

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ORTHOGONAL UPDATES ARE OPTIMAL FOR CONTIN- UAL LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Catastrophic forgetting arises when updates for new tasks perturb predictions on earlier ones. We pose continual learning as *interference minimization* and show that, under a first-order (linearized) model of training dynamics, *orthogonal task updates across layers* are both *necessary for zero interference and sufficient to achieve the minimum interference bound*. From a function perspective, the Neural Tangent Kernel (NTK) view identifies interference-free learning with a *zero cross-kernel* block. We prove that, under a mild spectral-concentration assumption on cross-layer Jacobians, this functional condition is approximately realized by *layerwise Frobenius orthogonality*, yielding a unified parameter–gradient–function principle. Guided by this principle, we design a basis-agnostic *orthogonal decomposition* where tasks share an orthogonal basis but use disjoint sparse supports. This construction guarantees exact non-interference at finite width (in the first-order sense), provides an explicit sparsity–error trade-off, and yields high-probability quadratic capacity $O(d^2/k)$ with constant per-task training cost, up to precomputation of patterns. Empirically, on class-incremental benchmarks our method attains competitive accuracy and strong robustness to forgetting, and matches the predicted capacity/efficiency behavior. Overall, we identify orthogonality as the locally optimal first-order structure for continual learning and provide a simple, constructive framework to enforce it in practice.

1 INTRODUCTION

When neural networks learn tasks sequentially, each new task modifies the weights and risks interfering with knowledge from previous tasks, leading to catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999). A large body of work has explored algorithmic strategies to mitigate forgetting, including rehearsal-based methods (Rebuffi et al., 2017; Chaudhry et al., 2019), regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017), and architectural methods (Mallya & Lazebnik, 2018; Serra et al., 2018). Despite these advances, the theoretical understanding of forgetting has remained limited.

Catastrophic forgetting in continual learning occurs when updates for new tasks interfere with knowledge acquired from earlier ones. While prior analyses bound this interference in terms of weight changes (Guha & Lakshman, 2024), they remain largely descriptive: they quantify forgetting but do not prescribe how to structure learning to avoid it. Practical methods often enforce orthogonality heuristically, e.g., via gradient or subspace constraints (Lopez-Paz & Ranzato, 2017; Farajtabar et al., 2020; Mallya & Lazebnik, 2018; Serra et al., 2018; Hu et al., 2022; Liang & Li, 2024), yet lack clear guarantees about interference in the full, class-incremental setting (Van de Ven & Tolias, 2019).

We address this gap with a theory-to-design pipeline. First, we cast continual learning as an interference-minimization problem and prove that *orthogonal task updates* are optimal at first order. Second, we show that in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018), interference-free learning is equivalent to a *zero cross-kernel* condition; under mild isotropy, this coincides with layerwise orthogonality, yielding a unified parameter–function–gradient view. Third, we implement this principle via a basis-agnostic *orthogonal decomposition* that separates a shared orthogonal basis from task-specific *disjoint sparse supports*, guaranteeing weight-level non-interference while retaining expressivity. The NTK perspective supplies a coordinate-free functional criterion, while perturbation analysis provides the finite-width optimality and capacity guarantees; together they yield both a unifying principle and a constructive mechanism. The contributions are:

- **Orthogonality as optimal.** We prove that orthogonal task updates are the unique first-order solution to the interference-minimization program at finite width.
- **Unified orthogonality principle.** We show that zero cross-kernel (NTK) and layerwise orthogonality coincide under mild isotropy, aligning parameter, gradient, and function views.
- **Constructive orthogonal decomposition.** We instantiate this principle with a basis-agnostic decomposition and task-specific disjoint sparse supports, ensuring exact non-interference with explicit capacity and efficiency guarantees.
- **Empirical validation.** On class-incremental benchmarks, our method achieves competitive accuracy, strong robustness to forgetting, and realizes the predicted capacity/complexity trade-offs.

2 RELATED WORK

We situate our work within three strands of continual learning research: (i) theoretical analyses of forgetting, (ii) orthogonality and subspace-based approaches, and (iii) representation-level studies. Our contribution lies in advancing the theoretical foundations by establishing principled capacity allocation strategies through orthogonal weight decomposition.

Theoretical Analysis of Continual Learning. A large body of theoretical work has sought to understand catastrophic forgetting. Early studies often relied on linear models to make analysis tractable (Ding et al., 2024; Zhao et al., 2024; Evron et al., 2022; Lin et al., 2023; Li et al., 2023; Heckel, 2022). These works frame each task as a regression problem and analyze weight drift during sequential learning. For example, Evron et al. (2022) and Lin et al. (2023) study how task sequence properties influence generalization error, while Heckel (2022) and Li et al. (2023) focus on regularization and representation stability. Although insightful, these linear or simplified analyses cannot capture the representational dynamics of deep nonlinear networks, and they do not prescribe constructive mechanisms to prevent interference. Our work instead derives an optimal perturbation structure and provides explicit finite-width guarantees. Another perspective comes from the teacher–student framework, where tasks correspond to different teacher networks (Lee et al., 2021; Asanuma et al., 2021). These studies connect task similarity with student generalization, but they provide limited constructive guidance for designing interference-free updates. Neural tangent kernel (NTK) approaches (Bennani et al., 2020; Doan et al., 2021; Yin et al., 2020; Karakida & Akaho, 2021) model continual learning as recursive kernel regression in the infinite-width regime, where capacity constraints vanish. Our work instead addresses finite-width networks, where architectural trade-offs become fundamental. Most relevant is the perturbation analysis framework (Guha & Lakshman, 2024), which models continual learning as sequential weight perturbations and derives forgetting bounds that scale with width and depth. Their framework is descriptive, quantifying the extent of forgetting, whereas ours is prescriptive: we identify the optimal update structure, prove its necessity and sufficiency, and instantiate it via a basis-agnostic orthogonal decomposition with explicit capacity and efficiency guarantees.

Orthogonal and Subspace Methods. Several practical methods have explored orthogonality or subspace separation to mitigate forgetting. Gradient-based approaches such as Gradient Episodic Memory (Lopez-Paz & Ranzato, 2017) and Orthogonal Gradient Descent (Farajtabar et al., 2020) encourage update directions that are less disruptive to past tasks, though without principled capacity guarantees. Subspace-based approaches allocate disjoint model components to different tasks. PackNet (Mallya & Lazebnik, 2018) uses pruning to preserve important weights, while HAT (Serra et al., 2018) employs task-specific masks. Recent work explores low-rank and parameter-efficient adaptations, such as LoRA (Hu et al., 2022), where updates are expressed through fixed low-rank factors. Although structurally related to our decomposition, these approaches do not enforce inter-task orthogonality and lack theoretical guarantees on interference. Our framework derives orthogonality as a necessary condition and provides provable capacity and efficiency results. We present a prescriptive framework that derives orthogonality as the necessary structure and gives explicit capacity and efficiency guarantees, realized through a shared orthogonal basis with task-specific disjoint sparse supports.

