Unlimiting the Dual Gaussian Distribution Model to Predict
Touch Accuracy in On-screen-start Pointing Tasks
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ABSTRACT

The dual Gaussian distribution hypothesis has been utilized to
predict the success rate of target acquisition in finger touch-
ing. Bi and Zhai limited the applicability of their success-rate
prediction model to off-screen-start pointing. However, we
found that their doing so was theoretically over-limiting and
their prediction model could also be used to on-screen-start
pointing operations. We discuss the reasons why and empiri-
cally validate our hypothesis in a series of four experiments
with various target sizes and distances. Bi and Zhai’s model
showed high prediction accuracy in all the experiments, with
10% prediction error at worst. Our theoretical and empirical
justifications will enable designers and researchers to use a sin-
gle model to predict success rates regardless of whether users
mainly perform on- or off-screen-start pointing and automati-
cally generate and optimize Ul items on apps and keyboards.

Author Keywords
Dual Gaussian distribution model; touchscreens; finger input;
pointing; graphical user interfaces.

CCS Concepts
*Human-centered computing — HCI theory, concepts and
models; Pointing; Empirical studies in HCI;

INTRODUCTION

Target acquisition is the most frequently performed operation
on touchscreens. Tapping a small target, however, is some-
times an error-prone task, for reasons such as the “fat finger
problem” [24, 46] and the offset between a user’s intended tap
point and the position sensed by the system [8, 25]. Hence,
various techniques have been proposed to improve the pre-
cision of touch pointing [2, 46, 59]. Researchers have also
sought to understand the fundamental principles of touch, e.g.,
touch-point distributions [4, 49]. As shown in these studies,
finger touching is an inaccurate way to select a small target.

If touch GUI designers could compute the success rate of tap-
ping a given target, they could determine button/icon sizes that
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would strike a balance between usability and screen-space oc-
cupation. For example, suppose that a designer has to arrange
many icons on a webpage. In this case, is a 5-mm diameter for
each circular icon sufficiently large for accurate tapping? If
not, then how about a 7-mm diameter? By how much can we
expect the accuracy to be improved? Moreover, while larger
icons can be more accurately tapped, they occupy more screen
space. In that case, the webpage can be lengthened so that
the larger icons fit, but this requires users to perform more
scrolling operations to view and select icons at the bottom
of the page. Hence, designers have to carefully manage this
tradeoff between user performance and screen space.

Without a success-rate prediction model, designers have to
conduct costly user studies to determine suitable target sizes
on a webpage or app, but this strategy has low scalability.
Accurate quantitative models would also be helpful for auto-
matically generating user-friendly Uls [17, 39] and optimizing
Uls [5, 14]. Furthermore, having such models would help
researchers justify their experimental designs in investigating
novel systems and interaction techniques that do not focus
mainly on touch accuracy. For example, researchers could
state, “According to the success-rate prediction model, 9-mm-
diameter circular targets are assumed to be accurately (> 99%)
selected by finger touching, and thus, this experiment is a fair
one for comparing the usabilities of our proposed system and
the baseline.”

To predict how successfully users tap a target, Bi and Zhai pro-
posed a model that computes the success rate solely from the
target size W for both 1D and 2D pointing tasks [10]. They rea-
sonably limited their model’s applicability to touch-pointing
tasks starting off-screen, i.e., those in which the user’s fin-
ger moves from a position outside the touch screen. In this
paper, we first explain why this limitation seems reasonable
by addressing potential concerns in applying the model to
on-screen-start pointing tasks, in which a finger moves from
a certain position on the screen to another position to tap a
target. Then, however, we justify the use of the model for
pointing with an on-screen start. After that, we empirically
show through a series of experiments that the model has com-
parable prediction accuracy even for such pointing with an
on-screen start. Our key contributions are as follows.

e Theoretical justification for applying Bi and Zhai’s
success-rate prediction model to pointing tasks starting
on-screen. We found that the model is valid regardless
of whether a pointing task starts on- or off-screen. This
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means that designers and researchers can predict success
rates by using a single model. We thus expand the coverage
of the model to other applications, such as (a) tapping a
“Like” button after scrolling through a social networking
service feed, (b) successively inputting check marks on a
questionnaire, and (c) typing on a software keyboard.

e Empirical verification of our hypothesis via four exper-
iments. Despite the theoretical reasoning, we were still
concerned about using the model after consulting the exist-
ing literature and finding results like those showing that the
endpoint variability is significantly affected by the move-
ment distance A in a ballistic pointing motion [6, 26, 44, 61].
Hence, we conducted 1D and 2D pointing experiments start-
ing on-screen with (a) successive pointing tasks in which
targets appeared at random positions, which ignored the
effect of A, and (b) discrete pointing tasks in which the
start and goal targets were separated by a given distance,
meaning that A was controlled. The results showed that we
could accurately predict the success rates with a prediction
error of ~10% at worst.

In short, the novelty of our study is that it extends the applica-
bility of Bi and Zhai’s model to a variety of tasks (e.g., Fitts
tasks, key typing), with support from theoretical and empiri-
cal evidence. With this model, designers and researchers can
evaluate and improve their Uls in terms of touch accuracy,
which will directly contribute to UI development. In addition,
by reducing the time and cost of conducting user studies, our
model will let them focus on other important tasks such as
visual design and backend system development, which will
indirectly contribute to implementing better, novel Uls.

RELATED WORK

Success-Rate Prediction for Pointing Tasks

When human operators try to minimize both the movement
time MT and the number of target misses, the error rate has
been thought to be close to 4% [35, 45, 53]. A recent report,
however, pointed out that this percentage is an arbitrary, ques-
tionable assumption [19]. Actual data shows that the error rate
tends to decrease as the target size W increases [10, 16, 48,
53].

While a typical goal of pointing models is to predict the M T,
researchers have also tried to derive models to predict the suc-
cess rate (or error rate) of target acquisition tasks. In particular,
the model of Meyer et al. [36] is often cited as the first one to
predict the error rate, but it does not account for the MT. In
practice, the error rate increases as operators move faster (e.g.,
[62]), and thus Wobbrock et al. accounted for this effect in
their model [53]. That model was later shown to be applicable
for pointing to 2D circular targets [54] and moving targets
[40]. For both models, by Meyer et al. and Wobbrock et al.,
the predicted error rate increases as W decreases, which is
consistent with the actual observations mentioned above.

