discrepancy in reconstruction error between fake and real images. We
reveal the drift problem and design a new reflow step, namely the conic reflow. It
supervises the model by the inversions of real data points through the previously
learned model and its interpolation with random initial points. Our conic reflow
leads to multiple advantages. 1) It keeps the ODE paths toward real samples,
evaluated by reconstruction. 2) We use only a small number of generated samples
instead of large generated samples, 600K and 4M, respectively. 3) The learned
model generates images with higher quality evaluated by FID, IS, and Recall. 4)
The learned flow is more straight than others, evaluated by curvature. We achieve
much lower FID in both one-step and full-step generation in CIFAR-10. The conic
reflow generalizes to various datasets such as LSUN Bedroom and ImageNet. The
project page is available at https://grainsack.github.io/BC_rectified_
flow_project_page/.

1 Introduction

Rectified flow [9, 28, 24, 25, 23] demonstrates state-of-the-art image generation with fewer sampling
steps than diffusion models [6, 43, 37, 15, 41]. k-rectified flow involves k reflow steps that make
ODE paths smooth and straight [27]. This allows the model to generate high-quality images simply
and efficiently in just one or a few steps. Intriguingly, all rectified flow models (Flux, SD3, and
AuraFlow) achieve state-of-the-art quality with 1-rectified flow and require about 30 NFEs (number
of function evaluations) [9].
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Figure 1: Problem of rectified flow. (a) By randomly pairing data X0 ∼ π0 and X1 ∼ π1, linear
interpolation trajectories are defined. (b) The 1-rectified flow connects X0 and X1 with a learned
velocity field which is potentially inaccurate. After the 1-rectified flow, the trajectories are rewired to
avoid crossing. (c) The trajectories for reflow are defined as linear interpolation trajectories between
Z0 and the generated Z1 = v(Z0). Note that Z1 is drifted away from π1. (d) Consequently, the
2-rectified flow has a velocity field drifted away from X1.

In this paper, we identify key limitations of k-rectified flow stemming from its reflow procedure, and
propose to use real images and their inversions, combined with a Slerp-based perturbation loss, to
address them. Our core insight is that the degradation in performance cannot be fully explained by
error accumulation or vanishing weight norms alone [18, 56]. Instead, we observe that the reflow
process itself induces a drift away from the target distribution, leading to a measurable discrepancy
between the model’s behavior on real and fake samples, which we later analyze through reconstruction
error. 1) The flow drifts away from the real distribution. For example, in training a 2-rectified flow,
random noise vectors and their generated images from the 1-rectified flow are reused as supervisory
targets, which causes the ODE paths to diverge from real data. We empirically show that this results
in a reconstruction performance gap between real and fake samples, and that Slerp-based supervision
for real samples helps maintain alignment with the true distribution. 2) The number of fake samples
required for reflow is prohibitively large. Our method leverages real samples and their conic
neighbors to guide the flow with far fewer generated pairs, while maintaining competitive or superior
performance. This efficiency makes the method scalable and less dependent on synthetic supervision.
3) The reflow process degrades image quality in full-step generation. By providing trajectory-level
supervision rooted in real data geometry, our method enhances generation quality across 1-step,
few-step, and full-step regimes, and mitigates the degradation in standard reflow training.

As a result, we successfully demonstrate better performance than existing k-rectified flow models. On
CIFAR-10, we reduce the FID (Fréchet Inception Distance, [14]) of the existing 2-rectified flow from
12.21 to 5.98 while using only 7.2% of the generative pair, and show that the curvature of the ODE
paths became straighter. We also introduce a new method for calculating curvature, which explains
the time distribution sampling method. We provide various ablation studies and show that even with
simple fine-tuning, the performance of existing k-rectified flow can be significantly improved.

