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ABSTRACT

This work focuses on the credit assignment problem in cooperative multi-agent
reinforcement learning (MARL). Sharing the global advantage among agents of-
ten leads to insufficient policy optimization, as it fails to capture the coalitional
contributions of different agents. Existing methods mainly assign credits based on
individual counterfactual contributions, while overlooking the influence of coali-
tional interactions. In this work, we revisit the policy update process from a coali-
tional perspective and propose an advantage decomposition method guided by the
cooperative game-theoretic core solution. By evaluating marginal contributions of
all possible coalitions, our method ensures that strategically valuable coalitions re-
ceive stronger incentives during policy gradient updates. To reduce computational
overhead, we employ random coalition sampling to approximate the core solution
efficiently. Experiments on matrix games, differential games, and multi-agent col-
laboration benchmarks demonstrate that our method outperforms baselines. These
findings highlight the importance of coalition-level credit assignment and cooper-
ative games for advancing multi-agent learning.

1 INTRODUCTION

Cooperative Multi-Agent Reinforcement Learning (MARL) aims to train a group of agents to jointly
maximize a shared objective in a common environment (Panait & Luke, 2005). Such a paradigm has
shown great potential in a wide range of applications (Hu et al., 2023), including autonomous driving
platoons (Shalev-Shwartz et al., 2016), multi-robot systems (Busoniu et al., 2008), and large-scale
network control (Ma et al., 2024). A key challenge in MARL is how to effectively coordinate de-
centralized agents so that they can learn global strategies that maximize the global return (Oliehoek
et al., 2008; Lowe et al., 2017).

Recent advances in policy-gradient algorithms have significantly improved stability and scalabil-
ity in multi-agent learning. Among these, MAPPO (Yu et al., 2022), a multi-agent extension of
PPO (Schulman et al., 2017), has become a state-of-the-art baseline for cooperative MARL. Build-
ing upon this, HAPPO and HATRPO (Kuba et al., 2021; Zhong et al., 2023) introduced sequen-
tial agent-wise updates to further stabilize learning, achieving superior performance across various
benchmarks.

However, these methods typically share the same global advantage value across agents, which can
result in suboptimal updates. This is primarily due to the synchronous nature of policy updates,
where shared credit fails to distinguish individual contributions and may hinder cooperation. Such
issues are often attributed to the Relative Overgeneralization (RO) problem. To mitigate this, sev-
eral approaches have explored more refined credit assignment techniques. Value-based methods like
VDN (Sunehag et al., 2017) and QMIX (Rashid et al., 2018), QTRAN (Son et al., 2019), QPLEX
(Wang et al., 2020b) and policy-gradient methods like LICA (Zhou et al., 2020), COMA (Foer-
ster et al., 2018), VDAC (Su et al., 2021), and FACMAC (Peng et al., 2021) assign credit from an
individual perspective and have improved coordination efficiency (Wang et al., 2022b; 2020c). Ad-
ditionally, DOP (Wang et al., 2020d) has tackled the exploration challenge from a maximum entropy
perspective.
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Despite their success, these methods focus exclusively on either global or individual perspectives.
Between these extremes lies an underexplored middle ground: coalitional granularity, where credits
are evaluated and allocated at the level of agent subsets (i.e., coalitionsC ⊆ N ). To address this gap,
recent works have introduced Shapley value-based credit assignment from cooperative game theory
into policy gradient methods (Wang et al., 2020a; Li et al., 2021; Wang et al., 2022a). While these
approaches provide theoretically grounded individual attributions, they often lack interpretability in
the context of multi-agent policy updates and rely on rigid baselines (e.g., no-op or zero actions),
which reduce flexibility. Furthermore, many other meaningful cooperative game solutions remain
unexplored in MARL.

In this paper, we propose Core Advantage Decomposition (CORA), a novel credit assignment
framework for multi-agent policy gradient methods. CORA estimates coalitional advantages by
evaluating the marginal contributions of coalitions to the global return and decomposes credit using
the core solution from cooperative game theory. This ensures coalitional rationality and preserves
beneficial exploratory behaviors. To improve scalability, CORA employs random coalition sampling
for efficient approximation.

The main contributions of this paper are threefold:

• Coalition-level credit assignment. We propose a novel coalitional advantage formulation
and allocate credits via the strong ϵ-Core, ensuring both global consistency and coalition
rationality.

• Theoretical guarantees. We provide policy-improvement lower bounds at the coalition
level, showing that CORA systematically reinforces beneficial coalitions. The coalitions
with high potential advantage values will receive higher advantage values to promote col-
laborative strategy optimization.

• Practical effectiveness. We develop an efficient sampling approximation and demonstrate
consistent performance gains across diverse MARL benchmarks, including matrix games,
differential games, VMAS, SMAC, Google Research Football, and Multi-Agent MuJoCo.

2 RELATED WORK

This section provides an overview of key research areas relevant to our work, including traditional
value decomposition methods, policy gradient methods.

2.1 VALUE DECOMPOSITION METHODS

Value decomposition methods aim to decompose the global value function in MARL into individual
contributions from each agent, thereby facilitating decentralized learning. Value-Decomposition
Networks (VDN) (Sunehag et al., 2017) is a pioneering approach that splits the joint action-value
function into simpler, agent-specific value functions. This decomposition significantly reduces the
complexity of multi-agent learning and allows for decentralized execution. QMIX (Rashid et al.,
2018), an extension of VDN, introduces a monotonic mixing function that ensures the global Q-
value is a monotonic combination of individual agent Q-values.

