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ABSTRACT

Catastrophic forgetting arises when updates for new tasks perturb predictions on
earlier ones. We pose continual learning as interference minimization and show
that, under a first-order (linearized) model of training dynamics, orthogonal task
updates across layers are both necessary for zero interference and sufficient to
achieve the minimum interference bound. From a function perspective, the Neu-
ral Tangent Kernel (NTK) view identifies interference-free learning with a zero
cross-kernel block. We prove that, under a mild spectral-concentration assumption
on cross-layer Jacobians, this functional condition is approximately realized by
layerwise Frobenius orthogonality, yielding a unified parameter–gradient–function
principle. Guided by this principle, we design a basis-agnostic orthogonal decom-
position where tasks share an orthogonal basis but use disjoint sparse supports.
This construction guarantees exact non-interference at finite width (in the first-order
sense), provides an explicit sparsity–error trade-off, and yields high-probability
quadratic capacity O(d2/k) with constant per-task training cost, up to precom-
putation of patterns. Empirically, on class-incremental benchmarks our method
attains competitive accuracy and strong robustness to forgetting, and matches the
predicted capacity/efficiency behavior. Overall, we identify orthogonality as the
locally optimal first-order structure for continual learning and provide a simple,
constructive framework to enforce it in practice.

1 INTRODUCTION

When neural networks learn tasks sequentially, each new task modifies the weights and risks interfer-
ing with knowledge from previous tasks, leading to catastrophic forgetting (McCloskey & Cohen,
1989; Ratcliff, 1990; French, 1999). A large body of work has explored algorithmic strategies to
mitigate forgetting, including rehearsal-based methods (Rebuffi et al., 2017; Chaudhry et al., 2019),
regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017), and architectural
methods (Mallya & Lazebnik, 2018; Serra et al., 2018). Despite these advances, the theoretical
understanding of forgetting has remained limited.

Catastrophic forgetting in continual learning occurs when updates for new tasks interfere with
knowledge acquired from earlier ones. While prior analyses bound this interference in terms of
weight changes (Guha & Lakshman, 2024), they remain largely descriptive: they quantify forgetting
but do not prescribe how to structure learning to avoid it. Practical methods often enforce orthogonality
heuristically, e.g., via gradient or subspace constraints (Lopez-Paz & Ranzato, 2017; Farajtabar et al.,
2020; Mallya & Lazebnik, 2018; Serra et al., 2018; Hu et al., 2022; Liang & Li, 2024), yet lack clear
guarantees about interference in the full, class-incremental setting (Van de Ven & Tolias, 2019).

We address this gap with a theory-to-design pipeline. First, we cast continual learning as an
interference-minimization problem and prove that orthogonal task updates are optimal at first order.
Second, we show that in the Neural Tangent Kernel (NTK) regime (Jacot et al., 2018), interference-
free learning is equivalent to a zero cross-kernel condition; under mild isotropy, this coincides with
layerwise orthogonality, yielding a unified parameter–function–gradient view. Third, we implement
this principle via a basis-agnostic orthogonal decomposition that separates a shared orthogonal
basis from task-specific disjoint sparse supports, guaranteeing weight-level non-interference while
retaining expressivity. The NTK perspective supplies a coordinate-free functional criterion, while
perturbation analysis provides the finite-width optimality and capacity guarantees; together they yield
both a unifying principle and a constructive mechanism. The contributions are:
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• Orthogonality as optimal. We prove that orthogonal task updates are the unique first-order
solution to the interference-minimization program at finite width.

• Unified orthogonality principle. We show that zero cross-kernel (NTK) and layerwise
orthogonality coincide under mild isotropy, aligning parameter, gradient, and function views.

• Constructive orthogonal decomposition. We instantiate this principle with a basis-agnostic
decomposition and task-specific disjoint sparse supports, ensuring exact non-interference
with explicit capacity and efficiency guarantees.

• Empirical validation. On class-incremental benchmarks, our method achieves competitive
accuracy, strong robustness to forgetting, and realizes the predicted capacity/complexity
trade-offs.

2 RELATED WORK

We situate our work within three strands of continual learning research: (i) theoretical analyses of
forgetting, (ii) orthogonality and subspace-based approaches, and (iii) representation-level studies.
Our contribution lies in advancing the theoretical foundations by establishing principled capacity
allocation strategies through orthogonal weight decomposition.

Theoretical Analysis of Continual Learning. A large body of theoretical work has sought to
understand catastrophic forgetting. Early studies often relied on linear models to make analysis
tractable (Ding et al., 2024; Zhao et al., 2024; Evron et al., 2022; Lin et al., 2023; Li et al., 2023;
Heckel, 2022). These works frame each task as a regression problem and analyze weight drift
during sequential learning. For example, Evron et al. (2022) and Lin et al. (2023) study how
task sequence properties influence generalization error, while Heckel (2022) and Li et al. (2023)
focus on regularization and representation stability. Although insightful, these linear or simplified
analyses cannot capture the representational dynamics of deep nonlinear networks, and they do not
prescribe constructive mechanisms to prevent interference. Our work instead derives an optimal
perturbation structure and provides explicit finite-width guarantees. Another perspective comes from
the teacher–student framework, where tasks correspond to different teacher networks (Lee et al., 2021;
Asanuma et al., 2021). These studies connect task similarity with student generalization, but they
provide limited constructive guidance for designing interference-free updates. Neural tangent kernel
(NTK) approaches (Bennani et al., 2020; Doan et al., 2021; Yin et al., 2020; Karakida & Akaho, 2021)
model continual learning as recursive kernel regression in the infinite-width regime, where capacity
constraints vanish. Our work instead addresses finite-width networks, where architectural trade-offs
become fundamental. Most relevant is the perturbation analysis framework (Guha & Lakshman,
2024), which models continual learning as sequential weight perturbations and derives forgetting
bounds that scale with width and depth. Their framework is descriptive, quantifying the extent of
forgetting, whereas ours is prescriptive: we identify the optimal update structure, prove its necessity
and sufficiency, and instantiate it via a basis-agnostic orthogonal decomposition with explicit capacity
and efficiency guarantees.

