
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AC-PKAN: ATTENTION-ENHANCED AND CHEBY-
SHEV POLYNOMIAL-BASED PHYSICS-INFORMED
KOLMOGOROV–ARNOLD NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces AC-PKAN, an advanced framework for Physics-Informed
Neural Networks (PINNs) that integrates Kolmogorov–Arnold Networks (KANs)
with Chebyshev Type-I polynomials and incorporates both internal and exter-
nal attention mechanisms. Traditional PINNs based on Multilayer Perceptrons
(MLPs) encounter challenges when handling complex partial differential equa-
tions (PDEs) due to vanishing gradients, limited interpretability, and computa-
tional inefficiency. To address these issues, we enhance the model from both ex-
ternal and internal perspectives. Externally, we propose a novel Residual Gradient
Attention (RGA) mechanism that dynamically adjusts loss term weights based on
gradient norms and residuals, thereby mitigating gradient stiffness and residual
imbalance. Internally, AC-PKAN employs point-wise Chebyshev polynomial-
based KANs, wavelet-activated MLPs with learnable parameters, and internal
attention mechanisms. These integrated components improve both training effi-
ciency and prediction accuracy. We provide mathematical proofs demonstrating
that AC-PKAN can theoretically solve any finite-order PDE. Experimental results
from five benchmark tasks across three domains show that AC-PKAN consistently
outperforms or matches state-of-the-art models such as PINNsFormer, establish-
ing it as a highly effective tool for solving complex real-world engineering prob-
lems.

1 INTRODUCTION

Numerical solutions of partial differential equations (PDEs) are essential in science and engineer-
ing (Zienkiewicz & Taylor, 2005; Liu, 2009; Fornberg, 1998; Brebbia et al., 2012). Physics-
informed neural networks (PINNs) (Lagaris et al., 1998; Raissi et al., 2019) have emerged as a
promising approach in scientific machine learning. Traditional PINNs typically employ multilayer
perceptrons (MLPs) (Cybenko, 1989) due to their ability to approximate nonlinear functions (Hornik
et al., 1989) and their success in various PDE-solving applications (Yu et al., 2018; Han et al., 2018).

However, PINNs encounter limitations, including difficulties with multi-scale phenom-
ena (Kharazmi et al., 2021), the curse of dimensionality in high-dimensional spaces (Jagtap &
Karniadakis, 2020), and challenges with nonlinear PDEs (Yuan et al., 2022). These issues arise
from both the complexity of PDEs and limitations in PINN architectures and training methods.

To address these challenges, existing methods focus on improving either the internal architecture of
PINNs or their external learning strategies. Internal improvements include novel architectures like
Quadratic Residual Networks (Qres) (Bu & Karpatne, 2021), First-Layer Sine (FLS) (Wong et al.,
2022), and PINNsformer (Zhao et al., 2023). External strategies are discussed in detail in Section 2.
Nevertheless, traditional PINNs based on MLPs still suffer from issues like lack of interpretabil-
ity (Cranmer, 2023), overfitting, vanishing or exploding gradients, and scalability problems (Bach-
mann et al., 2024). As an alternative, Kolmogorov–Arnold Networks (KANs) (Liu et al., 2024b),
inspired by the Kolmogorov–Arnold representation theorem (Kolmogorov, 1961; Braun & Griebel,
2009), have been proposed to offer greater accuracy and interpretability. KANs can be viewed as a
combination of Kolmogorov networks and MLPs with learnable activation functions (Köppen, 2002;
Sprecher & Draghici, 2002). Various KAN variants have emerged by replacing the B-spline func-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tions (SS, 2024; Bozorgasl & Chen, 2024; Xu et al., 2024). Although they still face challenges (Yu
et al., 2024), KANs have shown promise in addressing issues like interpretability (Liu et al., 2024a)
and catastrophic forgetting (Vaca-Rubio et al., 2024) in learning tasks (Samadi et al., 2024). Recent
architectures like KINN (Wang et al., 2024b) and DeepOKAN (Abueidda et al., 2024) have applied
KANs to PDE solving with promising results.

Despite the potential of KANs, the original KAN suffers from high memory consumption and long
training times due to the use of B-spline functions (Shukla et al., 2024). To address these limi-
tations, we propose the Attention-Enhanced and Chebyshev Polynomial-Based Physics-Informed
Kolmogorov–Arnold Networks (AC-PKAN). Our approach replaces B-spline functions with first-
kind Chebyshev polynomials, forming the Cheby1KAN layer (SynodicMonth, 2024), eliminating
the need for grid storage and updates. By integrating Cheby1KAN with linear layers and incorpo-
rating internal attention mechanisms based on input features, AC-PKAN efficiently models complex
nonlinear functions and focuses on different aspects of input features at each layer. Additionally, we
introduce an external attention mechanism that adjusts loss weights dynamically based on gradi-
ent information and point-wise residuals, alleviating issues such as residual imbalance and gradient
flow stiffness, and enhancing training stability and efficiency. To our knowledge, AC-PKAN is
the first PINN framework to integrate internal and external attention mechanisms into KAN lay-
ers, effectively addressing many issues of original KANs and PINNs. Our key contributions can be
summarized as follows:

• Novel Loss Weighting Mechanism: We propose the Residual Gradient Attention (RGA)
mechanism, which dynamically adjusts loss term weights based on gradient norms and
residual magnitudes, alleviating gradient stiffness and residual imbalance, thereby enhanc-
ing convergence and predictive performance.

• Innovative Framework: We develop AC-PKAN by integrating Cheby1KAN layers with
attention-enhanced MLPs and a new learnable activation function, Wavelet. We prove that
our framework can approximate and solve arbitrary finite-order PDEs, significantly im-
proving performance on complex PDE problems and offering flexible activation function
learning, improved parameter efficiency, and superior generalization compared to tradi-
tional PINNs.

• Extensive Experiments: We evaluate AC-PKAN on three categories of five benchmark
tasks involving 12 models, demonstrating that it achieves best or near-best performance.
We also analyze loss landscapes and conduct ablation studies to show the impact of our
proposed modules, addressing a research gap in KAN research.

2 RELATED WORK

External Learning Strategies for PINNs. Various external strategies have been proposed to ad-
dress the limitations of PINNs. Loss weighting methods, such as PINN-LRA (Wang et al., 2021),
PINN-NTK (Wang et al., 2022), and PINN-RBA (Anagnostopoulos et al., 2024), rebalance loss
terms using gradient norms, neural tangent kernels, and residual information to enhance training ef-
ficiency. Optimizer improvements like MultiAdam (Yao et al., 2023) aid convergence during multi-
scale training. Advanced sampling strategies, including AAS (Tang et al., 2023), which combines
optimal transport theory with adversarial methods, RoPINN (Pan et al., 2024), which utilizes Monte
Carlo sampling for regional optimization, RAR (Wu et al., 2023), which applies residual-driven
resampling, and PINNACLE (Lau et al., 2024), which adaptively co-optimizes the selection of all
types of training points, have been developed to improve performance. Enhanced loss functions
like gPINN (Yu et al., 2022) and vPINN (Kharazmi et al., 2019) incorporate gradient enhancement
and variational forms, respectively. Adaptive activation functions in LAAF (Jagtap et al., 2020a)
and GAAF (Jagtap et al., 2020b) accelerate convergence and handle complex geometries. Domain
decomposition methods such as FBPINN (Moseley et al., 2023) and hp-VPINN (Kharazmi et al.,
2021) train subnetworks on subdomains and use higher-order polynomial projections for refinement.

Variants of KAN. Since the introduction of KAN (Liu et al., 2024b), various variants have been
developed to enhance performance and computational efficiency by modifying the basis functions.
FastKAN (Li, 2024) replaces third-order B-spline bases with radial basis functions (RBFs) for accel-
erated computation. Chebyshev1KAN (SynodicMonth, 2024) and Chebyshev2KAN (SS, 2024) use

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

first and second kinds of Chebyshev polynomials, leveraging their advantageous properties. Rational
KAN (rKAN) (Afzalaghaei, 2024b) and Fractional KAN (fKAN) (Afzalaghaei, 2024a) incorporate
trainable adaptive rational-orthogonal and fractional-orthogonal Jacobi functions, enhancing adapt-
ability and approximation capabilities. FourierKAN (GistNoesis, 2024) replaces spline coefficients
with one-dimensional Fourier coefficients, serving as a substitute for linear layers and non-linear
activation functions. Preliminary comparisons (Jerry-Master, 2024) indicate that Cheby1KAN cur-
rently offers the best efficiency and performance.

3 METHODOLOGY

Preliminaries: Let Ω ⊂ Rd be an open set with boundary ∂Ω. Consider the PDE:

D[u(x, t)] = f(x, t), (x, t) ∈ Ω,

B[u(x, t)] = g(x, t), (x, t) ∈ ∂Ω,
(1)

where u is the solution, D is a differential operator, and B represents boundary or initial conditions.
Let û be a neural network approximation of u. PINNs minimize the loss:

LPINNs = λr

Nr∑
i=1

∥D[û(xi, ti)]− f(xi, ti)∥2 + λb

Nb∑
i=1

∥B[û(xi, ti)]− g(xi, ti)∥2, (2)

where {(xi, ti)} ⊂ Ω are residual points, {(xi, ti)} ⊂ ∂Ω are boundary or initial points, and λr, λb

balance the loss terms. The goal is to train û to minimize LPINNs using machine learning techniques.