2 Rectified Flow

Rectified flow [27] is a generative model that solves an ordinary differential equation (ODE) to induce
a transition trajectory between two given data distributions π0 and π1. Data X0 ∼ π0 and X1 ∼ π1

define linear trajectories Xt = (1 − t)X0 + tX1 for t ∈ [0, 1], as illustrated in Figure 1a. Then, a
rectified flow v is an ODE on time t parameterized by θ:

dZt

dt
= vθ(Zt, t) :=

1

t
(Zt − E[(X1 −X0)|Xt = Zt]) (1)

We omit θ for brevity. Liu et al. [27] propose a simplified mean squared error (MSE) loss for an ODE
neural network to train velocity field v : Rn → Rn as follows:

argmin
θ

E
[∥∥X1 −X0 − v(tX1 + (1− t)X0, t)

∥∥2] (2)

With t ∼ Uniform([0, 1]). In image generation tasks, X0 ∼ π0 and X1 ∼ π1 are random noise
and real images, sampled from a Gaussian distribution and the data distribution, respectively. Once
the model has learned the velocity field, the rectified flow rewires the trajectories in a non-crossing
manner due to the inherent properties of ODEs, which enforce uniqueness and smoothness in
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Figure 2: (a) 2-rectified flow overfits fake samples. Following the reverse and forward 2-rectified
flow, fake images inherently return at similar images with or without perturbation at π0. In contrast,
real images return at different images and it is worse with perturbation, implying overfitting. (b)
Reconstruction discrepancies emerge between real and fake images due to the use of fake-only pairs.

trajectory evolution, preventing paths from intersecting in the continuous-time dynamics, as depicted
in Figure 1b. It constitutes a 1-rectified flow model denoted by Z = RectFlow((X0, X1)).

The k-rectified flow model learns a straighter sampling trajectory by repeating reflow procedure
k times as follows. Following Zk from Zk

0 induces a generated pair (Zk
0 , Z

k
1 ) where (Z0

0 , Z
0
1 ) =

(X0, X1). It redefines the linear interpolation trajectory Zk+1
t = (1 − t)Zk

0 + tZk
1 for t ∈ [0, 1],

as shown in Figure 1c. Then, fine-tuning a velocity field v using Eq. (2) with (Zk
0 , Z

k
1 ) instead of

(X0, X1) constitutes Zk+1 = RectFlow((Zk
0 , Z

k
1 )).

According to optimal transport theory, [45, 44, 10, 11] coupling the generated pairs (Z0, v(Z0))
ensures that the interpolation trajectory preserves the marginal distributions of the original and target
domains, as well as the linear interpolation trajectory between them [21, 2]. k-rectified flow has
superior quality of few-step sampling by straighter sampling trajectory, as shown in Figure 1d.

3 Improved Techniques for Reflow Step

In this section, we discuss the generated fake pairs in the original rectified flow and their problems.
Then, we introduce real pairs and balanced-conic reflow which directly supervise the flow to reach
the real data distribution. Finally, we provide detailed training configurations.

3.1 Reflow steps drift the flow away from the real distribution.

As shown by Liu et al. [27], the trajectory Zk
t between the generated pairs in the reflow process

becomes smoother and straighter with each iteration of reflow, because the ODE induces a determin-
istic smooth solution while preserving the same marginal distribution as the original trajectory. This
straightened path is essential for generating high-quality images with a small number of sampling
steps rather than SDE-based generative models [15, 37, 35]. We use subscript F to denote the fake
pairs from the original rectified flow as follows:

(Zk
0,F , Z

k
1,F ) := (Zk

0 , Z
k
1 ) (3)

Where Zk
0 ∼ π0 and Zk

1 = v(Zk
0 ).

2 To simplify notation and avoid confusion, we will denote the
fake pair as (Z0,F , Z1,F ) when we do not need to consider the reflow step and, denote the k-th order
of the rectified flow as (Zk

0,F , Z
k
1,F ).

Beyond known issues such as error accumulation and model collapse [18, 56], we provide empirical
evidence that reflow steps cause a distributional drift, observed through growing reconstruction
discrepancies between real and fake samples. We provide empirical evidence of the accumulating
drifts and suboptimality of the learned rectified flow. Figure 2a illustrates faithfulness and continuity3

of a 2-rectified flow on both fake samples and real samples. As expected, fake images are mostly
reconstructed by inversion and generation following the 2-rectified flow, i.e., Z1 ≃ v(v−1(Z1)).
Also, an inversion of a fake sample and its perturbation land at similar images, i.e., v(v−1(Z1)) ≃

2For brevity, we denote the forward generation process at the t-th sampling step as X0 +
∫ 1

0
vt(Xt, ·) dt :=

v(X0) and backward process as X1 +
∫ 1

0
v−1
t (Xt, ·) dt := v−1(X1), where v−1 = −v.