2.2 MULTI-AGENT POLICY GRADIENT METHODS

Policy gradient methods, particularly MAPPO (Multi-Agent Proximal Policy Optimization) (Yu
et al., 2022), have become the dominant paradigm in MARL. MAPPO has shown significant per-
formance improvements over earlier methods, such as COMA (Counterfactual Multi-Agent Policy
Gradients) (Foerster et al., 2018) and MADDPG (Multi-Agent Deep Deterministic Policy Gradient)
(Lowe et al., 2017). Attention-based credit assignment methods such as ATA (She et al., 2022) and
spatiotemporal decomposition approaches such as STAS (Chen et al., 2024) improve multi-agent
coordination by learning expressive representations of agent–time or space–time interactions. In
contrast, our method formulates advantage decomposition as an ϵ-core problem, ensuring that the
allocated per-agent advantages satisfy coalition constraints for all sampled coalitions. Thus, CORA
provides a complementary perspective: rather than learning a decomposition implicitly, it enforces
a principled game-theoretic structure that guarantees consistency across coalitions.
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2.3 CREDIT ASSIGNMENT BASED ON SHAPLEY VALUE

Shapley-based methods in MARL, integrating cooperative game theory, address the credit assign-
ment problem by fairly distributing rewards based on each agent’s contribution. Early work, such
as SQDDPG (Wang et al., 2020a), uses the Shapley value in Q-learning and DDPG for continuous
action spaces to calculate each agent’s marginal contribution.

A more recent advancement, Shapley Counterfactual Credit Assignment (SCCA) (Li et al., 2021),
refines credit assignment by considering counterfactual scenarios, improving accuracy and stability.
However, SCCA faces computational challenges in multi-agent settings. SHAQ-learning (Wang
et al., 2022a) also integrates Shapley values into Q-learning, enhancing stability and fairness in
cooperative tasks, but it struggles with scalability and efficiency.

2.4 COOPERATIVE GAME THEORY AND THE CORE

Cooperative game theory, traditionally used in economics (Driessen, 2013), is also applied in MARL
for credit assignment. Recent works (Jia et al., 2019), (Ghorbani & Zou, 2019), and (Sim et al., 2020)
have adopted the Shapley value for data valuation and reward allocation. In federated learning,
(Chaudhury et al., 2022) and (Donahue & Kleinberg, 2021) applied cooperative game theory to
fairness and stability.

The core (Driessen, 2013), another key concept in cooperative game theory, guarantees stability by
ensuring no coalition of agents can improve their outcome by deviating from the allocation. While
the Shapley value has been used for fair reward distribution in MARL, traditional methods often rely
on a fixed baseline, limiting their applicability in dynamic environments. Additionally, they do not
address interference from high-risk explorations in cooperative MARL.

3 BACKGROUND

This section provides an overview of the foundational concepts and challenges in MARL, focusing
on policy gradient methods and the credit assignment methods.

3.1 PROBLEM FORMULATION

In cooperative multi-agent reinforcement learning, a group of agents works together to maximize
a shared return within a common environment (Panait & Luke, 2005; Kuba et al., 2021). This
setting can be formalized as a Markov game (Littman, 1994; Kuba et al., 2021; Zhao et al., 2024)
defined by the tuple G = ⟨N,S,A,P, r, γ⟩, where N = {1, . . . , n} is the set of agents, S is the
state space, A =

∏
i∈N Ai is the joint action space, with Ai being the action space of agent i,

P : S × A × S → [0, 1] is the transition function, r : S × A → R is the reward function, and
γ ∈ [0, 1) is the discount factor. At each time t ∈ N, each agent i observes the full state st, and
selects an action ati ∈ Ai drawn from its policy πi(·|st). The joint action at = (at1, . . . , a

t
n) leads to

the next state st+1 ∼ P(st+1|st, at) and generates a common reward rt = r(st, at) for all agents.
The agents aim to updated their policies that maximize the shared expected cumulative reward:

max
π

J(π) = Es,a∼π,P

[ ∞∑
t=0

γtr(st, at)

]
. (1)

Under the centralized training with decentralized execution (CTDE) paradigm Oliehoek et al.
(2008); Lowe et al. (2017); Yu et al. (2022), each agent i is trained with global information and
execute using only local observation oi = Oi(s) ∈ Oi. A central component in training pro-
cess is the global state value function V (s) (the global state-action value function Q(s, a)), es-
timating the expected return from state s (after taking joint action a). Denoting the advantage
A(st, at) = Q(st, at)− V (st) with GAE estimator

At
GAE =

∞∑
l=0

(γλ)lδt+l (2)
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where δt denotes the TD error δt = rt + γV (st+1)− V (st), a standard multi-agent policy gradient
for agent i is

∇ϕi
J = E [∇ϕi

log πi(ai|s)Ai(s, a)] , (3)
where individual advantage Ai(s, a) is the per-agent credit signal. Sharing the same advantage
A(s, a) across agents is simple and stable, but it fails to capture heterogeneous contributions of
different agents, leading to inefficient credit assignment and slower convergence.

Throughout this paper, we focus on multi-agent credit assignment via advantage decomposition
for policy-gradient methods, using it to drive policy updates that strengthen effective coalitional
collaboration.

3.2 SHARING ADVANTAGE

Many credit assignment methods such as COMA Foerster et al. (2018), VDN Sunehag et al. (2017),
QMIX Rashid et al. (2018), and LICA Zhou et al. (2020) assign advantage or value from individual
or marginal perspective. In this paper, besides the global advantage, we also consider the coalitional
advantage for each coalition of agents. Let N = {1, . . . , n} denote the set of all agents. For a given
sample (s, a) where s = (s1, · · · , sn) and a = (a1, · · · , an), we evaluate the scenario where agents
in coalition C ⊆ N take actions aC , while each agents i /∈ C execute a baseline action āi or current
policy πN\C .

Sharing the global advantage A(s, a) among agents often leads to insufficient policy updates. This
method incentivizes each agent to update its policy πi(ai|si) to either approach action ai with
A(s, a) > 0 or avoid those with A(s, a) < 0. Specifically, when an action a with Q(s, a) < V (s) is
explored during training, all agents are penalized via A(s, a) < 0, and the policy πi(ai|si) for each
agent is updated to reduce its probability. This occurs even if a coalition C could form a superior
joint action (aC , a

′
N\C) satisfying Q(s, aC , a

′
N\C) > V (s).