Representation Forgetting and Analysis. Recent work has shifted toward analyzing forgetting at the representation level. Empirical probes (Davari et al., 2022; Zhang et al., 2022; Caccia et al., 2021; Luo et al., 2023) measure feature retention and drift across tasks, while theoretical analyses such

108 as Kim et al. introduce metrics for representation discrepancy. These works highlight how internal
 109 representations evolve under sequential training, but they primarily describe the phenomenon rather
 110 than offering mechanisms for control. Representation-level analyses have primarily described how
 111 features drift or degrade across tasks. In contrast, our work establishes a prescriptive framework:
 112 by enforcing orthogonal perturbations with principled sparsity allocation, we provide a constructive
 113 mechanism that provably prevents interference.

114

115

3 THEORETICAL FRAMEWORK

116

117

We develop a framework that treats catastrophic forgetting as a problem of designing weight perturbations. Rather than only analyzing how forgetting arises, our goal is constructive: derive the update structure that eliminates first-order interference while preserving task performance. Our analysis proceeds in two steps. First, a weight-perturbation view formulates continual learning as an optimization problem and shows that orthogonal task updates are both necessary and sufficient under first-order linearization. Second, a function-space view connects this condition to the Neural Tangent Kernel (NTK), yielding a coordinate-free criterion directly tied to prediction dynamics. Together, these perspectives provide a finite-width guarantee and a unifying functional interpretation.

124

125

3.1 PRELIMINARIES AND PROBLEM SETUP

126

127

We consider an L -layer ReLU network trained sequentially on tasks $\{1, 2, \dots, N\}$. For task τ , training produces an update $\Delta \mathbf{W}_{(\tau)}^{(k)}$ at layer k , so that after t tasks

128

129

130

$$\mathbf{W}_t^{(k)} = \mathbf{W}_0^{(k)} + \sum_{\tau=1}^t \Delta \mathbf{W}_{(\tau)}^{(k)}. \quad (1)$$

131

132

133

Prior perturbation analyses (Guha & Lakshman, 2024; Evron et al., 2022; Lin et al., 2023) bound forgetting of a task τ' by the cumulative size of later updates:

134

135

136

$$\text{Forgetting}_{\tau'} \leq C \sum_{t=\tau'+1}^N \|\Delta \mathbf{W}_{(t)}^{(k)}\|_F, \quad (2)$$

137

138

139

where C depends on architecture. This explains why wider networks forget less, but it is purely descriptive: it does not specify the update structure required to avoid interference.

140

141

3.2 OPTIMAL PERTURBATION STRUCTURE

142

143

144

We instead pose continual learning as minimizing cumulative interference subject to each task being solved to accuracy ϵ_τ :

145

146

147

$$\min_{\{\Delta \mathbf{W}_{(\tau)}^{(k)}\}} \sum_{\tau' < t} \|\Delta \mathbf{W}_{(\tau')}^{(k)}\|_F \quad \text{s.t.} \quad \mathcal{L}_\tau \left(\mathbf{W}_0^{(k)} + \sum_{s=1}^{\tau} \Delta \mathbf{W}_{(s)}^{(k)} \right) \leq \epsilon_\tau, \quad \forall \tau. \quad (3)$$

148

149

150

Our first result characterizes the structure of updates that solves this program.

151

152

Theorem 3.1 (Local first-order optimality of orthogonal updates). *Under a first-order Taylor expansion of each loss around $\mathbf{W}^{(\tau-1)}$, with smoothness and bounded gradients, the following holds for any distinct tasks $\tau \neq \tau'$:*

153

154

155

is both necessary to eliminate first-order cross-effects between tasks and sufficient to achieve the minimum possible first-order forgetting bound. In other words, layerwise orthogonality uniquely characterizes the optimal perturbation structure under linearization.

156

157

158

159

160

Thus, orthogonality—often used heuristically in practice (Lopez-Paz & Ranzato, 2017; Farajtabar et al., 2020)—emerges as a derived necessity for interference-free continual learning.

162 3.3 NEURAL TANGENT KERNEL (NTK) PERSPECTIVE
163164 We now connect this perturbation view with the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
165 Let θ denote network parameters and $f(x; \theta) \in \mathbb{R}^C$ the logits. The NTK at θ is

166
$$K_\theta(x, x') := \nabla_\theta f(x; \theta)^\top \nabla_\theta f(x'; \theta) \in \mathbb{R}^{C \times C}. \quad (4)$$

167

168 Under gradient flow on task τ , the prediction dynamics on another dataset $X_{\tau'}$ evolve as

169
$$\frac{d}{dt} f(X_{\tau'}; \theta_t) = -K_{\theta_t}(X_{\tau'}, X_\tau) r_\tau(t), \quad (5)$$

170

171 where $r_\tau(t)$ are residuals. Hence task τ' is unaffected by training on τ iff the *cross-kernel block*
172 *vanishes*:

173
$$K_{\theta_t}(X_{\tau'}, X_\tau) = 0 \quad \text{for all } t. \quad (6)$$

174

175 **Finite-width proxy via orthogonality.** In finite networks, K_{θ_t} drifts with training and exact vanishing
176 cannot be enforced. A natural surrogate is layerwise Frobenius orthogonality:

177
$$\sum_{k=1}^L \left\langle \Delta \mathbf{W}_{(\tau)}^{(k)}, \Delta \mathbf{W}_{(\tau')}^{(k)} \right\rangle_F \approx 0, \quad (7)$$

178
179

180 which arises directly from linearizing f at θ_0 and decomposing the NTK across layers. The approxi-
181 mation is justified by the following assumption and lemma.182 **Assumption 3.2** (Spectral concentration of cross-Jacobians). *For datasets X_a, X_b and each layer*
183 *k , the cross-Gram matrix $\mathbf{G}_{ab}^{(k)} := \mathcal{J}_k(X_a; \theta_0)^\top \mathcal{J}_k(X_b; \theta_0)$ has a dominant eigenvalue $\lambda_{\max}^{(k)}(a, b)$,*
184 *with residual spectral mass $\rho^{(k)}(a, b) \leq \alpha_k \lambda_{\max}^{(k)}(a, b)$ for some $\alpha_k < 1$.*185 **Lemma 3.3** (Validity of linearization). *If f has L -Lipschitz Jacobian near θ_0 , then for any update*
186 $\|\Delta\theta\|_2 \leq r$,

187
$$\|f(x; \theta_0 + \Delta\theta) - f(x; \theta_0) - \nabla_\theta f(x; \theta_0) \Delta\theta\|_2 \leq \frac{L}{2} r^2.$$

188

189 **Proposition 3.4** (Finite-width proxy to zero cross-kernel). *Under Lemma 3.3 and Assumption 3.2,*
190 *there exist weights $c_k(a, b) \propto \sqrt{\lambda_{\max}^{(k)}(a, b)}$ such that*

191
$$\|K_{\theta_0}(X_a, X_b)\|_F \leq \sum_{k=1}^L c_k(a, b) \|\Delta \mathbf{W}^{(k)}\|_F + O(\|\Delta\theta\|_2^2).$$

192
193

194 Moreover, if $\langle \Delta \mathbf{W}_{(\tau)}^{(k)}, \Delta \mathbf{W}_{(\tau')}^{(k)} \rangle_F = 0$ for all k , then

