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ABSTRACT

High-throughput reaction condition (RC) screening is fundamental to chemical
synthesis. However, current RC screening suffers from laborious and costly
trial-and-error workflows. Traditional computer-aided synthesis planning (CASP)
tools fail to find suitable RCs due to data sparsity and inadequate reaction rep-
resentations. Nowadays, large language models (LLMs) are capable of tackling
chemistry-related problems, such as molecule design, and chemical logic Q&A
tasks. However, LLMs have not yet achieved accurate predictions of chemical
reaction conditions. Here, we present Chemma-RC, a text-augmented multimodal
LLM that responds to task-specific questions by generating answers about reac-
tion conditions. It learns a unified reaction representation via modality alignment
from a corpus of reactions and question prompts, molecular structures in SMILES
format, and graphical representations of chemical reactions. We construct a 1.2
million pair-wised Q&A instruction dataset to train Chemma-RC and design a
projection module for modality alignment. Our experimental results demonstrate
that Chemma-RC achieves state-of-the-art performance on two open benchmark
datasets and exhibits strong generalization capabilities on out-of-domain (OOD)
and High-Throughput Experimentation (HTE) datasets. Chemma-RC has the po-
tential to accelerate high-throughput condition screening in chemical synthesis.

1 INTRODUCTION

Chemical synthesis is a crucial step for the discovery of transformative molecules in multiple fields,
including drug design, materials, renewable energy, etc. In chemical synthesis, reaction condi-
tions are usually optimized to maximize the yield of each target molecule or minimize the cost of
the corresponding process (Shields et al., 2021; Taylor et al., 2023). Despite significant advance-
ments in chemical synthesis over the past few decades, discovering suitable reaction conditions from
the extensive substrates combined with high-dimensional conditions renders exhaustive experimen-
tal impractical (Angello et al., 2022). Chemists have focused on building reliable and convenient
computer-aided synthesis planning (CASP) tools to facilitate chemical synthesis (Corey & Wipke,
1969; Mikulak-Klucznik et al., 2020; Schwaller et al., 2021). However, few efforts have been made
to solve the problem of reaction condition screening due to the low sparsity of chemical data, and
the lack of effective reaction representation (Mehr et al., 2020; Rohrbach et al., 2022). In summary,
to realize efficient synthesis in chemistry, there is an urgent need to realize high-efficiency reaction
condition recommendations.

There are various types of data in the field of chemistry, including simplified molecular-input
line-entry system (SMILES) (Weininger et al., 1989), graphs, and textual corpus of reac-
tion (Schlichtkrull et al., 2018), which encompasses the descriptions of reaction processes, and reac-
tion mechanisms. Traditional methods tackling the reaction condition recommendation (RCR) task
typically rely on sequence-based SMILES data for end-to-end training (Gao et al., 2018; Schwaller
et al., 2019; Andronov et al., 2023). However, training exclusively on sequence-based SMILES rep-
resentations may hinder the model’s ability to capture the difference between similar reactions, as the
feature distances encoded by transformers may be too close in the representation space. The capa-
bility to encode different reactions is critical for prediction, as even minor variations in a substrate’s
functional group can result in fundamentally different reaction conditions. Therefore, it is necessary
to incorporate additional information into reaction representations for RCR tasks. Given that the tex-
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tual corpus contains chemical knowledge, which is invaluable for a comprehensive understanding of
reactions, we aim to leverage cross-modality data to predict reaction conditions precisely.

Nowadays, the emergence of generative large language models (LLMs), typified by GPT-4, has
sparked significant interest in the field of AI for chemistry (Baum et al., 2021; Achiam et al., 2023;
Boiko et al., 2023; Guo et al., 2023; M. Bran et al., 2024). Large multimodal models (LMMs) have
demonstrated remarkable predictive capabilities in integrating modalities such as vision, text, and
speech (Li et al., 2023; Zhu et al., 2024; Liu et al., 2024a). Therefore, we hypothesize that LMMs
endowed with LLMs’ foundational capabilities in chemistry can deal with various modalities of
chemical data, thereby enhancing the predictive performance in chemical tasks. However, it presents
a significant challenge in designing modules to integrate various modalities effectively. Hence, it is
imperative to develop an effective prediction model that can incorporate different chemical data into
LLMs to achieve a more comprehensive understanding of reaction processes, facilitating the task of
chemical reaction condition recommendation.

In view that molecules can be expressed as sequences, and reactions are described as natural lan-
guage, e.g. text corpus, LMMs can be a potential solution due to the following advantages: (i) foun-
dational LLMs can learn relationships between molecules in reactions, thereby acquiring chemical
knowledge akin to the learning process of chemists (Achiam et al., 2023); (ii) via learning the joint
representation of chemical reactions from different modalities, including graphs, SMILES, and cor-
pus, LLMs might be empowered to understand the mechanism of reactions, which facilitates the task
of RCR. To this end, we fine-tune general-purpose LLMs with domain-specific reaction data. Specif-
ically, we present Chemma-RC, a multimodal LLM that jointly learns from the SMILES, graphs,
and textual corpus of reactions. The contributions of this work can be summarized as follows:

1. We propose a multimodal LLM, a.k.a. Chemma-RC, to jointly learn representation from
SMILES, graphs, and textual corpus of reactions for condition recommendation tasks. We
further develop two distinct types of condition prediction modules, a classification mod-
ule, and a generation module for Chemma-RC to enhance its compatibility with different
reaction condition combinations.

2. We design text-augmented instruction prompts to construct a 1.2 million pair-wised Q&A
dataset for training. We propose the Perceiver (Jaegle et al., 2021) module for modality
alignment, which utilizes latent queries to align graphs and SMILES tokens with text-
related tokens.

3. Through experimental validation on benchmark datasets, Chemma-RC achieves compet-
itive results comparable to state-of-the-art models. Furthermore, Chemma-RC exhibits
strong generalization capabilities on out-of-domain (OOD) and high-throughput experi-
mentation (HTE) datasets.