Orthogonal and Subspace Methods. Several practical methods have explored orthogonality or
subspace separation to mitigate forgetting. Gradient-based approaches such as Gradient Episodic
Memory (Lopez-Paz & Ranzato, 2017) and Orthogonal Gradient Descent (Farajtabar et al., 2020)
encourage update directions that are less disruptive to past tasks, though without principled capacity
guarantees. Subspace-based approaches allocate disjoint model components to different tasks.
PackNet (Mallya & Lazebnik, 2018) uses pruning to preserve important weights, while HAT (Serra
et al., 2018) employs task-specific masks. Recent work explores low-rank and parameter-efficient
adaptations, such as LoRA (Hu et al., 2022), where updates are expressed through fixed low-rank
factors. Although structurally related to our decomposition, these approaches do not enforce inter-task
orthogonality and lack theoretical guarantees on interference. Our framework derives orthogonality as
a necessary condition and provides provable capacity and efficiency results. We present a prescriptive
framework that derives orthogonality as the necessary structure and gives explicit capacity and
efficiency guarantees, realized through a shared orthogonal basis with task-specific disjoint sparse
supports.

Representation Forgetting and Analysis. Recent work has shifted toward analyzing forgetting at
the representation level. Empirical probes (Davari et al., 2022; Zhang et al., 2022; Caccia et al., 2021;
Luo et al., 2023) measure feature retention and drift across tasks, while theoretical analyses such
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as Kim et al. introduce metrics for representation discrepancy. These works highlight how internal
representations evolve under sequential training, but they primarily describe the phenomenon rather
than offering mechanisms for control. Representation-level analyses have primarily described how
features drift or degrade across tasks. In contrast, our work establishes a prescriptive framework:
by enforcing orthogonal perturbations with principled sparsity allocation, we provide a constructive
mechanism that provably prevents interference.

3 THEORETICAL FRAMEWORK

We develop a framework that treats catastrophic forgetting as a problem of designing weight per-
turbations. Rather than only analyzing how forgetting arises, our goal is constructive: derive the
update structure that eliminates first-order interference while preserving task performance. Our
analysis proceeds in two steps. First, a weight–perturbation view formulates continual learning as an
optimization problem and shows that orthogonal task updates are both necessary and sufficient under
first-order linearization. Second, a function–space view connects this condition to the Neural Tangent
Kernel (NTK), yielding a coordinate-free criterion directly tied to prediction dynamics. Together,
these perspectives provide a finite-width guarantee and a unifying functional interpretation.

3.1 PRELIMINARIES AND PROBLEM SETUP

We consider an L-layer ReLU network trained sequentially on tasks {1, 2, . . . , N}. For task τ ,
training produces an update ∆W

(k)
(τ) at layer k, so that after t tasks

W
(k)
t = W

(k)
0 +

t∑
τ=1

∆W
(k)
(τ). (1)

Prior perturbation analyses (Guha & Lakshman, 2024; Evron et al., 2022; Lin et al., 2023) bound
forgetting of a task τ ′ by the cumulative size of later updates:

Forgettingτ ′ ≤ C

N∑
t=τ ′+1

∥∆W
(k)
(t) ∥F , (2)

where C depends on architecture. This explains why wider networks forget less, but it is purely
descriptive: it does not specify the update structure required to avoid interference.

3.2 OPTIMAL PERTURBATION STRUCTURE

We instead pose continual learning as minimizing cumulative interference subject to each task being
solved to accuracy ϵτ :

min
{∆W

(k)

(τ)
}

∑
τ ′<t

∥∆W
(k)
(t) ∥F s.t. Lτ

(
W

(k)
0 +

τ∑
s=1

∆W
(k)
(s)

)
≤ ϵτ , ∀τ. (3)

Our first result characterizes the structure of updates that solves this program.

Theorem 3.1 (Local first-order optimality of orthogonal updates). Under a first-order Taylor expan-
sion of each loss around W(τ−1), with smoothness and bounded gradients, the following holds for
any distinct tasks τ ̸= τ ′: 〈

∆W
(k)
(τ), ∆W

(k)
(τ ′)

〉
F
= 0 ∀k

is both necessary to eliminate first-order cross-effects between tasks and sufficient to achieve the
minimum possible first-order forgetting bound. In other words, layerwise orthogonality uniquely
characterizes the optimal perturbation structure under linearization.