3.1 RESIDUAL-AND-GRADIENT BASED ATTENTION

In the standard PINNs framework, the total loss LPINNs comprises the residual loss Lr, boundary
condition loss Lbc, and initial condition loss Lic:

LPINNs = λrLr + λbcLbc + λicLic, (3)

where λr, λbc, and λic are weighting coefficients.

To improve training efficiency and accuracy, we propose a novel Residual-and-Gradient Based
Attention (RGA) mechanism that adaptively reweights loss components by considering both resid-
ual magnitudes and gradient norms. This approach ensures balanced and efficient optimization,
particularly addressing challenges with boundary and initial condition losses.

3.1.1 RESIDUAL-BASED ATTENTION (RBA)

RBA allocates greater weights to loss terms with larger residuals, emphasizing regions where pre-
dictions deviate significantly from true values (Anagnostopoulos et al., 2024). Implemented as a
point-wise tensor, the RBA weights wRBA

i,j for each loss component Li (i ∈ {r, bc, ic}) in every
point j are updated iteratively:

wRBA
i,j ← (1− η)wRBA

i,j + η

(
|Li,j |

maxj(|Li,j |)

)
, (4)

where η is the learning rate for RBA weights, and max(|Li,j |) is the maximum absolute value of Li

across the training data j.

3.1.2 GRADIENT-RELATED ATTENTION (GRA)

GRA dynamically adjusts weights based on gradient norms of different loss components, promoting
balanced training. As a scalar applied to one entire loss term, GRA addresses the imbalance where
gradient norms of the PDE residual loss significantly exceed those of the data fitting loss (Wang
et al., 2021), which can lead to pathological gradient flow issues (Wang et al., 2022; Fang et al.,
2023). Our mechanism smooths weight adjustments, preventing the network from overemphasizing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

residual loss terms and neglecting other essential physical constraints, thus enhancing convergence
and stability.

The GRA weight λGRA is computed as:

λ̂GRA
bc,ic =

Gmax
r

ϵ+Gbc,ic

, (5)

where Gmax
r = maxp

∥∥∥∂Lr

∂θp

∥∥∥ is the maximum gradient norm of the residual loss, Gi =

1
P

∑P
p=1

∥∥∥∂Li

∂θp

∥∥∥ is the average gradient norm for Li (i ∈ {bc, ic}), P is the number of model
parameters, and ϵ prevents division by zero.

To smooth the GRA weights over iterations, we apply an exponential moving average:

λGRA
bc,ic ← (1− βw)λ

GRA
bc,ic + βwλ̂

GRA
bc,ic, (6)

where βw is the learning rate for the GRA weights. We enforce a minimum value for numerical
stability:

λGRA
bc,ic ← max

(
λGRA
bc,ic, 1 + ϵ

)
. (7)

3.1.3 COMBINED ATTENTION MECHANISM

To balance the magnitudes of GRA and RBA weights, we apply a logarithmic transformation to the
GRA weights when multiplying them with the loss terms, but keep their original form during weight
updates. This preserves the direct correlation between weights and gradient information, ensuring
sensitivity to discrepancies between residual and data gradients. The logarithmic transformation
moderates magnitude differences, preventing imbalances in loss term magnitudes. It allows GRA
weights to change more rapidly when discrepancies are small, while ensuring stable updates when
discrepancies are large.

By integrating point-wise RBA with term-wise GRA, the total loss under the RGA mechanism is
defined as:

LRGA = λrw
RBA
r Lr + λbcw

RBA
bc log

(
λGRA
bc

)
Lbc + λicw

RBA
ic log

(
λGRA
ic

)
Lic, (8)

where λr, λbc, and λic are scaling factors (typically set to 1), wRBA are the RBA weights, and λGRA
i

are the GRA weights for i ∈ {bc, ic}.
This formulation reweights the residual loss based on its magnitude and adjusts the boundary and
initial condition losses according to both their magnitudes and gradient norms, promoting balanced
and focused training through a dual attention mechanism. The whole algorithmic details are pro-
vided in algorithm 1.

RGA enhances PINNs by dynamically adjusting loss weights based on residual magnitudes and gra-
dient norms. By integrating RBA and GRA, it balances loss contributions, preventing any single
component from dominating the training process. This adaptive reweighting accelerates and stabi-
lizes convergence, focusing on challenging regions with significant errors or imbalanced gradients.
Consequently, RGA provides a robust framework for more accurate and efficient solutions to com-
plex differential equations, performing well in our AC-PKAN model and potentially benefiting other
PINN variants.

3.2 CHEBYSHEV1-BASED KOLMOGOROV-ARNOLD NETWORK LAYER

Unlike traditional Kolmogorov-Arnold Networks (KAN) that employ spline coefficients, the First-
kind Chebyshev KAN Layer leverages the properties of mesh-free Chebyshev polynomials to en-
hance both computational efficiency and approximation accuracy (SynodicMonth, 2024; Shukla
et al., 2024).

Let x ∈ Rdin denote the input vector, where din is the input dimensionality, and let dout be the output
dimensionality. Cheby1KAN aims to approximate the mapping x 7→ y ∈ Rdout using Chebyshev
polynomials up to degree N . The Chebyshev polynomials of the first kind, Tn(x), are defined as:

Tn(x) = cos (n arccos(x)) , x ∈ [−1, 1], n = 0, 1, . . . , N. (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To ensure the input values fall within the domain [−1, 1], Cheby1KAN applies the hyperbolic tan-
gent function for normalization:

x̃ = tanh(x). (10)

Algorithm 1 Implementation of the RGA Mechanism
Data: Model parameters θ, total number of parameters P , learning rate α, hyperparameters η, βw, ϵ
Initialization: wRBA

r,bc,ic ← 0, λGRA
bc,ic ← 1

1: for each training iteration do
2: Compute gradients:

∇θLi ←
∂Li

∂θ
, i ∈ {r, bc, ic}

3: Update RBA weights for each data point j:

wRBA
i,j ← (1− η)wRBA

i,j + η

(
|Li,j |

maxj |Li,j |

)
, i ∈ {r, bc, ic}

4: Compute gradient norms:

Gmax
r ← max

p

∥∥∇θpLr

∥∥ , Gi ←
1

P

P∑
p=1

∥∥∇θpLi

∥∥ , i ∈ {bc, ic}

5: Update GRA weights:

λ̂i ←
Gmax

r

ϵ+Gi

, λGRA
i ← (1−βw)λ

GRA
i +βwλ̂i, λGRA

i ← max
(
1 + ϵ, λGRA

i

)
, i ∈ {bc, ic}

6: Compute total loss:

LRGA ← λrw
RBA
r Lr +

∑
i∈{bc,ic}

λiw
RBA
i log

(
λGRA
i

)
Li

7: Update model parameters:
θ ← θ − α∇θLRGA

8: end for

Defining a matrix of functions Φ(x̃) ∈ Rdout×din , where each element Φk,i(x̃i) depends solely on
the i-th normalized input component x̃i:

Φk,i(x̃i) =

N∑
n=0

Ck,i,n Tn(x̃i), for k = 1, 2, . . . , dout, i = 1, 2, . . . , din. (11)

Here, Ck,i,n are the learnable coefficients, Tn(x̃i) denotes the Chebyshev polynomial of degree n
evaluated at x̃i, and N is the maximum polynomial degree considered.

The output vector y ∈ Rdout is computed by summing over all input dimensions:

yk =

din∑
i=1

Φk,i(x̃i), for k = 1, 2, . . . , dout, (12)

For a network comprising multiple Chebyshev KAN layers, the forward computation can be
viewed as a recursive application of this process. Let xl denote the input to the l-th layer, where
l = 0, 1, . . . , L − 1. After applying hyperbolic tan- gent function to obtain x̃l = tanh(xl), the
computation proceeds as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

xl+1 =

Φl,1,1(·) Φl,1,2(·) · · · Φl,1,nl(·)
Φl,2,1(·) Φl,2,2(·) · · · Φl,2,nl(·)

...
...

. . .
...

Φl,nl+1,1(·) Φl,nl+1,2(·) · · · Φl,nl+1,nl(·)

︸ ︷︷ ︸

Φl

x̃l, (13)

A general cheby1KAN network is a composition of L layers: given an input vector x0 ∈ Rn0 , the
overall output of the KAN network is:

Cheby1KAN(x) = (ΦL−1 ◦ΦL−2 ◦ · · · ◦Φ1 ◦Φ0)x. (14)

According to the original author’s recommended configuration (SynodicMonth, 2024), we also ap-
ply LayerNorm after Cheby1KAN Layer to prevent gradient vanishing induced by the use of tanh.

3.3 INTERNAL MODEL ARCHITECTURE

We present the internal architecture of the proposed AC-PKAN model, which enhances the frame-
work with an advanced attention mechanism (Wang et al., 2021; 2024a). To effectively capture
complex relationships within the data, the internal attention enhanced architecture integrates lin-
ear input upscaling and output downscaling layers, adaptive activation functions, and Cheby1KAN
layers. The detailed architecture is outlined in Algorithm 2.

Linear Upscaling and Downscaling Layers To adjust data dimensionality, the model employs
linear transformations at the input and output stages. The input features x are projected into a
higher-dimensional space, and the final network representation α(L) is mapped to the output space
via:

h0 = Wembx+ bemb, y = Woutα
(L) + bout, (15)

where Wemb ∈ Rdmodel×din , bemb ∈ Rdmodel , Wout ∈ Rdout×dhidden , and bout ∈ Rdout are learnable
parameters.