2 RELATED WORK

In chemical synthesis, reaction conditions are usually developed and optimized to maximize the
yield of each target molecule or minimize the cost of the corresponding process (Shields et al.,
2021; Taylor et al., 2023). High-throughput reaction condition (RC) screening, as an important tool
in synthesizing molecules, exerts an important influence on chemical synthesis. However, discov-
ering suitable reaction conditions from the extensive matrix of substrates combined with the high-
dimensional reaction conditions renders exhaustive experimental impractical. (Angello et al., 2022).
For decades, chemists have focused on building reliable and convenient computer-aided synthesis
planning (CASP) tools to facilitate chemical synthesis (Corey & Wipke, 1969; Mikulak-Klucznik
et al., 2020). For instance, Coley et al. built a multiway classification model based on a two-step
graph convolutional network (GCN) for the reaction prediction task (Coley et al., 2017; 2019). Due
to the effectiveness of a simplified molecular-input line-entry system (SMILES) (Weininger et al.,
1989), as strings of a context-free, Nam et al. proposed the first sequence-to-sequence model for
forward prediction using the SMILES representations of molecules (Nam & Kim, 2016). Inspired
by attention-based transformer model (Vaswani et al., 2017), Schwaller et al. proposed molecular
transformers (Schwaller et al., 2019; Ding et al., 2024), which were applied in forward prediction
and reaction condition recommendation (RCR) tasks (Schwaller et al., 2019; Andronov et al., 2023).
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Figure 1: Architecture of Chemma-RC. Chemma-RC processes task-specific questions con-
structed by text-augmented multimodal instruction prompts and generates answers. Specifically,
it takes three modalities of data as inputs: text (a textual corpus of reactions and question prompts),
molecular SMILES, and reaction graphs. Two distinct types of prediction modules, a classification
module, and a generation module are proposed to predict chemical reaction conditions.
Chemical reaction condition recommendation tasks aim to recommend catalysts, reagents, solvents,
or other conditions for a specific reaction. The exploration of a suitable condition is crucial for the re-
alization of CASP, as it dictates the expected outcomes, including reaction yields and rates (Schnitzer
et al., 2024). Gao et al. developed a neural network model to predict the chemical context as well
as the temperature for any particular organic reaction (Gao et al., 2018); Maser et al. proposed a
machine-learned ranking model to predict the set of conditions used in a reaction as a binary vec-
tor (Maser et al., 2021); Wang et al. proposed Parrot, a powerful and interpretable transformer-based
model for the prediction of reaction condition (Wang et al., 2023a); In the meantime, in order to en-
hance the representation of reactions, Qian et al. (Qian et al., 2023) designed TextReact, which
introduced relevant corpus retrieved from literature to enhance the molecular representation of the
reaction based on SMILES. Nevertheless, these methods rely on manual feature selection by experts’
knowledge and lack a general prediction model with powerful reaction representation.

Nowadays, the emergence of generative pre-trained transformer-based large language models
(LLMs), typified by GPT-4, has triggered keen interest in leveraging such techniques to tackle chem-
istry challenges (Baum et al., 2021; Achiam et al., 2023). Several works focus on chemical agents
for the exploration of chemical conditions. Boiko et al. (Boiko et al., 2023) proposed a GPT-4
driven scientific agent system to plan and perform complex experiments, which accelerates reaction
condition screening and experimental automation in chemistry; Bran et al. developed ChemCrow,
which augmented LLMs with chem-expert-designed tools (M. Bran et al., 2024); However, for tasks
demanding a precise understanding of molecular SMILES representation, such as reaction predic-
tion, and retrosynthesis, LLMs exhibited a less competitive performance than traditional machine
learning baselines (Guo et al., 2023). Partially, the reason is that, without an in-depth understanding
of the SMILES strings, and the reaction process that transforms reactants into products, it will be
difficult for LLMs to generate accurate responses.

Besides SMILES strings, there are various types of data such as molecule graphs and the reactions’
external textual corpus in the chemistry synthesis field. By synergizing the strengths of multiple
modalities, large multimodal models (LMMs) can achieve higher accuracy, and perform more ef-
fectively in a wide range of applications (Edwards et al., 2022; Li et al., 2023; Zhu et al., 2024; Liu
et al., 2024a; Li et al., 2024; Liu et al., 2024b).

3 METHODS

3.1 PROBLEM SETUP

For a task of reaction condition recommendation, we define the X as the input for the chemical
reaction R, T as the reaction corpus, G as the graph representations of reactions, and the output
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Y as a list of reaction conditions including the catalyst, solvent, and reagent. Thus, we define the
prediction model F , i.e., Y = F(X,G, T ).

In this paper, we incorporate three types of data for the training of model F :

1. SMILES of a reaction X: each example in the training set is presented by chemical
SMILES, i.e., “CC(C)O.O=C(n1ccnc1)nccnc1 >> CC(C)OC(=O)n1ccnc1”.

2. Graphs of a reaction G: each SMILES representation of the reactants and the product is
encoded using a graph neural network (GNN). All compounds are integrated to generate a
comprehensive reaction representation.

3. An unlabeled reaction corpus: a paragraph describing a chemical reaction, e.g., “To a
solution of CDI (2 g, 12.33 mmol), in DCM (25 mL) was added isopropyl alcohol (0.95
mL, 12.33 mmol) at 0° C.”.

3.2 MODEL STRUCTURE

Here we first introduce the Chemma-RC, a multimodal LLM designed for reaction condition rec-
ommendation (RCR). An overview of Chemma-RC is illustrated in Figure. 1. Chemma-RC responds
to task-specific questions constructed by instruction prompts such as “Please predict the reagent for
this reaction.”, and generates answers about reaction conditions. The Chemma-RC model accepts
three different data modalities as inputs. This includes text from a corpus of reactions and question
prompts, molecular structures in SMILES format, and graphical representations of chemical reac-
tions. We employ both transformer-based reaction encoder and GCN models to learn reaction rep-
resentations from SMILES and graph structure jointly. Subsequently, the modality projection trans-
forms the graph and SMILES embeddings into language tokens compatible with LLM space. These
learnable tokens, defined as graph and reaction tokens, along with tokens of instruction prompts, are
then input into the LLM to predict chemical reaction conditions. Note that, we develop two distinct
types of condition prediction modules, a classification and a generation prediction module to en-
hance its compatibility with different chemical reaction conditions. On the one hand, the reason for
performing classification tasks is to select the most suitable reaction conditions from commercially
available libraries, as it is common practice to prioritize purchasable molecules. On the other hand,
the generation module can assist in designing novel molecules, which can be obtained by synthesis
experiments conducted. Therefore, we define two distinct tasks including classification and gener-
ation modules to address these objectives. Furthermore, existing baseline methods treat RCR as a
classification task for the USPTO-Condition datasets. To ensure a fair comparison, we conduct a
classification module for prediction and evaluation.

3.2.1 CONSTRUCTION OF TEXT-AUGMENTED INSTRUCTION PROMPTS

Instruction prompt datasets refer to format structured or unstructured data as natural language in-
structions so that LLMs can respond properly (Reynolds & McDonell, 2021; Wang et al., 2023b).
Compared to creating language instruction datasets for fine-tuning LLMs, constructing multimodal
instruction datasets requires a thorough understanding of domain-specific tasks. Recent advance-
ments indicate that the other data modalities, such as images, and graphs, can be transformed as the
prefix of prompts thereby facilitating effective reasoning based on inputs (Tsimpoukelli et al., 2021;
Zhu et al., 2024; Liu et al., 2024a).

