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ABSTRACT

Large language models (LLMs) excel at explicit reasoning, but their implicit
computational strategies remain underexplored. Decades of psychophysics re-
search show that humans intuitively process and integrate noisy signals using near-
optimal Bayesian strategies in perceptual tasks. We ask whether LLMs exhibit
similar behaviour and perform optimal multimodal integration without explicit
training or instruction. Adopting the psychophysics paradigm, we infer compu-
tational principles of LLMs from systematic behavioural studies. We introduce a
behavioural benchmark - BayesBench: four magnitude estimation tasks (length,
location, distance, and duration) over text and image, inspired by classic psy-
chophysics, and evaluate a diverse set of nine LLMs alongside human judgdments
for calibration. Through controlled ablations of noise, context, and instruction
prompts, we measure performance, behaviour and efficiency in multimodal cue-
combination. Beyond accuracy and efficiency metrics, we introduce a Bayesian
Consistency Score that detects Bayes-consistent behavioural shifts even when ac-
curacy saturates. Our results show that high task accuracy - notably for GPT-5
Mini - does not always imply efficient cue combination; yet accurate models,
including GPT-5 Mini, Llama-4 Maverick, and Claude 3.7 Sonnet, often adapt in
Bayes-consistent ways. These findings reveal emergent principled handling of un-
certainty and highlight the correlation between accuracy and Bayesian tendencies.
We release our psychophysics benchmark and consistency metric as evaluation
tools and to inform future multimodal architecture designs.

1 INTRODUCTION

The estimation of magnitudes, including quantities like length, duration, or distance, represents
one of the most fundamental computations in biological and artificial intelligence. Humans perform
these judgdments through the Bayesian integration of noisy sensory signals, automatically weighting
cues by their reliability (Ernst & Banks, 2002) and incorporating prior expectations to minimise es-
timation error (Remington et al., 2018; Knill & Pouget, 2004). This computational strategy emerges
without explicit instruction across diverse cultures and developmental stages, suggesting it reflects
a fundamental solution to information processing under uncertainty.

This universality raises the critical question of whether modern LLMs, trained solely on next-token
prediction without explicit perceptual objectives (Radford et al., 2018), spontaneously develop anal-
ogous computational strategies. Understanding how LLMs process and integrate uncertain informa-
tion has immediate implications for building robust multimodal systems that appropriately handle
varying input quality (Kendall & Gal, 2017; Ma et al., 2022). Moreover, if large computational mod-
els naturally converge on Bayesian principles for handling uncertainty, it would suggest that these
principles emerge from information-theoretic constraints rather than biological evolution—implying
a deeper computational universality (Barlow et al., 1961; Wei & Stocker, 2015).

To investigate this, we apply classical psychophysics methodology (Petzschner et al., 2015) to probe
these implicit computational strategies in LLMs, treating them as black-box observers and inferring
their mechanisms from systematic behavioural analysis. By controlling stimulus uncertainty and
measuring characteristic signatures of Bayesian processing, we can determine whether LLMs exhibit
human-like optimal perception without explicit training. As a result, we present three contributions:
1) We introduce a systematic psychophysics framework for LLMs, a reproducible pipeline for four
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synthetic magnitude estimation tasks probing length, location, distance, and duration. Our pipeline
allows controlled ablations of noise, context, and instruction prompts to track behavioural changes.
2) We develop a new benchmark: BayesBench based on task performance, cue-combination effi-
ciency, and Bayesian consistency computed with a novel Bayesian Consistency Score. 3) We show
evidence of emergent Bayes-consistent behaviour in capable LLMs and its correlation with task
performance.

2 RELATED WORK
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Figure 1: Comparison of LLMs vs hu-
man behaviour A: Response of Llama-
4 Maverick in one of the line length
ratio estimation experiments. The fit-
ted lines are based on a static Bayesian
observer model. B: Response from
typical human psychophysics studies
(adapted from Thurley, 2016). We see
in both that there is a regression to the
mean effect, where responses are bi-
ased towards the centre of the stimulus
range.

Human psychophysics. The quantitative study of per-
ception has revealed systematic relationships between
physical stimuli and perceptual judgements, formalised
in classical laws like Weber-Fechner’s logarithmic scal-
ing and Vierordt’s temporal regression effects (Fechner,
1860; Weber, 1834; Gibbon, 1977; Jazayeri & Shadlen,
2010; Roseboom et al., 2019; Fountas & Zakharov, 2023).
These phenomena, including scalar variability and sequen-
tial biases, emerge from optimal Bayesian inference un-
der uncertainty (Petzschner & Glasauer, 2011). When
observers estimate magnitudes, they automatically com-
bine noisy measurements with prior expectations, produc-
ing characteristic behavioural patterns. Figure 1 illustrates
this regression-to-the-mean effect in both Llama-4 Maver-
ick’s responses and human psychophysics data—evidence
of shared computational principles despite vastly different
substrates, as we will see in later sections.

LLMs and Bayesian behaviour. Certain aspects of
LLMs are shown to be consistent with Bayesian com-
putation. For example, in-context learning can be in-
terpreted as approximate Bayesian inference (Xie et al.,
2021) and, in reasoning, Bayesian teaching is shown to
improve performance (Qiu et al., 2025). Similarly, LLMs
spontaneously segment sequences using Bayesian surprise
in ways that correlate with human event perception (Foun-
tas et al., 2025). However, most studies probe explicit rea-
soning or learned behaviours, where models can leverage
acquired statistical rules, rather than perceptual tasks that
could reveal computational strategies emerging implicitly
from pretraining.