Moreover, consider the case where the executed action a∗ is already optimal. If agents in coalition
C explore a new action aC while others act optimally, and Q(s, aC , a

∗
N\C) < V (s), then the prob-

ability πi(a∗i |si) for each agent i /∈ C is reduced due to A(s, a) < 0, destabilizing the probability
distribution over the optimal action a∗.

In summary, the value of coalition actions can be further exploited. Agents with greater
potential, such as those belonging to a coalition C where Q(s, aC , āN\C) ≪ V (s) or
EaN\C∼πN\C [Q(s, aC , aN\C)] ≪ V (s), should receive larger advantage values to encourage the
action (aC , āN\C).

4 CORE ADVANTAGE DECOMPOSITION FOR MULTI-AGENT POLICY
GRADIENTS

In this section, we evaluate the advantage of coalition actions and propose an advantage decompo-
sition algorithm.

4.1 COALITIONAL ADVANTAGE

Consider a global value function Q(s, a), which describes the return of the joint action a in state s.
The advantage of coalition C, denoted as AC(s, aC), is defined as:

AC(s, aC) = EaN\C∼πN\C [Q(s, aC , aN\C)]− V (s), (4)

where the first term EaN\C∼πN\C [Q(s, aC , aN\C)] represents the expected return when coalition
C takes the sampled action aC , and the other agents i /∈ C follow the current strategy πN\C .
Subtracting the baseline value V (s) gives the advantage of coalition C taking action aC alone.
Incidentally, the global value naturally satisfies AN (s, a) = Q(s, a)−V (s) = A(s, a). By defining
the advantage in this way, we can clearly quantify the contribution of each coalition action aC to the
team.

Besides the definition AC(s, aC), we can also consider defining it as:
AC(s, aC) = Q(s, aC , āN\C)− V (s) (5)

4
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where āi represents a baseline action. The baseline action ā provides a reference for evaluating
coalition values. In our experiments, we mainly consider the most probable action as the baseline
action. This is because, regardless of whether a discrete softmax policy or a continuous Gaussian
policy is used, the most probable action is typically chosen during evaluation or execution. During
training, however, actions are sampled from the probability distribution to encourage exploration.
Specifically: (i) For discrete actions: āi = argmaxai

πθi(ai|si), while training samples are drawn
from πi(·|si); (ii) For continuous actions: āi = µθi(si). For example, a Gaussian policy outputs
(µi, σi), with training samples ai ∼ N (µi, σi), while the baseline action uses µθi(si).

4.2 ADVANTAGE DECOMPOSITION

The next problem we need to solve is how to allocate advantage Ai(s, a) to each agent i ∈ N based
on 2n advantage values AC(s, aC) (for each C ⊆ N ). Intuitively, if a coalition action aC yields a
high advantage value AC(s, aC), the total advantage assigned to the agents in that coalition should
not be too small. Formally, we require∑

i∈C

Ai(s, a) ≥ AC(s, aC)− ϵ. (6)

This allocation principle aligns with coalitional rationality in cooperative game theory. If coalition
actions (aC , πN\C) are promising, it is beneficial to incentivize each ai (i ∈ C) to adjust its policy
distribution, thereby encouraging exploration of this action in the future.

Additionally, it is essential to ensure that
∑

i∈N Ai(s, a) = AN (s, a) = A(s, a), which is known
as effectiveness in cooperative game theory and is also widely adopted as a guiding principle in
value decomposition methods. For convenience, given current state s and action a, we denote the
advantage value of agent i, Ai(s, a), simply as Ai.

This form coincides with the classic solution Strong ϵ-Core of cooperative game theory Driessen
(2013):

Coreϵ(N,AC) =
{
(A1, · · · , An) ∈ Rn

∣∣ ∑
i∈N

Ai = AN (s, a),

∑
i∈C

Ai ≥ AC(s, aC)− ϵ, for ∀C ⊆ N
}
,

(7)

where ϵ ≥ 0 is a non-negative parameter that allows for a small deviation from the ideal condition.

Generally, the ϵ-core may admit infinitely many solutions, but not all of them are desirable. In
particular, some allocations satisfying coalition rationality may place all credit on a single agent,
leaving others without effective incentives. To avoid such imbalanced solutions, we introduce an
additional objective that penalizes large deviations from the uniform allocation. Specifically, we
minimize the variance of credits among agents, leading to the quadratic program:

minimize
ϵ≥0,A1,...,An

ϵ+ λ
∑
i∈N

(
Ai −

1

|N |
AN (s, a)

)2

,

subject to:
∑
i∈N

Ai = AN (s, a),∑
i∈C

Ai ≥ AC(s, aC)− ϵ, ∀C ⊆ N.

(8)

This formulation ensures a more balanced allocation while respecting coalition rationality. In
detail, EaN\C [Q(s, a)] can be estimated using Monte Carlo sampling, approximately given by
1

|K|
∑

k∈K Q(s, aC , a
k
N\C) where K is the set of sampled trajectories, and akN\C represents the ac-

tion taken by the agents in N \C during the k-th trajectory. The diagram and pseudocode are shown
as Figure 7 and Algorithm 1. In summary, our framework requires two critics, Q(s, a) and V (s),
both updated using temporal-difference (TD) errors. The value critic V is employed for generalized
advantage estimation (GAE), which stabilizes policy updates; in addition, the global advantage (for
grand coalition N ) AN (s, a) is also estimated based on GAE. The state-action value critic Q, on the
other hand, is responsible for allocating the advantage Ai.