Toward reaction condition recommendation task in chemical synthesis, we design a tailored instruc-
tion prompt system for better cross-modality alignment and instruction tuning (Figure. 2). Compared
to instruction prompts for natural language instruction tuning (Figure. 2(a)), we introduce augmented
text tokens and multimodal tokens into instruction prompts (Figure. 2(b)). To be specific, given a
reaction, we retrieve a relevant corpus—a paragraph containing contextual information that closely
resembles the reaction—and populate the <Corpus>placeholder with this data. Next, the reaction
is converted into its corresponding SMILES representation, which is then inserted into the <Re-
action SMILES>placeholder. Finally, we introduce two additional placeholders, <Reaction>and
<Graph>, designed to accommodate the reaction and graph-based representations, respectively. In
instruction fine-tuning, all reaction embedding representations are extracted by reaction encoders.
Via the modality alignment module, all embeddings are inserted into token placeholders to align
text-related tokens in language space. We also give pseudo-code as follows to explain this integra-
tion process, which can be found in the Appendix. C Algorithm 1.
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CC(C)O.O=C(n1ccnc1)nccnc1>>CC(C)OC(=O)n1ccnc1

Category PromptGPT-4

(a) Instruction Q& A

Text

Human: Please predict the  the reagent for this reatcion, reaction SMILES is as follows:  <Reaction SMILES>.

(b) Multimodal instruction Q&A

Text

Human: Given a reaction text description: <Corpus>, reaction embedding <Reaction>, graph embedding: 
<Graph>, and the reaction SMILES: <Reaction SMILES>. Please predict the reagent for this reaction. 

Q&A 

Catalyst/Reagents/Solvents prompts 
Corpus/SMILES/Graph

Catalyst/Reagents/Solvents prompts 

Cl.ClCCl

Cl.ClCCl

CC(C)O.O=C(n1ccnc1)nccnc1>>CC(C)OC(=O)n1ccnc1

Figure 2: Instruction of text-augmented prompts. (a) Traditional instruction prompts for natural lan-
guage instruction tuning; (b) Our proposed text-augmented multimodal instruction Q&A prompts.

3.2.2 ENCODER AND DECODER

Given a reaction R, we adapt a pioneering transformer-based encoder, Parrot (Wang et al., 2023a)
to produce the reaction embeddings XR ∈ RN×C . Here, N and C indicate the length of text tokens
and embedding channels, respectively. During training, the encoder computes a contextual vector
representation of the reactions by performing self-attention on the masked canonicalized SMILES
string of molecules. We denote reaction embeddings as SMILES embedding in the following sec-
tion.

In the meantime, we leverage a GNN (Schlichtkrull et al., 2018) to model the relationship between
atoms in molecules. We denote directed and labeled multi-graphs as G = (V, E ,R) with nodes
(atom entities), vi ∈ V and labeled edges (atom relations) (vi, r, vj) ∈ E , where r ∈ R is a
relation type. GNN can be understood as special cases of a simple differentiable message-passing
framework:

h
(l+1)
i = σ

( ∑
m∈Mi

gm

(
h
(l)
i , h

(l)
j

))
(1)

where h
(l)
i ∈ Rd(l)

is the hidden state of node vi in the l-th layer of the neural network, with d(l)

being the dimensionality of this layer’s representations. Incoming messages of the form gm(·, ·) are
accumulated and passed through an element-wise activation function σ(·), such as the ReLU(·) =
max(0, ·),Mi denotes the set of incoming messages for node vi and is often chosen to be identical to
the set of incoming edges. gm(·, ·) is typically chosen to be a (message-specific) neural network-like
function or simply a linear transformation gm (hi, hj) = Whj with a weight matrix W . Motivated
by this architecture, GCNN (Schlichtkrull et al., 2018) proposed a refined propagation model for the
forward-pass update of an entity or node:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (2)

where N r
i denotes the set of neighbor indices of node i under relation r ∈ R. ci,r is a problem-

specific normalization constant that can either be learned or chosen in advance (such as ci,r = |N r
i |

).

We develop two distinct types of prediction modules, a classification module and a generation mod-
ule for Chemma-RC to enhance its compatibility with different chemical reaction conditions. Pre-
diction modules are used to generate probability distributions over potential tokens, and we define
two types of loss for this:

Prediction :

(1)X,G, T
(classifer)−−−−−−−→ (ci, ĉi) : L =

∑
i∈I CrossEntropyLoss (ci, ĉi)

(2)X,G, T
(generate)−−−−−−−→ (C, Ĉ) : L = −

∑L
l=1

∑V
v=1 y

v
l logPθ(y

v
l | y<l, (x, g, t))

(3)

where classifer refers to classification head, I is the chemical context condition number, ci is
the predicted label of the i-th condition, ĉi is the ground truth label of the i-th condition; generate
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refers to generation head, C and Ĉ are the combination of predicted and the ground truth conditions,
respectively. L is the sequence length, V is the vocabulary size. yl is the one-hot encoded target
token at position l, yvl is the v-th element of the one-hot encoded target token at position l; y<l

represents all previous tokens before position l; (x, g, t) is the input context tokens representing
SMILES, graphs, and corpus.

3.2.3 MODALITY PROJECTION

For the reaction condition recommendation task, the representation of the reaction is extracted by en-
coders (see in section 3.2.2), and LLMs tokenize the text representation. However, fusing two types
of representation introduces inductive biases issues (Baltrušaitis et al., 2018; Jaegle et al., 2021). To
effectively fuse representations from multiple modalities, we propose the Perceiver (Jaegle et al.,
2021) module for modality projection, seen ‘modality projection’ in Figure 1. This module em-
ploys latent tokens to align graphs and SMILES embeddings with text-related tokens extracted from
question prompts and a text-augmented corpus. During training, we employ two transformer-based
Perceivers as projectors. Although these modules share an identical model architecture, they are
distinguished by their unique weights. Consequently, learnable tokens contain highlighted reaction
cues that are most related to the text tokens. We show the pseudo-code for modality projection in
Appendix. C.

4 EXPERIMENTS AND RESULTS

4.1 DATA

We curate two large datasets, named USPTO-Condition and USPTO 500MT Condition for evalu-
ation. Data volumes are presented in Table. 1. The visualization of data distribution is depicted
in Figure. 4. As depicted in Table. 8, for the USPTO-Condition dataset, five conditions categories
are separated by commas in order. For the USPTO 500MT Condition dataset, all conditions are
combined by dot as strings. The detailed data description can be seen in Appendix. B.

Table 1: Data description of USPTO-Condition and USPTO 500MT Condition.

Dataset Sample of conditions Prediction type Training set

USPTO-Condition [Zn],C1CCOC1,O,CO,[Cl-].[NH4+] classification 546,728
USPTO 500MT Condition CO.[Na+].CC(=O)O.[BH3-]C#N generation 88,410

4.2 EXPERIMENT SETUP

In our work, the reaction encoder is implemented based on Wang et al. (Wang et al., 2023a). A pre-
trained graph model proposed by (Schlichtkrull et al., 2018) encodes the molecules in the reaction.
We utilize LLaMA-2 (Touvron et al., 2023) as a text decoder. Each reaction has the corresponding
corpus, a paragraph describing a chemical reaction with an average length of 190 tokens. During
the training process, we fix the weight parameters of GCN, reaction encoder, and LLaMA-2. The
modality projection and condition prediction layer is trainable.The trainable parameters constitute
approximately 0.3 billion out of the total 7 billion parameters. The training process is conducted
with a batch size of 16 for fewer than 6 epochs over 48 hours, utilizing a GPU configuration of 2×48
GB NVIDIA A6000 GPUs. The inference process is highly efficient and can be performed using a
single 80 GB NVIDIA A800 GPU. The detailed training setting can be seen in Appendix. A.