Multimodal studies. Progress have been rapid in devel-
oping multimodal LLMs, alongside this is the deployment
of benchmarks such as MMbench (Liu et al., 2024) and
SEED-bench (Li et al., 2024) that test multimodal reason-
ing. However, most of these benchmarks do not cover con-
trolled manipulations of modality specific noise for study-
ing fusion strategies. Our synthetic datasets allow fine-
grained cue-combination analysis and studies how LLMs combine noisy information from multiple
modalities. This is still a nascent area of research but crucial for better understanding how we may
build more robust and generalisable models that will behave optimally under uncertainty.

3 METHODS

3.1 ESTIMATION TASKS AND ABLATIONS

We develop four psychophysics-inspired magnitude–estimation tasks illustrated in Figure 2:
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• Marker location estimation: given a line with a red marker (or ‘0’ in text input) estimate the
position of a marker on a line as a number between 0 to 1.

• Line ratio estimation: given two lines, estimate the ratio of the shorter line to the longer line.
• Maze distance estimation: given a non-self-intersecting path, estimate the straight line distance

between start and the end of the path.
• Duration estimation: given an extract of a conversation transcript, estimate the duration of the

dialogue. Transcripts are extracted from the AMI Meeting Corpus Kraaij et al. (2005).

The first three tasks are multimodal, with text input and image inputs.

We conduct ablations to probe LLMs and analyse changes in behaviours (see Appendix A.3 for
ablation details):

• Steering: provide additional textual or numerical information in the system prompt. Aimed at
studying how LLMs behaviour changes when asked to consider uncertainty in its responses.

• Noise: add constant or gradually increasing blur to the image modality. Aimed at studying how
LLMs may reweight information in the presence of noise.

• Context: change the length of the available history or reversing trial sequence. Aimed at study-
ing how previous context affects behaviour.

Maze Distance
Take 0.5 units west, then Take 0.25 
units north, then Take 0.5 units 
west, then Take 0.5 units south, 
then Take 0.25 units west, then 
Take 0.25 units south, then Take 
0.25 units west, then Take 0.25 
units north, then Take 0.25 units 
west, then Take 0.25 units north, 
then Take 0.25 units west, then 
Take 0.25 units north, then Take 
0.25 units west, then Take 0.25 
units north, then Take 0.25 units 
west, then Take 0.25 units north, 
then Take 0.25 units west, then 
Take 0.5 units east, then Take 0.5 
units north, then Take 0.25 units 
west, then Take 0.25 units south, 
then Take 0.75 units west, then 
Take 0.25 units north, then Take 
0.25 units west, then Take 0.25 
units south, then Take 0.25 units 
west, then Take 0.25 units north, 
then Take 1.25 units west.

...gonna be as critical But if it's like under to 
have covers the loss or like in a couch you still 
It's can't really see it...

Subtitle Duration

|--=------.---------|

|-----------.----------------------------|

|-.----------.--.---0-----.-------------=|

Marker Location

Line Ratio

Figure 2: Example of the four magnitude estimation tasks. Cues in a blue background represent
information provided as text, while orange represents vision.

3.2 BEHAVIOURAL MODELLING

In human psychophysics studies, participants’ responses are fitted against a range of behavioural
models to infer their internal computational strategies (Petzschner & Glasauer, 2011; Jazayeri &
Shadlen, 2010). This is an effective approach when the subject is essentially a black box, and we
can only observe their input-output behaviour. In line with this framework, we fit LLMs’ responses
against a set of behavioural models covering factors of interest. The degree of fit to different models
indicates the extent to which LLMs exhibit that behaviour.

In the below, xt and yt denote the true input value of the stimulus and the LLM’s estimate at trial t,
respectively. µt and σdecare the LLM’s internal estimate and response noise level, respectively. We
used three main types of behaviour models:

Linear observer. LLM’s estimation of the input stimuli is a linear function of the stimulus value:
µt = wxt + b, yt ∼ N (µt, σ

2
dec). (1)

Static Bayesian observer. LLM’s estimation is a weighted average of the input stimulus xt and a
fixed prior belief µp:

µt =
τx

τx + τp
xt +

τp
τx + τp

µp, yt ∼ N (µt, σ
2
dec), (2)

τx and τp denote the measurement and prior precisions respectively. We show in the upper panel of
Figure 1 an example where this model best fits the LLM’s responses.

3
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Sequential Bayesian observer (Kalman filter). LLM’s estimation is updated trial-by-trial fol-
lowing a standard Kalman filter:

µt|t−1 = µt−1|t−1, Pt|t−1 = Pt−1|t−1 + q, yt ∼ N (µt, σ
2
dec), (3)

Where the update equations are:

Kt =
Pt|t−1

Pt|t−1 + r
, µt|t = µt|t−1 +Kt(xt − µt|t−1), Pt|t = (1−Kt)Pt|t−1. (4)

r is the measurement noise variance, q is the process noise variance and P is the variance about its
estimate. We show in Figure 3 and 4 an example where this model best fits the LLM’s responses.

Long

Medium

Short
Sequential 
Bayesian 
Model

V
al

ue

Stimulus Index

Figure 3: GPT-5 Mini’s mean response (to
verbal cues) compared to prediction based on
a sequential Bayes model (dotted line)
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Range long

Range medium
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Figure 4: GPT-5 Mini’s mean response tra-
jectory (verbal cue). Arrows denote the se-
quence of its responses.

Additional model variants Across all models, we include variants with an additional stage of
log-transform on the input and output (this mimics studies that support evidence of a logarithmic
perception of magnitude in humans and animals (Nieder & Miller, 2003; Nover et al., 2005).)