Adaptive Activation Function We employ a novel activation function called Wavelet, inspired by
Fourier transforms, to introduce non-linearity and capture periodic patterns effectively (Zhao et al.,
2023):

Wavelet(x) = w1 sin(x) + w2 cos(x), (16)

where w1 and w2 are learnable parameters initialized to one.

Attention Mechanism An internal attention mechanism is incorporated by computing two fea-
ture representations, U and V, via the Wavelet activation applied to linear transformations of the
embedded inputs:

U = Wavelet(h0ΘU + bU), V = Wavelet(h0ΘV + bV), (17)

where ΘU ,ΘV ∈ Rdmodel×dhidden and bU ,bV ∈ Rdhidden are learnable parameters.

Attention Integration The attention mechanism integrates U and V iteratively across layers using
the following equations:

α
(l)
0 = H(l) + α(l−1), α(l) = (1− α

(l)
0)⊙U+ α

(l)
0 ⊙ (V + 1), (18)

where α(0) = U and ⊙ denotes element-wise multiplication. Here, H(l) ∈ RN×dhidden is the output
of the l-th Cheby1KAN layer after LayerNormalization, and N is the number of nodes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Internal AC-PKAN Forward Pass
Data: Input data x, Cheby1KAN layer parameters, Wavelet activation function parameters
Initialization: Randomly initialize weights Wemb, ΘU , ΘV , Wout and biases bemb, bU , bV , bout

1: Input embedding:
h0 ←Wembx+ bemb

2: Compute representations:

U←Wavelet(h0ΘU + bU), V←Wavelet(h0ΘV + bV)

3: Initialize attention:
α(0) ← U

4: for l = 1 to L do
5: Update attention:

H(l) ← LayerNorm
(

Cheby1KANLayer
(
α(l−1)

))
α
(l)
0 ← H(l) + α(l−1)

α(l) ← (1− α
(l)
0)⊙U+ α

(l)
0 ⊙ (V + 1)

6: end for
7: Output prediction:

y←Woutα
(L) + bout

Approximation Ability Our AC-PKAN’s inherent attention mechanism eliminates the need for
an additional bias function b(x) required in previous KAN models to maintain non-zero higher-
order derivatives (Wang et al., 2024b). This reduces model complexity and parameter count while
preserving the ability to seamlessly approximate PDEs of arbitrary finite order. By ensuring non-
zero derivatives of any finite order and invoking the Kolmogorov–Arnold representation theorem,
our model can approximate such PDEs.

Proposition 1. Let N be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the
output y = N (x) has non-zero derivatives of any finite-order with respect to the input x.

Proof sketch: The attention mechanism and sinusoidal activations in AC-PKAN ensure that the
output function has non-zero derivatives of all orders, enabling the approximation of high-order
PDEs without additional bias functions; the full proof is provided in Appendix A.

By combining our AC-PKAN internal architecture with the external RGA mechanism, we obtain
the complete AC-PKAN model. Figure 1 provides a detailed illustration of our model structure.

Figure 1: Architecture of the complete AC-PKAN model. It combines its internal attention architec-
ture with an external attention strategy, yielding a weighted loss optimized to obtain the predicted
solution u.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS

Goal. Our empirical evaluations aim to demonstrate three key advantages of the AC-PKAN model:
(1) its intrinsic structure exhibits powerful symbolic representation and function approximation ca-
pabilities even without the RGA loss weighting mechanism; (2) it significantly improves general-
ization abilities and mitigates failure modes compared to PINNs and other KAN variants; and (3) it
achieves superior performance in complex real-world engineering environments. To validate these
claims, we designed three categories of experimental tasks across five experiments, comparing 12
models including PINN, PINNsFormer, KAN, and fKAN baselines. The experimental setup was in-
spired by methodologies in (SynodicMonth, 2024; Hao et al., 2023; Wang et al., 2024b; Zhao et al.,
2023; Wang et al., 2023). The code for our model and experiments will be made publicly available
upon acceptance of this paper.

4.1 COMPLEX FUNCTION FITTING

We evaluated our AC-PKAN Simplified model—which employs only the internal architec-
ture—against PINN (MLP), KAN, and various KAN variants on a complex function interpolation
task. Detailed experimental setups and results are provided in Appendices D and E.

As shown in Figure 2, the AC-PKAN Simplified model converges more rapidly than MLPs, KAN,
and most KAN variants, achieving lower final losses. While Cheby2KAN and FourierKAN demon-
strate faster convergence, our model produces smoother fitted curves and exhibits greater robustness
to noise, effectively preventing overfitting in regions with high-frequency variations. Performance
metrics are presented in Table 1.

Model rMAE rMSE Loss
Cheby1KAN 0.0179 0.0329 0.0068
Cheby2KAN 0.0189 0.0313 0.0079
MLP 0.0627 0.1250 0.1410
AC-PKAN s 0.0177 0.0311 0.0081
KAN 0.0145 0.0278 0.0114
rKAN 0.0458 0.0783 0.1867
fKAN 0.0858 0.1427 0.1722
FastKAN 0.0730 0.1341 0.1399
FourierKAN 0.0211 0.0353 0.0063

Table 1: Comparison of test rMAE,
rMSE, and training Loss among
Models

Figure 2: Convergence Comparison of Nine
Different Models

4.2 MITIGATING FAILURE MODES IN PINNS

We assessed the AC-PKAN model on two complex PDEs known as PINN failure modes—the 1D-
reaction, 1D-wave and 2D Navier–Stokes equations (Mojgani et al., 2022; Daw et al., 2022; Krish-
napriyan et al., 2021)—to demonstrate its superior generalization ability compared to other PINN
variants. In these cases, optimization often becomes trapped in local minima, leading to overly
smooth approximations that deviate from true solutions.

Evaluation results are summarized in Table 2, with detailed PDE formulations and setups in Ap-
pendix D. Prediction and absolute error plots for AC-PKAN and KINN are shown in Figure 3a and
3b; additional plots are in Appendix E.

AC-PKAN significantly outperforms nearly all baselines, achieving the lowest or second-lowest
test errors, thus more effectively mitigating failure modes than the previous state-of-the-art method,
PINNsFormer. Other baselines remain stuck in local minima, failing to optimize the loss effectively.
These results highlight the advantages of AC-PKAN in generalization and approximation accuracy
over conventional PINNs, KANs, and existing variants.

We also plotted the mean values of the RBA and GRA weights over epochs in Figure 3c. The mean
RBA weights for all loss terms eventually converge, indicating mitigation of residual imbalance.
In contrast, the GRA weights continue to increase, suggesting persistent gradient imbalance. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model 2D-NS 1D-Wave 1D-Reaction
rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINN 3.6949 3.2899 0.3182 0.3200 0.9818 0.9810
QRes 3.2930 3.6998 0.3507 0.3485 0.9844 0.9849
FLS 3.6930 3.2893 0.3810 0.3796 0.9793 0.9773
PINNsFormer 3.6986 3.2924 0.2699 0.2825 0.0152 0.0300
Cheby1KAN 3.7561 3.3347 1.1240 1.0866 0.0617 0.1329
Cheby2KAN 3.0443 2.9513 1.1239 1.0865 1.0387 1.0256
AC-PKAN 2.4519 2.4412 0.0011 0.0011 0.0375 0.0969
KINN 3.6816 3.2801 0.3466 0.3456 0.1314 0.2101
rKAN NaN NaN 247.7560 2593.0750 65.2014 54.8567
FastKAN 3.6999 1.3401 0.5312 0.5229 0.5475 0.6030
fKAN 3.7040 3.2998 0.4884 0.4768 0.0604 0.1033
FourierKAN 5672.3763 5973.1545 1.1356 1.1018 1.4542 1.4217

Table 2: Experimental results demonstrating
that our AC-PKAN model achieves best or
second-best performance on three challenging
PDE tasks.

Model Heterogeneous Problem Complex Geometry
rMAE rRMSE rMAE rRMSE

PINNs 0.1662 0.1747 0.9010 0.9289
QRes 0.1102 0.1140 0.9024 0.9289
FLS 0.1701 0.1789 0.9021 0.9287
PINNsFormer 0.1008 0.1610 0.8851 0.8721
Cheby1KAN 0.1404 0.2083 0.9026 0.9244
Cheby2KAN 0.4590 0.5155 0.9170 1.0131
AC-PKAN 0.1063 0.1817 0.5452 0.5896
KINN 0.1599 0.1690 0.9029 0.9261
rKAN 24.8319 380.5582 23.5426 215.4764
FastKAN 0.1549 0.1624 0.9034 0.9238
fKAN 0.1179 0.1724 0.9043 0.9303
FourierKAN 0.4588 0.5154 1.4455 1.5341

Table 3: Experimental results demonstrating
that AC-PKAN achieves the best or second-best
performance across two complex environmental
PDE tasks.

steadily increasing GRA weights effectively alleviate the gradient stiffness problem, consistent with
findings in (Wang et al., 2021). The significant magnitude discrepancy between GRA and RBA data
supports using a logarithmic function for GRA weights in loss weighting.

Additionally, integrating AC-PKAN with other external learning strategies, such as the Neural Tan-
gent Kernel (NTK) method, resulted in enhanced performance (Table 4). This demonstrates the
flexibility of AC-PKAN in incorporating various learning schemes, offering practical and customiz-
able solutions for accurate modeling in real-world applications.

(a) Predictions and errors for the
1D-Wave equation.

(b) Predictions and errors for the
1D-Reaction equation.

(c) Mean values of GRA weights
and RBA weights over epochs for
the 1D-Wave experiment.