Thus, orthogonality—often used heuristically in practice (Lopez-Paz & Ranzato, 2017; Farajtabar
et al., 2020)—emerges as a derived necessity for interference-free continual learning.
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3.3 NEURAL TANGENT KERNEL (NTK) PERSPECTIVE

We now connect this perturbation view with the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
Let θ denote network parameters and f(x; θ) ∈ RC the logits. The NTK at θ is

Kθ(x, x
′) := ∇θf(x; θ)

⊤∇θf(x
′; θ) ∈ RC×C . (4)

Under gradient flow on task τ , the prediction dynamics on another dataset Xτ ′ evolve as
d

dt
f(Xτ ′ ; θt) = −Kθt(Xτ ′ , Xτ ) rτ (t), (5)

where rτ (t) are residuals. Hence task τ ′ is unaffected by training on τ iff the cross-kernel block
vanishes:

Kθt(Xτ ′ , Xτ ) = 0 for all t. (6)

Finite-width proxy via orthogonality. In finite networks, Kθt drifts with training and exact vanishing
cannot be enforced. A natural surrogate is layerwise Frobenius orthogonality:

L∑
k=1

〈
∆W

(k)
(τ), ∆W

(k)
(τ ′)

〉
F
≈ 0, (7)

which arises directly from linearizing f at θ0 and decomposing the NTK across layers. The approxi-
mation is justified by the following assumption and lemma.
Assumption 3.2 (Spectral concentration of cross-Jacobians). For datasets Xa, Xb and each layer
k, the cross-Gram matrix G

(k)
ab := Jk(Xa; θ0)

⊤Jk(Xb; θ0) has a dominant eigenvalue λ
(k)
max(a, b),

with residual spectral mass ρ(k)(a, b) ≤ αkλ
(k)
max(a, b) for some αk < 1.

Lemma 3.3 (Validity of linearization). If f has L-Lipschitz Jacobian near θ0, then for any update
∥∆θ∥2 ≤ r, ∥∥f(x; θ0 +∆θ)− f(x; θ0)−∇θf(x; θ0)∆θ

∥∥
2
≤ L

2 r2.

Proposition 3.4 (Finite-width proxy to zero cross-kernel). Under Lemma 3.3 and Assumption 3.2,

there exist weights ck(a, b) ∝
√
λ
(k)
max(a, b) such that

∥Kθ0(Xa, Xb)∥F ≤
L∑

k=1

ck(a, b) ∥∆W(k)∥F + O(∥∆θ∥22).

Moreover, if ⟨∆W
(k)
(τ),∆W

(k)
(τ ′)⟩F = 0 for all k, then

Kθ0(Xτ ′ , Xτ ) = 0 + O

(
∥∆θ∥22 +

∑
k

αk ∥∆W(k)∥F

)
.

Closing the proxy with orthogonal decomposition. With the parameterization ∆W
(k)
(τ) = A

(k)
(τ)B,

where B is a shared orthogonal basis, disjoint supports of A(k)
(τ) across tasks ensure

⟨∆W
(k)
(τ), ∆W

(k)
(τ ′)⟩F = 0, ∀k,

thus exactly satisfying the finite-width proxy. This connects our constructive mechanism to the
kernel-theoretic condition for interference-free learning.

Approximation quality. The NTK condition is exact in the lazy regime. At finite width, Proposi-
tion 3.4 shows orthogonality suppresses cross-effects up to (i) second-order parameter drift and (ii)
residual anisotropy αk. Accuracy improves with smaller steps, wider layers, and more concentrated
Jacobians.
4 METHODOLOGY

We now describe how to instantiate the orthogonal–decomposition framework of Sec. 3 as a practical
continual learning algorithm. Our design emphasizes three principles: (i) theoretical guarantees of
non-interference, (ii) quadratic task capacity with constant per-task cost, and (iii) minimal implemen-
tation overhead. Full pseudocode for initialization and training is deferred to Appendix B; here we
focus on the main design choices and efficiency considerations.

4
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4.1 PARAMETERIZATION

Let W denote the frozen base weights. For each task t, we introduce an update of the form

∆Wt = AtB, B ∈ Rd×d, BTB = I, ∥At∥0 ≤ k, supp(Ai)∩supp(Aj) = ∅ (i ̸= j).
(8)

The matrix B is any orthogonal basis shared across tasks. In practice, we fix B once using either: (i)
a QR decomposition of a Gaussian matrix (isotropic but O(d3) precomputation), or (ii) a structured
transform such as Hadamard or DFT (fast O(d2 log d) evaluation, no storage beyond a seed). Both
choices allow regeneration from a public RNG seed, eliminating per-task storage cost. The disjoint-
support constraint guarantees exact orthogonality of task updates (Theorem 3.1, Proposition 3.4),
while the ℓ0 budget k ensures uniform allocation of capacity to each task.

4.2 SUPPORT ALLOCATION AND CAPACITY

Each update matrix At is parameterized as

At = St ⊙Θt, (9)

where St ∈ {0, 1}d×d is a binary mask with ∥St∥0 = k and Θt stores the k learnable coefficients.
Masks are drawn uniformly without replacement from the global index pool so that Si ⊙ Sj = 0 for
i ̸= j, guaranteeing interference-free updates.

This allocation strategy yields a theoretical capacity of

Tmax =
⌊
d2

k

⌋
tasks per layer. Because supports are sampled uniformly without replacement, this capacity is
achieved deterministically, making disjoint random masks both simple and optimal in practice.