For non-linear models, we fitted variants where a final stage of gain or affine transformation is ap-
plied. This is to account for potential mis-calibration in output mapping (this is not needed for linear
models as it is captured in the bias and gradients). Further details can be found in Appendix A.11.

3.3 CUE COMBINATION MODELLING

For our multimodal tasks, we study how LLMs combine text and image cues by modelling their
multimodal responses against their unimodal responses. The main models are in Table 1. ycomb,
ytext and yimage denote the LLM’s response for multimodal, unimodal text and unimodal image,
respectively.

Equal weighting Linear regression Bayes-optimal fusion

ycomb = 1
2
(ytext + yimage) ycomb = αytext + (1− α) yimage ycomb = wtext ytext +

(
1− wtext

)
yimage

wtext =
1/σ2

text

1/σ2
text + 1/σ2

image

Table 1: Cue-combination baselines. α is fitted in [0, 1]. σ2
text and σ2

image are the empirical variances
of the LLM’s responses in the text-only and image-only conditions respectively.

For the Bayes-optimal fusion model, we report Oracle (calibrated, covariance-based) and Non-
Oracle (uncalibrated, variance-based) variants. This fusion is the optimal linear unbiased combiner
(BLUE) under linear-Gaussian assumptions. See Appendix A.6 for details.

3.4 MODEL EVIDENCE

We compare model fit for behavioural modelling and cue-combination modelling based on Akaike
Information Criterion (AIC). Different behavioural model variants differ along interpretable factors

4
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Factor Expression Parameters

NRMSE (A) 1− NRMSE−NRMSEmin
NRMSEmax−NRMSEmin

NRMSEmin,max = 0, 2

RRE (E)
[
RRE(Bayes Oracle) + RRE(Bayes Non Oracle)

]
/2 N/A

BCS (C) (BCS− BCSmin)/(BCSmax − BCSmin) BCSmin,max = −15, 15

Table 2: BayesBench components. NRMSEmax is set to 2 (twice the error committed by the constant
predictor baseline). BCSmin,max are set equal to the range of scores for five ablations across three
multimodal experiments.

(e.g. Bayesian vs Non-Bayesian or Sequential vs Non-Sequential). We focus on the Bayesian vs
Non-Bayesian dimension and compute factor evidence by comparing the best fitting models in each
category. See Appendix A.7 for further details.

3.5 KEY METRICS

We quantify (i) task accuracy, (ii) cue–combination efficiency, and (iii) behavioural consistency.

Accuracy (NRMSE). NRMSE = RMSEmodel/RMSEbaseline, where RMSE has the standard
root-mean-squared-error definition. The baseline is a constant predictor that outputs the mean of
the stimulus range (lower is better).

Efficiency (RRE). RRE(mref) = NRMSEref/NRMSELLM for any reference combiner mref
(Sec. 3.3). RRE values > 1 (< 1) mean the LLM has lower (higher) error than the reference.

Bayesian Consistency Score (BCS). To test whether LLM’s behaviour shifts in the
Bayes–consistent direction under controlled ablations, we compare the fitted weights of a static
Bayesian observer model (Sec. 3.2). The posterior mean of this model is precision–weighted with
wprior = τp/(τp+ τx) (prior precision τp, measurement precision τx), so increasing τp or decreasing
τx raises wprior.

We use five ablations across three tasks to compute BCS. These ablations are designed to in-
crease τp and/or decrease τx: (i) Steering (verbal) and (ii) Steering (unbiased numerical) provide
range–consistent context or prompt the model about measurement noise, effectively strengthening
the prior (τp ↑); (iii) Noise (constant) and (iv) Noise (gradual) blur image inputs to reduce mea-
surement precision (τx ↓); (v) Context (longer context window) supplies a longer rolling history
without altering current measurements (τp ↑, τx unchanged).

For each ablation a, we compare fitted weights to the base experiment, ∆wprior = w
(ablation)
prior −w

(base)
prior ,

and set

sa =

{
+1 if ∆wprior ≥ 0,

−1 if ∆wprior < 0,
with sa = 0 if w(ablation)

prior > 0.9.

We focus on the sign of ∆wprior since magnitudes depend on model–specific factors, such as how
accurate a given model’s perception is. For example, a highly perceptually accurate model may only
need to adjust wprior by a smaller amount given an injection of measurement noise. We set sa to zero
when w(ablation)

prior > 0.9, because this indicates a prior-dominant regime, where the model is essentially
disregarding the current stimulus and always outputting a constant. This is undesirable because in
all five selected ablations the stimulus should remain informative.

The Bayesian consistency score sums over ablations: BCS =
∑

a sa.

3.6 COMPOSITE BENCHMARK SCORE (BAYESBENCH).

The overall BayesBench score is a function of three metrics: NRMSE factor for task accuracy (A),
RRE factor for cue-combination performance against a Bayes-optimal reference (E) and BCS factor

5
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for Bayes-consistency in behaviour adaptation (C) (defined in Table 2). The first factor is averaged
across all four tasks while the latter two are averaged across the three multimodal tasks. In the
(A) factor, NRMSEmax = 2 defines the upper bound of model NRMSE and models that incur
larger error receive no credit. This range spans our model range and marks the worst reasonable
performance of any model.