195
$$K_{\theta_0}(X_{\tau'}, X_\tau) = \mathbf{0} + O\left(\|\Delta\theta\|_2^2 + \sum_k \alpha_k \|\Delta \mathbf{W}^{(k)}\|_F\right).$$

196
197

198 **Closing the proxy with orthogonal decomposition.** With the parameterization $\Delta \mathbf{W}_{(\tau)}^{(k)} = \mathbf{A}_{(\tau)}^{(k)} \mathbf{B}$,
199 where \mathbf{B} is a shared orthogonal basis, disjoint supports of $\mathbf{A}_{(\tau)}^{(k)}$ across tasks ensure
200

201
$$\langle \Delta \mathbf{W}_{(\tau)}^{(k)}, \Delta \mathbf{W}_{(\tau')}^{(k)} \rangle_F = 0, \quad \forall k,$$

202

203 thus exactly satisfying the finite-width proxy. This connects our constructive mechanism to the
204 kernel-theoretic condition for interference-free learning.205 **Approximation quality.** The NTK condition is exact in the lazy regime. At finite width, Proposition
206 3.4 shows orthogonality suppresses cross-effects up to (i) second-order parameter drift and (ii)
207 residual anisotropy α_k . Accuracy improves with smaller steps, wider layers, and more concentrated
208 Jacobians.209 4 METHODOLOGY
210211 We now describe how to instantiate the orthogonal-decomposition framework of Sec. 3 as a practical
212 continual learning algorithm. Our design emphasizes three principles: (i) theoretical guarantees of
213 non-interference, (ii) quadratic task capacity with constant per-task cost, and (iii) minimal implemen-
214 tation overhead. Full pseudocode for initialization and training is deferred to Appendix B; here we
215 focus on the main design choices and efficiency considerations.

216
217

4.1 PARAMETERIZATION

218
219
220Let \mathbf{W} denote the frozen base weights. For each task t , we introduce an update of the form

$$\Delta \mathbf{W}_t = \mathbf{A}_t \mathbf{B}, \quad \mathbf{B} \in \mathbb{R}^{d \times d}, \quad \mathbf{B}^T \mathbf{B} = \mathbf{I}, \quad \|\mathbf{A}_t\|_0 \leq k, \quad \text{supp}(\mathbf{A}_i) \cap \text{supp}(\mathbf{A}_j) = \emptyset \quad (i \neq j). \quad (8)$$

221
222
223
224
225
226The matrix \mathbf{B} is any orthogonal basis shared across tasks. In practice, we fix \mathbf{B} once using either: (i) a QR decomposition of a Gaussian matrix (isotropic but $O(d^3)$ precomputation), or (ii) a structured transform such as Hadamard or DFT (fast $O(d^2 \log d)$ evaluation, no storage beyond a seed). Both choices allow regeneration from a public RNG seed, eliminating per-task storage cost. The disjoint-support constraint guarantees exact orthogonality of task updates (Theorem 3.1, Proposition 3.4), while the ℓ_0 budget k ensures uniform allocation of capacity to each task.227
228

4.2 SUPPORT ALLOCATION AND CAPACITY

229

Each update matrix \mathbf{A}_t is parameterized as230
231

$$\mathbf{A}_t = \mathbf{S}_t \odot \Theta_t, \quad (9)$$

232
233
234where $\mathbf{S}_t \in \{0, 1\}^{d \times d}$ is a binary mask with $\|\mathbf{S}_t\|_0 = k$ and Θ_t stores the k learnable coefficients. Masks are drawn uniformly without replacement from the global index pool so that $\mathbf{S}_i \odot \mathbf{S}_j = \mathbf{0}$ for $i \neq j$, guaranteeing interference-free updates.

235

This allocation strategy yields a theoretical capacity of

236
237

$$T_{\max} = \left\lfloor \frac{d^2}{k} \right\rfloor$$

238
239tasks per layer. Because supports are sampled uniformly without replacement, this capacity is achieved *deterministically*, making disjoint random masks both simple and optimal in practice.240
241
242
243For comparison, if supports were instead sampled *with replacement*, the expected number of tasks accommodated can exceed d^2/k , but at the cost of collisions. These overlaps introduce bounded interference rather than perfect orthogonality. By standard concentration results, such with-replacement sampling still achieves near-maximal coverage with high probability:244
245

$$\Pr \left[T_{\text{achieved}} \geq (1 - \delta) \frac{d^2}{k} \right] \geq 1 - \exp(-c\delta^2 d^2/k),$$

246
247
248for some universal constant c . This highlights a tradeoff: strict disjointness guarantees zero interference with deterministic capacity, while relaxed allocation can extend capacity marginally at the expense of controlled overlap.249
250

4.3 TRAINING PROCEDURE

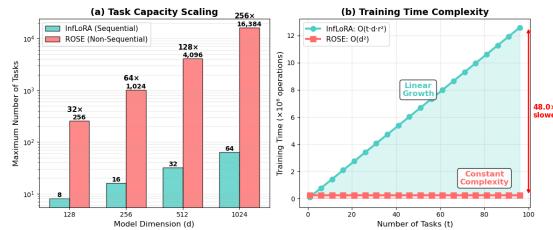
251
252
253
254
255
256
257
258
259At initialization, we generate the shared orthogonal basis \mathbf{B} and assign each task a disjoint k -sparse mask \mathbf{S}_t . During training on task t , only the coefficients Θ_t associated with \mathbf{S}_t are updated. Forward passes use $\mathbf{W}_0 + \mathbf{A}_t \mathbf{B}$, and backpropagation computes gradients only for the k active entries. Thus, each task trains independently in its allocated subspace, and no sequential orthogonalization is required. This design keeps **per-task cost constant**: once masks are assigned, training a new task is no more expensive than training the base model with a fixed-size adapter. In contrast, sequential orthogonalization methods (e.g., InflLoRA) require $O(t)$ -growing orthogonalization steps. For **reproducibility**, the full step-by-step pseudocode for basis initialization and task training is provided in Appendix B.260
261

4.4 COMPLEXITY ANALYSIS

262
263
264**Precomputation.** Basis generation is $O(d^3)$ for QR or $O(d^2 \log d)$ for Hadamard/FFT. Pattern generation requires $O(Td^2)$ to precompute all T masks, or $O(1)$ per task if masks are generated lazily from the RNG seed and task index.265
266
267**Per-task training.** Forward/backward cost is $O(d^2)$ if applying $\mathbf{A}_t \mathbf{B}$ naively, but only $O(kd)$ if exploiting sparsity (with fast transforms for \mathbf{B}). Parameter updates involve exactly k scalars per layer.268
269**Cumulative.** Across T tasks, total cost is $O(Td^2)$ (or $O(Tkd)$ with structured \mathbf{B}), plus a one-off $O(d^3)$ (QR) or $O(d^2 \log d)$ (Hadamard/FFT). Unlike sequential methods with $O(t)$ growth in per-task cost, ROSE maintains constant training complexity.