For comparison, if supports were instead sampled with replacement, the expected number of tasks
accommodated can exceed d2/k, but at the cost of collisions. These overlaps introduce bounded in-
terference rather than perfect orthogonality. By standard concentration results, such with-replacement
sampling still achieves near-maximal coverage with high probability:

Pr
[
Tachieved ≥ (1− δ) d2

k

]
≥ 1− exp(−cδ2d2/k),

for some universal constant c. This highlights a tradeoff: strict disjointness guarantees zero inter-
ference with deterministic capacity, while relaxed allocation can extend capacity marginally at the
expense of controlled overlap.

4.3 TRAINING PROCEDURE

At initialization, we generate the shared orthogonal basis B and assign each task a disjoint k-sparse
mask St. During training on task t, only the coefficients Θt associated with St are updated. Forward
passes use W0 + AtB, and backpropagation computes gradients only for the k active entries.
Thus, each task trains independently in its allocated subspace, and no sequential orthogonalization
is required. This design keeps per-task cost constant: once masks are assigned, training a new
task is no more expensive than training the base model with a fixed-size adapter. In contrast,
sequential orthogonalization methods (e.g., InfLoRA) require O(t)-growing orthogonalization steps.
For reproducibility, the full step-by-step pseudocode for basis initialization and task training is
provided in Appendix B.

4.4 COMPLEXITY ANALYSIS

Precomputation. Basis generation is O(d3) for QR or O(d2 log d) for Hadamard/FFT. Pattern
generation requires O(Td2) to precompute all T masks, or O(1) per task if masks are generated
lazily from the RNG seed and task index.

Per-task training. Forward/backward cost is O(d2) if applying AtB naively, but only O(kd) if
exploiting sparsity (with fast transforms for B). Parameter updates involve exactly k scalars per
layer.

Cumulative. Across T tasks, total cost is O(Td2) (or O(Tkd) with structured B), plus a one-off
O(d3) (QR) or O(d2 log d) (Hadamard/FFT). Unlike sequential methods with O(t) growth in per-task
cost, ROSE maintains constant training complexity.

5
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Table 1: Complexity Comparison

Metric ROSE InfLoRA
Capacity O(d2/k) O(d/r)
Training O(d2) O(t · dr2)
Memory O(k) O(dr)

Figure 1: Complexity analysis of ROSE vs InfLoRA showing (a) theoretical bounds and (b) practical
implications for capacity and training efficiency.

4.5 EXPRESSIVITY VS. SPARSITY

Let U = ∆WB⊤ denote an update expressed in the shared orthogonal basis, and U(k) its best
k-sparse approximation.

Lemma 4.1 (Approximation error under k-sparsity). For any target update ∆W,∥∥∆W −U(k)B
∥∥
F
=
∥∥U−U(k)

∥∥
F
=

√ ∑
(i,j)/∈S⋆

k

U2
ij ,

where S⋆
k are the k largest entries of U.

Thus, the error is determined by the tail energy of U. When weight perturbations are compressible
in the orthogonal basis, small k suffices with minimal loss. In practice, this yields an explicit
sparsity–accuracy tradeoff: k controls both per-task parameter cost and approximation fidelity.

5 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed ROSE
framework. After describing the experimental setup, we present comprehensive comparisons with
state-of-the-art methods across multiple benchmark datasets. We then analyze the scalability of
ROSE when increasing the number of tasks, and perform detailed ablation studies to understand the
contribution of each component.

Continual Learning Setting. We focus on class-incremental learning, widely considered the
most challenging continual learning scenario. In this setting, models must distinguish between all
previously encountered classes without knowing which task an input belongs to. Following Gao
et al. (2023), we split each dataset into non-overlapping class subsets that represent sequential tasks.
As tasks arrive one after another, we evaluate the model on all classes it has seen so far. To handle
the expanding set of classes, we dynamically grow the classification layer by adding new output
nodes for each task’s classes while freezing weights for previous classes. This approach isolates
the classification boundaries and lets us focus on how well the representation learning backbone
preserves knowledge.

Datasets. Our experiments use three established continual learning benchmarks. ImageNet-
R (Hendrycks et al., 2021) contains 200 ImageNet classes rendered in various artistic styles (about
30,000 images). We create 5, 10, and 20 task sequences to test how our method scales with increasing
task count. CIFAR-100 (Krizhevsky et al., 2009) features 100 natural image classes that we divide
into 10 equal tasks with 10 classes each. DomainNet (Peng et al., 2019) is a large domain adaptation
dataset spanning 345 categories across 6 domains, which we split into 10 tasks to evaluate cross-
domain generalization. We run all experiments with 5 different random seeds and report two key
metrics: final accuracy after learning all tasks (Last) and average accuracy across the entire learning
trajectory (Avg.).

Baselines. We benchmark ROSE against several leading continual learning approaches. At the
lower bound, we include a Sequential baseline that simply fine-tunes on each task without any
forgetting prevention. For prompt-based methods, we compare against L2P (Wang et al., 2022b),
DualPrompt (Wang et al., 2022a), and CODA-P (Smith et al., 2023b), which learn task-specific
prompt vectors. We also evaluate parameter-efficient approaches including C-LoRA (Smith et al.,

6
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Table 2: Results (%) on ImageNet-R, CIFAR-100 and DomainNet (10 tasks). We report mean and
standard deviation over 5 trials.