Figure 3: Subfigures (a) and (b) show predictions and absolute errors for the 1D-Wave and 1D-
Reaction equations, with AC-PKAN results above and KINN below. Subfigure (c) presents the
mean GRA and RBA weights during the 1D-Wave experiment.

Model rMAE rRMSE
AC-PKAN + NTK 0.0009 0.0009
PINNs + NTK 0.1397 0.1489
PINNsFormer + NTK 0.0453 0.0484

Table 4: Performance comparison on the 1D-
wave equation using the NTK method. AC-
PKAN combined with NTK achieves superior
results across all metrics.

Model rMAE rRMSE
AC-PKAN 0.0011 0.0011
AC-PKAN (no GRA) 0.0779 0.0787
AC-PKAN (no RBA) 0.0494 0.0500
AC-PKAN (no RGA) 0.4549 0.4488
AC-PKAN (no Wavelet) 0.0045 0.0046
AC-PKAN (no Encoder) 0.0599 0.0584
AC-PKAN (no Linear) 1.0422 1.0246

Table 5: Ablation study for 1D-Wave demon-
strating the impact of each module on the per-
formance of AC-PKAN.

4.3 PDES IN COMPLEX ENGINEERING ENVIRONMENTS

We further tested AC-PKAN in two challenging scenarios: heterogeneous environments and com-
plex geometric boundary conditions. Literature indicates that PINNs struggle with heterogeneous

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

problems due to sensitivity to material properties (Aliakbari et al., 2023), significant errors near
boundary layers (Piao et al., 2024), and convergence issues (Sumanta et al., 2024). Original KANs
also perform poorly with complex geometries (Wang et al., 2024b). We applied AC-PKAN to solve
Poisson equations in these environments.

Detailed PDE formulations are in Appendix D, and detailed experimental results are illustrated in
Appendix E. Summarized in Table 3 and partially shown in Figure 4, the results indicate that AC-
PKAN consistently achieves the best or second-best performance. It demonstrates superior potential
in solving heterogeneous problems without subdomain division and exhibits promising application
potential in complex geometric boundary problems where most models fail.

Figure 4: Predictions and absolute errors for the Heterogeneous Problem (left) and Complex Geom-
etry (right). In each panel, the top two images show AC-PKAN results, and the bottom two images
show PINNsformer results.

4.4 ADDITIONAL EXPERIMENTS

Loss Landscape Analysis Figure 5 shows that the loss landscapes of PINNsFormer, fKAN, and
QRes are more complex than that of AC-PKAN. Although Cheby1KAN appears to have a simpler
loss landscape, its steep gradients hinder optimization. Except for AC-PKAN, other models display
multiple local minima near the optimal point, increasing convergence difficulty.

Ablation Study Ablation experiments on the 1D-Wave equation (Table 5) confirm that each mod-
ule in our model is crucial. Removing any module leads to a significant performance decline, espe-
cially the Linear module. These findings suggest that the KAN architecture alone is insufficient for
complex tasks, validating our integration of MLPs with the Cheby1KAN framework.For additional
ablation studies, please refer to Section C.

Figure 5: Loss landscapes on the 1D-Wave experiment of various models (from left to right): AC-
PKAN, Cheby1KAN, fkan, QRes, and Pinnsformer.

5 CONCLUSION

We introduced AC-PKAN, a novel framework that enhances PINNs by integrating Cheby1KAN
with traditional MLPs and augmenting them with internal and external attention mechanisms. This
improves the model’s ability to capture complex patterns and dependencies, resulting in superior
performance on challenging PDE tasks, including previous PINN failure modes and complex phys-
ical environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Diab W Abueidda, Panos Pantidis, and Mostafa E Mobasher. Deepokan: Deep operator network
based on kolmogorov arnold networks for mechanics problems. arXiv preprint arXiv:2405.19143,
2024.

Alireza Afzalaghaei. fkan: Fast kernel attention networks (kan) implementation with pytorch.
https://github.com/alirezaafzalaghaei/fKAN.git, 2024a. Accessed: 2024-
09-15.

Alireza Afzalaghaei. rkan: Implementation of kernel attention networks (kan) with pytorch.
https://github.com/alirezaafzalaghaei/rKAN.git, 2024b. Accessed: 2024-
09-15.

Maryam Aliakbari, Mohammadreza Soltany Sadrabadi, Peter Vadasz, and Amirhossein Arzani. En-
semble physics informed neural networks: A framework to improve inverse transport modeling
in heterogeneous domains. Physics of Fluids, 35(5), 2023.

Sokratis J Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Karni-
adakis. Residual-based attention in physics-informed neural networks. Computer Methods in
Applied Mechanics and Engineering, 421:116805, 2024.

Gregor Bachmann, Sotiris Anagnostidis, and Thomas Hofmann. Scaling mlps: A tale of inductive
bias. Advances in Neural Information Processing Systems, 36, 2024.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024.

Jürgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superposition theorem.
Constructive approximation, 30:653–675, 2009.

Carlos Alberto Brebbia, José Claudio Faria Telles, and Luiz C Wrobel. Boundary element tech-
niques: theory and applications in engineering. Springer Science & Business Media, 2012.

Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solv-
ing forward and inverse problems in physics involving pdes. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pp. 675–683. SIAM, 2021.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures
in physics-informed neural networks using retain-resample-release (r3) sampling. arXiv preprint
arXiv:2207.02338, 2022.

Zhiwei Fang, Sifan Wang, and Paris Perdikaris. Ensemble learning for physics informed neural
networks: A gradient boosting approach. arXiv preprint arXiv:2302.13143, 2023.

Bengt Fornberg. A practical guide to pseudospectral methods. Number 1. Cambridge university
press, 1998.

GistNoesis. Fourierkan: A github repository, 2024. URL https://github.com/
GistNoesis/FourierKAN.git. Accessed: 2024-09-15.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
networks for solving pdes. arXiv preprint arXiv:2306.08827, 2023.

11

https://github.com/alirezaafzalaghaei/fKAN.git
https://github.com/alirezaafzalaghaei/rKAN.git
https://github.com/GistNoesis/FourierKAN.git
https://github.com/GistNoesis/FourierKAN.git

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 28(5), 2020.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation func-
tions with slope recovery for deep and physics-informed neural networks. Proceedings of the
Royal Society A, 476(2239):20200334, 2020a.

Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020b.

Jerry-Master. Kan-benchmarking: A github repository, 2024. URL https://github.com/
Jerry-Master/KAN-benchmarking.git. Accessed: 2024-09-15.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Applied Mechanics
and Engineering, 374:113547, 2021.

Andreı̆ Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
by superpositions of continuous functions of a smaller number of variables. American Mathemat-
ical Society, 1961.

Mario Köppen. On the training of a kolmogorov network. In Artificial Neural Networks—ICANN
2002: International Conference Madrid, Spain, August 28–30, 2002 Proceedings 12, pp. 474–
479. Springer, 2002.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural infor-
mation processing systems, 34:26548–26560, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang
Low. Pinnacle: Pinn adaptive collocation and experimental points selection. arXiv preprint
arXiv:2404.07662, 2024.

Ziyao Li. fast-kan: Fast implementation of kernel attention networks (kan). https://github.
com/ZiyaoLi/fast-kan.git, 2024. Accessed: 2024-09-15.

Gui-Rong Liu. Meshfree methods: moving beyond the finite element method. CRC press, 2009.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Rambod Mojgani, Maciej Balajewicz, and Pedram Hassanzadeh. Lagrangian pinns: A causality-
conforming solution to failure modes of physics-informed neural networks. arXiv preprint
arXiv:2205.02902, 2022.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differential equations.
Advances in Computational Mathematics, 49(4):62, 2023.

12

https://github.com/Jerry-Master/KAN-benchmarking.git
https://github.com/Jerry-Master/KAN-benchmarking.git
https://github.com/ZiyaoLi/fast-kan.git
https://github.com/ZiyaoLi/fast-kan.git

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Renbin Pan, Feng Xiao, and Minyu Shen. ro-pinn: A reduced order physics-informed neural net-
work for solving the macroscopic model of pedestrian flows. Transportation Research Part C:
Emerging Technologies, 163:104658, 2024.

Shiyuan Piao, Hong Gu, Aina Wang, and Pan Qin. A domain-adaptive physics-informed neural
network for inverse problems of maxwell’s equations in heterogeneous media. IEEE Antennas
and Wireless Propagation Letters, 2024.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Moein E Samadi, Younes Müller, and Andreas Schuppert. Smooth kolmogorov arnold networks
enabling structural knowledge representation. arXiv preprint arXiv:2405.11318, 2024.

Khemraj Shukla, Juan Diego Toscano, Zhicheng Wang, Zongren Zou, and George Em Karniadakis.
A comprehensive and fair comparison between mlp and kan representations for differential equa-
tions and operator networks. arXiv preprint arXiv:2406.02917, 2024.

David A Sprecher and Sorin Draghici. Space-filling curves and kolmogorov superposition-based
neural networks. Neural Networks, 15(1):57–67, 2002.

Sidharth SS. Chebyshev polynomial-based kolmogorov-arnold networks: An efficient architecture
for nonlinear function approximation. arXiv preprint arXiv:2405.07200, 2024.

Roy Sumanta, Annavarapu Chandrasekhar, Roy Pratanu, and Valiveti Dakshina Murthy. Physics-
informed neural networks for heterogeneous poroelastic media. arXiv preprint arXiv:2407.03372,
2024.

SynodicMonth. Chebykan: A repository for chebyshev-based kolmogorov–arnold network
(cheby1kan). https://github.com/SynodicMonth/ChebyKAN, 2024. Accessed:
2024-05-08.