As for speed, simply speaking, when operators give it priority,
the error rate increases. While Wobbrock et al. applied a
time limit as an objective constraint by using a metronome in
their study [53], this speed-accuracy tradeoff was empirically
validated in a series of experiments by Zhai et al., in which

the priority was subjectively biased [62]. Besides the case of
rapidly aimed movements, the error rate has also been inves-
tigated for tapping on a static button within a given temporal
window [28, 29, 30]. Despite the recent importance of finger-
touch operations on smartphones and tablets, however, the
only literature on predicting the success rate while account-
ing for finger-touch ambiguity is the work of Bi and Zhai on
pointing from an off-screen start [10]. It would be useful if we
could extend the validity of their model to other applications.

Improvements and Principles of Finger-Touch Accuracy

Various methods to improve the touch accuracy have been
proposed. Examples include using an offset from the finger
contact point [12, 43, 46], dragging in a specific direction
to confirm a particular target among a number of potential
targets [2, 38, 59], visualizing a contact point [52, 60], apply-
ing machine learning [50] or probabilistic modeling [9], and
correcting hand tremor effects by using motion sensors [42].

In addition to these techniques, researchers have sought to
understand why finger touch is less accurate compared with
other input modalities such as a mouse cursor. One typical
issue is the fat finger problem [24, 25, 46], in which an operator
wants to tap a small target, but the finger occludes it. Another
issue is that finger touch has an unavoidable offset (spatial
bias) from the operator’s intended touch point to the actual
touch position sensed by the system. Even if operators focus
on accuracy by spending a sufficient length of time, the sensed
touch point is biased from the crosshair target [24, 25].

Success-Rate Prediction for Finger-Touch Pointing

Outline of Dual Gaussian Distribution Model

Previous studies have shown that the endpoint distribution of
finger touches follows a bivariate Gaussian distribution over a
target [4, 22, 49]. Thus, the touch point observed by the system
can be considered a random variable X, following a Gaussian
distribution: X5 ~ N(Uops, ngs)’ where U, and O, are the
center and SD of the distribution, respectively. Bi, Li, and Zhai
hypothesized that X, is the sum of two independent random
variables consisting of relative and absolute components, both
of which follow Gaussian distributions: X, ~ N(u,,c?), and

X, ~ N(lg,02) [8].

X, is a relative component affected by the speed-accuracy
tradeoff. When an operator aims for a target more quickly,
the relative endpoint distribution o, increases. As indicated
by Fitts’ law studies, if the acceptable endpoint tolerance W
increases, then the operator’s endpoint noise level o, also
increases [13, 35].

X, is an absolute component that reflects the precision of
the probe (i.e., the input device: a finger in this paper) and
is independent of the task precision. Therefore, even when
an operator taps a small target very carefully, there is still a
spatial bias from the intended touch point (typically the target
center) [8, 24, 25]; the distribution of this bias is what o,
models. Therefore, although o, can be reduced by an operator
aiming slowly at a target, 6, cannot be controlled by setting
such a speed-accuracy priority. Note that the means of both
components’ random variables (i, and p,) are assumed to



tend close to the target center: U, ~ U, ~ 0 if the coordinate
of the target center is defined as 0.

Again, Bi et al. hypothesized that the observed touch point is
a random variable that is the sum of two independent compo-
nents [8]:

Xobs:Xr+XaNN(.ur+“uaGr2+Gg) (D

obs(= I+ Hg) is close to O on average, and 02, is:

02, = 02+ 2 )
When an operator exactly utilizes the target size W in
rapidly aimed movements, \/27Tec, matches a given W (i.e.,
4.1330, = W) [9, 35]. Operators tend to bias operations to-
ward speed or accuracy, however, thus over- or underusing W
[62]. Bi and Zhai assumed that using a fine probe of negligible
size (0, =~ 0), such as a mouse cursor, makes O, proportional
to W. Thus, by introducing a constant o, we have:

o2 = aw? 3)
Then, replacing 67 in Equation 2 with Equation 3, we obtain:

Oy = OW? + 0, “
Hence, by conducting a pointing task with several W values,
we can run a linear regression on Equation 4 and obtain the
constants, & and 6,. Accordingly, we can compute the end-
point variability for tapping a target of size W. We denote this
endpoint variability computed from a regression expression as

Oreg = \/ AW?2 + G2 5)

Revisiting Bi and Zhai'’s Studies on Success-Rate Prediction

Here, we revisit Bi and Zhai’s first experiment on the Bayesian
Touch Criterion [9]. They conducted a 2D pointing task with
circular targets of diameter W = 2, 4, 6, 8, and 10 mm. In
their task, tapping the starting circle caused the first target to
immediately appear at a random position. Subsequently, lifting
the input finger off a target caused the next target to appear
immediately. Hence, the participants successively tapped each
new target as quickly and accurately as possible. The target
distance was not predefined as A, unlike typical experiments
involving Fitts’ law. A possible way to analyze the effect of the
movement amplitude would be to calculate A as the distance
between the current target and the previous one; however,
no such analysis was performed. Thus, even if the endpoint
variability o,,, was influenced by A, the effect was averaged.

Oreg:

By using Equation 5, the regression expressions of the Oyeg
values on the x- and y-axes were calculated as [9]:

Greg, = V/0.0075W2 + 1.6834 (6)
Greg, = /0.0108W2 +1.3292 @)

Bi and Zhai then derived their success-rate prediction model
[10]. Assuming a negligible correlation between the observed
touch point values on the x- and y-axes (i.e., p = 0) gives
the following probability density function for the bivariate

Gaussian distribution:

2 2
P(x,y) = a Y ) ®)

—— exp|-— _
2 2
27 Oyeq, Oreg, ( 26,% 2(7,6&‘

Then, the probability that the observed touch point falls within
the target boundary D is:

P(D) f f L[ 2 Va9
= — — X
D 27 Greg, Oreg, P 207, 207, Y

where 0., and Opeg, are calculated from Equations 6 and 7,
respectively.