5
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5 THEORETICAL ANALYSIS

In this section, we provide some theoretical analysis and approximate methods based on the designed
CORA advantage value.
Theorem 1. Under compatible approximation and a natural policy gradient (NPG) step, for small
step size α > 0,

∆ log πi(ai | s) ≈ αAi,

∆ log π(a | s) =
n∑

i=1

∆ log πi(ai | s) ≈ αAN ,

∆ log πC(aC | s) =
∑
i∈C

∆ log πi(ai | s) ≈ α
∑
i∈C

Ai.

Theorem 2. Consider one NPG step ϕ′i = ϕi+αF−1
i gi with gi := E[ψiAi], ψi := ∇ϕi log πi(ai |

s), Fi := E[ψiψ
⊤
i ], and step size α > 0. Assume for each agent i that log πi(· | s;ϕi) is twice

continuously differentiable and its Hessian is uniformly bounded on the line segment between ϕi
and ϕ′i: ∥∥∇2

ϕi
log πi(ai | s; ξi)

∥∥
op

≤ Li for all ξi ∈ [ϕi, ϕ
′
i].

Then for any coalition C ⊆ N and any sampled (s, a),

∆ log πC(aC | s) ≥ α
∑
i∈C

Ai − α2

2

∑
i∈C

Li

∥∥F−1
i gi

∥∥2
2
. (9)

If, in addition, the strong ϵ-Core constraints hold,
∑

i∈C Ai ≥ AC(s, aC)− ϵ, then

∆ log πC(aC | s) ≥ α
(
AC(s, aC)− ϵ

)
− α2

2

∑
i∈C

Li

∥∥F−1
i gi

∥∥2
2
. (10)

Theorem 3. Let C⋆ ∈ argmaxC⊆N AC(s, aC). Under the strong ϵ-Core,
∑

i/∈C⋆ Ai ≤ ϵ and thus
∆ log πN\C⋆(aN\C⋆ | s) ≲ α ϵ, while ∆ log πC⋆(aC⋆ | s) ≳ α

(
AC⋆ − ϵ

)
.

Solving the quadratic programming problem (8) requires 2|N | inferences of the value network to
obtain EaN\C [Q(s, aC , aN\C)] or Q(s, aC , āN\C) for each coalition C ⊆ N . This may results
in significant computational overhead for large-scale problems. To address this issue, our method
randomly samples a relatively small number of coalitions C = {C1, C2, · · · , Cm} and computes the
desired solution satisfing the constraints of these coalitions, resulting in the quadratic programming
19. Theorem 4 shows that its approximation error can be controlled by the sample size m.
Theorem 4. Given a distribution P over 2N , and δ, ∆ > 0, solving the programming (19) over
O((n+ 2+ log(1/∆))/δ2) coalitions sampled from P gives an allocation vector in the δ-probable
core with probability 1−∆.

The above proof is for the general form of AC(s, aC). For a more rigorous approach, we use the
detailed definition AC(s, aC) = EaN\C∼πN\C [Q(s, aC , aN\C)] − V (s). Using the PPO/TRPO
framework, we arrive at the following conclusions.
Theorem 5. Given a factored joint policy π(a | s) =

∏
i∈N πi(ai | s) and the CORA advantage

allocation satisfying the coalition constraint∑
j∈C

Aj(s, a) ≥ AC(s, aC)− ϵ, ∀C ⊆ N,

the following hold for the trust-region penalized policy update with parameter η > 0.

(1) Individual improvement lower bound. Assume mi ≤ Ai(s, a) ≤ Mi with Ri = Mi −mi.
Then each agent satisfies

∆ log πi(ai | s) ≥ η(Ai(s, a)− ϵ)− η2R2
i

8
.
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(2) Coalition improvement lower bound. For any coalition C ⊆ N ,

∆ log πC(aC | s) ≥ η
(
AC(s, aC)− (1 + |C|)ϵ

)
−
∑
i∈C

η2R2
i

8
.

These bounds imply that CORA protects high-value coalitions by enforcing a guaranteed positive
advantage contribution even when the global joint advantage AN (s, a) is weak or negative.

6 EXPERIMENTS

We evaluate the CORA method across several multi-agent environments, including matrix games,
differential games, the VMAS simulator Bettini et al. (2022), the Multi-Agent MuJoCo (MaMujoco)
environment de Lazcano et al. (2024); Kuba et al. (2021), and the Starcraft Multi-Agent Challenge
(SMAC) environment Samvelyan et al. (2019); Hu et al. (2023).

6.1 MATRIX GAMES

In this section, we construct two types of matrix-style cooperative game environments to evaluate
the fundamental performance of different algorithms.

Matrix Team Game (MTG): In this environment, agents receive a shared reward at each time step
based on their joint action, determined by a randomly generated reward matrix. Each element of
the matrix is uniformly sampled from the interval [−10, 20]. The game proceeds for 10 steps per
episode. Each agent observes a global one-hot encoded state indicating the current step number,
allowing them to learn time-dependent coordination strategies.

Multi-Peak Matrix Team Game: To further evaluate each algorithm’s ability to optimize coop-
erative strategies in environments with multiple local optima, we extend MTG to design a more
challenging setting. The matrix is filled with background noise in the range [−10, 0], overlaid with
multiple reward peaks. Among them, one peak is the global optimum (highest value), while the rest
are local optima. Actions deviating from peak combinations incur heavy penalties due to the nega-
tive background. This setting is designed to test whether algorithms can escape suboptimal solutions
and discover globally coordinated strategies.

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

25

50

75

100

125

150

175

200

R
et

ur
n

MAPPO
Optimistic MAPPO
HAPPO
COMA
VDPPO
QMIXPPO
LICA
CORA-PPO

(a) Base (Matrix Team Game)
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(b) 5 Peaks (Matrix Team Game)
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(c) 10 Peaks (Matrix Team Game)
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Figure 1: Training performance on Matrix Team Game and its Multi-Peak variants with 5, 10, and
15 reward peaks.