4.3 PERFORMANCE COMPARISON

We assess the performance of our proposed Chemma-RC for reaction condition recommenda-
tion. The top-N accuracy of condition recommendation on the combined test datasets of USPTO-
Condition and USPTO 500MT Condition are presented in Table. 2 and Table. 3, respectively. Com-
pared methods include rxnfp LSTM (Gao et al., 2018), Reaction GCNN (Maser et al., 2021), Tex-
tReact (Qian et al., 2023), and Reagent Transformer (Andronov et al., 2023). The details of the
baselines are present in Appendix. D.
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Table 2: Results of reaction condition recommendation on USPTO-Condition dataset. The best
performance is in bold.

Model
Top-k Accuracy (%)

Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

rxnfp LSTM 91.6 94.1 95.2 48.3 64.4 70.2 81.4 83.4 84.6 48.2 64.4 70.8 76.5 84.1 86.4
Parrot 89.9 96.4 97.7 35.2 60.9 72.2 81.2 93.7 96.7 40.4 62.3 71.7 80.6 90.6 93.6
TextReacts 92.1 98.0 99.1 51.4 68.5 79.3 81.6 93.4 96.9 51.1 69.6 79.1 77.9 91.1 94.9
Chemma-RCs 92.8 98.6 99.3 54.7 76.5 84.9 81.9 94.8 97.6 53.4 75.9 83.9 78.6 93.2 96.2

For the USPTO-Condition dataset, we calculate top-k accuracy with a strict matching pol-
icy. As depicted in Table. 2, TextReacts refers that we utilize similar text (Qian et al.,
2023) paired with the corresponding reaction for training. To avoid label leak issues, we
do not use gold text mentioned in his work for training or testing. Chemma-RCs refers
that we use a similar corpus paired with each reaction as input to construct Q&A instruc-
tion datasets for training. Thanks to the work of Qian et al., we can retrieve the most
similar corpus for each reaction from the literature or patents using their pre-trained model.

Table 3: Results of reaction condition rec-
ommendation on USPTO 500MT Condition
dataset. The best performance is in bold.

Model Top-k Accuracy (%)
1 3 5 10

Reagent Transformer 17.5 27.5 31.6 35.6
Reaction GCNN 16.1 27.5 33.0 40.2
Parrot 13.8 25.3 31.4 37.9
nach0 13.1 - - -
Chemma-RC 25.9 47.2 67.8 79.2

From the results, we observe that due to the
low data sparsity of catalysts in the USPTO-
Condition dataset (Figure. 9), all compared meth-
ods perform well, with the top-1 accuracy of
the catalyst almost exceeding 90%. For solvent
prediction, Chemma-RC outperforms the other
methods, with top-1 accuracy of 54.7% (solvent
1) and 81.9% (solvent 2), respectively. The
overall top-1 accuracy of Chemma-RC is 34.1%
higher than that of the Parrot model. It can be
concluded that our proposed Chemma-RC ex-
hibits strong capabilities of reaction representa-

tion, akin to the learning process of chemists (Achiam et al., 2023).

Unlike the USPTO-Condition dataset which includes three types of chemical condition data–
catalysts, solvents, and reagents–the USPTO 500MT Condition dataset categorizes all conditions
as ‘reagents’. The performance of comparative methods on the USPTO 500MT Condition dataset
is shown in Table. 3. We have broadened several sets of baseline models to illustrate the feasibility
of Chemma-RC, including nach0 (Livne et al., 2024), transformer-based models (Andronov et al.,
2023), and other methods. The visualization of performance is shown in Appendix Figure. 6. We
examine top-1, top-3, top-5, and top-10 predictive results.Notably, for USPTO 500MT Condition
datasets (Table. 3), we can see that Chemma-RC demonstrates the most favorable performance,
where achieves 25.9% top-1 accuracy when compared with other baseline methods such as Reagent
Transformer (17.5%), Reaction GCNN (16.1%), nach0 (13.1%). All SMILES conditions in the
USPTO 500MT Condition dataset are concatenated with dots, resulting in challenges due to the
lengthy token sequences. However, Chemma-RC, pre-trained on a vast natural language corpus,
effectively manages and accurately generates these long tokens.

4.4 ABLATION STUDY

4.4.1 MODEL STRUCTURE

In Chemma-RC, SMILES strings provide a textual representation of molecular structures, concisely
encoding vital connectivity and stereochemistry details. Structural graphs of molecules offer a topo-
logical view of molecules in two-dimensional space, where atoms are nodes and bonds are edges.
The textual corpus introduces a natural language context into the model to enhance the chemical
interpretation capability of LLMs.

First, to examine the effect of different modalities on the performance of Chemma-RC, we evaluate
the performance under the different combinations of mono-domain data including SMILES, graph,
and corpus on the USPTO-Condition dataset. As indicated in Table. 4, from the results, we can
see that different mono-domain data have different contributions for the entire performance. For the
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Table 4: Performance evaluation of Chemma-RC under different combinations of mono-domain
data on the USPTO-Condition Dataset.

SMILES Graph Corpus
Top-k Accuracy (%)

Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

✓ ✗ ✗ 90.3 97.5 98.7 37.1 64.5 75.7 80.8 92.9 96.8 37.1 63.5 74.7 73.7 89.9 94.1
✗ ✓ ✗ 87.1 93.3 95.5 15.3 40.5 58.2 80.7 91.9 95.5 34.6 56.8 67.5 75.4 86.6 90.6
✗ ✗ ✓ 87.1 87.4 87.8 14.1 26.1 44.9 80.7 88.1 92 26.0 32.1 37.3 75.1 76.6 77.9
✓ ✗ ✓ 92.6 98.5 99.3 54.0 76.0 84.4 81.8 94.7 97.6 52.8 75.4 83.3 78.6 93.1 96.1
✓ ✓ ✗ 91.3 98.1 99.1 42.1 68.8 79.4 80.1 93.5 97.1 45.2 70.4 79.9 76.7 91.4 95.1
✓ ✓ ✓ 92.7 98.6 99.2 54.6 76.4 84.8 81.8 94.8 97.6 53.4 75.8 83.9 78.7 93.2 96.2

prediction of solvent 1, which is the most challenging task, the model enhanced with SMILES rep-
resentation (first row) outperforms the models trained solely on graph-based features (second row)
and corpus data (third row), achieving 21.8% and 23.0% higher top-1 accuracy, respectively. Sub-
sequently, we investigate how chemical mono-domain data combination affects model performance
compared to individual types of data (fourth row to sixth row). By incorporating a corpus into
the model already trained with SMILES representations, we achieve a 16.9% improvement in
solvent 1 top-1 prediction accuracy. Similarly, integrating graph features into the SMILES-
based model results in a 5.0% improvement in solvent 1 top-1 accuracy. The effectiveness of
incorporating additional corpus data and SMILES representations can be attributed to the LLM’s
pre-training on extensive SMILES sequences and reaction data, which equips it with a more com-
prehensive understanding of chemical reactions and enhances its performance on RCR tasks. In a
word, experimental results substantiate that integrating different modalities of chemical data includ-
ing SMILES, graphs, and natural corpus, presents an effective representation of reactions, which is
effective for RCR scenarios.