For a 1D vertical bar target, whose boundary is defined to
range from x; to xp, we can simplify the predicted probability
for where the touch point X falls on the target:

P(.X[ SX sz) = % lerf ((sz\/§> —erf <GXI\/§>‘|
regy regy
(10)

Note that the mean touch point u of the probability density
function is assumed to be ~= 0, thus eliminating it already from
this equation. If the target width is W, then Equation 10 can
be simplified further:

w W w
P<—2<X<2>—erf<m%> (11)

Alternatively, if the target is a 1D horizontal bar of height
W, then we replace the x-coordinates in Equation 11 with
y-coordinates.

Bi and Zhai’s experiment on success-rate prediction tested
1D vertical, 1D horizontal, and 2D circular targets with W
=24, 4.8, and 7.2 mm [10]. Unlike a different experiment
to measure the coefficients in Equations 6 and 7 [9], Bi and
Zhai empirically confirmed their model’s validity in pointing
from an off-screen start. To simulate this condition of starting
off-screen, they told their participants to keep their dominant
hands off the screen in natural positions and start from those
positions in each trial [10]. Hence, while the coefficients of the
touch-point variability were measured in a successive pointing
task [9], which is regarded as a pointing task starting on-screen,
Bi and Zhai did not claim that their success-rate prediction
model using Equations 9 and 11 was valid for other kinds of
pointing tasks, such as a Fitts’ law paradigm specifying both
Aand W.

GENERALIZABILITY OF SUCCESS-RATE PREDICTION
MODEL TO POINTING TASKS STARTING ON-SCREEN

Effect of Movement Distance on Success Rate

Here, we discuss why Bi and Zhai’s model (Equations 9 and
11) can be applied to touch-pointing tasks starting on-screen,
as well as possible concerns about this application. In their
paper [9], Bi and Zhai stated, “We generalize the dual Gaussian
distribution hypothesis from Fitts’ tasks—which are special
target selection tasks involving both amplitude (A) and target
width (W)—to the more general target-selection tasks which
are predominantly characterized by W alone.” Therefore, to



omit the effect of A when they later evaluated the success-rate
prediction model, they explicitly instructed the participants to
start with their dominant hands away from the screen at the
beginning of each trial [10]. This is a reasonable instruction:
if their experiment used an on-screen start, defining A would
be their model’s limitation, because such an experiment would
show only that the prediction model could be used when the
pointing task is controlled by both A and W. Thus, pointing
experiments starting off-screen are a reasonable way to show
that the model can be used if W is defined.

To generalize the model to pointing tasks starting on-screen,
one concern is the effect of the movement distance A on the
success rate. Even if we do not define the target distance
A from the initial finger position, in actuality the finger has
an implicit travel distance, because “A is less well-defined”
[9] does not mean “there is no movement distance.” There-
fore, a pointing task predominantly characterized by W alone
can also be interpreted as merging or averaging the effects
of A on touch-point distributions and success rates. For ex-
ample, suppose that a participant in a pointing experiment
starting off-screen repeatedly taps a target 200 times. Let the
implicit A value be 20 mm for 100 trials and 60 mm for the
other 100. Suppose that the success rates are independently
calculated as, e.g., 95 and 75%, respectively. If we do not
distinguish the implicit A values, however, then the success
rate is (954 75)/200 = 80%. This value is somewhat close
to the independent value of 75% for the condition of A = 60
mm, but the prediction error for A = 20 mm is 15%.

If the implicit or explicit movement distance A does not sig-
nificantly change the success rate, such as from 88% for A =
20 mm to 86% for A = 60 mm, then we can use Bi and Zhai’s
model regardless of whether pointing tasks start on- or off-
screen. Now, the question is whether the success rate changes
depending on the implicit or explicit A. If it does change, then
we can use the model only if we ignore the movement dis-
tance. According to the current prediction model (Equations 9
and 11), once W is given, the predicted success rate is deter-
mined by o,.,. Hence, the debate revolves around whether the
touch-point distribution is affected by the distance A. This is
equivalent to asking whether Equation 4 (ng .= aW?+c?2)is
valid regardless of the value of A. In fact, the literature offers
evidence on both sides of the question, as explained below.

Effect of Movement Distance on Endpoint Variability
Previous studies reported that the A does not strongly influence
the endpoint distribution [8, 27, 62]. For typical pointing tasks,
operators are asked to balance speed and accuracy, which
means that they can spend a long time successfully acquiring
a target if it is small. Thus, target pointing tasks implicitly
allow participants to use visual feedback to perform closed-
loop motions (e.g., [27]). Under such conditions, the endpoint
distribution is expected to decrease as W decreases [9, 35].

In contrast, when participants perform a ballistic motion, the
endpoint distribution has been reported to vary linearly with
the square of the movement distance A [20, 21, 23, 37, 44, 61].
Beggs et al. [6, 7] formulated the relationship in this way:

Gypy = a-+bA® (12)

where 0, is valid for directions collinear and perpendicular
to the movement direction, and a and b are empirically de-
termined constants. This model has since been empirically
confirmed by other researchers (e.g., [32, 33]). Because the in-
tercept a tends to be small [37, 44, 61], this model is consistent
with reports on the relationship being linear (6,5 = V/bA).

The critical threshold of whether participants perform a closed-
loop or ballistic motion depends on Fitts’ original index of
difficulty, ID = log,(2A/W). When ID is less than 3 or 4
bits, a pointing task can be accomplished with only a ballistic
motion [18, 23]. While the critical /D changes depending on
the experimental conditions, an extremely easy task such as
this one (i.e., one with a short A or large W) generally does
not require any precise closed-loop operations. Therefore, we
theoretically assume that the endpoint distribution o, and
the success rate change depending on the movement distance.