270 Table 1: Complexity Comparison
271

Metric	ROSE	InfLoRA
Capacity	$O(d^2/k)$	$O(d/r)$
Training	$O(d^2)$	$O(t \cdot dr^2)$
Memory	$O(k)$	$O(dr)$

278 Figure 1: Complexity analysis of ROSE vs InfLoRA showing (a) theoretical bounds and (b) practical
279 implications for capacity and training efficiency.
280

282 4.5 EXPRESSIVITY VS. SPARSITY

284 Let $\mathbf{U} = \Delta\mathbf{W} \mathbf{B}^\top$ denote an update expressed in the shared orthogonal basis, and $\mathbf{U}_{(k)}$ its best
285 k -sparse approximation.286 **Lemma 4.1** (Approximation error under k -sparsity). *For any target update $\Delta\mathbf{W}$,*

288
$$\|\Delta\mathbf{W} - \mathbf{U}_{(k)}\mathbf{B}\|_F = \|\mathbf{U} - \mathbf{U}_{(k)}\|_F = \sqrt{\sum_{(i,j) \notin S_k^*} U_{ij}^2},$$

289

291 where S_k^* are the k largest entries of \mathbf{U} .292 Thus, the error is determined by the tail energy of \mathbf{U} . When weight perturbations are compressible
293 in the orthogonal basis, small k suffices with minimal loss. In practice, this yields an explicit
294 sparsity–accuracy tradeoff: k controls both per-task parameter cost and approximation fidelity.

295 5 EXPERIMENTS

297 In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed ROSE
298 framework. After describing the experimental setup, we present comprehensive comparisons with
299 state-of-the-art methods across multiple benchmark datasets. We then analyze the scalability of
300 ROSE when increasing the number of tasks, and perform detailed ablation studies to understand the
301 contribution of each component.302 **Continual Learning Setting.** We focus on class-incremental learning, widely considered the
303 most challenging continual learning scenario. In this setting, models must distinguish between all
304 previously encountered classes without knowing which task an input belongs to. Following Gao
305 et al. (2023), we split each dataset into non-overlapping class subsets that represent sequential tasks.
306 As tasks arrive one after another, we evaluate the model on all classes it has seen so far. To handle
307 the expanding set of classes, we dynamically grow the classification layer by adding new output
308 nodes for each task’s classes while freezing weights for previous classes. This approach isolates
309 the classification boundaries and lets us focus on how well the representation learning backbone
310 preserves knowledge.311 **Datasets.** Our experiments use three established continual learning benchmarks. ImageNet-
312 R (Hendrycks et al., 2021) contains 200 ImageNet classes rendered in various artistic styles (about
313 30,000 images). We create 5, 10, and 20 task sequences to test how our method scales with increasing
314 task count. CIFAR-100 (Krizhevsky et al., 2009) features 100 natural image classes that we divide
315 into 10 equal tasks with 10 classes each. DomainNet (Peng et al., 2019) is a large domain adaptation
316 dataset spanning 345 categories across 6 domains, which we split into 10 tasks to evaluate cross-
317 domain generalization. We run all experiments with 5 different random seeds and report two key
318 metrics: final accuracy after learning all tasks (Last) and average accuracy across the entire learning
319 trajectory (Avg.).320 **Baselines.** We benchmark ROSE against several leading continual learning approaches. At the
321 lower bound, we include a Sequential baseline that simply fine-tunes on each task without any
322 forgetting prevention. For prompt-based methods, we compare against L2P (Wang et al., 2022b),
323 DualPrompt (Wang et al., 2022a), and CODA-P (Smith et al., 2023b), which learn task-specific
prompt vectors. We also evaluate parameter-efficient approaches including C-LoRA (Smith et al.,

324 Table 2: Results (%) on ImageNet-R, CIFAR-100 and DomainNet (10 tasks). We report mean and
 325 standard deviation over 5 trials.

327 Tasks	328 ImageNet-R (10 Task)		329 CIFAR-100 (10 Task)		330 DomainNet (10 Task)		
	331 Method	332 Last (↑)	333 Avg. (↑)	334 Last (↑)	335 Avg. (↑)	336 Last (↑)	337 Avg. (↑)
338 Joint Training	339	340 81.14 ± 0.34	341 –	342 91.92 ± 0.05	343 –	344 77.72 ± 0.04	345 –
346 Sequential	347	348 62.54 ± 0.24	349 67.98 ± 0.27	350 62.18 ± 3.59	351 80.42 ± 0.23	352 54.34 ± 1.24	353 70.35 ± 0.21
354 L2P (Wang et al., 2022b)	355	356 65.41 ± 0.52	357 69.39 ± 0.43	358 82.48 ± 0.20	359 87.64 ± 0.25	360 71.56 ± 0.06	361 76.49 ± 0.02
362 DualPrompt (Wang et al., 2022a)	363	364 71.47 ± 0.35	365 75.82 ± 0.29	366 84.42 ± 0.30	367 90.06 ± 0.07	368 74.64 ± 0.06	369 78.57 ± 0.03
370 CODA-P (Smith et al., 2023b)	371	372 71.70 ± 0.39	373 76.71 ± 0.10	374 86.62 ± 0.11	375 91.08 ± 0.28	376 74.83 ± 0.15	377 79.83 ± 0.07
378 C-LoRA (Smith et al., 2023a)	379	380 71.89 ± 0.45	381 75.33 ± 0.28	382 82.97 ± 0.47	383 88.81 ± 0.34	384 70.34 ± 0.15	385 76.26 ± 0.15
386 LAE (Gao et al., 2023)	387	388 71.70 ± 0.39	389 76.71 ± 0.10	390 84.15 ± 0.10	391 89.84 ± 0.03	392 67.23 ± 0.42	393 76.76 ± 0.17
394 InfLoRA (Liang & Li, 2024)	395	396 75.65 ± 0.19	397 80.82 ± 0.12	398 86.51 ± 0.73	399 91.70 ± 0.32	400 75.45 ± 0.22	401 80.57 ± 0.57
402 ROSE	403	404 77.42 ± 0.18	405 82.15 ± 0.31	406 87.43 ± 0.65	407 93.06 ± 0.57	408 77.04 ± 0.38	409 81.37 ± 0.55

338 2023a), LAE (Gao et al., 2023), and InfLoRA (Liang & Li, 2024), which adapt weights through
 339 low-parameter updates. As an upper bound, we include Joint Training where all classes are trained
 340 simultaneously, showing the best possible performance. For a fair comparison, all methods share the
 341 same pre-trained backbone and training protocol.

342 **Implementation Details.** We build on ViT-B/16 (Dosovitskiy et al., 2020) pre-trained with self-
 343 supervision, following common practice in continual learning research. We insert adapters only in
 344 the query and key projection matrices of the transformer’s attention blocks. For ROSE, we allocate
 345 $k = 6000$ parameters per task based on our ablation findings, while using rank $r = 16$ for all
 346 LoRA-based methods. We train with Adam optimizer (Kingma & Ba, 2014), using different learning
 347 rates for classification ($1e^{-3}$) and adapter parameters ($1e^{-5}$). With a batch size of 64 and cosine
 348 learning rate decay, we achieve stable training. Other hyperparameters ($\delta = 1$, $\lambda = 0.001$, $\gamma = 0.5$,
 349 $\eta = 0.2$) were tuned on validation data.