As shown in Figure 1, CORA exhibits faster convergence and higher returns compared to the base-
line algorithms, demonstrating superior coordination and learning efficiency in this simple and gen-
eral environment. As a comparison, we also implemented a quadratic critic that directly parameter-
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izes the joint action value as a quadratic form:

Q(s, a) = b(s) +
∑
i

⟨ui(s), ai⟩ +
∑
i<j

a⊤i Wij(s)aj ,

where ai is the one-hot or probabilistic action vector of agent i. This representation allows us to
evaluate coalition values in closed form with baseline ai ∼ πi(ai|s) for i /∈ C, e.g.,

QC(s, aC) = EaN\C∼πN\C

[
Q(s, aC , aN\C)

]
,

by simply replacing the action inputs of non-coalition agents with their policy distributions. The
results, shown as CORA-PPO-QC, confirm this gap and highlight the stability advantage of CORA.

6.2 DIFFERENTIAL GAMES

To demonstrate the learning process, we designed a 2D differential game environment (similar to
(Wei & Luke, 2016)). Each agent selects an action x1, x2 ∈ [−5, 5] at every step. The reward
function R(x1, x2) is composed of a sum of several two-dimensional Gaussian potential fields,
defined as:

R(x1, x2) =

n∑
i=1

hi · exp
(
− (x1 − cxi

)2 + (x2 − cyi
)2

σ2
i

)
(11)

Here, n is the number of fields, (cxi
, cyi

) is the center of the i-th potential field, hi ∈ [5, 10] indicates
the peak height of the potential field, and σi ∈ [1, 2] controls its spread. This setup results in
an environment with multiple local optima, presenting significant strategy exploration and learning
challenges for MARL algorithms. The environment state itself does not evolve and can be regarded
as a repeated single-step game. Key parameters like location, height, width of potential fields are set
by a random seed.

x1

4 2 0 2 4
x2

4
2

0
2

4

Re
wa

rd

0
2
4
6
8

3D Reward Surface
MAPPO

4 2 0 2 4
x1

4

2

0

2

4

x2

2D Heatmap of Visit Frequency
MAPPO

MAPPO - Reward &  History Visualization

(a) MAPPO

x1

4 2 0 2 4
x2

4
2

0
2

4

Re
wa

rd

0
2
4
6
8

3D Reward Surface
Optimistic MAPPO

4 2 0 2 4
x1

4

2

0

2

4

x2

2D Heatmap of Visit Frequency
Optimistic MAPPO

Optimistic MAPPO - Reward &  History Visualization

(b) Optimistic MAPPO

x1

4 2 0 2 4
x2

4
2

0
2

4
Re

wa
rd

0
2
4
6
8

3D Reward Surface
HAPPO

4 2 0 2 4
x1

4

2

0

2

4

x2

2D Heatmap of Visit Frequency
HAPPO

HAPPO - Reward &  History Visualization

(c) HAPPO

x1

4 2 0 2 4
x2

4
2

0
2

4

Re
wa

rd

0
2
4
6
8

3D Reward Surface
CORA-PPO

4 2 0 2 4
x1

4

2

0

2

4

x2

2D Heatmap of Visit Frequency
CORA-PPO

CORA-PPO - Reward &  History Visualization

(d) CORA-PPO

x1

4 2 0 2 4
x2

4
2

0
2

4

Re
wa

rd

0
2
4
6
8

3D Reward Surface
CORA-PPO w/o std

4 2 0 2 4
x1

4

2

0

2

4

x2

2D Heatmap of Visit Frequency

CORA-PPO w/o std

CORA-PPO w/o std - Reward &  History Visualization

(e) CORA-PPO w/o std
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Figure 2: The reward and learning trajectories of various algorithms in the differential game scenario
(µ in Gaussian strategy).

Figure 2(f) shows the performance of MAPPO, HAPPO, CORA-PPO, CORA-PPO without std, and
Optimistic MAPPO in this environment. CORA-PPO demonstrates the best learning speed and
performance, and CORA-PPO without std outperforms other algorithms. We believe this is because
the std term somewhat suppresses agent exploration. Since the differential game has multiple local
optima, the std term constrains exploration across these optima. Furthermore, thanks to the theory
of Optimistic Q-learning, Optimistic MAPPO also outperforms both HAPPO and MAPPO in this
environment.

The detailed learning trajectories are visualized in Figure 2, which illustrate the learning trajectories
of various methods during training (through the mean µi in the Gaussian policy N(µi, σi)). It is
clearly visible that the CORA-PPO series effectively promotes agents to learn optimal cooperative
strategies (reaching the peak in the 3D Reward Surface; reaching the brightest point in the 2D
Heatmap).
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6.3 VMAS

VMAS (Vectorized Multi-Agent Simulator) is a PyTorch-based vectorized multi-agent simulator
designed for efficient multi-agent reinforcement learning benchmarking Bettini et al. (2022; 2024);
Bou et al. (2023). It provides a range of challenging multi-agent scenarios, and utilizes GPU accel-
eration, making it suitable for large-scale MARL training. We selected the following scenarios for
testing: Multi-Give-Way: Four agents must coordinate to cross a shared corridor by giving way to
each other to reach their respective goals. Give-Way: Two agents are placed in a narrow corridor
with goals on opposite ends. Success requires one agent to yield and allow the other to pass first,
reflecting asymmetric cooperative behavior. Navigation: Agents are randomly initialized and must
navigate to their own goals while avoiding collisions. These tasks require strong coordination and
implicit role assignment.
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Figure 3: Training performance on the VMAS scenarios.

As shown in Figure 3, CORA achieves higher returns and more stable performance compared to the
other algorithms.

6.4 MULTI-AGENT MUJOCO

To demonstrate the effectiveness of CORA in continuous control tasks, we conducted experiments
on the popular benchmark Multi-Agent MuJoCo (MA-MuJoCo) Kuba et al. (2021), using its latest
version, MaMuJoCo-v5 de Lazcano et al. (2024).
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Figure 4: Training performance in the Multi-Agent MuJoCo (MaMuJoCo-v5) scenario.