Nevertheless, we also assume that such a ballistic motion
would not degrade success-rate prediction. The evidence
comes from a study by Bi et al. on the FFitts law model
[8]. They conducted 1D and 2D Fitts-paradigm experiments
with A =20 and 30 mm and W = 2.4, 4.8, and 7.2 mm; the ID
in Fitts’ original formulation ranged from 2.47 to 4.64 bits. For
(A,W,ID) = (20 mm, 7.2 mm, 2.47 bits) and (30 mm, 7.2 mm,
3.06 bits), a somewhat sloppy ballistic motion might fulfill
these conditions [23]. The o, values, however, were 1.21
and 1.33 mm for these 1D horizontal targets. The difference
was only |1.21 — 1.33| = 0.12 mm, while the error rate differ-
ence was |29 — 38| = 9%. Similarly, their 2D tasks showed
only small differences in error rate, up to 2% at most, between
the conditions of two values of A for each W condition.

As empirically shown by this study of Bi et al. on FFitts
law [8], the changes in 0, and the success rate owing to A
might be small in practice because such short A values could
not greatly change o,, even if the effect of A on o, is
statistically significant as expressed by Equation 12. If so,
then from a practical viewpoint, it would not be problematic to
apply Bi and Zhai’s success-rate prediction model to pointing
from an on-screen start; hence, we empirically validated this.

EXPERIMENTS

As discussed in the previous section, we have contrary hy-
potheses on whether we can accurately predict the success rate
of touch pointing tasks solely from the target size W. Specif-
ically, (1) when pointing is ballistic with a short movement
distance A, A would have a statistically significant effect on
O,ps, and thus, the success rate might not be accurately pre-
dicted. Yet, in that situation, (2) a short A like 2—-3 cm would
induce only a slight (though statistically significant) change in
O,ps, and thus, in practice, the change of A is not detrimental
to success-rate prediction.

To settle the question, we ran experiments involving 1D and
2D pointing tasks starting on-screen. For each dimensionality,
we conducted (a) successive pointing tasks in which a target
appeared at a random position immediately after the previous
target was tapped, and (b) discrete pointing tasks in which
the target distance A was predefined. Under condition (a), we
could have post-computed the target distance from the previ-
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Figure 1. Experimental environments: (a) a participant attempting Ex-
periment 2, and the visual stimuli used in (b) Experiments 2 and (c) 4.

ous target position. Instead, we merged the various distance
values; this was a fair modification of Bi and Zhai’s success-
rate prediction experiments [10], which started off-screen, to
an on-screen start condition. Under condition (b), we sepa-
rately predicted and measured the error rates for each value of
A to empirically evaluate the effect of movement distance on
the prediction accuracy. We thus conducted four experiments
composed of 1D and 2D target conditions:

Exp. 1. Successive 1D pointing task: horizontal bar targets
appeared at random positions.

Exp. 2. Discrete 1D pointing task: a start bar and a target bar
were displayed with distance A between them.

Exp. 3. Successive 2D pointing task: circular targets ap-
peared at random positions.

Exp. 4. Discrete 2D pointing task: a start circle and a target
circle were displayed with distance A between them.

Experiments 1 and 2 were conducted on the first day and per-
formed by the same 12 participants. Although we explicitly
labeled these as Experiments 1 and 2, their order was balanced
among the 12 participants'. Similarly, on the second day, 12
participants were divided into two groups, and the order of Ex-
periments 3 and 4 was balanced. Each set of two experiments
took less than 40 min per participant.

We used an iPhone XS Max (A12 Bionic CPU; 4-GB RAM,;
i0S 12; 1242 x 2688 pixels, 6.5-inch-diagonal display, 458
ppi; 208 g). The experimental system was implemented with
JavaScript, HTML, and CSS. The web page was viewed
with the Safari app. After eliminating the top and bottom
navigation-bar areas, the browser converted the canvas resolu-
tion to 414 x 719 pixels, giving 5.978 pixels/mm. The system
was set to run at 60 fps. We used the takeoff positions as tap
points, as in previous studies [8, 9, 10, 57, 58].

The participants were asked to sit on an office chair in a silent
room. As shown in Figure 1a, each participant held the smart-
phone with the nondominant (left) hand and tapped the screen
with the dominant (right) hand’s index finger. They were
instructed not to rest their hands or elbows on their laps.

'We conducted another measurement called a finger calibration task
to replicate the model of FFitts law [8]. The order of Experiments 1
and 2 and the finger calibration task was actually balanced.

EXPERIMENT 1: 1D TASK WITH RANDOM AMPLITUDES

Participants

Twelve university students, two female and 10 male, partic-
ipated in this study. Their ages ranged from 20 to 25 years
(M =23.0, SD = 1.41). They all had normal or corrected-to-
normal vision, were right-handed, and were daily smartphone
users. Their histories of smartphone usage ranged from 5 to 8
years (M = 6.67, SD = 1.07). For daily usage, five participants
used i0OS smartphones, and seven used Android smartphones.
They each received 45 US$ in compensation for performing
Experiments 1 and 2.

Task and Design

A 6-mm-high start bar was initially displayed at a random
position on the screen. When a participant tapped it, the
first target bar immediately appeared at a random position.
The participant successively tapped new targets that appeared
upon lifting the finger off. If a target was missed, a beep
sounded, and the participant had to re-aim for the target. If the
participant succeeded, a bell sounded. To reduce the negative
effect of targets located close to a screen edge, the random
target position was at least 11 mm away from both the top and
bottom edges of the screen [3].

This task was a single-factor within-subjects design with an
independent variable of the target width W: 2, 4, 6, 8, and
10 mm, or 12, 24, 36, 48, and 60 pixels, respectively. The
dependent variables were the observed touch-point distribution
on the y-axis, Oobs,» and the success rate. The touch-point bias
was measured from the target center with a sign [55]. First, the
participants performed 20 trials as practice, which included
four repetitions of the five W values appearing in random order.
In each session, the W values appeared 10 times in random
order. The participants were instructed to successively tap the
target as quickly and accurately as possible in a single session.
They each completed four sessions as data-collection trials,
with a short break between two successive sessions. Thus,
we recorded Sw X 1Orf:pf:titions X 4gessions X 12participants = 2400
data points in total.