3We use the notion of continuity as in Lipschitz continuity: the generated images should be similar with the
similar latents.
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Figure 3: (a) As reflow steps increase, generated samples diverge from the target distribution. (b)
This drift is further evidenced by the rising KL divergence from the real data distribution.

v(v−1(Z1) + εz) where we perturb it with ε = 0.05. In contrast, real images lose the main object by
inversion and generation following the 2-rectified flow, i.e., X1 ̸= v(v−1(X1)). Furthermore, real
images are vulnerable to perturbation on their inversion, i.e., v(v−1(X1)) ̸= v(v−1(X1) + εz). To
evaluate the faithfulness of a rectified flow to a dataset X , we measure the error between the sample
and its reconstruction [4, 33] via the flow:

Lrecon
2 (X) = Ex∼X

[
∥x− v(v−1(x))∥2

]
(4)

Instead of Lipschitz continuity, we practically evaluate the continuity of a rectified flow near samples
from a dataset X by measuring a perturbed reconstruction error:

Lp-recon
2 (X, ε) = Ex∼X,z∼π0

∥x− v(v−1(x) + εz)∥2, (5)

where ε is the strength of perturbation. The lower perturbed reconstruction error near the real samples
Lp-recon
2 (X1) indicates the more continuous generative model near the real samples.4 Figure 2b

compares Lrecon
2 of real and fake samples, and Lp-recon

2 near real and fake samples. Lrecon
2 is higher at

the real samples than the fake samples. It indicates that the 2,3-rectified flow drifts away from the
real samples. Furthermore, Lp-recon

2 is lower near the fake samples than the real samples. It indicates
that the 2-rectified flow suffers from crossing between real samples.

Critically, the original reflow accumulates the drift over recursive reflow steps. This drift is an innate
phenomenon because the supervision from a shifted distribution does not steer the flow toward the
real distribution. Figure 3a provides empirical evidence of the accumulating drift in a toy two moons
dataset [32]. The successive reflow steps cause the fake (yellow) data to diverge further from the
real (blue) target distribution. Furthermore, Figure 3b illustrates the progressive increase in KL
divergence between the fake distribution and the target distribution, providing clear evidence of this
phenomenon.5 We provide a solution to mitigate this issue in Section 3.3 and 3.4.

3.2 Real pair

The previous subsection has unveiled the pitfall of supervision using fake pairs: samples from the
domain distribution, e.g., Gaussian, and their codomain following a rectified flow. Instead of the fake
pairs, we propose to use the real samples and their inverse following a reverse rectified flow, defined
by :

Real pair(Z0,R, X1) := (v−1(X1), X1) (6)
with X1 ∼ π1 where v is the 1-rectified flow and we abuse the term real pair although the Z0,R is
not real. As in the original rectified flow, where it was optionally provided, it is safe and easy to use
reverse rectified flow without stochasticity because it inherently produces a deterministic solution, and
using real images does not contradict the original purpose because the noise v−1(X1) is generated
using v−1. To avoid confusion, from now on, we will refer to (X0, v(X0)) as a fake pair (generated
pair), where v(X0) is a fake (generated) image, and (v−1(X1), X1) as a real pair, where X1 is a real
image.

4We measure the reconstruction and perturbed reconstruction error with 1-step Euler sampling.
5The KL divergence is measured between Gaussian mixture approximations of the fake and real samples.
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Figure 4: Illustration of original fake pairs and our real pairs. (a) The original rectified flow
supervises 2-rectified flow with fake pairs (Z0, vθ(Z0)). (b) Our conic reflow supervises 2-rectified
flow with real pairs (v−1

θ (X1), X1) and their conic neighbors.