As shown in Figure 4, CORA-PPO achieves state-of-the-art performance across multiple scenarios.
Except for the HalfCheetah 2x3 task where HAPPO slightly outperforms, CORA-PPO demonstrates
superior results in the Ant 4x2, HalfCheetah 6x1, Walker2d 2x3, and Hopper 3x1 tasks. These results
highlight the effectiveness of CORA in handling diverse and challenging multi-agent continuous
control environments.
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6.5 STARCRAFT MULTI-AGENT CHALLENGE (SMAC)

We further validate the scalability and cooperation capability of CORA-PPO on the StarCraft Multi-
Agent Challenge (SMAC). All experiments are conducted using SC2 version 4.10 under decentral-
ized execution with global team reward, following standard protocols. Results are averaged over 8
runs with 95% confidence intervals.

Five representative maps of different cooperative difficulty are selected: 3s vs 5z, 8m, 2s vs 1sc,
2s3z, and 3m. These maps involve heterogeneous team sizes, spatial complexity, and micro-control
demands, creating challenges in credit assignment and coordinated tactics.

Figures 5(a)–5(e) show that CORA-PPO consistently achieves higher win rates and faster conver-
gence than MAPPO and HAPPO. In the more demanding maps (3s vs 5z and 2s vs 1sc), CORA-
PPO notably enhances cooperative unit control and improves asymptotic performance, demonstrat-
ing its robustness in partial observability and high-interaction combat.
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Figure 5: Win rate comparison across SMAC scenarios.

6.6 GOOGLE RESEARCH FOOTBALL

We further evaluate CORA-PPO on the Google Research Football (GRF) benchmark. Results are
averaged over 8 random seeds with 95% confidence intervals.

We consider three representative cooperative tasks: 3 vs 1 with keeper (3 agents), counterat-
tack easy, and counterattack hard. As shown in Figures 6(a)–6(c), CORA-PPO achieves higher
returns and more stable training, indicating that coalition-aware credit assignment improves cooper-
ative decision-making under sparse and delayed rewards.
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Figure 6: Performance comparison on GRF scenarios.
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data are collected. Experiments are conducted in standard public benchmarks under their respective
licenses.

Potential negative societal impacts: our method could be used to optimize multi-agent coordina-
tion in safety-critical or competitive scenarios. To mitigate risks, we (i) avoid claims beyond mea-
sured settings; (ii) release only research artifacts necessary to reproduce results; and (iii) encourage
deployment-time safeguards (e.g., monitoring, intervention policies). We are unaware of legal com-
pliance issues specific to the presented experiments.

Conflicts of interest: none declared.

REPRODUCIBILITY STATEMENT

We take the following steps to support reproducibility. (1) Algorithm details. CORA’s objective
and constraints are specified in Sec. 4.2 (Eq. 8, 19); the policy-gradient estimator and baselines
are defined in Sec. 3. (2) Implementation. Pseudocode is provided in 1. (3) Hyperparame-
ters. Complete training hyperparameters per environment are listed in Table 1 (actor/critic learning
rates, γ, GAE λ, PPO clip, parallel envs, epochs). (4) Environments & seeds. We describe ma-
trix/differential games, VMAS, and Multi-Agent MuJoCo settings in Sec. 6 and Appendix, including
action/state spaces, reward definitions, and episode lengths. We run 5 random seeds for both envi-
ronment and algorithm initializations and report mean with 95% confidence intervals. (5) Code &
artifacts. Anonymized code and configuration files (including environment wrappers and plotting
scripts) will be provided in the supplementary materials; instructions include exact package versions,
and commands to reproduce all figures. (6) Ablations. We report the effect of coalition sample size
and the variance regularizer in Appendix (Fig. 8, 9).
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A APPENDIX

In this appendix, we provide detailed statements of the theorems, lemmas, and their corresponding
proofs presented in the main text.

A.1 PRELIMINARIES AND NOTATION

The actor parameters are ϕ = (ϕ1, . . . , ϕn) and the factored joint policy πϕ(a | s) =
∏n

i=1 πi(ai |
s;ϕi). Define score features and per-agent Fisher matrices

ψi(s, ai) := ∇ϕi log πi(ai | s), Fi := E[ψiψ
⊤
i ], F = diag(F1, . . . , Fn) ⪰ 0.

The NPG step is
ϕ′i = ϕi + αF−1

i gi, gi := E[ψiAi], (12)
for step size α > 0. Global advantage AN (s, a) := Q(s, a) − V (s) and coalitional advantage
AC(s, aC). A credit allocation {Ai}i∈N satisfies the strong ϵ-Core if∑

i∈N

Ai = AN ,
∑
i∈C

Ai ≥ AC(s, aC)− ϵ, ∀C ⊆ N. (13)

A.2 COMPATIBLE FUNCTION APPROXIMATION

Definition 6 (Compatible approximation). For agent i, consider Si = {w⊤
i ψi : wi ∈ Rdi}. We say

Ai is compatibly representable if

w⋆
i = argmin

w
E
[
(Ai − w⊤ψi)

2
]

exists and satisfies the normal equation E[ψiAi] = E[ψiψ
⊤
i ]w

⋆
i = Fiw

⋆
i .

Lemma 7. With gi = E[ψiAi], the NPG step equation 12 gives ϕ′i − ϕi = αF−1
i gi = αw⋆

i .

Proof. From Fiw
⋆
i = gi, left-multiply by F−1

i to obtain w⋆
i = F−1

i gi. Substitute into equation 12.

Lemma 8. For small α, the Taylor expansion yields

∆ log πi(ai | s) := log π′
i(ai | s)− log πi(ai | s) ≈ ψi(s, ai)

⊤(ϕ′i − ϕi).

Proof. Differentiate log πi(ai | s;ϕi) at ϕi in direction (ϕ′i − ϕi).