Kejun Tang, Jiayu Zhai, Xiaoliang Wan, and Chao Yang. Adversarial adaptive sampling: Unify pinn
and optimal transport for the approximation of pdes. arXiv preprint arXiv:2305.18702, 2023.

Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. Kolmogorov-arnold net-
works (kans) for time series analysis. arXiv preprint arXiv:2405.08790, 2024.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training
physics-informed neural networks. arXiv preprint arXiv:2308.08468, 2023.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. arXiv preprint arXiv:2402.00326, 2024a.

Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying
Zhuang, Timon Rabczuk, and Yinghua Liu. Kolmogorov arnold informed neural network: A
physics-informed deep learning framework for solving pdes based on kolmogorov arnold net-
works. arXiv preprint arXiv:2406.11045, 2024b.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985–1000, 2022.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

13

https://github.com/SynodicMonth/ChebyKAN

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai.
Fourierkan-gcf: Fourier kolmogorov-arnold network–an effective and efficient feature transfor-
mation for graph collaborative filtering. arXiv preprint arXiv:2406.01034, 2024.

Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. Multiadam:
Parameter-wise scale-invariant optimizer for multiscale training of physics-informed neural net-
works. In International Conference on Machine Learning, pp. 39702–39721. PMLR, 2023.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse pde problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

Lei Yuan, Yi-Qing Ni, Xiang-Yun Deng, and Shuo Hao. A-pinn: Auxiliary physics informed neural
networks for forward and inverse problems of nonlinear integro-differential equations. Journal of
Computational Physics, 462:111260, 2022.

Zhiyuan Zhao, Xueying Ding, and B Aditya Prakash. Pinnsformer: A transformer-based framework
for physics-informed neural networks. arXiv preprint arXiv:2307.11833, 2023.

Olek C Zienkiewicz and Robert L Taylor. The finite element method set. Elsevier, 2005.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF OF THEOREM 1

Theorem 1. Let N be an AC-PKAN model with L layers (L ≥ 2) and infinite width. Then, the
output y = N (x) has non-zero derivatives of any finite-order with respect to the input x.

Proof. Consider the forward propagation process of the AC-PKAN. We begin with the initial layer:
h0 = Wembx+ bemb, (19)
U = ωU,1 sin(h0θU + bU) + ωU,2 cos(h0θU + bU), (20)
V = ωV,1 sin(h0θV + bV) + ωV,2 cos(h0θV + bV), (21)

α(0) = U. (22)

For each layer l = 1, 2, . . . , L, the computations proceed as follows:

H(l) =

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh(α(l−1))

)
, (23)

α
(l)
0 = H(l) + α(l−1), (24)

α(l) = (1− α
(l)
0)⊙ U + α

(l)
0 ⊙ (V + 1), (25)

y = Woutα
(L) + bout. (26)

During the backward propagation, we derive the derivative of the output with respect to the input x,
which approximates the differential operator of the PDEs. Focusing on the first-order derivative as
an example:

∂y

∂x
=

∂y

∂α(L)

∂α(L)

∂x

= Wout
∂α(L)

∂x
. (27)

Expanding ∂α(L)

∂x :

∂α(L)

∂x
= −∂α

(L)
0

∂x
⊙ U +

(
1− α

(L)
0

)
⊙ ∂U

∂x
+

∂α
(L)
0

∂x
⊙ (V + 1) + α

(L)
0 ⊙ ∂V

∂x

=
∂α

(L)
0

∂x
⊙ (V − U + 1) + α

(L)
0 ⊙

(
∂V

∂x
− ∂U

∂x

)
+

∂U

∂x

=

(
∂H(L)

∂x
+

∂α(L−1)

∂x

)
⊙ (V − U + 1) +

(
H(L) + α(L−1)

)
⊙
(
∂V

∂x
− ∂U

∂x

)
+

∂U

∂x
.

(28)

This establishes a recursive relationship for the derivatives. Define:

A(l) =
∂H(l)

∂x
+

∂α(l−1)

∂x
, (29)

B(l) = H(l) + α(l−1). (30)

for each layer l = 1, 2, . . . , L.

For the base case l = 1:

A(1) =
∂H(1)

∂x
+

∂α(0)

∂x

=

(
din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nT
′
n

(
tanh(α(0))

)
sech2(α(0)) + 1

)
∂α(0)

∂x
, (31)

∂α(0)

∂x
=

∂U

∂x
= WembθU [ωU,1 cos(h0θU + bU)− ωU,2 sin(h0θU + bU)] ̸= 0, (32)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Moreover,
B(1) = H(1) + α(0)

=

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh(α(0))

)
+ α(0). (33)

For layers l > 1, where l ∈ N∗:

A(l) =

(
din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nT
′
n

(
tanh(α(l−1))

)
sech2(α(l−1)) + 1

)
∂α(l−1)

∂x
. (34)

We have established a recursive relationship.

Notably, the first derivative of the Chebyshev polynomial is given by

T ′
n(x) =

d

dx
Tn(x) =

n sin (n arccos(x))√
1− x2

,

and higher-order derivatives satisfy

T (k)
n (x) = 0 for all k > n.

Therefore, for any order k > n, the k-th derivative of A(l) is identically zero. Consequently, the
k-th derivative of the first part of equation 28 is zero.

However, observe that:

B(l) =

din∑
i=1

dout∑
k=1

N∑
n=0

Ck,i,nTn

(
tanh(α(l−1))

)
+ α(l−1), (35)

since the derivatives of α(l−1) for any finite order are non-zero, the derivatives of B(l) are non-zero.

Furthermore, we have:
∂V

∂x
− ∂U

∂x
= Wemb (θV [ωV,1 cos(h0θV + bV)− ωV,2 sin(h0θV + bV)]

−θU [ωU,1 cos(h0θU + bU)− ωU,2 sin(h0θU + bU)]) , (36)

the derivatives ∂V
∂x −

∂U
∂x of any finite order are also non-zero. Additionally, the third component of

equation 28, ∂U
∂x , is non-zero. Therefore, the k-th derivatives of the remaining parts of equation 28

are non-zero. Thus the k-th derivatives of equation 27 are non-zero.

Consequently, for any positive integer N , the N -th derivative of the output with respect to the
input ∂Ny

∂xN exists and is non-zero. This guarantees that the AC-PKAN possesses the capacity to
approximate PDEs of arbitrary high order.

B EXPLANATION FOR THE SUPERIORITY OF CHEBYSHEV TYPE I
POLYNOMIALS OVER B-SPLINES

Chebyshev polynomials of the first kind, defined by Tn(x) = cos(n arccos(x)), concentrate their
spectrum on high frequencies, with the frequency increasing linearly with the polynomial order n.
This property makes them particularly suitable for capturing high-frequency oscillations, as their
high-frequency components decay slowly. The even distribution of extrema further aids in capturing
rapid variations, which is beneficial for representing high-frequency features. In contrast, B-splines,
being piecewise polynomials, exhibit a rapidly decaying spectrum, limiting their ability to capture
high-frequency features effectively.

Chebyshev polynomials possess both global support and global orthogonality over the interval
[−1, 1]. The value of a Chebyshev polynomial at any point depends on all points within the in-
terval, making them highly effective at capturing global features and high-frequency components.
They satisfy the orthogonality relation:∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx = 0, for m ̸= n.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

This orthogonality allows Chebyshev polynomials to achieve minimax approximation, minimizing
the maximum error over the interval. In contrast, B-splines have local support; each basis function
is nonzero only within a specific subinterval. This local nature limits their ability to capture global
high-frequency features. Additionally, B-splines lack global orthogonality, reducing their efficiency
in approximating functions.

B-spline-based Kernel Adaptive Networks (KANs) require substantial memory due to the stor-
age of grids and coefficient matrices that scale cubically with grid size and spline order. They
store grids of size (in features, grid size + 2 × spline order + 1) and coefficient matrices of size
(out features, in features, grid size + spline order). Since B-splines are piecewise polynomials,
each segment requires maintaining basis function values and performing high-order interpolation
within its support interval. This involves generating polynomial bases, solving linear systems (e.g.,
using torch.linalg.lstsq), and executing recursive updates, resulting in high computational
and storage demands.

In contrast, Chebyshev polynomials are globally defined and require only a coefficient matrix of size
(input dim, output dim, degree+1), eliminating terms directly related to grid size and spline order.
The memory complexity grows linearly with the degree. Chebyshev polynomials eliminate the need
for grid storage and do not require solving linear systems, interpolation, or recursive updates of
piecewise basis functions, which significantly reduce computational and storage requirements.

C ADDITIONAL ABLATION STUDIES

C.1 EFFECT OF LOGARITHMIC TRANSFORMATION IN THE RGA MODULE

In this ablation study, we investigated the impact of removing the logarithmic transformation in the
RGA module across five PDE experimental tasks. To compensate for the absence of the logarithmic
scaling, we adjusted the scaling factors to smaller values. Specifically, we employed the original
RGA design to pre-train the models for several epochs, during which very large values of λGRA were
obtained. To maintain consistency in the magnitudes of different loss terms, we set the scaling factor
of the PDE residual loss term to 1 and assigned the scaling factors of the data loss terms—including
boundary conditions (BC) and initial conditions (IC)—to the negative order of magnitude of the
current λGRA.

The performance metrics without the logarithmic transformation are summarized in Table 6.