Results

We removed 13 outlier trials (0.54%) that had tap points at least
15 mm from the target center [9]. According to observations,
such outliers resulted mainly from participants accidentally
touching the screen with the thumb or little finger. For consis-
tency with Bi and Zhai’s work [10], we decided to compute
the regression between ngs and W? to validate Equation 4,
compare the observed and computed touch-point distributions
(Opbs, and Oyeg, , respectively), and compare the observed and
predicted success rates.

Touch-Point Distribution

A repeated-measures ANOVA showed that W had a significant
main effect on G,py, (F4a4 = 11.18, p < 0.001, n;= 0.50).
Shapiro-Wilk tests showed that the touch points followed
Gaussian distributions (p > 0.05) under 47 of the 60 con-
ditions (= Sw X 12paricipants)> Or 78.3%. Figure 2 shows the re-
gression expression for Gazbsy versus W2 to validate Equation 4.

The assumption of a linear relationship for these variances
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Figure 3. Observed versus predicted success rates in Experiment 1.

even for touch-pointing operations with an on-screen start was
supported with R* = 0.9353. Accordingly, we obtained the
following coefficients for Equation 5:

Greg, = V/0.0154W2 +1.0123 (13)

For comparison, in Bi and Zhai’s 2D task [9] using the same W
values as in our 1D task, 62 versus W2 gave R? =0.9344,

obsy
and Gozbsv versus W2 gave R? = 0.9756. Hence, even for a

pointing task with an on-screen start and random target posi-
tioning, we could compute the touch-point distribution values
(Oyeg,) for each W by using Equation 13 with accuracy similar
to those of their study. The differences between the computed
Oreg, Values and observed distributions G, were less than
0.1 mm (< 1 pixel), as obtained by taking the square roots of
the vertical distances between the points and the regression
line in Figure 2.

Success Rate

Among the 2387 (= 2400 — 13) non-outlier data points, the
participants successfully tapped the target in 2194 trials, or
91.91%. As shown by the blue bars in Figure 3, the observed
success rate increased from 71.55 to 99.79% with the increase
in W, which had a significant main effect (F3 44 = 58.37, p <
0.001, n2=0.84). Note that, throughout this paper, the error
bars in charts indicate SD across all participants.

By applying Equation 13 in Equation 11, we computed the
predicted success rates for each W, as represented by the red
bars in Figure 3. The difference from the observed success rate
was 5% at most. These results show that we could accurately
predict the success rate solely from the target size W, with a
mean absolute error MAE of 1.657% for N = 5 data points.
This indicates the applicability of Bi and Zhai’s model with
our on-screen start condition.

EXPERIMENT 2: 1D TASK WITH PRESET AMPLITUDES
This task followed the discrete pointing experiment of Bi et al.
with specific target amplitudes [8], but with more variety in
the values of A and W.

Task and Design

Figure 1b shows the visual stimulus used in Experiment 2.
At the beginning of each trial, a 6-mm-high blue start bar
and a W-mm-high green target bar were displayed at random
positions with distance A between them and margins of at
least 11 mm from the top and bottom edges of the screen.
When a participant tapped the start bar, it disappeared and a
click sounded. Then, if the participant successfully tapped
the target, a bell sounded, and the next set of start and target
bars was displayed. If the participant missed the target, he
or she had to aim at it until successfully tapping it; in such a
case, the trial was not restarted from tapping the start bar. The
participants were instructed to tap the target as quickly and
accurately as possible after tapping the start bar.

We included four target distances (A = 20, 30, 45, and 60 mm,
or 120, 180, 270, and 358 pixels, respectively) and five target
widths (W =2, 4, 6, 8, and 10 mm, or 12, 24, 36, 48, and 60
pixels, respectively). Each A x W combination was used for
16 repetitions, following a single repetition of practice trials.
We thus recorded 44 X Sy X 16epetitions X 12participants = 3840
data points in total.

Results
Among the 3840 trials, we removed 4 outlier trials (0.10%)
that had tap points at least 15 mm from the target center.

Touch-Point Distribution

We found significant main effects of A (/333 = 2.949, p <
0.05, n2=10.21) and W (Fy 44 = 72.63, p < 0.001, n2= 0.87)
on Opps, , but no significant interaction of A x W (Fi2,132 =
1.371, p = 0.187, 2= 0.11). Shapiro-Wilk tests showed that
the touch points followed Gaussian distributions under 218 of
the 240 conditions (44 X Sw X 12paricipants)» or 90.8%. Figure 4

shows the regression expression for ngsy versus W2, with

R?2 =0.8141 for N = 4, x 5y = 20 data points. When we
merged the four ngsy values for each A as we did with the

movement amplitudes in Experiment 1, we obtained five data
points with R> = 0.9171 (the regression constants did not
change). We used the results of the regression expression to
obtain the coefficients in Equation 5:

Greg, = V/0.0191W2 +0.9543 (14)

Using Equation 14, we computed the touch-point distributions
(Oreg,) for each W. The differences between the Oreg, and
Oubs, Values were less than 0.2 mm (~1 pixel). As a check, the
average O, values for A = 20, 30, 45, and 60 mm were 1.345,
1.279, 1.319, and 1.415 mm, respectively, giving a difference
of 0.136 mm at most. The conclusion of the small effect of
A was supported by a repeated-measures ANOVA: although
A had a main effect on 0,,,, a pairwise comparison with
the Bonferroni correction as the p-value adjustment method
showed only one pair having a significant difference between
A =45 and 60 mm (p < 0.05; |1.319 — 1.415| = 0.096 mm
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Figure 5. Observed versus predicted success rates in Experiment 2.

< 1 pixel). These results indicate that we could compute the
touch-point distributions regardless of A at a certain degree of
accuracy in most cases.