A.3 FIRST-ORDER CHANGES

Theorem 1′. Under compatible approximation and equation 12,

∆ log πi(ai | s) ≈ αAi, (14)

∆ log π(a | s) =
n∑

i=1

∆ log πi(ai | s) ≈ αAN , (15)

∆ log πC(aC | s) =
∑
i∈C

∆ log πi(ai | s) ≈ α
∑
i∈C

Ai. (16)

Proof. By Lemma 8 and Lemma 7, ∆ log πi ≈ ψ⊤
i (αw

⋆
i ) = αw⋆⊤

i ψi = αAi, which proves
equation 14. Because log π =

∑
i log πi, summing equation 14 over i and using

∑
iAi = Atot(s, a)

yields equation 15. Similarly, log πC =
∑

i∈C log πi gives equation 16.

14
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Corollary 9. Using ∆π(·) ≈ π(·)∆ log π(·), ∆π(a | s) ≈ απ(a | s)AN and ∆πC(aC | s) ≈
απC(aC | s)

∑
i∈C Ai.

Remark 1 (If Ai /∈ Si). All first-order relations remain valid with Ai replaced by its L2 projection
onto Si. Operationally, NPG realizes this via w⋆

i = F−1
i E[ψiAi].

A.4 COALITIONAL LOWER BOUNDS FROM THE STRONG ϵ-CORE

Theorem 2′. Consider one NPG step ϕ′i = ϕi+αF
−1
i gi with gi := E[ψiAi], ψi := ∇ϕi log πi(ai |

s), Fi := E[ψiψ
⊤
i ], and step size α > 0. Assume for each agent i that log πi(· | s;ϕi) is twice

continuously differentiable and its Hessian is uniformly bounded on the line segment between ϕi
and ϕ′i: ∥∥∇2

ϕi
log πi(ai | s; ξi)

∥∥
op

≤ Li for all ξi ∈ [ϕi, ϕ
′
i].

Then for any coalition C ⊆ N and any sampled (s, a),

∆ log πC(aC | s) ≥ α
∑
i∈C

Ai − α2

2

∑
i∈C

Li

∥∥F−1
i gi

∥∥2
2
. (17)

If, in addition, the strong ϵ-Core constraints hold,
∑

i∈C Ai ≥ AC(s, aC)− ϵ, then

∆ log πC(aC | s) ≥ α
(
AC(s, aC)− ϵ

)
− α2

2

∑
i∈C

Li

∥∥F−1
i gi

∥∥2
2
. (18)

Proof. For each i, apply the second-order Taylor expansion of log πi(ai | s;ϕi) along the direction
∆ϕi := ϕ′i − ϕi:

∆ log πi(ai | s) = ψi(s, ai)
⊤∆ϕi +

1

2
∆ϕ⊤i

(
∇2

ϕi
log πi(ai | s; ξi)

)
∆ϕi,

for some ξi on the line segment between ϕi and ϕ′i. With ∆ϕi = αF−1
i gi and the operator-norm

bound on the Hessian,

∆ log πi(ai | s) ≥ αψ⊤
i F

−1
i gi − α2

2
Li ∥F−1

i gi∥22.

By compatible approximation, ψ⊤
i F

−1
i gi = Ai. Summing over i ∈ C yields equation 17. Combin-

ing with the strong ϵ-Core inequality gives equation 18.

A.5 ADVANTAGE CONCENTRATION ON A MAXIMIZING COALITION

Let C⋆ ∈ argmaxC⊆N AC(s, aC), we have AC⋆ ≥ AN .

Theorem 3′. Under equation 13:

1.
∑
i/∈C⋆

Ai = AN −
∑
i∈C⋆

Ai ≤ AN − (AC⋆ − ϵ) ≤ ϵ, hence ∆ log πN\C⋆(aN\C⋆ | s) ≲ α ϵ.

2. ∆ log πC⋆(aC⋆ | s) ≳ α
(
AC⋆ − ϵ

)
.

Proof. (1) From
∑

i∈C⋆ Ai ≥ AC⋆ − ϵ and AC⋆ ≥ AN ,
∑

i/∈C⋆ Ai ≤ ϵ; then apply equation 16 to
the complement. (2) This is equation 15.

A.6 THEOREM 4: APPROXIMATION WITH SAMPLED COALITIONS

The approximate quadratic programming problem mentioned in the main text is as follows.

15
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minimize
ϵ≥0,A1,...,An

ϵ+ λ
∑
i∈N

(
Ai −

1

|N |
AN

)2

,

subject to:
∑
i∈N

Ai = AN ,∑
i∈Ck

Ai ≥ ACk
(s, aCk

)− ϵ,∀Ck ∈ C. (19)

The proof of Theorem 4 an approach inspired by Yan & Procaccia (2021), where the core allocation
is approximated using sampled coalitions. The key idea is to leverage the properties of the VC-
dimension of a function class to bound the probability of deviating from the true allocation in the
core. To establish this result, we introduce the following two known lemmas, which play a crucial
role in the proof.

Before proving the theorem, we first introduce a lemma regarding the VC-dimension of a function
class, as this concept is essential to understanding the behavior of the classifier we employ in the
proof.
Lemma 10. Let F be a function class from X to {−1, 1}, and let G have VC-dimension d. Then,

with m = O
(

d+log( 1
∆ )

δ2

)
i.i.d. samples {x1, . . . , xm} ∼ P , we have:

∣∣∣ Pr
x∼P

[f(x) ̸= y(x)]− 1

m

m∑
i=1

⊮f(xi )̸=y(xi)

∣∣∣ ≤ δ,

for all f ∈ F and with probability 1−∆.

This lemma essentially states that if the VC-dimension of a function class is d, then by taking a
sufficient number of samples m, the empirical error rate of a classifier f on those samples is close
to the true error rate with high probability (i.e., 1−∆).