3.3 Conic reflow

Building upon the basic pairing of real samples with their reverse noises, we introduce conic reflow,
which expands their influence on the domain distribution to their neighboring areas, as shown in
Figure 4b. When we train the model, we use spherical linear interpolation (Slerp) between the reverse
noise Z0,R and a randomly sampled noise ϵ ∼ N (0, I) with the interpolation ratio ζ:

Slerp(Z0,R, ϵ, ζ) =
sin((1− ζ)ϕ)

sin(ϕ)
Z0,R +

sin(ζϕ)

sin(ϕ)
ϵ, (7)

where ϕ = arccos(Z0,R · ϵ) denotes the angle between Z0,R and ϵ. Then we define a conic inverse
from a real sample X1:

Conic(X1, ϵ, ζ, t) = tX1 + (1− t)slerp(Z0,R, ϵ, ζ), (8)

where Z0,R = v−1
θ (X1), and t ∈ [0, 1]. During training, we sample ϵ and ζ multiple times to let

the target flow stochastically cover the nearby domain. As the collection of the paths over multiple
iterations looks like a cone, we name our method as conic reflow. The schedule of interpolation
weight ζ is deferred to Section 3.5. Our training objective with conic reflow is:

θ̂ = argmin
θ

∫ 1

0

E
[
wt

∥∥∥X1 − slerp(Z0,R, ϵ, ζ)− vθ
(
Conic(X1, ϵ, ζ, t)

)∥∥∥2]dt (9)

Where t ∼ exp([0, 1]), ζ ∼ slerp schedule([0, 1]), ϵ ∼ N (0, I), and wt is weighting function
(default=1). Slerp is commonly used for interpolation in the noise space of generative models, as it
preserves vector magnitudes on the Gaussian hypersphere and enables smooth semantic transitions
[47, 16]. In our case, Slerp serves as a geometry-aware regularizer that improves the alignment
between numerically inverted real samples and the underlying data manifold. Rather than simply
reusing generated samples, we supervise the model using real samples and their perturbed inversions
to reduce reconstruction loss discrepancies observed during reflow. This approach not only mitigates
distributional drift but is also aligned with adversarial robustness strategies studied in inverse problems
and reconstruction-based neural networks [3, 1]. From this perspective conic reflow provides localized
supervision that encourages stability and continuity around real data points in the noise space.

3.4 Balanced conic rectified flow

We design a new reflow procedure which consists of our conic reflow and the original reflow. For
each training iteration, we design different training schemes for real pairs and fake pairs. We alternate
between conic reflow steps with real pairs (Z0,R, X1) and original reflow steps with fake pairs. It
encourages the trajectories to head toward the exact real distribution while fake pairs ensure the entire
domain distribution to receive supervision. Fake Pairs: For fake pairs, we proceed with the reflow
process exactly as it was done in the original rectified flow model. Its training objective θ̂ as follows:

argmin
θ

E
[
∥Z1,F − Z0,F − vθ(tZ1,F + (1− t)Z0,F )∥2

]
, (10)
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Figure 5: (a) Slerp noise schedule for single conic reflow and (b) Total slerp schedule. (c) Curvature
and IVD during training, and (d) From 2- to 3-rectified flow.

with t ∼ exp([0, 1]). The entire training objective of our method is as follows for the given fake
pair(Z0,F , Z1,F ) and real pair (Z0,R, X1):

min
v

∫ 1

0

[∥∥∥χfake ·
(
Żt,F − vθ(Zt,F )

)
+ χreal ·

(
X1 − slerp(Z0,R, ϵ, ζ)− vθ

(
Conic(X1, ϵ, ζ, t)

))∥∥∥2]dt
(11)

where χfake and χreal are indicator functions for given index subsets Ureal and Ufake such that Ureal ∪
Ufake = N. Then, for i ∈ N:

χfake =

{
1 if i ∈ Ufake

0 else
, χreal =

{
1 if i ∈ Ureal

0 else.
(12)

The notation ζ, Conic(·), ϵ, and wt follows the definitions in Section 3.3.

3.5 Detailed training schemes

In this section, we provide a more detailed explanation of our proposed training schemes, including
visualizations of the Slerp scheduling and maximum Slerp noise magnitude. The maximum magnitude
of the Slerp noise, ζmax ∈ (0, 0.5] is selected in accordance with our intuition that it is the point where
the discrepancy between the perturbed reconstruction errors of real and fake samples is maximized.
After a warm-up phase of training steps, we compute ζmax using 10,000 images each from the real
and fake. The value is selected based on the following hyperparameter ζmax:

ζmax := max
ζ∈(0,0.5]