The BayesBench score is defined as:

SBayesBench = 1
3

(
A+ E + C

)
. (5)

4 EXPERIMENTAL SETUP

Each estimation task is divided into three sessions (short, medium, long), where stimulus values fall
in different but overlapping ranges per session. This overlap allows us to study context-dependent
effects. Figure 5 provides an overview of the stimulus value distributions across sessions, using the
marker location as an example. In each session, at each trial, the LLM is given the context of its
prior trials (i.e., both the stimulus probes and the LLM’s previous responses, as each API interaction
is statless or “memoryless”). The rolling context simulates how humans form memory of recent
interactions, and is the basis of the emergence of Bayesian consistent behaviour. The overall view
of our experimental setup is shown in Appendix A.1.

Interactions with LLMs are performed via API. See Appendix A.2 for further details.

We evaluate a diverse set of recent LLMs spanning closed- and open-weight releases (see Ap-
pendix A.4 for details). Where possible, we disable extended-thinking or reasoning controls to
probe the models’ natural, emergent behaviour. This was feasible for all models except GPT-5 mini,
which only allows adjusting reasoning depth; we set this to the lowest level.

In addition, we ran a human baseline study for comparison on all our tasks under a small number of
ablations. See Appendix A.5 for details. Human results are included in the left panel of Figure 7.
This experiment and analysis are used only as a reference point here, as our main focus is on com-
paring LLMs against each other. Extensive human psychophysics studies, including the magnitude
estimation effects examined here, are extensively documented in psychophysics literature, such as
in Jazayeri & Shadlen (2010); Petzschner & Glasauer (2011).

We estimate uncertainty in our results using 30 rounds of bootstrapping while preserving the trial
structure within each session to maintain contextual integrity. The error bars shown in Figure 7 and
8 represent 68% bootstrap percentile intervals.
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Figure 5: Example distribution of stimulus input for the marker location task
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5 RESULTS

5.1 OVERALL PERFORMANCE AND BEHAVIOURAL FIT

Most models perform better in the text than the image modality, except on the maze distance es-
timation task. The text input for the maze distance estimation task is a long, detailed path de-
scription—much more complex than the ASCII prompts used in other tasks (Fig. 2). Most models
perform worse in the text modality for this task, but GPT-5 Mini is an outlier here: it achieves
near-perfect text performance, likely due to residual reasoning that we can attenuate but not fully
disable. Across tasks, the factor evidence for Bayesian behaviour is consistently higher in the image
modality than in text (Appendix A.9).

Moving from unimodal to multimodal inputs does not uniformly improve performance. However,
some models are better able to leverage information from the additional modality: Llama-4 Maver-
ick attains its best performance under multimodal conditions across all tasks, and Claude 3.7 Sonnet
and GPT-4o improve on two of the three tasks.

Overall, the strongest models (GPT-5 Mini, Claude 3.7 Sonnet, GPT-4o) reach low error rates, com-
parable to—or better than—human performance (left panel, Fig. 7).

With the exception of Gemini 2.5 Flash Lite, there is a general trend in the left panel of Figure 7 that
more accurate models also show stronger evidence of Bayesian behaviour.

5.2 CUE COMBINATION

From the middle panel of Figure 7, we see that not all models with good NRMSE performance also
exhibit efficient cue combination. GPT-5 Mini, despite its strong NRMSE performance, shows poor
cue combination efficiency. This is especially pronounced in the maze distance estimation task,
where GPT-5 Mini’s performance in the text modality is essentially perfect and much better than
its image modality performance. This implies that a Bayes-optimal combination must significantly
further downweight its image input. However, it appears unable able to downweight its image input
to the optimal extent (see Appendix A.10 for further details).

On the other hand, Llama-4 Maverick’s multimodal NRMSE performance exceeds that of a Bayesian
reliability-weighted unbiased linear combination. In Figure 6, we fitted Llama-4 Maverick’s mul-
timodal responses against its unimodal responses. We found that a random forest is able to fit its
multimodal responses from unimodal responses better than either the Bayes Non Oracle model or a
linear regression model. This suggests that Llama-4 Maverick is likely using a more sophisticated,
non-linear, cue combination strategy.

Figure 6: Comparison of cue combination model fits for Llama-4 Maverick. Left panel: random
forest fit (blue). Middle panel Bayes-optimal fit (orange). Right panel: linear regression fit (orange).

5.3 BAYESIAN CONSISTENCY

From the right panel of Figure 7, we see that generally more accurate models also tend to exhibit
more Bayes-consistent behaviour. While Gemma 3 4B and Phi 4 Multimodal achieved higher BCS
than expected, they are also the least accurate group of models.

7
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Figure 7: Results summary across models and tasks. Left panel: Bayesian behavioural evidence
and relationship against overall NRMSE. Middle panel: cue-combination performance. Shows rela-
tionship between multimodal tasks NRMSE and efficiency against Bayes-optimal cue-combination
reference models. Right panel: Bayes-consistency score and its relationship against multimodal
NRMSE. Each point represents a model, with color indicating model family. Error bars represent
68% bootstrap percentile intervals. Human baseline is shown in the left panel for reference.

5.4 BAYESBENCH SUMMARY

Figure 8 shows the computed BayesBench scores across models, in accordance to the definition
in Section 3.6. Bayes-RRE generally increases with accuracy (lower NRMSE), with two notable
exceptions: GPT-5 Mini underperforms on Bayes-RRE relative to its NRMSE, whereas Llama-4
Maverick exceeds expectations on Bayes-RRE. BCS likewise tends to track accuracy but provides
additional separation among the top models. Overall, Llama-4 Maverick attains the highest Bayes-
Bench score, driven by strong Bayes-RRE and BCS components.