350 5.1 MAIN RESULTS

351 **Overall Performance.** Table 2 presents the comparative results on ImageNet-R, CIFAR-100, and
 352 DomainNet with 10 tasks each. ROSE consistently outperforms all baseline methods across all
 353 datasets, achieving significant improvements in both final accuracy and average accuracy metrics. On
 354 ImageNet-R, ROSE achieves 77.42% final accuracy and 82.15% average accuracy, outperforming
 355 the previous state-of-the-art InfLoRA by 1.77% and 1.33%, respectively. The improvement is
 356 particularly noteworthy on CIFAR-100, where ROSE reaches 87.43% final accuracy, approaching
 357 the joint training upper bound of 91.92% while maintaining the ability to learn sequentially. For
 358 DomainNet, which tests cross-domain generalization capabilities, ROSE maintains its advantage with
 359 77.04% final accuracy and 81.37% average accuracy. These consistent improvements across diverse
 360 datasets demonstrate that ROSE’s non-sequential orthogonal parameter allocation effectively balances
 361 plasticity and stability, preventing interference between tasks while maintaining high representational
 362 capacity.

363 **Scalability to More Tasks.** A key advantage of ROSE is its theoretical capacity to support more tasks
 364 without performance degradation. To empirically validate this property, we evaluate all methods on
 365 ImageNet-R with 5, 10, and 20 tasks. As shown in Table 3, ROSE demonstrates superior scalability
 366 across all settings. With 5 tasks, ROSE achieves performance close to joint training (78.56% vs.
 367 81.14%), significantly outperforming all baselines. More importantly, as we scale to 10 and 20 tasks,
 368 ROSE exhibits substantially less performance degradation compared to other methods. Even with
 369 20 tasks, ROSE maintains 72.65% final accuracy, only 5.91% lower than its 5-task performance. In
 370 contrast, InfLoRA drops by 6.51%, and other methods show even larger degradation. This superior
 371 scalability directly validates our theoretical analysis: ROSE’s non-sequential parameter allocation
 372 with a shared orthogonal basis avoids the capacity limitations inherent in sequential orthogonalization
 373 approaches. The task capacity scales quadratically ($O(d^2/k)$) rather than linearly ($O(d/r)$), enabling
 374 ROSE to support significantly more tasks without interference.

375 **Catastrophic Forgetting Analysis.** To better understand ROSE’s ability to mitigate catastrophic
 376 forgetting, we analyze the performance trajectory as tasks are sequentially learned. Figure 2 shows the
 377 average accuracy on all tasks seen so far after learning each new task for ImageNet-R and CIFAR-100.
 378 On both datasets, ROSE demonstrates significantly stronger resistance to forgetting compared to all
 379 baseline methods. While other approaches show noticeable accuracy drops after learning each new

Table 3: Results (%) for 5, 10, and 20 tasks on ImageNet-R. We report mean and standard deviation over 5 trials.

Tasks	5 Task			10 Task			20 Task	
Method	Last (↑)	Average (↑)	Last (↑)	Average (↑)	Last (↑)	Average (↑)		
Joint Training	81.14 ± 0.34	—	81.14 ± 0.34	—	81.14 ± 0.34	—		
Sequential	58.74 ± 1.28	72.91 ± 0.28	62.54 ± 0.24	67.98 ± 0.27	34.62 ± 0.85	51.15 ± 1.50		
L2P (Wang et al., 2022b)	64.13 ± 0.78	68.66 ± 0.41	65.41 ± 0.52	69.39 ± 0.43	57.92 ± 0.28	64.57 ± 0.29		
DualPrompt (Wang et al., 2022a)	67.88 ± 0.17	71.16 ± 0.31	71.47 ± 0.35	75.82 ± 0.29	61.00 ± 0.72	65.80 ± 0.67		
CODA-P (Smith et al., 2023b)	73.09 ± 0.21	76.91 ± 0.21	71.70 ± 0.39	76.71 ± 0.10	67.28 ± 0.30	72.34 ± 0.17		
C-LoRA (Smith et al., 2023a)	75.85 ± 0.31	78.85 ± 0.34	71.89 ± 0.45	75.33 ± 0.28	65.71 ± 0.60	70.63 ± 0.17		
LAE (Gao et al., 2023)	73.84 ± 0.14	77.29 ± 0.45	71.70 ± 0.39	76.71 ± 0.10	66.98 ± 0.35	73.72 ± 0.05		
InfLoRA (Liang & Li, 2024)	77.52 ± 0.37	82.01 ± 0.12	75.65 ± 0.19	80.82 ± 0.12	71.01 ± 0.45	77.28 ± 0.45		
ROSE	78.56 ± 0.41	83.25 ± 0.47	77.42 ± 0.18	82.15 ± 0.31	72.65 ± 0.58	78.85 ± 0.69		

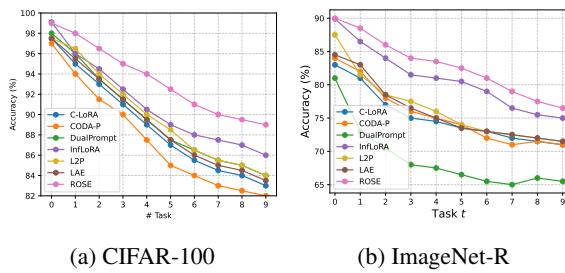


Figure 2: Sequential learning accuracy.

Metric	Average Acc. (↑)				
# Params k	3000	6000	12000	24000	48000
Sparsity	3.2%	4.8%	5.4%	8.0%	9.6%
Equiv. rank	2	4	8	16	32
CIFAR-100	91.9	93.0	93.0	93.0	93.0
ImageNet-R	79.7	82.2	82.1	82.1	81.1
DomainNet	80.4	81.3	81.3	81.2	81.1

Table 4: Performance comparison under different sparsity levels.

task, ROSE maintains a more stable performance trajectory throughout the learning process. This stability directly stems from our non-sequential parameter allocation strategy: by assigning distinct orthogonal components to each task upfront rather than constructing them sequentially, ROSE ensures that new task learning minimally interferes with previously acquired knowledge. The performance gap between ROSE and other methods widens as more tasks are learned, highlighting the cumulative advantage of our approach in preserving task-specific knowledge. This empirical evidence confirms our theoretical analysis that ROSE’s design effectively addresses the fundamental stability-plasticity dilemma in continual learning.

Analysis of Sequential Orthogonalization Limitations. Our theoretical analysis identified a fundamental limitation in sequential orthogonalization approaches: increasing rank reduces the available orthogonal subspaces, creating a trade-off between expressiveness and capacity. To empirically validate this insight, we compare InfLoRA’s performance across different rank settings on ImageNet-R. Figure 3 reveals a counter-intuitive phenomenon: increasing the rank from $r = 16$ to $r = 256$ actually deteriorates performance even in the first three tasks, despite providing substantially more parameters per task. This paradox is precisely predicted by our theoretical analysis: higher rank severely constrains the number of available orthogonal subspaces ($\lfloor \frac{d}{r} \rfloor$), leading to earlier capacity saturation. This empirical evidence strongly supports our argument that sequential orthogonalization fundamentally limits scalability and necessitates the non-sequential approach introduced by ROSE. By decoupling task capacity from parameter efficiency, ROSE breaks free from this inherent trade-off.

5.2 ABLATION STUDIES

While the above results directly validate our theoretical claims, we also conduct ablations to study sparsity, robustness to pretraining, and other design choices.