Tasks ImageNet-R (10 Task) CIFAR-100 (10 Task) DomainNet (10 Task)

Method Last (↑) Avg. (↑) Last (↑) Avg. (↑) Last (↑) Avg. (↑)

Joint Training 81.14 ± 0.34 − 91.92 ± 0.05 − 77.72 ± 0.04 −

Sequential 62.54 ± 0.24 67.98 ± 0.27 62.18 ± 3.59 80.42 ± 0.23 54.34 ± 1.24 70.35 ± 0.21
L2P (Wang et al., 2022b) 65.41 ± 0.52 69.39 ± 0.43 82.48 ± 0.20 87.64 ± 0.25 71.56 ± 0.06 76.49 ± 0.02
DualPrompt (Wang et al., 2022a) 71.47 ± 0.35 75.82 ± 0.29 84.42 ± 0.30 90.06 ± 0.07 74.64 ± 0.06 78.57 ± 0.03
CODA-P (Smith et al., 2023b) 71.70 ± 0.39 76.71 ± 0.10 86.62 ± 0.11 91.08 ± 0.28 74.83 ± 0.15 79.83 ± 0.07
C-LoRA (Smith et al., 2023a) 71.89 ± 0.45 75.33 ± 0.28 82.97 ± 0.47 88.81 ± 0.34 70.34 ± 0.15 76.26 ± 0.15
LAE (Gao et al., 2023) 71.70 ± 0.39 76.71 ± 0.10 84.15 ± 0.10 89.84 ± 0.03 67.23 ± 0.42 76.76 ± 0.17
InfLoRA (Liang & Li, 2024) 75.65 ± 0.19 80.82 ± 0.12 86.51 ± 0.73 91.70 ± 0.32 75.45 ± 0.22 80.57 ± 0.57

ROSE 77.42 ± 0.18 82.15 ± 0.31 87.43 ± 0.65 93.06 ± 0.57 77.04 ± 0.38 81.37 ± 0.55

2023a), LAE (Gao et al., 2023), and InfLoRA (Liang & Li, 2024), which adapt weights through
low-parameter updates. As an upper bound, we include Joint Training where all classes are trained
simultaneously, showing the best possible performance. For a fair comparison, all methods share the
same pre-trained backbone and training protocol.

Implementation Details. We build on ViT-B/16 (Dosovitskiy et al., 2020) pre-trained with self-
supervision, following common practice in continual learning research. We insert adapters only in
the query and key projection matrices of the transformer’s attention blocks. For ROSE, we allocate
k = 6000 parameters per task based on our ablation findings, while using rank r = 16 for all
LoRA-based methods. We train with Adam optimizer (Kingma & Ba, 2014), using different learning
rates for classification (1e−3) and adapter parameters (1e−5). With a batch size of 64 and cosine
learning rate decay, we achieve stable training. Other hyperparameters (δ = 1, λ = 0.001, γ = 0.5,
η = 0.2) were tuned on validation data.
5.1 MAIN RESULTS

Overall Performance. Table 2 presents the comparative results on ImageNet-R, CIFAR-100, and
DomainNet with 10 tasks each. ROSE consistently outperforms all baseline methods across all
datasets, achieving significant improvements in both final accuracy and average accuracy metrics. On
ImageNet-R, ROSE achieves 77.42% final accuracy and 82.15% average accuracy, outperforming
the previous state-of-the-art InfLoRA by 1.77% and 1.33%, respectively. The improvement is
particularly noteworthy on CIFAR-100, where ROSE reaches 87.43% final accuracy, approaching
the joint training upper bound of 91.92% while maintaining the ability to learn sequentially. For
DomainNet, which tests cross-domain generalization capabilities, ROSE maintains its advantage with
77.04% final accuracy and 81.37% average accuracy. These consistent improvements across diverse
datasets demonstrate that ROSE’s non-sequential orthogonal parameter allocation effectively balances
plasticity and stability, preventing interference between tasks while maintaining high representational
capacity.

Scalability to More Tasks. A key advantage of ROSE is its theoretical capacity to support more tasks
without performance degradation. To empirically validate this property, we evaluate all methods on
ImageNet-R with 5, 10, and 20 tasks. As shown in Table 3, ROSE demonstrates superior scalability
across all settings. With 5 tasks, ROSE achieves performance close to joint training (78.56% vs.
81.14%), significantly outperforming all baselines. More importantly, as we scale to 10 and 20 tasks,
ROSE exhibits substantially less performance degradation compared to other methods. Even with
20 tasks, ROSE maintains 72.65% final accuracy, only 5.91% lower than its 5-task performance. In
contrast, InfLoRA drops by 6.51%, and other methods show even larger degradation. This superior
scalability directly validates our theoretical analysis: ROSE’s non-sequential parameter allocation
with a shared orthogonal basis avoids the capacity limitations inherent in sequential orthogonalization
approaches. The task capacity scales quadratically (O(d2/k)) rather than linearly (O(d/r)), enabling
ROSE to support significantly more tasks without interference.