Equation rMAE rRMSE
2D Navier–Stokes 84.3943 88.7684
1D Wave 0.7686 0.7479
1D Reaction 2.2348 2.2410
Heterogeneous Problem 10.0849 9.6492
Complex Geometry 164.4283 158.7840

Table 6: Performance metrics after removing the logarithmic transformation in the RGA module.

Comparing these results with those in Tables 2 and 3, we observe a significant deterioration in
the performance of AC-PKAN when the logarithmic transformation is removed. This decline is
attributed to two main factors: first, λGRA attains excessively large values; second, it exhibits a wide
range of variation. During the standard training process, the coefficient λGRA rapidly grows from 0
to a very large value, resulting in a broad dynamic range. The logarithmic transformation effectively
narrows this range; for instance, in the 1D Wave experiment, the scale of λGRA over epochs ranges
from 0 to 4 × 107, whereas ln(λGRA) ranges from 7 to 15 in Picture 6. Removing the logarithmic
transformation and attempting to manually adjust scaling factors to match the apparent magnitudes is
ineffective. The model cannot adapt to the drastic changes in λGRA, and rigid manual scaling factors
exacerbate the imbalance among loss terms, ultimately leading to training failure. By confining the
variation range of λGRA, the logarithmic transformation enables the model to adjust more flexibly
and effectively.

The rationale for employing the logarithmic transformation stems from the Bode plot in control
engineering, which uses a logarithmic frequency axis while directly labeling actual frequency values.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

This approach not only compresses a wide frequency range but also linearizes the system’s gain and
phase characteristics on a logarithmic scale, thereby mitigating imbalances caused by significant
differences in data scales.

C.2 EFFECT OF THE RGA MODULE IN OTHER PINN VARIANTS

In this ablation study, we applied our RGA module to other algorithms to assess its generalizability.
The experimental results are presented in Table 7.

Model rMAE rRMSE
PINN+RGA 0.0914 0.0924
PINNsFormer+RGA NaN NaN
QRes+RGA 0.2204 0.2184
FLS+RGA 0.1610 0.1617
Cheby1KAN+RGA 0.0567 0.0586
Cheby2KAN+RGA 1.0114 1.0048
AC-PKAN 0.0011 0.0011
KINN+RGA 0.0479 0.0486
rKAN+RGA NaN NaN
FastKAN+RGA 0.1348 0.1376
fKAN+RGA 0.2177 0.2149
FourierKAN+RGA 1.0015 1.0001

Table 7: Performance metrics of various models with the RGA module applied.

In the case of PINNsFormer+RGA, the results are NaN due to a CUDA out-of-memory error during
training. This occurs because PINNsFormer needs to create pseudo sequences, and applying the
RGA module—which requires gradient computation on a large number of data points within the
pseudo sequence—incurs significant memory overhead, leading to training failure. Meanwhile,
rKAN+RGA resulted in NaN due to gradient instability during training.

Excluding these cases, and compared to the results in Tables 2 and 3, the performance of other
models improved significantly when incorporating the RGA module. This indicates that our RGA
can be generally transferred to other models to enhance their performance. However, it is noteworthy
that none of the other models surpassed the performance of our AC-PKAN.

D EXPERIMENT SETUP DETAILS

We utilize the AdamW optimizer with a learning rate of 1×10−4 and a weight decay of 1×10−4 in
all experiments. Meanwhile, all experiments were conducted on an NVIDIA A100 GPU with 40GB
of memory. And Xavier initialization is applied to all layers. In PDE-Solving problems, We present
the detailed formula of rMAE and rRMSE as the following:

rMAE =

∑N
n=1 |û(xn, tn)− u(xn, tn)|∑Nres

n=1 |u(xn, tn)|

rRMSE =

√√√√∑N
n=1 |û(xn, tn)− u(xn, tn)|2∑N

n=1 |u(xn, tn)|2

(37)

where N is the number of testing points, û is the neural network approximation, and u is the ground
truth. The specific details for each experiment are provided below. For further details, please refer
to our experiment code repository to be released.

D.1 COMPLEX FUNCTION FITTING EXPERIMENT SETUP DETAILS

The aim of this experiment is to evaluate the interpolation capabilities of several neural network ar-
chitectures, including AC-PKAN, Chebyshev-based KAN (ChebyKAN), traditional MLP, and other

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

advanced models. The task involves approximating a target noisy piecewise 1D function, defined
over three distinct intervals.

Target Function The target function f(x) is defined piecewise as follows:

f(x) =

sin(25πx) + x2 + 0.5 cos(30πx) + 0.2x3 x < 0.5,

0.5xe−x + | sin(5πx)|+ 0.3x cos(7πx) + 0.1e−x2

0.5 ≤ x < 1.5,
ln(x−1)
ln(2) − cos(2πx) + 0.2 sin(8πx) + 0.1 ln(x+1)

ln(3) x ≥ 1.5,

with added Gaussian noise ϵ ∼ N (0, 0.1).

Dataset

• Training Data: 500 points uniformly sampled from the interval x ∈ [0, 2], with corre-
sponding noisy function values y = f(x) + ϵ.

• Testing Data: 1000 points uniformly sampled from the same interval x ∈ [0, 2] to assess
the models’ interpolation performance.

Training Details

• Epochs: Each model is trained for 30,000 epochs.

• Loss Function: The Mean Squared Error (MSE) loss is utilized to compute the discrepancy
between predicted and true function values:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2

• Weight Initialization: Xavier initialization is applied to all linear layers.

Model Hyperparameters The parameter counts for each model are summarized in Table 8.

D.2 FAILURE MODES IN PINNS EXPERIMENT SETUP DETAILS

We selected the one-dimensional wave equation (1D-Wave) and the one-dimensional reaction equa-
tion (1D-Reaction) as representative experimental tasks to investigate failure modes in Physics-
Informed Neural Networks (PINNs). Below, we provide a comprehensive description of the exper-
imental details, including the formulation of partial differential equations (PDEs), data generation
processes, model architecture, training regimen, and hyperparameter selection.

1D-Wave PDE. The 1D-Wave equation is a hyperbolic PDE that is used to describe the propaga-
tion of waves in one spatial dimension. It is often used in physics and engineering to model various
wave phenomena, such as sound waves, seismic waves, and electromagnetic waves. The system has
the formulation with periodic boundary conditions as follows:

∂2u

∂t2
− β

∂2u

∂x2
= 0 ∀x ∈ [0, 1], t ∈ [0, 1]

IC:u(x, 0) = sin(πx) +
1

2
sin(βπx),

∂u(x, 0)

∂t
= 0

BC:u(0, t) = u(1, t) = 0

(38)

where β is the wave speed. Here, we are specifying β = 3. The equation has a simple analytical
solution:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(βπx) cos(2βπt) (39)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Summary of Hyperparameters in Complex Function Fitting Experiment for Various Models

Model Hyperparameters Model Parameters

Cheby1KAN
Layer 1: Cheby1KANLayer(1, 7, 8)
Layer 2: Cheby1KANLayer(7, 8, 8)
Layer 3: Cheby1KANLayer(8, 1, 8)

639

Cheby2KAN
Layer 1: Cheby2KANLayer(1, 7, 8)
Layer 2: Cheby2KANLayer(7, 8, 8)
Layer 3: Cheby2KANLayer(8, 1, 8)

639

PINN
Layer 1: Linear(in=1, out=16), Activation=Tanh
Layer 2: Linear(in=16, out=32), Activation=Tanh
Layer 3: Linear(in=32, out=1)

609

AC-PKANs

Linear Embedding: Linear(in=1, out=4)
Hidden ChebyKAN Layers: 2 × Cheby1KANLayer()
Hidden LN Layers: 2 × LayerNorm(features=6)
Output Layer: Linear(in=6, out=1)
Activations: WaveAct (U and V)

751

KAN Layers: 2 × KANLinear (32 neurons, SiLU activation) 640

rKAN
Layer 1: Linear(in=1, out=16), Activation=JacobiRKAN()
Layer 2: Linear(in=16, out=32), Activation=PadeRKAN()
Layer 3: Linear(in=32, out=1)

626

fKAN
Layer 1: Linear(in=1, out=16), Activation=FractionalJacobiNeuralBlock()
Layer 2: Linear(in=16, out=32), Activation=FractionalJacobiNeuralBlock()
Layer 3: Linear(in=32, out=1)

615

FastKAN

FastKANLayer 1:
RBF
SplineLinear(in=8, out=32)
Base Linear(in=1, out=32)

FastKANLayer 2:
RBF
SplineLinear(in=256, out=1)
Base Linear(in=32, out=1)

658

FourierKAN
FourierKANLayer 1: NaiveFourierKANLayer()
FourierKANLayer 2: NaiveFourierKANLayer()
FourierKANLayer 3: NaiveFourierKANLayer()

685

1D-Reaction PDE. The one-dimensional reaction problem is a hyperbolic PDE that is commonly
used to model chemical reactions. The system has the formulation with periodic boundary condi-
tions as follows:

∂u

∂t
− ρu(1− u) = 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

IC:u(x, 0) = exp(− (x− π)2

2(π/4)2
), BC:u(0, t) = u(2π, t)

(40)

where ρ is the reaction coefficient. Here, we set ρ = 5. The equation has a simple analytical
solution:

uanalytical =
h(x) exp(ρt)

h(x) exp(ρt) + 1− h(x)
(41)

where h(x) is the function of the initial condition.