E
x∼X1
z∼Z1,F

[
∥vθ (Slerp(z0,R, ϵ, ζ))− x∥2 − ∥vθ (Slerp(z0,F , ϵ, ζ))− z∥2

]
(13)

where ϵ ∼ N (0, I), with z0,R = v−1
θ (x) and z0,F = v−1

θ (z1,F ) denoting the inverse noise estimates
for the real and fake samples, respectively. Figure 5(a) shows a single conic reflow noise schedule in
training steps (For CIFAR-10 and ImageNet, we set ζmax to 0.13 and 0.23, respectively). Each conic
is trained to progressively reduce the noise scale over time. Specifically, the Slerp noise schedule
ζ(t′) is defined as ζ(t′) := ζmax · 2t′2

1+t′2
, t′ ∈ [0, 1], where t′ = 1 corresponds to the start of training

and t′ = 0 to the end. This design follows the intuition from traditional diffusion models [15],
where noise is progressively reduced to guide samples toward realism. To strengthen the real image
trajectory during training, we periodically update the real sample pairs used in the reflow process.
Figure 5(b) illustrates an example of conic reflow with updated real pairs, assuming 220K total
training steps for visualization. When the number of updates is 2K, we schedule the maximum noise
magnitude ζmax by scaling it according to the pattern [K,K−1, . . . , 1, 2, . . . ,K], assigning ζmax/K
to the smallest value and ζmax to the midpoint. The noise increases linearly in the first half and
decreases symmetrically in the second half. The full pseudocode for our training method is provided
in Appendix K.

4 Experiments

We conducted experiments to evaluate the effectiveness of our method. Our findings demonstrate:
Superiority over original reflow in terms of (1) Quality of the results, (2) Straightness of the flow, (3)
Mitigation of distribution shift, as well as (4) Ablation study, (5) Generalization to other datasets.
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Method NFE (↓) IS (↑) FID (↓)

One-Step Generation (Euler solver, N=1)
1-Rectified Flow 1 1.13 (9.08) 378 (6.18)

2-Rectified Flow
Original (+Distill) 1 8.08 (9.01) 12.21 (4.85)
Ours (+Distill) 1 8.79 (9.11) 5.98 (4.16)
Rf++†[24] 1 8.87 4.43
Rf++†(+ours) 1 8.87 4.22

3-Rectified Flow
Original (+Distill) 1 8.47 (8.79) 8.15 (5.21)
Ours (+Distill) 1 8.84 (8.96) 5.48 (4.68)

Full Simulation (Runge–Kutta (RK45), Adaptive N)
1-Rectified Flow 127 9.60 2.58

2-Rectified Flow
Original 110 9.24 3.36
Ours 104 9.30 3.24

3-Rectified Flow
Original 104 9.01 3.96
Ours 98 9.14 3.70

Table 1: One-step and full-
simulation comparison of 2,3
Rectified Flows on CIFAR-10.

Figure 6: CIFAR-10 generation quality across
Euler steps.

Experimental setup Most of our experiments are conducted on CIFAR-10 [20]. The IVD, curva-
ture, reconstruction, and perturbed (0.05ε, 1-step) reconstruction error values reported were computed
using 10,000 random samples, with the expectation taken over these samples. We employ Scipy’s
RK45[46], a 5(4) Runge-Kutta method with adaptive step size and step count determined by specified
tolerances, following the same parameters [37]. Further details on the training configurations are
provided in Appendix J.

4.1 Image quality

Our method achieves better FID and IS scores across all sampling steps, i.e., 1-step, few-step, and
full-step generations, as shown in Table 1 and Figure 6. Notably, we use only 300K fake pairs,
significantly fewer than the 4M fake pairs used in the original rectified flow, demonstrating the
efficiency of our approach. Furthermore, our method outperforms the original in generation quality
with RK sampling, even with a lower NFE. We also apply our method to Rectified++ [24] and
compare generation quality. While RF++† uses 800K synthetic pairs, our variant uses 600K fake
pairs and 50K real images, achieving better FID. This indicates that our method generalizes well to
reflow-based generative models. Detailed settings for RF++† are provided in Appendix J.