Catastrophic Forgetting Analysis. To better understand ROSE’s ability to mitigate catastrophic
forgetting, we analyze the performance trajectory as tasks are sequentially learned. Figure 2 shows the
average accuracy on all tasks seen so far after learning each new task for ImageNet-R and CIFAR-100.
On both datasets, ROSE demonstrates significantly stronger resistance to forgetting compared to all
baseline methods. While other approaches show noticeable accuracy drops after learning each new
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Table 3: Results (%) for 5, 10, and 20 tasks on ImageNet-R. We report mean and standard deviation
over 5 trials.

Tasks 5 Task 10 Task 20 Task

Method Last (↑) Average (↑) Last (↑) Average (↑) Last(↑) Average (↑)

Joint Training 81.14 ± 0.34 − 81.14 ± 0.34 − 81.14 ± 0.34 −

Sequential 58.74 ± 1.28 72.91 ± 0.28 62.54 ± 0.24 67.98 ± 0.27 34.62 ± 0.85 51.15 ± 1.50
L2P (Wang et al., 2022b) 64.13 ± 0.78 68.66 ± 0.41 65.41 ± 0.52 69.39 ± 0.43 57.92 ± 0.28 64.57 ± 0.29
DualPrompt (Wang et al., 2022a) 67.88 ± 0.17 71.16 ± 0.31 71.47 ± 0.35 75.82 ± 0.29 61.00 ± 0.72 65.80 ± 0.67
CODA-P (Smith et al., 2023b) 73.09 ± 0.21 76.91 ± 0.21 71.70 ± 0.39 76.71 ± 0.10 67.28 ± 0.30 72.34 ± 0.17
C-LoRA (Smith et al., 2023a) 75.85 ± 0.31 78.85 ± 0.34 71.89 ± 0.45 75.33 ± 0.28 65.71 ± 0.60 70.63 ± 0.85
LAE (Gao et al., 2023) 73.84 ± 0.14 77.29 ± 0.45 71.70 ± 0.39 76.71 ± 0.10 66.98 ± 0.35 73.72 ± 0.05
InfLoRA (Liang & Li, 2024) 77.52 ± 0.37 82.01 ± 0.12 75.65 ± 0.19 80.82 ± 0.12 71.01 ± 0.45 77.28 ± 0.45

ROSE 78.56 ± 0.41 83.25 ± 0.47 77.42 ± 0.18 82.15 ± 0.31 72.65 ± 0.58 78.85 ± 0.69
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Figure 2: Sequential learning accuracy.

Metric Average Acc. (↑)

# Params k 3000 6000 12000 24000 48000
Sparsity 3.2‰ 4.8‰ 5.4‰ 8.0‰ 9.6‰

Equiv. rank 2 4 8 16 32

CIFAR-100 91.9 93.0 93.0 93.0 93.0
ImageNet-R 79.7 82.2 82.1 82.1 81.1
DomainNet 80.4 81.3 81.3 81.2 81.1

Table 4: Performance comparison under dif-
ferent sparsity levels.

task, ROSE maintains a more stable performance trajectory throughout the learning process. This
stability directly stems from our non-sequential parameter allocation strategy: by assigning distinct
orthogonal components to each task upfront rather than constructing them sequentially, ROSE ensures
that new task learning minimally interferes with previously acquired knowledge. The performance
gap between ROSE and other methods widens as more tasks are learned, highlighting the cumulative
advantage of our approach in preserving task-specific knowledge. This empirical evidence confirms
our theoretical analysis that ROSE’s design effectively addresses the fundamental stability-plasticity
dilemma in continual learning.

Analysis of Sequential Orthogonalization Limitations. Our theoretical analysis identified a funda-
mental limitation in sequential orthogonalization approaches: increasing rank reduces the available
orthogonal subspaces, creating a trade-off between expressiveness and capacity. To empirically
validate this insight, we compare InfLoRA’s performance across different rank settings on ImageNet-
R. Figure 3 reveals a counter-intuitive phenomenon: increasing the rank from r = 16 to r = 256
actually deteriorates performance even in the first three tasks, despite providing substantially more
parameters per task. This paradox is precisely predicted by our theoretical analysis: higher rank
severely constrains the number of available orthogonal subspaces (⌊dr ⌋), leading to earlier capacity
saturation. This empirical evidence strongly supports our argument that sequential orthogonalization
fundamentally limits scalability and necessitates the non-sequential approach introduced by ROSE.
By decoupling task capacity from parameter efficiency, ROSE breaks free from this inherent trade-off.

5.2 ABLATION STUDIES

While the above results directly validate our theoretical claims, we also conduct ablations to study
sparsity, robustness to pretraining, and other design choices.

Sparsity Parameter Analysis. A key hyperparameter in ROSE is the sparsity level k, which
determines the number of parameters allocated to each task. Table 4 examines performance across
different sparsity levels on all three datasets. Interestingly, ROSE achieves optimal performance
using only 4.8‰ of the available parameter space per task (k = 6000). Increasing k beyond this
point yields diminishing returns, suggesting an efficient sweet spot for parameter allocation. This
pattern is consistent across all datasets, indicating that ROSE’s orthogonal parameter allocation can
be highly parameter-efficient while maintaining strong performance. The efficiency of low sparsity
levels aligns with our theoretical analysis: since ROSE ensures perfect task separation through
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Figure 3: Investigation of different ranks
for InfLoRA on CIFAR-100. Higher
rank paradoxically leads to worse perfor-
mance as tasks accumulate, validating
our theoretical analysis.