4.4.2 DATA SPLIT STRATEGY

We include the other baseline methods for comparison on the USPTO-Condition dataset. We also
evaluate Chemma-RC’s performance under different dataset splitting strategies, including random
split (RS) and time-based split (TS), to further demonstrate its robustness across diverse conditions.
A detailed introduction of each method and experiment settings are illustrated in the Appendix. D.
TextReact (gr) refers to the TextReact model without retrieving gold texts for testing. From the
results, we can see that the performance of other baseline models such as rxnfp LSTM (Gao et al.,
2018), rxnfp retrieval, Transformer, and ChemBERTa (Chithrananda et al., 2020) shows moderate
success. However, these models consistently deliver lower accuracy rates compared to TextReact
(gr) and Chemma-RC. Chemma-RC significantly outperforms all baseline methods across both RS
and TS settings. Notably, it achieves a Top-1 (RS) accuracy of 72.3%, which is substantially higher
than the second-best approach, TextReact (gr), at 47.2%.

Table 5: Evaluation results for reaction condition recommendation (RCR). RS: random split; TS:
time split. Scores are accuracy in %.

RCR (RS) RCR (TS)

Top-1 Top-3 Top-10 Top-15 Top-1 Top-3 Top-10 Top-15

rxnfp LSTM 20.5 30.7 41.7 45.3 15.2 26.2 40.7 45.4
rxnfp retrieval 27.2 37.5 47.9 51.1 7.8 15.2 27.3 31.5
Transformer 30.0 43.8 56.7 60.5 18.7 31.8 47.6 52.7
ChemBERTa 30.3 44.7 58.0 62.0 18.7 31.9 47.6 52.8
TextReact(gr) 47.2 59.9 65.0 71.4 36.3 50.4 56.2 63.8
Chemma-RC 72.3 87.8 92.4 96.5 69.6 86.7 91.7 96.2

4.4.3 MODALITY PROJECTION

By leveraging the strengths of multiple modalities, multimodal LLMs can achieve higher accuracy in
a wide range of applications. However, aligning representations among different modalities remains
a challenging task. In our proposed Chemma-RC, we employ the Perceiver module (Jaegle et al.,
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2021) to integrate molecular SMILES tokens and graphs tokens into text-related language space,
where text tokens are augmented by the reaction corpus, as illustrated in Figure 1. This modality
projection module maps the embeddings of reactions to a latent vector and enhances this repre-
sentation using a Transformer tower. Consequently, learnable queries contain highlighted reaction
contents that are most related to the text tokens. We compared three typical methods for modality
projection, including Perceiver (Jaegle et al., 2021), Reprogramming (Jin et al., 2024), and MLP.

Table 6: Performance evaluation of Chemma-RC under different modality projections, the best per-
formance are in bold.

Projection
Layer

Top-k Accuracy (%)
Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5

MLP 90.9 97.8 98.9 51.1 73.3 82.2 81.1 93.9 97.1 47.4 71.0 79.9 77.0 91.7 95.2
Reprogramming 92.1 98.3 99.1 52.8 75.1 83.7 81.3 94.3 97.4 50.2 73.5 81.9 77.7 92.5 95.7
Perceiver 92.7 98.6 99.2 54.6 76.4 84.8 81.8 94.8 97.6 53.4 75.8 83.9 78.7 93.2 96.2

As depicted in Table. 6, the Perceiver module achieves significant gains in the prediction of all
categories. Compared with Chemma-RC (with Reprogramming), Chemma-RC (with Perceiver) can
be further enhanced and attains peak performance in all predicted categories with 7.1% significant
gain. Specifically, For the solvent 1 prediction, a hard case, the Perceiver module stands out with a
top-1 accuracy of 54.6%, significantly surpassing MLP (51.1%) and Reprogramming (52.8%). Its
ability to consistently achieve high accuracy in both top-1 and top-k evaluations suggests a robust
and versatile approach for reaction condition recommendation.

4.5 TRANSFERABILITY EVALUATION ON HIGH-THROUGHPUT EXPERIMENTATION
REACTION

Discovering effective reaction conditions precisely for high-throughput reaction condition screening
is very important, as it has the potential to release chemists from laborious and costly trial-and-error
workflows. Thus, we illustrate the transferability of our models through zero-shot evaluation on
distinct high-throughput experimentation (HTE) datasets. We expect that Chemma-RC recommends
conditions that yield high-product outputs. We select the Imidazole C–H arylation dataset extracted
from the work proposed by Shields et al. in 2021 (Shields et al., 2021) for evaluation, where the
substrate scope contains 8 imidazoles and 8 aryl bromides associated with conditions including
ligands, bases, and solvents.
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Figure 3: Boxplot of the performance for ligand recommendation on C-H arylation reaction.

Catalysts are vital compounds in chemical reactions, as they play a crucial role in determining both
reactivity and yield. The catalyst used in imidazole C–H arylation comprises a metal (Pd) and lig-
ands. Thus, we evaluate the performance of ligand recommendations. First, we ensure that reaction
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data of imidazole C–H functionalization is excluded from the test set of the USPTO-Condition
dataset to prevent data leakage issues. Chemma-RC recommends a ligand under a pre-defined
solvent-base combination of conditions. As shown in Figure. 3, we randomly select six cases for
performance evaluation. The referenced bases, solvents, and ligands can be found in the reaction
formula, which has been annotated by ‘B’,‘S’, ‘L’. For example, in Figure. 3, under the combination
of CsOAc and DMAc, Chemma-RC identifies the XPhos ligand, which results in a higher yield.

For recommended results (Figure. 10, Figure. 11) we can observe that, for 15 of the 16 base-solvent
combinations, the recommended ligand performs best in terms of the median value of reaction yields,
suggesting that Chemma-RC can recommend ligands with higher yields.

Moreover, we can conclude that the capability of Chemma-RC to recommend suitable conditions
for chemical reactions has the potential to accelerate high-throughput reaction condition screening
in the future.

5 CONCLUSION AND LIMITATIONS

Conclusions In this paper, we present a multimodal LLM, a.k.a. Chemma-RC for chemical reac-
tion condition recommendation. Trained with 1.2 million pair-wised Q&A instruction datasets that
integrate with multimodal reaction representations and corpus in natural language, Chemma-RC
effectively answers questions regarding reaction conditions through either a classification head or
sequence generation.