2D Navier–Stokes PDE The two-dimensional Navier–Stokes equations are given by:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

∂u

∂t
+ λ1

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ λ2

(
∂2u

∂x2
+

∂2u

∂y2

)
,

∂v

∂t
+ λ1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ λ2

(
∂2v

∂x2
+

∂2v

∂y2

)
,

(42)

where u(t, x, y) and v(t, x, y) are the x- and y-components of the velocity field, respectively, and
p(t, x, y) is the pressure field. These equations describe the Navier–Stokes flow around a cylinder.
The test errors for v are presented in Table 2.

We set the parameters λ1 = 1 and λ2 = 0.01. Since the system lacks an explicit analytical solution,
we utilize the simulated solution provided in Raissi et al. (2019). We focus on the prototypical
problem of incompressible flow past a circular cylinder, a scenario known to exhibit rich dynamic
behavior and transitions across different regimes of the Reynolds number, defined as Re = u∞D

ν .
By assuming a dimensionless free-stream velocity u∞ = 1, a cylinder diameter D = 1, and a
kinematic viscosity ν = 0.01, the system exhibits a periodic steady-state behavior characterized by
an asymmetric vortex shedding pattern in the cylinder wake, commonly known as the Kármán vortex
street. All experimental settings are the same as in Raissi et al. (2019). For more comprehensive
details about this problem, please refer to that work.

Data Generation: For all experiments except the 2D Navier–Stokes equation experiment, data
points were generated to facilitate the training and testing of the Physics-Informed Neural Network
(PINN) within the spatial domain x ∈ [0, 1] and the temporal domain t ∈ [0, 1]. The data generation
process was executed as follows:

• Grid Creation: A uniform grid was established using 101 equidistant points in both the
spatial (x) and temporal (t) dimensions, resulting in a total of 101 × 101 = 10,201 collo-
cation points.

• Boundary and Initial Conditions: Boundary points were extracted from the grid to en-
force Dirichlet boundary conditions, while the initial condition points were identified at
t = 0.

• Tensor Conversion: The generated data points were converted into PyTorch tensors with
floating-point precision and were set to require gradients for automatic differentiation. All
experiments were conducted on an NVIDIA A100 GPU with 40 GB of memory.

Training and Test Sets: The training and test sets each consist of two distinct groups containing
101 × 101 = 10,201 collocation points. These points were generated using the data generation
method described above.

For the 2D Navier–Stokes equation experiment, the dataset used is detailed as follows:

Variable Dimensions Description
X (Spatial Coordinates) (5000, 2) Contains 5,000 spatial points, each with 2 coordinate values (x

and y).
t (Time Data) (200, 1) Contains 200 time steps, each corresponding to a scalar value.
U (Velocity Field) (5000, 2, 200) Contains 5,000 spatial points, 2 velocity components (u and v),

and 200 time steps. The velocity data of each point is a function
of time.

P (Pressure Field) (5000, 200) Contains pressure data for 5,000 spatial points and 200 time
steps.

Table 9: Dataset used in the 2D Navier–Stokes equation experiment

Training and Test Sets: From the total dataset of 1,000,000 data points (N×T = 5,000×200), we
randomly selected 2,500 samples for training, which include coordinate positions, time steps, and
the corresponding velocity and pressure components. The test set consists of all spatial data at the
100th time step.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Epochs: We trained the models until convergence but did not exceed 50,000 epochs.

Reproducibility: To ensure reproducibility of the experimental results, all random number gen-
erators are seeded with a fixed value (seed = 0) across NumPy, Python’s random module, and
PyTorch (both CPU and GPU).

Running Time We present the actual running times (hours:minutes:seconds) for all five PDE ex-
periments in the paper. As shown in Table 10, AC-PKAN demonstrates certain advantages among
the KAN model variants, although the running times of all KAN variants are relatively long. This
is primarily because the KAN model is relatively new and still in its preliminary stages; although
it is theoretically innovative, its engineering implementation remains rudimentary and lacks deeper
optimizations. Moreover, while traditional neural networks benefit from well-established optimizers
such as Adam and L-BFGS, optimization schemes specifically tailored for KAN have not yet been
thoroughly explored. We believe that the performance of AC-PKAN will be further enhanced as the
overall optimization strategies for KAN variants improve.

Model 1D-Reaction 1D-Wave Heterogeneous Problem Complex Geometry 2D-NS
PINN 00:09:07 00:21:14 00:23:30 00:01:08 00:15:20
PINNsFormer 00:04:09 00:44:21 14:01:55 00:13:31 00:58:54
QRes 00:02:10 01:41:34 00:20:50 00:01:46 00:24:39
FLS 00:01:29 01:38:01 00:13:38 00:01:08 00:11:51
Cheby1KAN 00:12:08 03:32:10 00:50:45 00:03:21 04:24:59
Cheby2KAN 01:06:54 05:03:18 01:35:40 00:03:27 05:41:42
AC-PKAN 00:15:16 01:13:01 01:13:11 00:01:04 02:21:40
KINN 03:04:19 25:00:20 01:51:44 00:14:07 14:31:42
rKAN 01:21:25 12:44:16 06:21:00 00:16:06 05:19:04
FastKAN 05:51:21 09:35:51 03:37:57 00:17:23 02:04:42
fKAN 00:13:09 08:20:34 00:52:05 00:06:22 03:01:41
FourierKAN 01:21:50 03:33:46 07:40:43 00:18:26 02:48:50

Table 10: Running times (hours:minutes:seconds) for all five PDE experiments

Hyperparameter Selection: The weights used in the external RBA attention are dynamically
updated during training using smoothing factor η = 0.001 and βw = 0.001. Different models
employed in our experiments have varying hyperparameter configurations tailored to their specific
architectures. Table 11 summarizes the hyperparameters and the total number of parameters for each
model.

D.3 PDES IN COMPLEX ENGINEERING ENVIRONMENTS SETUP DETAILS

In this study, we investigate the performance of AC-PKAN compared with other models in solving
complex PDEs characterized by heterogeneous material properties and intricate geometric domains.
Specifically, we focus on two distinct difficult environmental PDE problems: a heterogeneous Pois-
son problem and a Poisson equation defined on a domain with complex geometric conditions. The
following sections detail the formulation of the PDEs, data generation processes, model architec-
ture, training regimen, hyperparameter selection, and evaluation methodologies employed in our
experiments.

Heterogeneous Poisson Problem. We consider a two-dimensional Poisson equation with spatially
varying coefficients to model heterogeneous material properties. The PDE is defined as:

a1∆u(x) = 16r2 for r < r0,

a2∆u(x) = 16r2 for r ≥ r0,

u(x) = r4

a2
+ r40

(
1
a1
− 1

a2

)
on ∂Ω,

(43)

where r = ∥x∥2 is the distance from the origin, a1 = 1
15 and a2 = 1 are the material coeffi-

cients, r0 = 0.5 defines the interface between the two materials, and ∂Ω represents the boundary

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

of the square domain Ω = [−1, 1]2. The boundary condition is a pure Dirichlet condition applied
uniformly on all four edges of the square.

Complex Geometric Poisson Problem. Additionally, we examine a Poisson equation defined on
a domain with complex geometry, specifically a rectangle with four circular exclusions. The PDE is
given by:

−∆u = 0 in Ω = Ωrec \
4⋃

i=1

Ri, (44)

where Ωrec = [−0.5, 0.5]2 is the rectangular domain and Ri for i = 1, 2, 3, 4 are circular regions
defined as:

R1 =
{
(x, y) : (x− 0.3)2 + (y − 0.3)2 ≤ 0.12

}
,

R2 =
{
(x, y) : (x+ 0.3)2 + (y − 0.3)2 ≤ 0.12

}
,

R3 =
{
(x, y) : (x− 0.3)2 + (y + 0.3)2 ≤ 0.12

}
,

R4 =
{
(x, y) : (x+ 0.3)2 + (y + 0.3)2 ≤ 0.12

}
.

The boundary conditions are specified as:

u = 0 on ∂Ri, ∀i = 1, 2, 3, 4, (45)
u = 1 on ∂Ωrec. (46)

Data Generation: To train and evaluate the PINNs, we generate collocation points within the
defined spatial domains and enforce boundary conditions appropriately.

• Grid Creation: For both PDE problems, a uniform grid is established using 100 equidistant
points in each spatial dimension, resulting in 101 × 101 = 10, 201 internal collocation
points for the heterogeneous Poisson problem and an analogous number for the complex
geometric Poisson problem.

• Boundary Sampling:
– Heterogeneous Poisson Problem: Boundary points are extracted from the edges of

the square domain Ω = [−1, 1]2 to impose Dirichlet boundary conditions.
– Complex Geometric Poisson Problem: Boundary points are sampled from both the

outer boundary ∂Ωrec and the boundaries of the excluded circular regions ∂Ri for
i = 1, 2, 3, 4.

• Tensor Conversion: All collocation and boundary points are converted into PyTorch ten-
sors with floating-point precision and are set to require gradients to facilitate automatic
differentiation. The data resides on an NVIDIA A100 GPU with 40GB of memory to
expedite computational processes.

The test datasets for both PDE problems mirror the training datasets in terms of spatial discretization,
ensuring consistency in the evaluation of the model’s generalization capabilities.

Training Regimen: Both PDE problems are trained for a total of 50,000 epochs to allow sufficient
learning iterations. And the RBA attention mechanism for AC-PKAN is configured with smoothing
factors η = 0.001 and βw = 0.001.

Reproducibility: To ensure the reproducibility of our experimental results, all random number
generators are seeded with a fixed value (seed = 0) across NumPy, Python’s random module,
and PyTorch (both CPU and GPU). This deterministic setup guarantees consistent initialization and
training trajectories across multiple runs.