Method Last (↑) Average (↑)

DINO-1k

L2P (Wang et al., 2022b) 56.71 ± 0.12 63.59 ± 0.21
DualPrompt (Wang et al., 2022a) 60.23 ± 0.42 66.57 ± 0.25
CODA-P (Smith et al., 2023b) 64.02 ± 0.68 71.50 ± 0.42
C-LoRA (Smith et al., 2023a) 63.07 ± 0.36 68.09 ± 0.41
LAE (Gao et al., 2023) 61.03 ± 0.27 69.89 ± 0.15
InfLoRA (Liang & Li, 2024) 68.31 ± 0.28 76.15 ± 0.05
InfLoRA-b5 (Liang & Li, 2024) 66.16 ± 0.14 73.01 ± 0.17
ROSE 70.24 ± 0.45 77.42 ± 0.42

iBOT-1k

L2P (Wang et al., 2022b) 60.80 ± 0.35 66.58 ± 0.28
DualPrompt (Wang et al., 2022a) 63.78 ± 0.38 68.88 ± 0.16
CODA-P (Smith et al., 2023b) 68.02 ± 0.48 74.28 ± 0.47
C-LoRA (Smith et al., 2023a) 68.60 ± 0.07 73.47 ± 0.28
LAE (Gao et al., 2023) 64.14 ± 0.29 72.59 ± 0.22
InfLoRA (Liang & Li, 2024) 71.84 ± 0.09 78.29 ± 0.09
ROSE 73.67 ± 0.37 79.42 ± 0.46

Table 5: Results (%) of different methods on ImageNet-R
(10 tasks) using various self-supervised pre-trained models.
ROSE consistently outperforms all baselines.

non-overlapping parameter allocation, each parameter contributes independently to task performance
without interference. This enables strong performance even with a small fraction of active parameters
per task.

Robustness to Pre-trained Models. To assess whether RoSE’s advantages depend on specific
pre-training methods, we evaluate performance using different pre-trained backbone models. Table 5
compares results on ImageNet-R (10 tasks) using ViT-B/16 pre-trained with DINO-1k and iBOT-1k
self-supervised learning approaches. The results demonstrate that RoSE consistently outperforms
all baseline methods regardless of the pre-training approach. With DINO-1k pre-training, RoSE
achieves 70.24% final accuracy and 77.42% average accuracy, outperforming InfLoRA by 1.93%
and 1.27% respectively. The improvement is even more significant when compared to other methods
such as CODA-P (6.22% higher final accuracy) and DualPrompt (10.01% higher final accuracy).
Similarly, with iBOT-1k pre-training, RoSE maintains its advantage with 73.67% final accuracy and
79.42% average accuracy, surpassing InfLoRA by 1.83% and 1.13% respectively. This improvement
is consistent across all other baselines, with RoSE outperforming C-LoRA by 5.07% and CODA-P
by 5.65% in terms of final accuracy.

Computational Efficiency. Beyond accuracy improvements, ROSE also delivers significant compu-
tational advantages. Figure 1 compares the training time per task as the number of tasks increases for
ROSE and InfLoRA on ImageNet-R. While InfLoRA’s training time grows linearly with the number
of tasks due to sequential orthogonalization against all previous tasks, ROSE maintains constant
training time regardless of task count. For 20 tasks, ROSE achieves a 5.8× speedup compared to
InfLoRA, with the gap widening as more tasks are added. This empirical result directly validates
our theoretical complexity analysis, showing that ROSE’s elimination of sequential dependencies
translates to substantial computational savings in practice.

6 CONCLUSION

We presented Random Orthogonal SubspacE (ROSE), a continual learning framework that en-
forces task separation through non-sequential parameter allocation. By combining a shared random
orthogonal basis with task-specific sparse masks, ROSE guarantees exact weight-level orthogonality,
equal capacity allocation across tasks, and order-free training. This design yields three key advantages
over sequential orthogonalization: a quadratic improvement in task capacity (O(d/r)→ O(d2/k)),
removal of rank constraints that limit expressivity, and elimination of growing computational over-
head. Our theoretical analysis establishes orthogonality as the unifying principle across parameter,
gradient, and function space, and shows that ROSE achieves this condition by construction. Exten-
sive experiments on ImageNet-R, CIFAR-100, and DomainNet validate these guarantees: ROSE
consistently outperforms state-of-the-art baselines, scales to hundreds of tasks without catastrophic
forgetting, and maintains constant computational and memory efficiency.
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A PROOFS

A.1 PROOF OF THEOREM 3.1

Proof. Step 1: First-order expansion. Expand the loss Lτ around W(τ−1):

Lτ (W
(τ−1) +∆W(τ)) ≈ Lτ (W

(τ−1)) + ⟨∇Lτ ,∆W(τ)⟩+O(∥∆W(τ)∥2).

Step 2: Characterizing interference. The cross-effect of task τ on τ ′ at first order is proportional to

⟨∇Lτ ′ ,∆W(τ)⟩ ∝
L∑

k=1

⟨∆W
(k)
(τ ′),∆W

(k)
(τ)⟩F .

Step 3: Necessity. If for some k the inner product ⟨∆W
(k)
(τ ′),∆W

(k)
(τ)⟩F ̸= 0, then τ introduces

a first-order perturbation to τ ′. Thus orthogonality across all layers is necessary for eliminating
first-order cross-effects.