Sparsity Parameter Analysis. A key hyperparameter in ROSE is the sparsity level k , which determines the number of parameters allocated to each task. Table 4 examines performance across different sparsity levels on all three datasets. Interestingly, ROSE achieves optimal performance using only 4.8% of the available parameter space per task ($k = 6000$). Increasing k beyond this point yields diminishing returns, suggesting an efficient sweet spot for parameter allocation. This pattern is consistent across all datasets, indicating that ROSE’s orthogonal parameter allocation can be highly parameter-efficient while maintaining strong performance. The efficiency of low sparsity levels aligns with our theoretical analysis: since ROSE ensures perfect task separation through

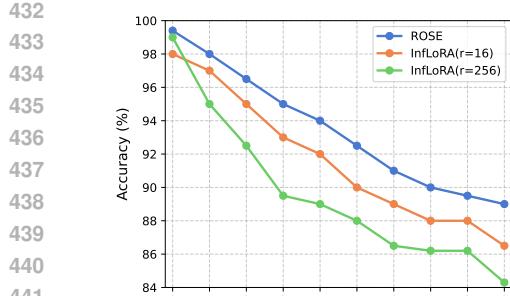


Figure 3: Investigation of different ranks for InfLoRA on CIFAR-100. Higher rank paradoxically leads to worse performance as tasks accumulate, validating our theoretical analysis.

	Method	Last (\uparrow)	Average (\uparrow)
DINO-1k	L2P (Wang et al., 2022b)	56.71 \pm 0.12	63.59 \pm 0.21
	DualPrompt (Wang et al., 2022a)	60.23 \pm 0.42	66.57 \pm 0.25
	CODA-P (Smith et al., 2023b)	64.02 \pm 0.68	71.50 \pm 0.42
	C-LoRA (Smith et al., 2023a)	63.07 \pm 0.36	68.09 \pm 0.41
	LAE (Gao et al., 2023)	61.03 \pm 0.27	69.89 \pm 0.15
	InfLoRA (Liang & Li, 2024)	68.31 \pm 0.28	76.15 \pm 0.05
iBOT-1k	InfLoRA-b5 (Liang & Li, 2024)	66.16 \pm 0.14	73.01 \pm 0.17
	ROSE	70.24 \pm 0.45	77.42 \pm 0.42
	L2P (Wang et al., 2022b)	60.80 \pm 0.35	66.58 \pm 0.28
	DualPrompt (Wang et al., 2022a)	63.78 \pm 0.38	68.88 \pm 0.16
	CODA-P (Smith et al., 2023b)	68.02 \pm 0.48	74.28 \pm 0.47
	C-LoRA (Smith et al., 2023a)	68.60 \pm 0.07	73.47 \pm 0.28
ROSE	LAE (Gao et al., 2023)	64.14 \pm 0.29	72.59 \pm 0.22
	InfLoRA (Liang & Li, 2024)	71.84 \pm 0.09	78.29 \pm 0.09
	ROSE	73.67 \pm 0.37	79.42 \pm 0.46

Table 5: Results (%) of different methods on ImageNet-R (10 tasks) using various self-supervised pre-trained models. ROSE consistently outperforms all baselines.

non-overlapping parameter allocation, each parameter contributes independently to task performance without interference. This enables strong performance even with a small fraction of active parameters per task.

Robustness to Pre-trained Models. To assess whether RoSE’s advantages depend on specific pre-training methods, we evaluate performance using different pre-trained backbone models. Table 5 compares results on ImageNet-R (10 tasks) using ViT-B/16 pre-trained with DINO-1k and iBOT-1k self-supervised learning approaches. The results demonstrate that RoSE consistently outperforms all baseline methods regardless of the pre-training approach. With DINO-1k pre-training, RoSE achieves 70.24% final accuracy and 77.42% average accuracy, outperforming InfLoRA by 1.93% and 1.27% respectively. The improvement is even more significant when compared to other methods such as CODA-P (6.22% higher final accuracy) and DualPrompt (10.01% higher final accuracy). Similarly, with iBOT-1k pre-training, RoSE maintains its advantage with 73.67% final accuracy and 79.42% average accuracy, surpassing InfLoRA by 1.83% and 1.13% respectively. This improvement is consistent across all other baselines, with RoSE outperforming C-LoRA by 5.07% and CODA-P by 5.65% in terms of final accuracy.

Computational Efficiency. Beyond accuracy improvements, ROSE also delivers significant computational advantages. Figure 1 compares the training time per task as the number of tasks increases for ROSE and InfLoRA on ImageNet-R. While InfLoRA’s training time grows linearly with the number of tasks due to sequential orthogonalization against all previous tasks, ROSE maintains constant training time regardless of task count. For 20 tasks, ROSE achieves a 5.8 \times speedup compared to InfLoRA, with the gap widening as more tasks are added. This empirical result directly validates our theoretical complexity analysis, showing that ROSE’s elimination of sequential dependencies translates to substantial computational savings in practice.

6 CONCLUSION

We presented **Random Orthogonal Subspace (ROSE)**, a continual learning framework that enforces task separation through non-sequential parameter allocation. By combining a shared random orthogonal basis with task-specific sparse masks, ROSE guarantees exact weight-level orthogonality, equal capacity allocation across tasks, and order-free training. This design yields three key advantages over sequential orthogonalization: a quadratic improvement in task capacity ($O(d/r) \rightarrow O(d^2/k)$), removal of rank constraints that limit expressivity, and elimination of growing computational overhead. Our theoretical analysis establishes orthogonality as the unifying principle across parameter, gradient, and function space, and shows that ROSE achieves this condition by construction. Extensive experiments on ImageNet-R, CIFAR-100, and DomainNet validate these guarantees: ROSE consistently outperforms state-of-the-art baselines, scales to hundreds of tasks without catastrophic forgetting, and maintains constant computational and memory efficiency.

486 REFERENCES
487

488 Haruka Asanuma, Shiro Takagi, Yoshihiro Nagano, Yuki Yoshida, Yasuhiko Igarashi, and Masato
489 Okada. Statistical mechanical analysis of catastrophic forgetting in continual learning with teacher
490 and student networks. *Journal of the Physical Society of Japan*, 90(10):104001, 2021.

491 Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for continual
492 learning with orthogonal gradient descent. *arXiv preprint arXiv:2006.11942*, 2020.

493 Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
494 New insights on reducing abrupt representation change in online continual learning. *arXiv preprint
495 arXiv:2104.05025*, 2021.

496 Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
497 Dokania, Philip HS Torr, and Marc'Aurelio Ranzato. Tiny episodic memories in continual learning.
498 In *ICML*, 2019.

499 MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Probing
500 representation forgetting in supervised and unsupervised continual learning. In *Proceedings of the
501 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16712–16721, 2022.

502 Meng Ding, Kaiyi Ji, Di Wang, and Jinhui Xu. Understanding forgetting in continual learning with
503 linear regression. *arXiv preprint arXiv:2405.17583*, 2024.

504 Thang Doan, Mehdi Abbana Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier.
505 A theoretical analysis of catastrophic forgetting through the ntk overlap matrix. In *International
506 Conference on Artificial Intelligence and Statistics*, pp. 1072–1080. PMLR, 2021.