Llama 4 Maverick

Claude 3.7 Sonnet
GPT 4o

GPT-5 Mini

Mistra
l 24B

Gemini 2.5 Flash Lite

Qwen2.5 VL 32B

Phi 4 Multim
odal

Gemma 3 4B it
0.0

0.2

0.4

0.6

0.8

1.0

Ba
ye

sB
en

ch
 S

co
re

0.85 0.81 0.81

0.68 0.66 0.64 0.60
0.51

0.43

BayesBench Component Breakdown per Model
NRMSE (A)
Bayes-RRE (E)
BCS (C)

Figure 8: BayesBench overall score, with breakdown into components. Error bars represent 68%
bootstrap percentile intervals.

6 DISCUSSION

Our study reveals that LLMs exhibit rich and diverse behavioural patterns when probed with
psychophysics-inspired magnitude estimation tasks. While the degree of factor evidence for
Bayesian behaviour differs by task and modality, more accurate models (e.g., GPT-5 Mini, Claude
3.7 Sonnet, Llama-4 Maverick) tend to display higher Bayesian factor evidence, especially in the
image modality (Appendix A.9 for full breakdown). These models tend to adapt their behaviour
in Bayes-consistent ways when inputs are subjected to perturbations such as noise, steering, or ex-
tended context (right panel of Figure 7). This supports the view that LLMs behave in ways consistent
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with approximate Bayesian observers, even without explicit training or reasoning instructions. This
is reminiscent of findings in human psychophysics, where Bayesian models explain a wide range of
human perceptual phenomena and processing in the brains (Petzschner et al., 2015; Knill & Pouget,
2004) without explicit training.

We find that high task accuracy does not always imply optimal cue–combination (middle panel
of Figure 7). For example, GPT-5 Mini attains very low NRMSE yet does not combine modali-
ties efficiently compared to other models. This shortfall is most apparent when unimodal perfor-
mance is imbalanced: optimal behaviour would require the model to markedly down-weight the
weaker modality, which some LLMs fail to do. Conversely, Llama-4 Maverick surpasses Bayesian
reliability-weighted linear fusion, indicating the use of more sophisticated non-linear integration
strategies.

Comparing uni- and multimodal performance reveals that, while models such as Llama-4 Maverick,
Claude 3.7 Sonnet, and GPT-4o are able to utilise the additional modality of input to achieve lower
error when both modalities (text and image) are present for the the majority of multimodal tasks,
this is not a universal trend. The variability in gains indicates potential headroom for advancing
multimodal LLMs. See Appendix A.9 for model-specific breakdown.

To capture behavioural features beyond static task metrics, we devised the Bayesian Consistency
Score (BCS) that captures principled behavioural shifts. This allows us to evaluate model behaviour
more holistically, even when accuracy saturates. Measuring behaviour changes under controlled
ablations enable us to compare models that may have different base performance and can offer
additional insights into implicit computational strategies.

Our results show that LLMs are generally consistent with Bayesian observer models. This raises the
question of how Bayesian computation can be an emergent property of sufficiently capable models
trained on large-scale data, similar to questions tackled in human studies (Barlow et al., 1961; Wei
& Stocker, 2015). Future architectures or training regimes that better encode uncertainty and sup-
port principled cue combination may improve LLMs’ robustness in noisy, real-world settings. Fur-
thermore, benchmarks such as our custom BayesBench can complement standard accuracy-based
evaluations, offering diagnostic insights into implicit computational strategies.

Limitations. Our tasks are synthetic and designed for precise control. It remains an open question
how well the observed behaviours generalise to naturalistic multimodal environments. As the test
range of our tasks is bounded, effects that only emerge with longer sequences may not be detected.
Our ablation studies are necessarily limited in scope; other perturbations, such as different noise
types, may illustrate different aspects of behaviour. In addition, all interactions relied on API access,
which may be affected by API non-determinism or silent vendor updates.

7 CONCLUSION AND FUTURE DIRECTIONS

We present BayesBench, a psychophysics-inspired benchmark that probes LLMs’ ability to estimate
magnitudes, integrate noisy multimodal cues, and exhibit Bayes-consistent behaviour. Our findings
show that capable LLMs not only achieve low error rates but also adapt in Bayesian consistent
manners, revealing emergent cognitive-like strategies. Strong multimodal models can also combine
cues efficiently, although this is not guaranteed by high accuracy alone. Our results suggest that
Bayesian-consistent behaviour may emerge naturally in sufficiently capable models.

Our work bridges human psychophysics and AI research, by providing both an extensible template
and a set of diagnostic metrics. While our tasks are synthetic, they highlight possible directions for
studying implicit computation in LLMs. Future work should extend the dataset to more naturalistic
multimodal domains, explore representational underpinnings from a mechanistic perspective, and
assess how Bayesian tendencies scale with model size and training data. It may also be fruitful to
further develop more sophisticated diagnostic metrics that capture specific aspects of behavioural
adaptations, extend ablation studies and enlarge the scope of human baselines for comparison.

Reproducibility Statement We will release BayesBench for public use, including the synthetic
data generator, prompts, ablation configurations, behavioural/cue–combination model code and
evaluation scripts. The behavioural models are fully specified in Section 3.2; cue–combination mod-
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els are fully specified in Section 3.3; factor-evidence computation in Section 3.4 and Appendix A.7;
the metrics and composite score is specified in Section 3.5 and Appendix A.8;
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A APPENDIX

A.1 EXPERIMENTAL DESIGN

The basic setup of our experiments follows: 1) dataset and prompt generation, 2) session structure
covering the order of stimulus presentation, 3) interation with LLM via API and 4) analyses. This
modular design (Figure 9) allows for systematic exploration of different factors influencing model
performance.