Success Rate

Among the 3736 (= 3840 — 4) non-outlier data points, the
participants successfully tapped the target in 3489 trials, or
90.95%. We found significant main effects of A (F333 =
4.124, p <0.05, n2=0.27) and W (Fjy 44 = 45.03, p < 0.001,
nf,: 0.80) on the success rate, but no significant interaction
of A X W (Fi2,132 = 0.681, p = 0.767, n2= 0.058). Figure 5
shows the observed and predicted success rates. The largest
difference was 77.60 — 67.53 = 10.07% under the condition
of A=20 mm x W =2 mm. This is comparable with Bi
and Zhai’s success-rate prediction [10], in which the largest
difference (9.74%) was observed for W = 2.4 mm on a 1D
vertical bar target. In Experiment 2, the MAE was 3.266% for
N =20 data points.

EXPERIMENT 3: 2D TASK WITH RANDOM AMPLITUDES
The experimental designs were almost entirely the same as in
Experiments 1 and 2, except that circular targets were used
in Experiments 3 and 4. Here, the target size W means the
circle’s diameter. The random target positions were set at
least 11 mm from the edges of the screen. For Experiment
3, we used the same task design as in Experiment 1: Sy X
40repetitions X 12participants = 2400 data points.

Participants

Twelve university students, three female and nine male, par-
ticipated in Experiments 3 and 4. Their ages ranged from
19 to 25 years (M = 22.2, SD = 2.12). They all had normal
or corrected-to-normal vision, were right-handed, and were
daily smartphone users. Their histories of smartphone usage
ranged from 4 to 10 years (M = 6.17 and SD = 1.75). For
daily usage, nine participants used iOS smartphones, and three
used Android smartphones. They each received 45 US$ in
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Figure 6. Regression between the variances in the x- and y-directions

(0, and o, , respectively) and the target size (W) in Experiment 3.
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Figure 7. Observed versus predicted success rates in Experiment 3.

compensation for performing Experiments 3 and 4. Three of
these participants had also performed Experiments 1 and 2.

Results
Among the 2400 trials, we removed 33 outlier trials (1.375%)
that had tap points at least 15 mm from the target center.

Touch-Point Distribution

A repeated-measures ANOVA showed that W had significant
main effects on Oy, (F4.44 = 15.96, p < 0.001, n2=0.59) and
Cobs, (F4,44 =25.71, p <0.001, n7=0.70). Shapiro-Wilk tests
indicated that the touch points on the x- and y-axes followed
Gaussian distributions for 55 (91.7%) and 53 (88.3%) out
of 60 conditions, respectively (p > 0.05). Under 41 (68.3%)
conditions, the touch points followed bivariate Gaussian distri-
butions. Figure 6 shows the regression expressions for ngSX

and crozbsy versus W2. From these results, we obtained the
coefficients in Equation 5 on the x- and y-axes:

Greg, = V/0.0096W?2 +0.8079 (15)
Greg, = V/0.0117W2 +0.8076 (16)

Using Equations 15 and 16, we computed the touch-point
distributions (Gy.e, and G,egy) for each W. The differences
between the computed o,., and observed o,;, values were at
most 0.05 and 0.2 mm for the x- and y-axes, respectively.

Success Rate

Among the 2367 (= 2400 — 33) non-outlier data points, the
participants successfully tapped the target in 2017 trials, or
85.21%. As shown by the blue bars in Figure 7, the observed
success rate increased from 50.84 to 99.58% with W, which
had a significant main effect (F4 44 = 59.24, p < 0.001, n;=
0.84).

We computed the predicted success rates for each W, as rep-
resented by the red bars, by applying Equations 15 and 16
in Equation 9. The differences from the observed success
rates were all under 7%. These results show that we could
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accurately predict the success rate from the target size W, with
MAE = 3.082% for N = 5 data points.

EXPERIMENT 4: 2D TASK WITH PRESET AMPLITUDES
We used the same task design as in Experiment 2: 44 X Sy X
16repetitions X 12participants = 3840 data points. Figure 1¢ shows
the visual stimulus.

Results
Among the 3840 trials, we removed 9 outlier trials (0.23%)
having tap points at least 15 mm from the target center.

Touch-Point Distribution

For o,;,, we found a significant main effect of W (F3 44 =
24.12, p < 0.001, n2=0.69), but not of A (F333 =0.321, p =
0.810, n;= 0.028). No significant interaction of A x W was
found (F12,132 = 0.950, p = 0.500, 7= 0.079). For G, we
found significant main effects of A (F333 = 3.833, p < 0.05,
n2=10.26) and W (F3 44 = 48.35, p < 0.001, n2=0.82), but no
significant interaction of A x W (Fi3,132 = 1.662, p = 0.082,
n2= 0.13). Shapiro-Wilk tests showed that the touch points
on the x- and y-axes followed Gaussian distributions for 224
(93.3%) and 218 (90.8%) of the 240 conditions, respectively
(p > 0.05). Under 184 (76.7%) conditions, the touch points
followed bivariate Gaussian distributions.

. . . 2 2
Figure 8 shows the regression expressions for 0, and Oobs,

versus W2, with R? = 0.8201 and 0.7347, respectively, for
N = 20 data points. When we merged the four ngsx and

Gozbs, values for each A, we obtained N = 5 data points with
R?=0.9137 and 0.9425, respectively (the regression constants
did not change). From the regression expression results, we

obtained the coefficients of Equation 5:

Oreg, = V/0.0111W2 40.9227 a7
Greg, = /0.0188W2 +0.8366 (18)

Using Equations 17 and 18, we computed the touch-point

distributions (0., and o;egy) under each condition of A x W.

The differences between the computed ., and observed G
values were less than 0.2 mm on the x-axis and less than 0.5
mm on the y-axis. The differences were comparatively greater
for Oobs, because A significantly affected Gy, .

Success Rate

Among the remaining 3831 (= 3840 — 9) non-outlier data
points, the participants successfully tapped the target in 3145
trials, or 82.09%. We found a significant main effect of W

[JA=20mm EHA=30mm
0A4=45mm [JA=60mm

Observed success rate [7] Predicted success rate

100

2 o ®
S o
—— 44.444
——— 48.438

S
——— 46.032

Success rate [%]

N
o

93.750
98.438

o« |94.271
94.792

o

2

g 100 e
o 80 ey —Exp. 1 (1D, random A)

[0} Py

g _ 60 / ---Exp. 2 (1D, preset A)

2 X 40 /7

2= / ---Exp. 3 (2D, random A)

g 20 / // Exp. 4 (2D, preset A)

© /

&J O T T T T T T T T T T T T 1
e 2 10 12

4 6 8
W (target height/diameter) [mm]

Figure 10. Predicted success rate with respect to the target size W.