Additionally, our method produces images with superior quality even when applying the same
distillation in the original rectified flow [27] as compared to solid (ours) and dashed (original) lines,
and star (ours) and rectangle (original) in Figure 6. These results suggest that our method produces
a more favorable initial velocity field than the original rectified flow. A detailed comparison of
precision and recall scores is provided in Appendix B. Furthermore, we show in Appendix D that
fine-tuning the original rectified flow using only real images and their reverse noise pairs effectively
reduces reconstruction discrepancy and quickly improves generation quality. Additional performance
comparisons on more complex datasets and higher-resolution images are presented in Sections 4.5
and 4.6. To further contextualize the performance of reflow-based methods, we also report the
unconditional generation quality of pretrained diffusion models on CIFAR-10 in Appendix N.

4.2 Straightness

We evaluate trajectory straightness using curvature, following prior works [27, 23]. Straighter
trajectories reduce discretization error under few step solvers, improving sample quality [39, 5]. For
any continuously differentiable process Z = {Zt} , the curvature is measured by :

S(Z) =

∫ 1

0

E
[∥∥∥(Z1 − Z0)− Żt

∥∥∥2] dt (14)

Additionally, it is known that S(Z) = 0 indicates exact straightness.

Relationship between curvature and initial velocity delta (IVD) While curvature captures
trajectory straightness, it does not fully explain 1-step sampling quality, which depends solely on
the initial velocity. We propose Initial Velocity Delta (IVD) to directly evaluate the accuracy of the
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initial velocity and its impact on 1-step generation. The calculation method for IVD is provided in
the equation below:

IV D(Z, t0) = E
[∥∥∥(Z1 − Z0)− Żt0

∥∥∥2] (15)

Curvature and initial velocity delta. Our approach demonstrates improved trajectory straightening
and better preservation of the initial velocity direction. As shown in Figure 5(c), our method
consistently achieves lower curvature and IVD values than the original, indicating a more stable
trajectory even with fewer fake pairs. Furthermore, Figure 5(d) highlights that applying an additional
reflow step from 2-rectified to 3-rectified flow further reduces both curvature and IVD, reinforcing
the effectiveness of our training method.

4.3 Reconstruction with perturbation to address drift from the real distribution
We empirically show that incorporating real data pairs via Slerp-based supervision in the reflow step
significantly improves the preservation of real image trajectories. As illustrated in Figure 7(a), the
original rectified flow exhibits a clear reconstruction error gap between real and fake images, whereas
our method progressively narrows this gap during training. Figure 7(b) highlights two key aspects.
First, in terms of reconstruction error, our method better preserves real trajectories and mitigates
overfitting to fake samples. Second, the lower perturbed reconstruction error suggests that the model
more accurately aligns the velocity field around real images, leading to improved robustness against
perturbations.

4.4 Ablation study

We report results from an ablation study on various settings of our proposed framework, comparing
four configurations: (1) without Slerp noise; (2) reflow using just a single real pair; (3) our full
method; and (4) the original 2-rectified flow. The comparison focuses on 1-step generation quality,
curvature, IVD(Initial Velocity Delta), reconstruction error, and perturbed reconstruction error.

4.4.1 Benefits of incorporating real data via slerp-based perturbation training

Model FID IS Curvature IVD Recon Real Recon Fake Perturbed Real Perturbed Fake

Original 12.21 8.08 0.002837 0.295078 0.033668 0.024106 0.035481 0.026270
Ours* (Slerp + conic) 5.98 8.79 0.002295 0.253334 0.019404 0.023139 0.022382 0.025206
Fixed Real Pair 6.69 8.59 0.002313 0.242444 0.020227 0.020607 0.022890 0.022914
No Slerp 6.60 8.57 0.002322 0.240884 0.023380 0.020154 0.026063 0.022496

Table 2: An ablation table comparing various 2-rectified models across multiple metrics: FID, IS
(1-step), Curvature, IVD, and errors (Recon Real/Fake, Perturbed Real/Fake).