System and 
User Prompts

Prompt 
Ablations

Synthetic Data 
Generation

Data Ablations

Session 
Structure LLM

Order Ablations Response 
Analysis

Experimental Setup

Figure 9: Experimental setup overview
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A.2 INTERACTION WITH LLMS

A.2.1 PROGRAMMATIC API

Our interaction with LLMs is through programmatic API calls with temperature fixed at 0.3. As
our aim is to probe the natural, emergent behaviour of highly performant LLMs, we instruct models
not to use reasoning or chain-of-thought, returning only the final numeric answer with minimal
output text. For GPT-5 Mini, reasoning cannot be disabled, so it is set to the lowest reasoning
level available. This provides an additional point of comparison, as reasoning-enabled models may
behave differently in textual tasks. This is something we see in our experiments involving GPT-5
Mini.

We emphasise the use of API-based LLMs, some of which are closed source, to ensure our pipeline
is lightweight and easily extended to new models.

To test modality dependence, we run tasks in text-only, image-only, and text+image conditions. In
text-only mode, line-ratio and marker-location tasks are represented using ASCII, while the maze
task is described concisely in text. In image-only mode, models receive only the visual stimulus.
In multimodal mode, both text and image inputs are given. This allows us to evaluate efficiency in
unimodal vs multimodal contexts.

A.2.2 PROMPT DESIGN

For all tasks, prompts are structured in two parts: a system prompt and a user query.

• System prompt: defines the role of the model (e.g., “You are a line-length ratio estima-
tor.”). It specifies the expected output format and instructs the model to not output reason-
ing, but to return only the final numeric estimate (with minimal text if necessary).

• User query: provides the stimulus in the chosen modality. In textual mode this is ASCII
input (for line ratio and marker tasks) or a concise text description (for maze and subtitle
tasks). In image mode only the stimulus image is shown. In multimodal mode both text
and image are provided.

A typical prompt for the line-length ratio task (textual mode) is:

System prompt: "You are a line-length ratio
estimator. Estimate the ratio of the shorter line
to the longer line as a decimal number between 0 and
1. Do not explain or reason. Only output the final
answer."
User input:

|-=-=----- |
|-------------------------.------ -------|

This design keeps task specification clear and minimises variation in output. For GPT-5 Mini, where
reasoning cannot be disabled, we used the lowest reasoning setting. This provides an additional
point of comparison, since reasoning-enabled models may behave differently in textual tasks.

For steering-related ablations, modifications are made at the system prompt stage. Models may be
told that observations are noisy, or given numerical information about the range of past observations.
Further details of these manipulations are described in Section A.3.1.

A.3 ABLATION BACKGROUND

Ablation conditions are grouped into three categories: steering-related, noise-related, and context-
related. Each modifies the base setup in a controlled way to test specific hypotheses.

A.3.1 STEERING-RELATED ABLATIONS

Verbal cues

12
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• Modified the system prompt to explicitly tell the model that observations are noisy and that
it should act in a Bayesian way.

• Example system prompt:

You are a line-length ratio estimator. The given data is noisy and may contain
artifacts. You should behave like a Bayesian observer and take into account prior
and likelihood in your predictions.

Numerical cues

• Modified the system prompt to provide the numeric range of the past ten observations,
encouraging the model to use this information as a prior.

• Example system prompt:

You are a line-length ratio estimator. The given data is noisy and may contain
artifacts. For 10 previous observations, the values were observed to lie in the
range of 0.1 to 0.3.

A.3.2 NOISE-RELATED ABLATIONS

Constant noise: Applied a Gaussian blur to image inputs only, to test whether models adapt esti-
mation behaviour when vision is degraded.

Noise sequence: Introduced gradually increasing Gaussian blur across trials to test whether mod-
els downweight visual information as noise grows. Figure 11 shows example input images.

Figure 10: Constant Gaussian noise ablation Figure 11: Sequential Gaussian noise ablation

A.3.3 CONTEXT-RELATED ABLATIONS

Shorter Context: Reduced the context window to 3 prior trials, limiting how much past informa-
tion the model can use.

Longer context Increased the context window to 20 prior trials, maximising available history for
the model.

Stimulus order reversal Reversed the order of stimuli to test whether model estimations show
strong sequence dependence.

A.4 LLM MODELS STUDIED

Table 3 summarises the key characteristics of the LLMs studied. We chose a diverse set of recent
models spanning closed- and open-weight releases, with a range of sizes and architectures. Where
possible, we disabled extended-thinking or reasoning controls to probe the models’ natural, emer-
gent behaviour. This was feasible for all models except GPT-5 Mini, which only allows adjusting
reasoning depth; we set this to the lowest level.
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h

Table 3: Comparison of selected LLMs (parameters shown only when vendor/model card publicly
discloses them).

Model Developer Params Reasoning controls
Claude 3.7 Sonnet Anthropic Undisclosed Optional “extended thinking”
GPT-5 Mini OpenAI Undisclosed Adjustable depth.
GPT-4o OpenAI Undisclosed N.A.
Llama-4 Maverick Meta 400B total / 17B active N.A.
Qwen 2.5 VL 32B Alibaba 32B N.A.
Mistral 24B Mistral 24B N.A.
Gemini 2.5 Flash Lite Google DeepMind Undisclosed N.A.
Phi 4 Multimodal Microsoft Undisclosed N.A.
Gemma 3 4B Google DeepMind 4B N.A.