Hyperparameter Selection: Table 12 summarizes the hyperparameters and the total number of
parameters for each model.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E RESULTS DETAILS AND VISUALIZATIONS.

Firstly, in the context of the 1D-Wave experiment, we plotted the values of log
(
λGRA
IC,BC

)
over

epochs in Figure 6 as the values of λGRA
IC,BC over epochs is presented in Figure 3c.

Then we illustrate the fitting results of nine models for complex functions in Figure 7. Additionally,
we present the plots of ground truth solutions, neural network predictions, and absolute errors for
all evaluations conducted in the five PDE-solving experiments. The results for the 1D-Reaction,
1D-Wave, 2D Navier-Stokes, Heterogeneous Poisson Problem, and Complex Geometric Poisson
Problem are displayed in Figures 10, 8, 9, and 11, respectively.

Figure 6: Mean values of GRA weights after logarithmic transformation over epochs for the 1D-
Wave experiment.

Figure 7: Illustration of 9 Various Models for Complex Function Fitting

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 11: Summary of Hyperparameters in PINN Failure Modes Experiment for Various Models

Model Hyperparameters Model Parameters

AC-PKAN

Linear Embedding: 2→ 64
Hidden ChebyKAN Layers: 3 × Cheby1KANLayer (degree=8)
Hidden LN Layers: 3 × LayerNorm (128)
Output Layer: 128→ 1
Activations: WaveAct

460,101

QRes
Input Layer: QRes block (2→ 256, Sigmoid)
Hidden Layers: 3 × QRes block (256→ 256, Sigmoid)
Output Layer: 256→ 1

396,545

FastKAN Layer 1: FastKANLayer (RBF, SplineLinear 16→ 8500, Base Linear 2→ 8500)
Layer 2: FastKANLayer (RBF, SplineLinear 68,000→ 1, Base Linear 8500→ 1) 246,518*

KAN Layers: 2 × KANLinear (9000 neurons, SiLU activation) 270,000*

PINNs

Sequential Layers:
2→ 512 (Linear, Tanh)
512→ 512 (Linear, Tanh)
512→ 512 (Linear, Tanh)
512→ 1 (Linear)

527,361

FourierKAN

NaiveFourierKANLayer 1: 2→ 32, Degree=8
NaiveFourierKANLayer 2: 32→ 128, Degree=8
NaiveFourierKANLayer 3: 128→ 128, Degree=8
NaiveFourierKANLayer 4: 128→ 32, Degree=8
NaiveFourierKANLayer 5: 32→ 1, Degree=8

395,073

Cheby1KAN

Cheby1KANLayer 1: 2→ 32, Degree=8
Cheby1KANLayer 2: 32→ 128, Degree=8
Cheby1KANLayer 3: 128→ 256, Degree=8
Cheby1KANLayer 4: 256→ 32, Degree=8
Cheby1KANLayer 5: 32→ 1, Degree=8

406,368

Cheby2KAN

Cheby2KANLayer 1: 2→ 32, Degree=8
Cheby2KANLayer 2: 32→ 128, Degree=8
Cheby2KANLayer 3: 128→ 256, Degree=8
Cheby2KANLayer 4: 256→ 32, Degree=8
Cheby2KANLayer 5: 32→ 1, Degree=8

406,368

fKAN

Sequential Layers:
2→ 256 (Linear, fJNB(3))
256→ 512 (Linear, fJNB(6))
512→ 512 (Linear, fJNB(3))
512→ 128 (Linear, fJNB(6))
128→ 1 (Linear)

460,813

rKAN

Sequential Layers:
2→ 256 (Linear, JacobiRKAN(3))
256→ 512 (Linear, PadeRKAN[2/6])
512→ 512 (Linear, JacobiRKAN(6))
512→ 128 (Linear, PadeRKAN[2/6])
128→ 1 (Linear)

460,835

FLS

Sequential Layers:
2→ 512 (Linear, SinAct)
512→ 512 (Linear, Tanh)
512→ 512 (Linear, Tanh)
512→ 1 (Linear)

527,361

PINNsformer Parameters: d out=1, d hidden=512, d model=32, N=1, heads=2 453,561
* This reaches the GPU memory limit, and increasing the number of parameters further would cause an out-of-memory error.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Summary of Hyperparameters in Complex Engineering Environmental PDEs for Various
Models

Model Hyperparameters Model Parameters

AC-PKAN

Linear Embedding: in=2, out=32
ChebyKAN Layers: 4 layers, degree=8
LN Layers: 4 layers, features=64
Output Layer: in=64, out=1
Activation: WaveAct

152,357

QRes

Input Layer: in=2, out=128
Hidden Layers: 5 QRes blocks, units=128
Output Layer: in=128, out=1
Activation: Sigmoid

166,017

PINN

Layer 1: 2→ 256, Activation=Tanh
Layer 2: 256→ 512, Activation=Tanh
Layer 3: 512→ 128, Activation=Tanh
Layer 4: 128→ 1

198,145

PINNsformer

d out=1
d hidden=128
d model=8
N=1
heads=2

158,721

FLS

Layer 1: 2→ 256, Activation=SinAct
Layer 2: 256→ 256, Activation=Tanh
Layer 3: 256→ 256, Activation=Tanh
Layer 4: 256→ 1

132,609

Cheby1KAN

Layer 1: 2→ 32, Degree=8
Layer 2: 32→ 128, Degree=8
Layer 3: 128→ 64, Degree=8
Layer 4: 64→ 32, Degree=8
Layer 5: 32→ 1, Degree=8

129,888

Cheby2KAN

Layer 1: 2→ 32, Degree=8
Layer 2: 32→ 128, Degree=8
Layer 3: 128→ 64, Degree=8
Layer 4: 64→ 32, Degree=8
Layer 5: 32→ 1, Degree=8

129,888

KAN*
Layers: 2 × KANLinear
Neurons: 9000
Activation: SiLU

60,000*

rKAN

Layer 1: 2→ 256, Activation=JacobiRKAN(3)
Layer 2: 256→ 256, Activation=PadeRKAN[2/6]
Layer 3: 256→ 256, Activation=JacobiRKAN(6)
Layer 4: 256→ 128, Activation=PadeRKAN[2/6]
Layer 5: 128→ 1

165,411

FastKAN* FastKANLayer 1: RBF, SplineLinear 16→ 2600, Base Linear 2→ 2600
FastKANLayer 2: RBF, SplineLinear 20800→ 1, Base Linear 2600→ 1 75,418*

fKAN

Layer 1: 2→ 256, Activation=fJNB(3)
Layer 2: 256→ 512, Activation=fJNB(6)
Layer 3: 512→ 512, Activation=fJNB(3)
Layer 4: 512→ 128, Activation=fJNB(6)
Layer 5: 128→ 1

132,618

FourierKAN

Layer 1: 2→ 32
Layer 2: 32→ 64
Layer 3: 64→ 64
Layer 4: 64→ 64
Layer 5: 64→ 1
Degree=8

166,113

* This reaches the GPU memory limit, and increasing the number of parameters further would cause an out-of-memory error.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Ground Truth Solution for the 1D-Reaction Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 8: Comparison of the ground truth solution for the 1D-Reaction equation with predictions and
error maps from various models. The top image illustrates the ground truth, while the subsequent
24 images display the predictions and their respective errors organized in a 6x4 grid, providing a
comprehensive overview of each model’s performance.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(a) Ground Truth Solution for the 1D-Wave Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 9: Comparison of the ground truth solution for the 1D-Wave equation with predictions and
error maps from various models. 28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Ground Truth Solution for the 1D-Reaction Equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, and fKAN models; and the PINNsformer, FLS, Fouri-
erKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding abso-
lute errors.

Figure 10: Comparison of the ground truth solution for the 2D Navier-Stokes equation with pre-
dictions and error maps from various models. The top image illustrates the ground truth, while the
subsequent 22 images display the predictions and their respective errors organized in a 6x4 grid,
providing a comprehensive overview of each model’s performance.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Ground Truth Solution for the Heterogeneous Possion equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 11: Comparison of the ground truth solution for the Heterogeneous Possion equation problem
with predictions and error maps from various models.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Ground Truth Solution for the Complex Geometry Possion equation

(b) From left to right, the first, third, and fifth rows display the predictions of the AC-PKAN, Cheby1KAN,
Cheby2KAN, and FastKAN models; the PINNs, QRes, rKAN, and fKAN models; and the PINNsformer, FLS,
FourierKAN, and KINN models, respectively. The second, fourth, and sixth rows present their corresponding
absolute errors.

Figure 12: Comparison of the ground truth solution for the Complex Geometry Possion equation
problem with predictions and error maps from various models.

31

	Introduction
	Related Work
	Methodology
	Residual-and-Gradient Based Attention
	Residual-Based Attention (RBA)
	Gradient-Related Attention (GRA)
	Combined Attention Mechanism

	Chebyshev1-Based Kolmogorov-Arnold Network Layer
	Internal Model Architecture

	Experiments
	Complex Function Fitting
	Mitigating Failure Modes in PINNs
	PDEs in Complex Engineering Environments
	Additional Experiments

	Conclusion
	Proof of Theorem 1
	Explanation for the Superiority of Chebyshev Type I Polynomials Over B-Splines
	Additional Ablation Studies
	Effect of Logarithmic Transformation in the RGA Module
	Effect of the RGA Module in Other PINN Variants

	Experiment Setup Details
	Complex Function Fitting Experiment Setup Details
	Failure Modes in PINNs Experiment Setup Details
	PDEs in Complex Engineering Environments Setup Details

	Results Details and Visualizations.