Benefits of adding noise via Slerp Adding noise via Slerp avoids trajectory crossover, preserving
a straighter path relative to real images. This leads to improved trajectory quality and enhances
1-step sampling efficiency. Moreover, using Slerp results in lower reconstruction error for real images
compared to not using it. This demonstrates that Slerp-based noise perturbation helps stably maintain
the trajectory and local neighborhood structure of reverse noise corresponding to real images. In
particular, it plays a key role in reducing the reconstruction discrepancy we observe between real and
fake samples during reflow, thereby effectively mitigating the distributional drift that occurs in later
iterations.
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2
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Figure 7: Reconstruction and perturbed reconstruction error across training iterations.
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Effect of real pair injection and refreshing Incorporating real pairs into training improves
trajectory fidelity and 1-step generation quality by anchoring learning closer to the target distribution.
Notably, fixing the real pair only once leads to inferior performance, while periodically refreshing
reverse noise achieves better FID, IS, and lower reconstruction errors. This highlights the importance
of continuously updating real-sample guidance throughout training to maintain alignment with real
data trajectories.

Additional experiments, including k = 4 generation quality, precision/recall, low fake pair settings,
and real-only supervision, are provided in Appendices C and E.

4.4.2 Slerp noise patterns and lerp

In this section, we show that our Slerp-based reflow method consistently improves 1-step generation
quality, even when the Slerp noise pattern varies. To support this claim, we train 2-rectified flow
models using different Slerp schedules, including patterns where the noise gradually increases,
gradually decreases, or first increases and then decreases. We also include a baseline where Slerp
is replaced with Lerp for comparison. All experiments are conducted with a batch size of 256, and
training is performed for 300K iterations. Each setting uses 300K fake pairs and 60K real pairs
for training on Cifar 10. Other configurations remain identical to those described in Section 4 and
Appendix J.

Category Method Schedule Type IS (↑) FID (↓)

Slerp
Ours ζmax

k : ζmax/K → ζmax → ζmax/K 8.72 6.63
Strictly Increasing ζmax

k : ζmax/K → ζmax 8.48 6.64
Strictly Decreasing ζmax

k : ζmax → ζmax/K 8.45 6.70

Lerp Linear Interpolation (1−ζ) · v−1(X1) + ζ · ϵ, ζ ∈ [0, ζmax] 8.46 7.50
Table 3: Each method uses Slerp or Lerp-based noise trajectories. The best and second-best values
are bolded and underlined, respectively.

As shown in Table 3, we observe three key findings. First, Slerp-based schedules consistently
outperform Lerp in both FID and IS, suggesting that Slerp more effectively preserves the reverse noise
trajectories of real images. Second, the strictly increasing noise schedule yields better performance
than the decreasing one, indicating that progressive noise injection improves training stability.
Third, our method achieves the highest IS while maintaining comparable FID to the best baseline,
demonstrating improved sample diversity without compromising generation quality.

4.5 More complex dataset (Unconditional generation on ImageNet 64×64)

On ImageNet 64×64 [7], our method consistently improves unconditional generation quality over
the original model. Using the same setup as CIFAR-10, we train a 1-rectified flow for 700K steps
with batch size 256. The original uses 1M fake pairs, while our method uses 600K fake and 60K
real pairs. As shown in Table 4, Although 60K real images may be insufficient to fully cover the
target distribution of ImageNet compared to CIFAR-10, our method still yields substantial gains in
FID and Recall. This suggests that even limited real data can provide strong guidance in mitigating
distributional drift. Moreover, it improves reconstruction error, perturbed reconstruction error, recall,
and precision (see Table 5 and Appendix F), demonstrating its ability to reduce distributional drift
even on large-scale datasets.

4.6 High-resolution image generation

In this section, we assess the generalizability of our method on the LSUN Bedroom dataset [52] at
a resolution of 256×256. We use the same hyperparameters, time schedule, and EMA settings as
in the experiments by Liu et al. [27]. We use 60K fake pairs and 5K real pairs, while the original
uses 120K fake pairs. Despite GPU limitations on the larger LSUN dataset, our method consistently
outperformed the original in image quality. Figure 8 shows superior few step generation quality, and
with adaptive step sampling (RK45), our approach achieved comparable quality with significantly
fewer fake pairs than the original. Further details on the training configurations are provided in
Appendix J. For comparisons under different random seeds, refer to Appendix I.
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Metric FID IS

ODE Solver RK-45 Euler RK-45 Euler

1-rectified flow 23.1 369.8 12 1.1

2-rectified flow 31.2 39.7 10.8 10.4
Ours 28.2 37.8 11.4 10.3

Table 4: FID and IS across rectified flows
using RK-45 and Euler solver on ImageNet.