(F4.44 = 120.0, p < 0.001, n2= 0.92) on the success rate, but
not of A (F333 =2.100, p = 0.119, n2= 0.16). The interaction
of A x W was not significant (F12,132 = 0.960, p = 0.490, n2=
0.080). Figure 9 shows the observed and predicted success
rates. The largest difference was 95.80 — 85.94 = 9.86% for
A =20mm and W = 6 mm. The MAE was 3.671% for N = 20
data points.

DISCUSSION

Prediction Accuracy of Success Rates

Throughout the experiments, the prediction errors were about
as low as in Bi and Zhai’s pointing tasks with an off-screen
start [10]: 10.07% at most in our case (for A = 20 mm X
W =2 mm in Experiment 2), versus 9.74% at most in Bi
and Zhai’s case (2.4 mm). As in their study, we found that
the success rate approached 100% as W increased; thus, the
prediction errors tended to become smaller. Therefore, the
model accuracy should be judged from the prediction errors
for small targets.

The largest prediction error in our experiments was under the
condition of W = 2 mm in the 1D task. Similarly, the largest
prediction error in Bi and Zhai’s experiments was under the
condition of W = 2.4 mm in the 1D (vertical target) task [10].
While Bi and Zhai checked the prediction errors under nine
conditions in total [10] (three W values for three target shapes),
we checked the prediction errors under 5 + 2045420 =
50 conditions (Experiments 1 to 4, respectively), which may
have given more chances to show a higher prediction error.
In addition, although we used 2 mm as the smallest W for
consistency with Bi and Zhai’s study on the Bayesian Touch
Criterion [9], such a small target is not often used in practical
touch Uls. Therefore, the slightly larger prediction error in
our results should be less critical in actual usage.

We also found that our concern that the prediction accuracy
might drop, depending on the A values, was not a critical
issue as compared with tasks using an off-screen start [10].



Hence, the comparable prediction accuracy observed in our
experiments empirically shows that Bi and Zhai’s model can
be applied to pointing tasks with an on-screen start, regardless
of whether the effect of A is averaged (Experiments 1 and 3)
or not (2 and 4).

Figure 10 plots the predicted success rate with respect to W,
which can help designers choose the appropriate size for a
GUI item. This also provides evidence that conducting costly
user studies to measure success rates for multiple W values
has low scalability. For example, from the data in Experiment
4, the success rates for W = 7 and 10 mm do not differ much,
while the curve sharply rises from W = 1 to 6 mm. Hence,
even if the error rate is measured for W = 2, 6, and 10 mm,
for example, it would be difficult to accurately predict error
rates for other W values such as 3 mm. Therefore, without an
appropriate success-rate prediction model, designers have to
conduct user studies with fine-grained W values, e.g., 1 to 10
mm at 1-mm intervals?.

Regarding UI designs, how would prediction errors affect the
display layout? In our worst case, for W =2 mm (Experiment
2), the actual success rate was 77%, but the predicted rate was
67%. If designers want a hyperlink to have a 77% success rate,
they might set W = 2.4 mm according to the model shown in
Figure 10. This 0.4-mm “excess” height could be negligible.
When a space has a height of 12 mm, however, designers can
arrange only five 2.4-mm hyperlinks, but in actuality, six links
could be located in that space with the intended touch accuracy.
Still, this is the worst case; for more practical W values, this
negative effect would become less significant as the prediction
accuracy increases.

Adequacy of Experiments

In our experiments, the endpoint distributions were not normal
in some cases. One might think that those results violate the
assumption of a dual Gaussian distribution model. To visu-
ally check the distributions, Figurel1 show the histograms
and 95% confidence ellipses of tap positions (see the Supple-
mentary Materials for all results including Experiments 2 and
4). We can see that some conditions do not exhibit normal
distributions, e.g., Figurellc. This could be partly due to the
small numbers of trials in our experiments: 40 repetitions per
condition in Experiments 1 and 3, and 16 in Experiments 2
and 4. Still, according to the central limit theorem, it is reason-
able to assume that the distributions should approach Gaussian
distributions after a sufficient number of trials.

We also checked the Fitts’ law fitness. Using the Shannon
formulation [35] with nominal A and W values, we found that
the error-free MT data showed excellent fits> for Experiments
2 and 4, respectively, by using N = 20 data points:

MT = 132.0+90.29 x log, (A/W +1), R*=0.9807 (19)
MT = 114.3497.91 x log, (A/W 4+ 1), R*=10.9900 (20)

2In fact, 1-mm intervals are still not sufficient: the predicted success
rate “jumps up” from 41.3 to 67.0% for W =2 and 3 mm, respectively.
3Results for the effective width method [13, 35] and FFitts law [8]
by taking failure trials into account were also analyzed. Because of
the space limitation, we decided to focus on success-rate prediction
in this paper.
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Figure 11. Histograms and 95% confidence ellipses using the all error-
free data in Experiments (a—c) 1 and (d-f) 3. For 1D tasks, the his-
tograms show the frequencies of tap positions, the dashed curve lines
show the normal distributions using the mean and o, data, two red
bars are the borderlines of target, and the black bar shows the mean
of tap positions. For 2D tasks, blues dots are tap positions, light blue el-
lipses are 95% confidence ellipses of tap positions, and red dashed circles
are target areas. For all tasks, the 0 mm positions on the x- and y-axes
are aligned to the centers of targets.

The indexes of performance, IP (= 1/b), were 11.08 and
10.21 bits/s, close to those in Pedersen and Hornbak’s re-
port on error-free MT analysis (11.11-12.50 bits/s for 1D
touch-pointing tasks) [41]. Therefore, we conclude that both
participant groups appropriately followed our instruction on
trying to balance speed and accuracy.