Step 4: Sufficiency. If ⟨∆W
(k)
(τ ′),∆W

(k)
(τ)⟩F = 0 for all k, then the first-order term vanishes exactly.

The only remaining interference is O(∥∆W∥2), which is unavoidable at second order. Hence
orthogonality is sufficient for achieving the minimum possible first-order interference bound.

Conclusion. Orthogonality uniquely characterizes the optimal perturbation structure under first-order
linearization.

A.2 PROOF OF LEMMA 3.3

Proof. By the mean value theorem, for some θ̃ on the line segment between θ0 and θ0 +∆θ,

f(x; θ0 +∆θ)− f(x; θ0) = ∇θf(x; θ0)∆θ + 1
2 ∆θ⊤∇2f(x; θ̃)∆θ.

If ∇θf is L-Lipschitz, then ∥∇2f∥2 ≤ L in the neighborhood. Thus∥∥f(x; θ0 +∆θ)− f(x; θ0)−∇θf(x; θ0)∆θ
∥∥
2
≤ L

2 ∥∆θ∥22,
which is the claimed bound.
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A.3 PROOF OF PROPOSITION 3.4

Proof. Step 1: Decomposition of NTK. Linearizing f at θ0, the NTK block between Xa and Xb is

Kθ0(Xa, Xb) =

L∑
k=1

Jk(Xa; θ0)Jk(Xb; θ0)
⊤.

Step 2: Spectral concentration. By Assumption 3.2, each cross-Gram G
(k)
ab is dominated by a prin-

cipal component with eigenvalue λ(k)
max(a, b). The residual spectral mass is bounded by αkλ

(k)
max(a, b).

Step 3: Bounding cross-effects. For task update ∆W(k), the induced cross-effect is proportional to

∥∆W(k)∥F
√
λ
(k)
max(a, b). Summing across layers gives

∥Kθ0(Xa, Xb)∥F ≤
L∑

k=1

ck(a, b)∥∆W(k)∥F +O(∥∆θ∥22),

with ck(a, b) ∝
√
λ
(k)
max(a, b).

Step 4: Orthogonality condition. If ⟨∆W
(k)
(τ),∆W

(k)
(τ ′)⟩F = 0 for all k, then cross-terms vanish up

to residual anisotropy αk and second-order terms from Lemma 3.3. Hence

Kθ0(Xτ ′ , Xτ ) = 0+O
(
∥∆θ∥22 +

∑
k

αk∥∆W(k)∥F
)
.

Conclusion. Layerwise orthogonality provides an exact finite-width surrogate when αk = 0, and
suppresses interference to second-order otherwise.

A.4 PROOF OF LEMMA 4.1

Proof. Write U = ∆WB⊤. Then

∆W −U(k)B = (U−U(k))B.

Since B is orthogonal, ∥MB∥F = ∥M∥F for any M. Therefore∥∥∆W −U(k)B
∥∥
F
= ∥U−U(k)∥F .

By construction, U(k) retains only the k largest entries of U, so the error is exactly the ℓ2 norm of
the discarded entries:

∥U−U(k)∥2F =
∑

(i,j)/∈S⋆
k

U2
ij .

This proves the lemma.

B IMPLEMENTATION ALGORITHMS

This appendix provides the detailed pseudocode for the ROSE framework. Algorithm 1 specifies how
to construct the orthogonal basis and non-overlapping support masks for each task, while Algorithm 2
shows how training is performed using these supports with sparse coefficient updates. Together they
instantiate the design described in Section 4.

In practice, a single shared basis B can be used across all layers or tasks without degrading the
theoretical guarantees or empirical performance. This simplifies storage and implementation while
preserving exact orthogonality and the expressivity–sparsity tradeoffs established in our analysis.
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Algorithm 1 ROSE Pattern & Basis Initialization (per layer k)

Require: basis size d, sparsity k, max tasks Tmax, public RNG seed seed
1: Basis generation:
2: Option A (QR): sample G ∼ N (0, 1)d×d with seed; compute thin QR, G = QR; set

B(k)←Q.
3: Option B (Hadamard/DFT): set B(k) to normalized Hadamard or DFT.
4: U ← [d]× [d].
5: for t = 1 to Tmax do
6: Sample St ⊂ U , |St| = k, without replacement
7: Set (S(k)

t )ij = 1{(i, j) ∈ St} and remove St from U
8: end for
9: return B(k), {S(k)

t }
Tmax
t=1

Algorithm 2 ROSE Training for task t (layers k = 1..L)

Require: frozen base W
(k)
0 , mask S

(k)
t , basis B(k)

1: A
(k)
t = S

(k)
t ⊙Θ

(k)
t (learnable only on mask entries)

2: Forward: W(k)
0 +A

(k)
t B(k)

3: Backprop (sparse):
∇

Θ
(k)
t
L =

(
∇

∆W
(k)

(t)

L
)
(B(k))⊤ ⊙ S

(k)
t

4: Update optimizer on Θ
(k)
t only

5: (Optional) renormalize columns of B(k) if using QR

C THE USE OF LLMS

We use large language models to polish and refine writing. This includes improving clarity, tone,
grammar, and flow, while preserving the original meaning and intent.
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