Model Solver Precision Recall

Original Euler 1-step 0.4129 0.4604
Ours Euler 1-step 0.3812 0.5325

Original RK-45 0.4717 0.5264
Ours RK-45 0.4432 0.6032

Table 5: Precision and recall on ImageNet.

Euler 1-step Euler 2-step RK - 45

Solver FID (Original/Ours) Precision Recall

1-step Euler 139.98 / 26.54 0.0290 / 0.4822 0.0220 / 0.2274
RK 24.76 / 24.14 0.4525 / 0.4703 0.2386 / 0.2388

IVD, Recon, P-Recon error (Fake/Real)

IVD Lrecon
2 L

p−recon
2

Original 1.1790 0.0822 / 0.1147 0.0820 / 0.1146
Ours 0.9103 0.0487 / 0.0405 0.0486 / 0.0407

∆Lrecon
2 ∆L

p−recon
2

Original 0.0325 0.0326
Ours 0.0083 0.0079

Figure 8: Visual and quantitative comparison on LSUN. Left: 2-row layout showing original (top)
and ours (bottom) for each solver (1-step, 2-step, RK). Right: evaluation metrics.

5 Related work

Recent efforts to improve rectified flow models focus on modifying the time distribution, loss
functions, or model architectures [24, 18]. Some works incorporate real data pairs or introduce
discriminator-based regularization to reduce the effect of out-of-distribution samples [18]. Others
analyze model degradation through the lens of denoising autoencoders, attributing performance drop
to the vanishing of weight norms caused by repeated training on synthetic pairs [56]. PerFlow takes a
different approach by constructing piecewise linear intermediate paths to stabilize reflow training
[50]. In contrast to these works, our method introduces a perturbation-based supervision using real
data inversions.

6 Conclusion and future work

We propose balanced conic reflow, a simple yet effective method that addresses key limitations
of traditional rectified flow by incorporating real pairs through a Slerp-based perturbation strategy.
Our approach improves generation quality across multiple settings, while requiring significantly
fewer synthetic samples. Its plug-and-play nature makes it compatible with various flow-based
generative models, such as InstaFlow and SD3 [28, 9]. Future directions include extending our
method with additional loss functions or integrating it with diffusion-based synthetic supervision
[24, 18]. Moreover, our strategy may complement recent frameworks such as Rectified Diffusion [48],
which demonstrate that reflow-like improvements are possible even without retraining v-prediction-
based flow matching models, where conic reflow can further help preserve real image trajectories and
reduce reconstruction discrepancy without relying on linear interpolation paths or discriminator-based
supervision.
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• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
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welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide clear guidelines for choosing the perturbation magnitude in the Section 3.5,
and describe all model configurations including the optimizer in both the Experiment Setup Section 4
and the Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We explicitly state the number of data points used to compute the mean values of
curvature, initial velocity delta, and reconstruction error in Section 4 and Appendix J. The magnitude
of the epsilon used to calculate the perturbed reconstruction error is also clearly described. Additionally,
we specify the number of synthetic samples used for evaluating generation quality metrics such as
recall, precision, and FID.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Answer: [Yes]

Justification: We provide the details of our CPU and GPU resources in the appendix A. Additionally,
the number of training iterations, batch size, and the number of fake and real samples used in each
experiment are specified in the experiment section 4 and Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in this paper adheres to the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [No]

Justification: This work analyzes distributional drift in reflow and proposes a technical solution for
flow-based generative models. Since it does not involve application-specific deployment or sensitive
content, we found no broader societal impacts to discuss.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment
of technologies that could make decisions that unfairly impact specific groups), privacy consider-
ations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: : This work does not involve any models or datasets that pose a foreseeable risk of
misuse or harm.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We used the official repositories of existing flow models [27] and clearly cited the
datasets used for training (CIFAR-10 [20], LSUN [52], ImageNet [7]). We also specified the version
of the Runge-Kutta sampling tool (from SciPy ) used during sampling [46].

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets. All experiments are conducted using widely used
public datasets such as CIFAR-10, ImageNet, and LSUN Bedroom [20, 52, 7].

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submis-

sions via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an

anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

29

paperswithcode.com/datasets


Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs for any part of the core methodology or scientific contribution of
the paper.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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