Notes: We avoid speculative parameter estimates. Public sources: Claude 3.7 Sonnet announcement
(Anthropic); GPT-5 Mini (OpenAI docs); Llama-4 Maverick active/total params (Meta); Qwen 2.5-VL 32B
model card; Mistral 24B (Mistral docs); Gemini 2.5 Flash-Lite (Google); Phi-4 Multimodal (Microsoft HF
card); Gemma 3 model card.

A.5 HUMAN FEEDBACK COLLECTION

We collected data from human subjects on our main tasks to establish a calibration benchmark. The
questions are hosted on a web platform, and users can complete them with their phone or computer.

Only two ablations were used for human feedback collection: constant noise and longer context.

Figure 12 shows two screenshots of the web platform.

Chunk 1/4 — Trial 1 of 20

Estimate the ratio of the shorter line to the longer line
move blue slider to decimal answer.

The text and the image depict the same stimulus.

Text Description / ASCII

|--=------.---------                     |
|-----------.----------------------------|

Image

0.50

Back Next

9/22/25, 4:24 PM Perception Study

https://heisenger.github.io/LLM_Scale_Est_HumanFeedback/ 1/2

Chunk 3/4 — Trial 1 of 20

Estimate the straight-line distance, in units, between the start and the end of
the path.

move blue slider to decimal answer.
The text and the image depict the same stimulus.

Text Description / ASCII

Take 0.25 units north, then Take 0.25 units west, then Take 0.25 units 
north, then Take 0.25 units west, then Take 0.25 units north, then Take 
1.5 units west, then Take 0.25 units north, then Take 0.25 units west, 

then Take 0.75 units south, then Take 1.0 units west, then Take 0.25 units 
south, then Take 0.25 units east, then Take 0.5 units south, then Take 0.5 

units west, then Take 0.5 units south, then Take 0.75 units east, then 
Take 0.25 units south, then Take 0.5 units west, then Take 0.25 units 
south, then Take 0.25 units west, then Take 1.0 units south, then Take 

0.25 units east, then Take 0.5 units south.

Image

5.00

 1

9/22/25, 4:25 PM Perception Study

https://heisenger.github.io/LLM_Scale_Est_HumanFeedback/ 1/2

Chunk 2/4 — Trial 4 of 20

Estimate the position of the center of the red dot. Left-end is 0.0 and right-end
is 1.0

move blue slider to decimal answer.
The text and the image depict the same stimulus.

Text Description / ASCII

|.---~------~----------=O-----------~----|

Image

0.50

Back Next

 4

9/22/25, 4:34 PM Perception Study

https://heisenger.github.io/LLM_Scale_Est_HumanFeedback/ 1/2

Chunk 4/4 — Trial 1 of 20

Estimate how many seconds it takes to say out loud the following text.

Text Description / ASCII

Reaction did some market research . They had a hundred subjects and their 
usability lab and they watched them watch T_V_ and

Enter seconds

Back Next

 2

9/22/25, 4:34 PM Perception Study

https://heisenger.github.io/LLM_Scale_Est_HumanFeedback/ 1/2

Figure 12: Human feedback collection website screenshot
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A.6 BAYES CUE COMBINATION MODELS

Under Bayesian assumptions, the optimal linear combination of two noisy modality estimates is
obtained by weighting them according to their relative reliabilities (inverse variances. See also Ernst
& Banks (2002)). We consider two versions. Non-oracle and oracle models. They differ in whether
the cue combination is modelled with or without access to ground truth.

• Non-oracle: The model combines the two modality estimates (µ(1) and µ(2)) by inverse-
variance weighting,

µ =
τ1

τ1 + τ2
µ(1) +

τ2
τ1 + τ2

µ(2),

where τi = 1/σ2
i are the precisions of estimates from the corresponding modality. Cru-

cially, the model does not assume access to ground truth. It only uses the variance of each
modality estimate to compute the above weighting.

• Oracle: In this case, we first calibrate the modality-specific estimates (µ(1) and µ(2)) by
fitting gain and offset parameters to the ground truth for each modality. After calibration,
the estimates (µ′(1) and µ′(2)) are combined using the generalised least squares solution
based on the residual loss covariance (Σ):

µ =
1⊤Σ−1µ′

1⊤Σ−11
,

where µ′ =

[
µ′(1)

µ′(2)

]
and Σ is the 2 × 2 covariance matrix of the modality estimates. This

accounts for both differing reliabilities and cross-modal correlations, yielding the optimal
linear unbiased estimator given access to the true values.

Although these models specify optimal linear integration strategies, it is important to note that LLMs
may, in principle, outperform these baselines if they achieve more flexible, nonlinear forms of cue
integration. Such nonlinear integration is possible given the architecture of modern LLMs.

A.7 FACTOR ANALYSIS DETAILS

We fit many behavioural model variants that differ along interpretable factors (e.g., BAYESIAN vs
NON-BAYESIAN; WEBER vs NON-WEBER; SEQUENTIAL update). Because these variants partly
overlap in purpose, naively summing or averaging likelihoods would (i) reward families that contain
more variants, or (ii) dilute good variants by pooling with weak ones. We therefore compare factors
while treating all other dimensions as nuisance.

Procedure Let f ∈ {BAYESIAN, WEBER, SEQUENTIAL} be the factor of interest, and let N (f)
denote the set of nuisance factors for this comparison (chosen to be agnostic to f ; see example
below).