Limitations Further, we will focus on how the token length of each modality improves its perfor-
mance across various chemical reaction tasks in future work.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have used datasets which have been pub-
lished in (Wang et al., 2023a; Lu & Zhang, 2022), and the data links are as follows:
USPTO 500MT Condition and USPTO-Condition. Additionally, we commit to releasing the full
implementation of our code, including model architectures, training pipelines, and evaluation scripts,
upon acceptance and publication of this paper. Detailed instructions and necessary dependencies are
provided in the Appendix to facilitate easy reproduction of our results.
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APPENDIX

A TRAINING SETTINGS

To realize peak efficiency within our Chemma-RC model, we carefully design the training phases.
This section offers a comprehensive summary of the training settings and the hyperparameter values.
Through the detailed orchestration of these parameters, we ensure that Chemma-RC is capable of
fully leveraging its capabilities in the application contexts.

• Optional Settings: There are alternatives for modification in the Chemma-RC framework,
such as the replacement of the Perceiver-based modality projection layer with other archi-
tectures like Reprogramming and MLP.

• Reaction Condition Recommendation task: Within the framework, the model takes the
32-layer LLaMA-2-7b as the LLM backbone. Besides, we utilize a pre-trained SMILES-
to-text retriever proposed by Qian et al. (Qian et al., 2023) and extract the most similar
unpaired corpus as the reaction text. Meanwhile, we introduce Parrot, a Bert-like model
to encode the reaction SMILES. We leverage R-GCN (Schlichtkrull et al., 2018) to encode
the molecules in the reaction, and the combination of reactant and product embeddings
is considered as the reaction representation. In the training process, the encoders in all
modalities are frozen. After the alignment of the representation space, the SMILES and
the graph-based tokens have a length of 128 and 3, respectively. Additionally, the model
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employs the OneCycleLR as the learning rate schedular, initializing the learning rate as
3e-5. The batch size is set to 16, with less than 6 epochs 48 hours in training. The GPU
configuration is 8 × 80G A800.

B DATA DESCRIPTION

We curate two large datasets, named USPTO-Condition and USPTO 500MT Condition, with the
data volumes presented in Table. 8. Both datasets are split with the ratio of train:validation:test as
8:1:1 in our work. For USPTO-Condition dataset, all molecules including reactants, products, and
conditions are collected in canonical SMILES. Each reaction entry contains five condition labels,
including one catalyst, two solvents, two reagents, and an additional “none” category is introduced
to illustrate that the reaction does not require this type of reaction condition (Gao et al., 2018).
The visualization of data distribution is depicted in Figure. 4 (left). From Figure. 4 we can see
that this dataset covers a vast variety of reaction types, characterized by a substantial proportion
of heteroatom alkylation, arylation, and acylation reactions, while C-C formation reactions are less
included. We also introduce the corpus of reaction descriptions proposed by Qian et al. (Qian et al.,
2023) into the USPTO-Condition dataset. Each reaction is associated with a corpus of reaction
descriptions. It should be noted that the corpus will not be utilized directly for training. Instead, we
employ the corpus as an input for the pre-trained retrieval module proposed by (Qian et al., 2023).
This approach allows us to obtain similar embeddings necessary for the multimodal representation
learning of our Chemma-RC, and avoid data leaking issues. For USPTO 500MT Condition datasets,
it collects top-500 types of reactions from the USPTO-MIT datasets (Coley et al., 2017), in which
the top-100 types of reactions make up 59% of the entire dataset, which can be seen in Figure. 4
(right). In order to calculate the predicted accuracy on the USPTO 500MT Condition dataset, it
is necessary to separate all reagents in an appropriate manner. However, separating reagents using
the dot as a delimiter is challenging, as compounds like [Na+].[OH-] constitutes a single reagent
and cannot be split. Besides, to have a comprehensive knowledge of the datasets, we do sparsity
analyses. We calculate the non-empty count and density of every condition in the USPTO-Condition
dataset, which is presented in Table. 9. From the table, we can see that some conditions, such as
‘Catalyst’, ‘Solvent 2’, and ‘Reagent 2’ show a high extent of sparsity, with a non-empty density
of fewer than 30%. For the USPTO 500MT Condition, as it only covers the condition of non-split
reagents, all of the reaction entries have their corresponding non-empty condition label.

Furthermore, we make an investigation on the condition categories in the USPTO-Condition and
USPTO 500MT Condition dataset, which is illustrated in Figure. 5. The visualization of the most
common chemical contexts of the regents, catalysts, and solvents in USPTO-Condition, and sepa-
rate reagents in USPTO 500MT Condition is depicted in Figure. 5 (A-D), respectively. From the
figures, we learn that reaction conditions have a property of diversity and imbalance. Besides, we
count categories of every condition, as is presented in Figure. 5 (E). Reagents in both datasets consist
of more than 200 categories, which highlights the difficulty of the reaction condition recommenda-
tion task. Additionally, we prove that reagents in the USPTO 500MT Condition dataset follow the
power-law distribution, which indicates the condition keeps the long-tail feature in distribution and
a small number of categories account for the majority of the data size.

Table 7: Question templates generated by GPT-4.

Task Description

Solvent prediction
Could you suggest potential solvents that could have been used

in the given chemical reaction, taking into consideration their polarity
and compatibility with the reactants?

Reagent prediction Please suggest some possible reagents that could have been used
in the following chemical reaction.

Catalyst prediction Considering the chemical reaction in question,
which catalysts could be effective?

Condition prediction (all) Given the current chemical reaction, what would be the appropriate
conditions to consider?
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Table 8: Data volume of USPTO-Condition and USPTO 500MT Condition datasets.

Dataset Training set Validation set Testing set

USPTO-Condition 546,728 68,341 68,341
USPTO 500MT Condition 88,410 9,778 10,828

USPTO-Condition

Heteroatom
alkvlation

and arylation
(20.61%) 

Acylation 
and related 

processes
(14.44%)

C-C bond
formation
 (5.19%)

Heterocycle
formation
(3.13%) 

Others

Top300-400
(8%)

Top200-300
(11%)

Top100
(59%)

Top100-200
(17%)

USPTO 500MT

Top400-500
(6%)

Figure 4: Left: The reaction distribution of USPTO-Condition. Right: The reaction distribution of
USPTO 500MT Condition.

C DETAILS OF MODALITY ALIGNMENT

For the reaction condition recommendation task, the representation of the reaction is extracted by
encoders (see in section 3.2.2), and the text representation is tokenized by LLMs. However, fus-
ing two types of representation introduces inductive biases issues (Baltrušaitis et al., 2018; Jaegle
et al., 2021). To effectively fuse representations from multiple modalities, we propose the use of
a projection module, the Perceiver (Jaegle et al., 2021), for modality alignment (Figure 1). This
module employs latent queries to align graph and SMILES tokens with text-related tokens, such as
question prompts and a text-augmented corpus. We show the pseudo-code for modality projection
in Algorithm. 1.