507 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
508 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
509 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
510 arXiv:2010.11929*, 2020.

511 Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic
512 can catastrophic forgetting be in linear regression? In *Conference on Learning Theory*, pp.
513 4028–4079. PMLR, 2022.

514 Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
515 learning. In *International conference on artificial intelligence and statistics*, pp. 3762–3773.
516 PMLR, 2020.

517 Robert M French. Catastrophic forgetting in connectionist networks. *Trends in Cognitive Sciences*,
518 1999.

519 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
520 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of
521 the IEEE/CVF International Conference on Computer Vision*, pp. 11449–11459, 2023.

522 Etash Guha and Vihan Lakshman. On the diminishing returns of width for continual learning. *arXiv
523 preprint arXiv:2403.06398*, 2024.

524 Reinhard Heckel. Provable continual learning via sketched jacobian approximations. In *International
525 Conference on Artificial Intelligence and Statistics*, pp. 10448–10470. PMLR, 2022.

526 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
527 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
528 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International
529 Conference on Computer Vision*, pp. 8340–8349, 2021.

530 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
531 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

532 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
533 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

540 Ryo Karakida and Shotaro Akaho. Learning curves for continual learning in neural networks:
 541 Self-knowledge transfer and forgetting. *arXiv preprint arXiv:2112.01653*, 2021.
 542

543 Joonkyu Kim, Yejin Kim, and Jy-yong Sohn. Measuring representational shifts in continual learning: A linear transformation perspective. In *Forty-second International Conference on Machine Learning*.
 544

545 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
 546

547 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei
 548 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
 549 catastrophic forgetting in neural networks. In *PNAS*, 2017.
 550

551 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 552

553 Sebastian Lee, Sebastian Goldt, and Andrew Saxe. Continual learning in the teacher-student setup:
 554 Impact of task similarity. In *International Conference on Machine Learning*, pp. 6109–6119.
 555 PMLR, 2021.
 556

557 Haoran Li, Jingfeng Wu, and Vladimir Braverman. Fixed design analysis of regularization-based
 558 continual learning. In *Conference on Lifelong Learning Agents*, pp. 513–533. PMLR, 2023.
 559

560 Yan-Shuo Liang and Wu-Jun Li. Inflora: Interference-free low-rank adaptation for continual learning.
 561 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 562 23638–23647, 2024.
 563

564 Sen Lin, Peizhong Ju, Yingbin Liang, and Ness Shroff. Theory on forgetting and generalization of
 565 continual learning. In *International Conference on Machine Learning*, pp. 21078–21100. PMLR,
 566 2023.
 567

568 David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
 569 *Advances in neural information processing systems*, 30, 2017.
 570

571 Yun Luo, Zhen Yang, Xuefeng Bai, Fandong Meng, Jie Zhou, and Yue Zhang. Investigating forgetting
 572 in pre-trained representations through continual learning. *arXiv preprint arXiv:2305.05968*, 2023.
 573

574 Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
 575 pruning. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp.
 576 7765–7773, 2018.
 577

577 Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
 578 sequential learning problem. In *Psychology of learning and motivation*, volume 24, pp. 109–165.
 579 Elsevier, 1989.
 580

581 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 582 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF International Conference on
 583 Computer Vision*, pp. 1406–1415, 2019.
 584

585 Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
 586 forgetting functions. *Psychological Review*, 1990.
 587

588 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
 589 Incremental classifier and representation learning. In *CVPR*, 2017.
 590

591 Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
 592 forgetting with hard attention to the task. In *ICML*, 2018.
 593

592 James Seale Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua, Zsolt Kira, Yilin Shen, and Hongxia
 593 Jin. Continual diffusion: Continual customization of text-to-image diffusion with c-lora. *CoRR*,
 2023a.

594 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 595 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 596 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*
 597 *Conference on Computer Vision and Pattern Recognition*, pp. 11909–11919, 2023b.

598 Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. *arXiv preprint*
 599 *arXiv:1904.07734*, 2019.

600

601 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 602 Guolong Su, Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Dualprompt: Complementary
 603 prompting for rehearsal-free continual learning. In *Proceedings of the European Conference on*
 604 *Computer Vision*, pp. 631–648, 2022a.

605 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 606 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*
 607 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 139–149, 2022b.

608 Dong Yin, Mehrdad Farajtabar, Ang Li, Nir Levine, and Alex Mott. Optimization and generaliza-
 609 tion of regularization-based continual learning: a loss approximation viewpoint. *arXiv preprint*
 610 *arXiv:2006.10974*, 2020.

611 Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
 612 In *ICML*, 2017.

613

614 Xiao Zhang, Dejing Dou, and Ji Wu. Feature forgetting in continual representation learning. *arXiv*
 615 *preprint arXiv:2205.13359*, 2022.

616 Xuyang Zhao, Huiyuan Wang, Weiran Huang, and Wei Lin. A statistical theory of regularization-
 617 based continual learning. *arXiv preprint arXiv:2406.06213*, 2024.

618

619 A PROOFS

620 A.1 PROOF OF THEOREM 3.1

621 *Proof.* **Step 1: First-order expansion.** Expand the loss \mathcal{L}_τ around $\mathbf{W}^{(\tau-1)}$:

$$622 \mathcal{L}_\tau(\mathbf{W}^{(\tau-1)} + \Delta\mathbf{W}^{(\tau)}) \approx \mathcal{L}_\tau(\mathbf{W}^{(\tau-1)}) + \langle \nabla \mathcal{L}_\tau, \Delta\mathbf{W}^{(\tau)} \rangle + O(\|\Delta\mathbf{W}^{(\tau)}\|^2).$$

623 **Step 2: Characterizing interference.** The cross-effect of task τ on τ' at first order is proportional to

$$624 \langle \nabla \mathcal{L}_{\tau'}, \Delta\mathbf{W}^{(\tau)} \rangle \propto \sum_{k=1}^L \langle \Delta\mathbf{W}_{(\tau')}^{(k)}, \Delta\mathbf{W}_{(\tau)}^{(k)} \rangle_F.$$

625 **Step 3: Necessity.** If for some k the inner product $\langle \Delta\mathbf{W}_{(\tau')}^{(k)}, \Delta\mathbf{W}_{(\tau)}^{(k)} \rangle_F \neq 0$, then τ introduces
 626 a first-order perturbation to τ' . Thus orthogonality across all layers is *necessary* for eliminating
 627 first-order cross-effects.

628 **Step 4: Sufficiency.** If $\langle \Delta\mathbf{W}_{(\tau')}^{(k)}, \Delta\mathbf{W}_{(\tau)}^{(k)} \rangle_F = 0$ for all k , then the first-order term vanishes exactly.
 629 The only remaining interference is $O(\|\Delta\mathbf{W}\|^2)$, which is unavoidable at second order. Hence
 630 orthogonality is *sufficient* for achieving the minimum possible first-order interference bound.