1. Transform AIC to likelihood. For each fitted variant m, first compute ∆AIC(m) (defined
as the difference between m’s AIC and the minimum AIC among all variants) and then
compute the transformed quantity below:

L(m) ∝ exp
(
− 1

2 ∆AIC(m)
)
,

2. Group by nuisance “cells”. Group behavioural models by every combination of values in
N (f). Each group is a cell c.

3. Best-in-cell for each level of f . Within each cell c, take the maximum likelihood among
variants where f = True and among variants where f = False:

L
(c)
True = max

m∈c, f(m)=True
L(m), L

(c)
False = max

m∈c, f(m)=False
L(m).

Using the max avoids penalising a family for having many weak sub-variants.
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4. Equal-weight across cells. For fairness, average equally across cells where both levels are
present (intersection):

L̄True =
1

|C|
∑
c∈C

L
(c)
True, L̄False =

1

|C|
∑
c∈C

L
(c)
False,

where C = {c : L
(c)
True, L

(c)
False both defined above in step 3.}.

5. Compute evidence. Report the factor-level probability

P (f=True | data) =
L̄True

L̄True + L̄False
,

and similarly for False.

In this report when we refer to factor evidence, we are always referring to evidence computed from
this procedure.

Example: BAYESIAN vs NON-BAYESIAN. For f = BAYESIAN we take N (f) = {WEBER}
only. The SEQUENTIAL and GAIN variants exist exclusively within the Bayesian family; condition-
ing on them would create empty cells on the non-Bayesian side. Thus, within each WEBER cell
we compare the best Bayesian variant (possibly sequential/gain/log) against the best non-Bayesian
variant, average equally over cells, and form the head-to-head probability. Below table shows the
procedure schematically.

WEBER cell
False True

Best Bayesian in cell L
(c)
True L

(c)
True

Best non-Bayesian in cell L
(c)
False L

(c)
False

Average equally across cells, then compute P = L̄True/(L̄True + L̄False).

Notes on fairness and robustness. (i) Equal cell weighting prevents families with many variants
from accruing more probability mass simply by proliferation. (ii) Using the intersection of cells
avoids bias from missing combinations.

A.8 BCS FITTING DETAILS

We fit the static Bayesian observer model in all cases and with data from modalities according to the
below:

• Noise: evaluate wprior from the image-only modality, since noise is injected only into the
image channel and multimodal fits would confound reweighting of text input.

• Steering and Context: evaluate wprior from the multimodal fit, as these manipulations
affect both modalities.

A.9 MODEL PERFORMANCE AND BAYESIAN FACTOR EVIDENCE

Figures 13, 14, 15 and 16 show the NRMSE performance and Bayesian factor evidence for all
models across all tasks and modalities. For the multimodal tasks, in their corresponding figures,
metrics by modality is shown over the three rows.

Notice that not all models perform better in multimodal conditions than in unimodal conditions
(Llama-4 Maverick is the outlier, it achieves its best NRMSE in multimodal mode on all tasks).

A.10 GPT-5 MINI CUE COMBINATION MODEL FITS

GPT-5 Mini’s cue-combination performance is poor despite its very strong NRMSE performance.
Figure 15 shows the NRMSE performance for each model in all three modalities for the maze
distance estimation task. We see that GPT-5 Mini’s unimodal text performance is nearly perfect
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Figure 13: Line length ratio estimation task. NRMSE and Bayes factor evidence for unimodal text,
unimodal image and multimodal inputs.
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Figure 14: Marker location estimation task. NRMSE and Bayes factor evidence for unimodal text,
unimodal image and multimodal inputs.

(at 0.01 NRMSE), while its unimodal image performance is much worse (at 0.2 NRMSE, despite
already being the best across models). Because of this, the Bayes-optimal linear combination would
imply a nearly zero weighing on the image input. However, the multimodal performance does not
follow this trend, indicating that the model prediction is still affected by the image input.
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Figure 15: Maze distance estimation task. NRMSE and Bayes factor evidence for unimodal text,
unimodal image and multimodal inputs.
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Figure 16: Subtitle duration estimation task. NRMSE and Bayes factor evidence.

A.11 FURTHER MODEL VARIANTS

Studies such as (Nieder & Miller, 2003; Nover et al., 2005) found in human studies that the human
brain encodes many different magnitudes using a logarithmic scale. To test if this phenomena apply
in LLM, we explored variants of models where a logarithmic transform is applied to the stimulus
values.

For the Bayesian model we also added variants with an affine transform after the estimate is com-
puted, to account for any potential gain biases. This is not needed for the linear models as it is
captured by the gradient parameter.

Note that for all these variants, the additional parameters will penalise AIC and therefore help guard
against artificial model evidence inflation by more complex models.
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A.11.1 LOGARITHMIC TRANSFORM

In some model variants, a logarithmic transform is applied to the stimulus or response space before
fitting our behavioural models above. This is motivated by standard assumptions in psychophysics
that humans internally represent magnitudes on a log scale.

Thus the transformed stimulus x′
t from the raw input xt is

x′
t = log(xt + ϵ),

with a small ϵ ensuring numerical stability. Log-transform variants are considered for both the linear
and Bayesian observer models.

A.11.2 AFFINE TRANSFORM

For Bayesian models, we additionally allow affine deviations of the posterior estimate, correspond-
ing to a gain factor g ∈ R+ and an additive offset δ ∈ R. The raw posterior mean µt from the model
estimate is transformed to µ̃t as

µ̃t = g µt + δ.

The LLM response yt in these variants is generated as below, where σ2
dec is again a free parameter

fitted during the model fitting stage:

yt ∼ N (µ̃t, σ
2
dec).

This captures systematic deviations from the normative Bayesian solution, such as under- or over-
weighting of evidence and constant response bias. Note that for linear models this is not required as
it is already captured by the slope and offset parameters.
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