D MODEL PERFORMANCE

A chemical reaction can be represented as the transformation of a sequence of characters (reactants,
conditions) into another sequence (products), with compounds connected by special characters, such
as ‘>>’. This structure makes sequence-to-sequence models, such as the Transformer, well-suited
for predictive modeling of reaction representation (Schwaller et al., 2019; Irwin et al., 2022). How-
ever, existing SMILES-based Transformer models for reaction representation encounter limitations
in various aspects, particularly with respect to atom permutations and the interpretability of reaction
mechanisms. Consequently, our proposed Chemma-RC fuses data from diverse sources including
corpus, SMILES and graphs of molecules to present a comprehensive view of the reaction. We
assess the performance of our proposed Chemma-RC and the aforementioned baseline methods for
reaction condition recommendation. The top-N accuracy of condition recommendation on the com-
bined test datasets of USPTO-Condition and USPTO 500MT Condition are presented in Table. 2

Table 9: Sparsity analysis of the USPTO-Condition dataset.

USPTO-Condition Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

Non-empty count 89,756 673,634 130,326 504,169 170,752
Non-empty density 13% 99% 19% 74% 25%

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

N
um

be
r o

f r
ea

ge
nt

s

Fr
ac

tio
n 

of
 re

ag
en

tsNumber of reagents
Fraction of reagents

Number of solvents
Fraction of solvents

N
um

be
r o

f c
at

eg
or

ie
s

Reagents (USPTO-Condition)

A B

C D

Cl

CC
N

(C
C)

CC O

...
O

=C
([O

-])
[O

-]

CC
N

(C
(C

)C
)C

(C
)C

[H
-].

[N
a+

]

[N
a+

].[
O

H
-]

O
=C

(O
)C

(F
)(F

)F

CC
(=

O
)O

[H
][H

]

[N
a+

].O
=C

([O
-])

O

CN
(C

)C
=O

...
O

=C
([O

-])
[O

-]

...
O

=C
([O

-])
[O

-]

CC
O

C(
C)

=O

C1
CC

O
C1

Cl
CC

l

CN
(C

)C
=O CO CC

O

CC
O

C(
C)

=O O

C1
CO

CC
O

1

CC
#N

Cc
1c

cc
cc

1

CC
(=

O
)O

CC
O

CC

c1
cc

nc
c1

CC
(C

)=
O

CS
(C

)=
O

[P
d]

...
c2

)c
2c

cc
cc

2)
cc

1

CN
(C

)c
1c

cn
cc

1

[N
i]

[F
e]

...
cc

c1
)c

1c
cc

cc
1

CN
(C

)C
=O [Z

n]

[C
u]

I

O
=[

Pt
]=

O

O
=[

M
n]

=O [P
t]

O
=[

Pt
]

CC
(=

O
)O

Cl
[T

i](
Cl

)(C
l)C

l

104

2 ×10
4

3 ×10
4

4 ×10
4

5 ×10
4

0.00

0.10

0.20

0.30

104

103

0.00

0.10

0.20

0.40

0.30

104

105

0.00

0.10

0.20

0

50

100

200

250

 (A) Reagents

 (B) Catalysts

(C) Solvents

E

104

103

0.00

0.10

0.20

C1
CC

O
C1 CO

CN
(C

)C
=O CC

O

CC
N

(C
C)

CC

Cl
CC

l

...
(C

)C
)C

(C
)C

CC
O

C(
C)

=O

C1
CO

CC
O

1

CC
#N Cl

CC
(=

O
)O

Br
B(

Br
)B

r

...
N

CC
CN

(C
)C

CC
(C

)=
O

100

10-1

10-2

10-3

10-4PD
F 

of
 re

ag
en

ts

100 101 102 103 104

Reagents (USPTO_500MT_Condition)

Frequency of reagents
(USPTO_500MT_Condition)

Powerlaw �tting line
F

150

(D) Reagents

N
um

be
r o

f c
at

al
ys

ts

Fr
ac

tio
n 

of
 c

at
al

ys
tsNumber of catalysts

Fraction of catalysts

Catalysts (USPTO-Condition)

Solvents (USPTO-Condition)

N
um

be
r o

f s
ol

ve
nt

s

Fr
ac

tio
n 

of
 s

ol
ve

nt
s Number of reagents

Fraction of reagents

N
um

be
r o

f r
ea

ge
nt

s

Fr
ac

tio
n 

of
 re

ag
en

ts

Conditions

Figure 5: Distribution of types of reactions in the USPTO-Condition and
USPTO 500MT Condition. (A-D) The bar charts of the fifteen most common reagents,
catalysts, and solvents in the USPTO-Condition and reagents in the USPTO 500MT Condition,
respectively, where the shallow color presents the decimal-scale proportion and the deep color
presents the log-scale count. (E) The bar charts of the total category count of the conditions illus-
trated in (A-D). (F) Power law fitting of the reagent distribution in the USPTO 500MT Condition,
where the shallow points show the probability density and the deep dashed-line shows the ideal
power-law fitting, respectively.
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Algorithm 1 Pseudo code for modality projection.
word proj, perceiver proj: predefined linear and transformer-based projectors, respec-
tively.

# B: batch size; C: channel size; n: content shape
# M: query length; N: shape of flatten reaction tokens;
# text_q: text query in shape (B, M, C)
# react_embed: reaction embedding in shape (B, N, C)
# word_embed: word embedding in shape (B, vocab_size, C)

# Key part 1: map transformer-based reaction feature
word_embed = self.word_proj(word_embed)
word_embed = word_embed.repeat(react_embed.size()[0], 1, 1)
react_embed = torch.cat([react_embed, word_embed], dim=1)
smiles_react_tokens = linear_layer(react_embed) # to make 128

tokens

# Key part 2: map graph-based reaction features
graph_embed = self.word_proj(graph_embed)
graph_react_tokens = linear_layer(graph_embed) # to make 3 tokens

# Key part 3:
reaction_tokens = torch.cat([smiles_react_tokens,

graph_react_tokens], dim=1)

# Key part 4: modality projection
reaction_tokens_from_smiles = self.perceiver_proj_smiles(

smiles_react_tokens)
reaction_tokens_from_graphs = self.perceiver_proj_graphs(

graph_react_tokens)

# concat token
final_token = torch.cat([reaction_tokens_from_smiles,

reaction_tokens_from_graphs, text_q], dim=1)

and Table. 3, respectively. We introduce several comparative methods to illustrate the performance
of Chemma-RC.

1. rxnfp LSTM (Gao et al., 2018). This method proposes a reaction fingerprint to represent
the difference between the product and reactant fingerprints.

2. rxnfp retrieval. It uses the conditions of the most similar reactions in the training set as the
prediction. Similar reactions are determined based on the L2 distance of reaction finger-
prints.

3. Transformer. It uses the same architecture as the TextReact predictor. This baseline repre-
sents the state-of-the-art model that only takes chemistry input.

4. ChemBERTa Chithrananda et al. (2020). It is same as the Transformer baseline except that
the encoder is pre-trained on external SMILES data.

5. Reaction GCNN (Maser et al., 2021). This method proposes a machine-learned ranking
model to predict the set of conditions used in a reaction as a binary vector.

6. Parrot (Wang et al., 2023a). This method leverages the attention-based model architec-
ture to encode the reaction and design a training methodology specifically to enhance the
reaction center.

7. TextReact (Qian et al., 2023). It aims to enhance the molecular representation of the re-
action by introducing relevant corpus retrieved from literature into sequence-to-sequence
Transformers.