631 **Conclusion.** Orthogonality uniquely characterizes the optimal perturbation structure under first-order
 632 linearization. \square

633 A.2 PROOF OF LEMMA 3.3

634 *Proof.* By the mean value theorem, for some $\tilde{\theta}$ on the line segment between θ_0 and $\theta_0 + \Delta\theta$,

$$635 f(x; \theta_0 + \Delta\theta) - f(x; \theta_0) = \nabla_\theta f(x; \theta_0) \Delta\theta + \frac{1}{2} \Delta\theta^\top \nabla^2 f(x; \tilde{\theta}) \Delta\theta.$$

636 If $\nabla_\theta f$ is L -Lipschitz, then $\|\nabla^2 f\|_2 \leq L$ in the neighborhood. Thus

$$637 \left\| f(x; \theta_0 + \Delta\theta) - f(x; \theta_0) - \nabla_\theta f(x; \theta_0) \Delta\theta \right\|_2 \leq \frac{L}{2} \|\Delta\theta\|_2^2,$$

638 which is the claimed bound. \square

648 A.3 PROOF OF PROPOSITION 3.4
649650 *Proof.* **Step 1: Decomposition of NTK.** Linearizing f at θ_0 , the NTK block between X_a and X_b is
651

652
$$K_{\theta_0}(X_a, X_b) = \sum_{k=1}^L \mathcal{J}_k(X_a; \theta_0) \mathcal{J}_k(X_b; \theta_0)^\top.$$

653
654

655 **Step 2: Spectral concentration.** By Assumption 3.2, each cross-Gram $\mathbf{G}_{ab}^{(k)}$ is dominated by a prin-
656 cipal component with eigenvalue $\lambda_{\max}^{(k)}(a, b)$. The residual spectral mass is bounded by $\alpha_k \lambda_{\max}^{(k)}(a, b)$.
657658 **Step 3: Bounding cross-effects.** For task update $\Delta \mathbf{W}^{(k)}$, the induced cross-effect is proportional to
659 $\|\Delta \mathbf{W}^{(k)}\|_F \sqrt{\lambda_{\max}^{(k)}(a, b)}$. Summing across layers gives
660

662
$$\|K_{\theta_0}(X_a, X_b)\|_F \leq \sum_{k=1}^L c_k(a, b) \|\Delta \mathbf{W}^{(k)}\|_F + O(\|\Delta \theta\|_2^2),$$

663
664

665 with $c_k(a, b) \propto \sqrt{\lambda_{\max}^{(k)}(a, b)}$.
666667 **Step 4: Orthogonality condition.** If $\langle \Delta \mathbf{W}_{(\tau)}^{(k)}, \Delta \mathbf{W}_{(\tau')}^{(k)} \rangle_F = 0$ for all k , then cross-terms vanish up
668 to residual anisotropy α_k and second-order terms from Lemma 3.3. Hence
669

670
$$K_{\theta_0}(X_{\tau'}, X_{\tau}) = \mathbf{0} + O\left(\|\Delta \theta\|_2^2 + \sum_k \alpha_k \|\Delta \mathbf{W}^{(k)}\|_F\right).$$

671
672

673 **Conclusion.** Layerwise orthogonality provides an exact finite-width surrogate when $\alpha_k = 0$, and
674 suppresses interference to second-order otherwise. \square
675676 A.4 PROOF OF LEMMA 4.1
677678 *Proof.* Write $\mathbf{U} = \Delta \mathbf{W} \mathbf{B}^\top$. Then
679

680
$$\Delta \mathbf{W} - \mathbf{U}_{(k)} \mathbf{B} = (\mathbf{U} - \mathbf{U}_{(k)}) \mathbf{B}.$$

681 Since \mathbf{B} is orthogonal, $\|\mathbf{M} \mathbf{B}\|_F = \|\mathbf{M}\|_F$ for any \mathbf{M} . Therefore
682

683
$$\|\Delta \mathbf{W} - \mathbf{U}_{(k)} \mathbf{B}\|_F = \|\mathbf{U} - \mathbf{U}_{(k)}\|_F.$$

684 By construction, $\mathbf{U}_{(k)}$ retains only the k largest entries of \mathbf{U} , so the error is exactly the ℓ_2 norm of
685 the discarded entries:
686

687
$$\|\mathbf{U} - \mathbf{U}_{(k)}\|_F^2 = \sum_{(i,j) \notin S_k^*} U_{ij}^2.$$

688
689

690 This proves the lemma. \square
691692
693 B IMPLEMENTATION ALGORITHMS
694695 This appendix provides the detailed pseudocode for the ROSE framework. Algorithm 1 specifies how
696 to construct the orthogonal basis and non-overlapping support masks for each task, while Algorithm 2
697 shows how training is performed using these supports with sparse coefficient updates. Together they
698 instantiate the design described in Section 4.
699700 In practice, a single shared basis \mathbf{B} can be used across all layers or tasks without degrading the
701 theoretical guarantees or empirical performance. This simplifies storage and implementation while
preserving exact orthogonality and the expressivity-sparsity tradeoffs established in our analysis.

702 Algorithm 1 ROSE Pattern & Basis Initialization (per layer k)

703 **Require:** basis size d , sparsity k , max tasks T_{\max} , public RNG seed seed

704 1: **Basis generation:**

705 2: Option A (QR): sample $\mathbf{G} \sim \mathcal{N}(0, 1)^{d \times d}$ with seed; compute thin QR, $\mathbf{G} = \mathbf{Q}\mathbf{R}$; set

706 $\mathbf{B}^{(k)} \leftarrow \mathbf{Q}$.

707 3: Option B (Hadamard/DFT): set $\mathbf{B}^{(k)}$ to normalized Hadamard or DFT.

708 4: $\mathcal{U} \leftarrow [d] \times [d]$.

709 5: **for** $t = 1$ to T_{\max} **do**

710 6: Sample $S_t \subset \mathcal{U}$, $|S_t| = k$, without replacement

711 7: Set $(\mathbf{S}_t^{(k)})_{ij} = \mathbf{1}\{(i, j) \in S_t\}$ and remove S_t from \mathcal{U}

712 8: **end for**

713 9: **return** $\mathbf{B}^{(k)}, \{\mathbf{S}_t^{(k)}\}_{t=1}^{T_{\max}}$

716 Algorithm 2 ROSE Training for task t (layers $k = 1..L$)

717 **Require:** frozen base $\mathbf{W}_0^{(k)}$, mask $\mathbf{S}_t^{(k)}$, basis $\mathbf{B}^{(k)}$

718 1: $\mathbf{A}_t^{(k)} = \mathbf{S}_t^{(k)} \odot \Theta_t^{(k)}$ (learnable only on mask entries)

719 2: Forward: $\mathbf{W}_0^{(k)} + \mathbf{A}_t^{(k)} \mathbf{B}^{(k)}$

720 3: Backprop (sparse):

721
$$\nabla_{\Theta_t^{(k)}} \mathcal{L} = (\nabla_{\Delta \mathbf{W}_{(t)}^{(k)}} \mathcal{L}) (\mathbf{B}^{(k)})^\top \odot \mathbf{S}_t^{(k)}$$

722 4: Update optimizer on $\Theta_t^{(k)}$ only

723 5: (Optional) renormalize columns of $\mathbf{B}^{(k)}$ if using QR

727

728 **C THE USE OF LLMs**

729

730 We use large language models to polish and refine writing. This includes improving clarity, tone,

731 grammar, and flow, while preserving the original meaning and intent.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755