Internal and External Validity of Prediction Parameters
Because the main scope of our study did not include testing
the external validity of the prediction parameters in equations
like Equation 18, it is sufficient that the observed and pre-
dicted success rates internally matched the participant group,
as shown by our experimental results. Yet, it is still worth
discussing the external validity of the prediction parameters in
the hope of gaining a better understanding of the dual Gaussian
distribution hypothesis.

A common way to check external validity is to apply obtained
parameters to data from different participants (e.g., [11]). Bi
and Zhai measured the parameters of Equations 6 and 7 in
their experiment on the Bayesian Touch Criterion [9]. Those
parameters were then used in Equations 9 and 11 to predict
the success rates [10]. Because the participants in those two
studies differed, the parameters of Equations 6 and 7 could
have had external validity. Bi, Li, and Zhai stated, “Assuming
finger size and shape do not vary drastically across users,
o, could be used across users as an approximation.” The
reason was that the o, values measured in their 2D discrete
pointing tasks were suitable for a key-typing task performed
by a different group of participants [8].

The top panel of Figure 12 shows the predicted success rates
in the 1D horizontal bar pointing tasks. In addition to the
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Figure 12. Comparison of predicted success rates from our data and Bi
and Zhai’s [9] for (top) 1D and (bottom) 2D tasks.

prediction data reported in Figures 3 and 5, we also computed
the predicted success rates by using the o, values measured
in the 2D tasks of Experiments 3 and 4. The actual success
rate in Experiment 1 under the condition of W =2 mm was
71.55% (Figure 3), and those in Experiment 2 ranged from
71.73 to 77.60% (Figure 5). Therefore, we conclude that using
the Oobs, values measured in the 2D tasks would allow us to
predict more accurate success rates. Here, using Bi and Zhai’s
SEMeETiC Oyp,, value [10] allows us to predict the success rate
(60.66%), but this is not as close as ours to the actual data.
Note that three students participated on both days in our study;
this is not a complete comparison as an external validity check.

We also tried to determine whether the success rates in the 2D
tasks could be predicted from Bi and Zhai’s data, as shown
in the bottom panel of Figure 12. Because Bi and Zhai’s data
for o,, and o,, were larger than ours, their predicted success
rates tended to be lower. Furthermore, because the actual
success rate was over 50% for W = 2 mm in Experiment 3
(Figure 7), Bi and Zhai’s prediction parameters could not be
used to predict the success rates in our experiments. Note that
using Bi and Zhai’s prediction parameters for the index finger
[10] would not influence this conclusion.

One possible explanation for why Bi and Zhai’s parameters
were appropriate for their predictions but not for ours is the
participants’ ages. While the age ranges of their participants
were 26—49 for parameter measurement [9] and 28—45 years
for success-rate prediction [10], our participants were univer-
sity students with an age range of 19-25. Assuming that the
cognitive and physical skills and sensory abilities of adults
are relatively lower than those of younger persons [47], it is
reasonable that the 6, and o, values measured in our exper-
iments were smaller than those in Bi and Zhai’s. This result
supports Bi, Li, and Zhai’s hypothesis that 6, may vary with
the individual’s finger size or motor impairment (e.g., tremor,
or lack of) [8]. The fact that the model parameters o and
o, can change depending on the user group and thus affect
the success-rate prediction accuracy is an empirically demon-
strated limitation on the generalizability of the dual Gaussian

10

distribution hypothesis. This is one of the novel findings of
our study, as it has never been shown with such evidence.

To accurately predict the success rate when the age range of
the main users of an app or the main visitors to a smartphone
website is known (e.g., teenagers), we suggest that designers
choose appropriate participants for measuring the prediction
parameters & and ©,. Such methodology of designing Uls dif-
ferently according to the users’ age has already been adopted
in websites and apps. For example, Leitdo and Silva listed
various apps having large buttons and swipe widgets suitable
for older adults, and maybe also for users with presbyopia
(Figures 1-11 in [31]). On YouTube Kids [1], the button size
is auto-personalized depending on the age listed in the user’s
account information. Our results can help such optimization
and personalization according to the characteristics of target
users.

Limitations and Future Work

Our findings are somewhat limited by the experimental con-
ditions, such as the A and W values used in the tasks. In
particular, much longer A values have been tested in touch-
pointing studies, e.g., 20 cm [34]. Hence, our conclusions
are limited to small screens. The limited range of A values
provides one possible reason why we observed only one pair
having a significant difference in 6, (between A = 45 and 60
mm in Experiment 2). If we tested much longer A values, the
ballistic portion of rapidly aimed movements might affect o,
[15, 56] and change the resultant prediction accuracy. In ad-
dition, Bi and Zhai measured prediction parameters for using
both the thumb in a one-handed posture and the index finger
[9], and they also measured the success rates in 1D pointing
with a vertical bar target [10]. If we conduct user studies under
such conditions, they will provide additional contributions.

Our experiments required the participants to balance speed
and accuracy. In other words, the participants could spend
sufficient time if necessary. The success rate has been shown
to vary nonlinearly depending on whether users shorten the
operation time or aim carefully [53, 54]*. Our experimental
instructions covered just one case among various situations of
touch selection.

CONCLUSION

We discussed the applicability of Bi and Zhai’s success-rate
prediction model [10] to pointing tasks starting on-screen. The
potential concern about an on-screen start in such tasks was
that the movement distance A is both implicitly and explicitly
defined, and previous studies suggested that the A value would
influence the endpoint variability. We empirically showed the
validity of the model in four experiments. The prediction error
was at most 10.07% among 50 conditions in total. Our results
indicate that designers and researchers can accurately predict
the success rate by using a single model, regardless of whether
a user taps a certain GUI item by moving a finger to the screen
or keeping it close to the surface as in keyboard typing. Our
findings will be beneficial for designing better touch GUIs and
for automatically generating and optimizing Uls.

4For more examples of nonlinear relationships in the speed-accuracy
tradeoff on tasks other than pointing, see [51].
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