8. Reagent Transformer (Andronov et al., 2023). This method leverages Molecular Trans-
former, (Schwaller et al., 2019) a state-of-the-art model to tackle the task of reagent pre-
diction.
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Parrot Reagent Transformer

Reaction GCNN Chemma-RC
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Catalyst
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Figure 6: Left: Radar plot of top-3 predition accuracy of conditions on the USPTO-Condition
dataset. The classification performance consists of comparative methods such as Parrot, RCR, Tex-
tReact, and our methods with similar corpus. Right: Radar chart of log-scale accuracy of reagents
in the USPTO 500MT Condition dataset.

To have a comprehensive overview of the recommendation performance, we visualize the prediction
results of USPTO-Condition and USPTO 500MT Condition datasets, as described in Table. 2, 3.
Specifically, we draw radar charts of our model and other competitive models, which are presented
in Figure. 6. For the USPTO-Condition dataset, we reproduce Parrot, RCR, and TextReact. Then,
we plot the top-3 predicting accuracy of different conditions (catalyst, solvent 1, solvent 2, reagent
1, and reagent 2), as depicted in Figure. 6 (left). For the USPTO 500MT Condition dataset, we
recommend reagents in SMILES sequence and take Parrot, Reagent Transformer, and Reaction
GCNN as comparative methods. For more intuition, we visualize top-1, 3, 5, and 10 exactly matched
accuracy in log scale, which is shown in Figure. 6 (right). From the charts, we can see that our
model covers the largest area of the performance circle in both datasets, indicating that Chemma-
RC markedly outperforms other competitive models.

D.1 GERALIZATION PERFORMANCE

In order to validate the out-of-domain performance of Chemma-RC, we employ Chemma-RC
trained on the USPTO 500MT Condition to test on the USPTO-Condition. The evaluation strat-
egy includes three specific training conditions: reagents, catalysts, and solvents. We adopt a metric
of partial matched accuracy to illustrate the generalization capability of Chemma-RC. Different
from the complete matched accuracy that requires perfect matching between predictions and labels,
the partial matched accuracy is more suitable to test the generalization capacity, which focuses more
on whether the predicted results match a substitutable part of the ground truth. For example, if the
predicted result is ‘[Na+].[OH-]’ and the condition label is ‘CO.[Na+].[OH-]’, we consider that the
prediction partially matches the ground truth, but not completely. The evaluation strategy includes
three specific training conditions: reagents, catalysts, and solvents. Table. 10 reports the top-1 par-
tial match accuracy for each condition prediction. From the results we can see that, Chemma-RC
achieves a top-1 partial matched accuracy of 67.1% and 58.1%, respectively. This relatively high
accuracy indicates that solvents and reagents have more consistent characteristics that the model can
learn effectively from USPTO 500MT Condition and apply to USPTO-Condition. In contrast, The
model’s performance in predicting catalysts demonstrates a lower top-1 partial match accuracy at
89.9%.

Chemma-RC can successfully distinguish reagents from the combination of all conditions in a reac-
tion. Additionally, training Chemma-RC on USPTO-Condition, a larger chemical reaction dataset,
further enhances its ability to akin chemical knowledge.
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Table 10: The top-1 partial matched accuracy of Chemma-RC under OOD setting.

Evaluation strategy (train → test) Acc (%)

USPTO 500MT Condition → USPTO-Condition (reagent) 67.1
USPTO 500MT Condition → USPTO-Condition (catalyst) 89.9
USPTO 500MT Condition → USPTO-Condition (solvent) 58.1
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Figure 7: Bar charts demonstrating the ablation study of modalities including similar corpus,
SMILES and graph. The classification performance is assessed on the conditions in the USPTO-
Condition dataset, which are split into two groups according to data sparsity.

D.2 ABLATION STUDY ON MODALITY

Besides, we visualize the results of the ablation study on modality on the USPTO-Condition dataset,
which can be seen in Table. 4. Specifically, we categorize the conditions of the USPTO-Condition
into two types: more complex and less complex. According to the data sparsity, reagent 1 and solvent
1 are considered more complex, while catalyst, reagent 2, and solvent 2 are considered less complex.
Then, the investigation on the effectiveness of modalities comprising similar corpus, SMILES, graph
is depicted in Figure. 7. From the results, we can see that compared with the model with multiple
modalities, the model with single one modality degrades dramatically. Moreover, Chemma-RC with
three modalities combined achieves the best performance, which demonstrates the vital importance
of capturing the reaction representations from different dimensions.

D.3 CASE STUDY

In this section, we select four cross-coupling reactions from USPO-Condition datasets for perfor-
mance validation. We visualize the predicted results in Figure. 9. As depicted in Figure 9, the
reaction centers and leaving groups are highlighted in different colors. For C–N cross-coupling re-
actions (the first and the third row), Chemma-RC can predict all conditions precisely. For C–C bond
formation and Formylation reactions (the second and the fourth row), Chemma-RC fails to predict
Ethyl Acetate (the second case) and THF (the fourth case). The reason why Chemma-RC is less
effective for these reactions is that the data volume of C–C bond formation reactions in the USPTO-
Condition dataset is only 5%, as shown in Figure 4. This limited representation constrains the
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model’s ability to learn the patterns associated with C–C bond formation reactions. Consequently,
Chemma-RC lacks sufficient training examples to capture and generalize the underlying reaction
mechanisms accurately. The scarcity of diverse and representative data hampers its effectiveness,
leading to a lower precision in predicting these types of reactions.
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Figure 8: Visualization of recommended conditions on four reactions. We select four
Suzuki–Miyaura cross-coupling reactions to present the performance of condition recommendation.
The reaction centers and leaving groups are highlighted in different colors.

Further, we visualize the predicted results on OOD datasets in Figure. 9. We select two reaction
cases for analysis. In case 1, Toluene is not predicted by Chemma-RC. In case 2, 1,4-Dioxane
and 1-(diphenylphosphaneyl)cyclopenta-2,4-dien-1-ide are predicted. However, it is confirmed that
Toluene and 1,4-Dioxane are common solvents, and 1-(diphenylphosphaneyl)cyclopenta-2,4-dien-
1-ide is frequently used as a ligand. Therefore, we do not categorize these as failed cases because
the model successfully predicts all the reagents in the labels and avoids predicting other conditions.
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Figure 9: Visualization of recommended conditions on two reactions. In case 1, Toluene was not pre-
dicted by Chemma-RC. In case 2, 1,4-Dioxane and 1-(diphenylphosphaneyl)cyclopenta-2,4-dien-1-
ide were predicted. However, it is confirmed that Toluene and 1,4-Dioxane are common solvents,
and 1-(diphenylphosphaneyl)cyclopenta-2,4-dien-1-ide is frequently used as a ligand. Therefore,
we do not categorize these as failed cases because the model successfully predicts all the reagents
in the labels and avoids predicting other conditions.
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Figure 10: Boxplot of the performance for ligand recommendation (1).
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Figure 11: Boxplot of the performance for ligand recommendation (2).
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