In the context of the theorem, we use linear classifiers to represent the core allocation constraints.
The following lemma establishes the VC-dimension of the class of linear classifiers we use.
Lemma 11. The function class Fn = {x 7→ sign(w · x) : w ∈ Rn} has VC-dimension n.

This lemma states that the VC-dimension of the class of linear classifiers is equal to the dimension n
of the input space, which is important for bounding the number of samples required to approximate
the core allocation effectively.

Now, we combine the insights from the previous lemmas to prove the theorem.

Proof. Consider a coalition C sampled from the distribution P . We represent the coalition as a
vector zC = (zC ,−AC(s, aC), 1), where zC ∈ {0, 1}n is the indicator vector for the coalition and
AC(s, aC) is the total allocation for the agents not in C.

We define a linear classifier f based on parameters wf = (A, 1, ϵ), where wf ∈ Rn+2. The classifier
f(zC) = sign(wf · zC) is designed to capture the core allocation for each coalition C.

To ensure coalition rationality, we want the classifier f to satisfy f(zC) = 1 for all coalitions
C ⊆ N . This ensures that the allocation is in the core for all coalitions. The class of such classifiers
is:

F = {z 7→ sign(w · z) : w = (A, 1, ϵ), A ∈ Rn} .

This class of functions F has VC-dimension at most n+ 2 by Lemma 11.

Now, solving the quadratic programming problem on m samples of coalitions {C1, · · · , Cm} pro-
vides a solution (Â, ϵ̂), and the corresponding classifier f̂ . For each sample coalition Ck, we have
f̂(zCk) = 1.
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By applying Lemma 10, with probability 1−∆, we obtain the following inequality:

Pr
C∼P

[∑
i∈C

Âi −AC(s, aC) + ϵ̂ ≥ 0
]
≥ 1− δ.

This shows that the allocation vector generated by solving the quadratic programming problem over
the sampled coalitions is within the δ-probable core with high probability (i.e., with probability at
least 1−∆). Thus, Theorem 4 is proved.

A.7 TRUST-REGION DECOMPOSITION AND LOWER BOUNDS ON POLICY IMPROVEMENT

In this section, we discuss based on the definition AC(s, aC) = EaN\C∼πN\C [Q(s, aC , aN\C)] −
V (s), and derive Theorem 5 under the centralized TRPO/PPO framework. This section derives
theoretical lower bounds on the individual log-probability improvement ∆ log πi(ai | s) when each
agent performs a policy update based on the allocated individual advantage Ai(s, a) for the given
sample (s, a).

Under our setting, the joint policy factorizes as π(a | s) =
∏

i∈N πi(ai | s). We aim to maximize
the local advantage improvement allocated to each agent while controlling the overall joint KL
divergence.

Given action a = (ai, a−i), consider the global policy-update problem:

max
{π′

i}

∑
i∈N

Eai∼πi
[ri(ai | s)Ai(s, a)] s.t. KL(π′(· | s)∥π(· | s)) ≤ δ, (20)

where ri(ai | s) = π′
i(ai | s)/πi(ai | s).

Due to factorization, the joint KL satisfies

KL(π′∥π) =
∑
i∈N

KL(π′
i∥πi),

which implies that there is a single global trust-region constraint.

Relaxing the constraint with η > 0 yields the penalized form:

max
{π′

i}

(∑
i∈N

Eai∼πi
[ri(ai | s)Ai(s, a)]−

1

η

∑
i∈N

KL(π′
i∥πi)

)
. (21)

The objective fully decomposes across π′
i, producing n independent subproblems:

max
π′
i

(
Eai∼πi [ri(ai | s)Ai(s, a)]− 1

ηKL(π′
i∥πi)

)
, ∀i. (22)

Let qi(ai) = π′
i(ai | s) and pi(ai) = πi(ai | s). The subproblem becomes

max
qi

∑
ai

qi(ai)Ai(s, a)−
1

η

∑
ai

qi(ai) log
qi(ai)

pi(ai)
,

subject to
∑

ai
qi(ai) = 1.

Construct the Lagrangian

L(qi, λ) =
∑
ai

qi(ai)Ai(s, a)−
1

η

∑
ai

qi(ai) log(qi/pi) + λ

(∑
ai

qi − 1

)
.

Taking the derivative w.r.t. qi(ai) and setting it to zero yields log(qi/pi) = ηAi(s, a) + c. Thus the
optimal update is

π′
i(ai | s) =

πi(ai | s) exp(ηAi(s, a))

Zi(s, a−i)
, Zi = Eai∼πi [exp(ηAi(s, a))], (23)
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and consequently
∆ log πi(ai | s) = ηAi(s, a)− logZi(s, a−i).

If mi ≤ Ai(s, a) ≤Mi (define Ri =Mi−mi), let X = Ai(s, a) with ai ∼ πi. Hoeffding’s lemma
gives

logZi ≤ ηE[X] +
η2R2

i

8
.

Hence,

∆ log πi(ai | s) ≥ η
(
Ai(s, a)− Eai∼πi

[Ai(s, a)]
)
− η2R2

i

8
. (24)

The CORA coalition constraint states that for any C ⊆ N ,∑
j∈C

Aj(s, a) ≥ AC(s, aC)− ϵ.

It can be proven that Eai∼πi
[Ai(s, a)] ≤ ϵ. For any given (s, a), we have Ai(s, a) = AN (s, a) −∑

j ̸=iAj(s, a). This can be rewritten as: Ai(s, a) ≤ AN (s, a) − AN−i(s, a) + ϵ. Since AN =

Q(s, a)− V (s), and AC(s, a) = QC(s, a)− V (s) = EaC∼πC
[Q(s, a)]− V (s), we have:

Eai∼πi
[Ai(s, a)] ≤ Eai∼πi

[Q(s, a)− V (s)]− Eai∼πi
[QN−i(s, aN−i)− V (s)] + ϵ.

Since Eai∼πi [Q(s, a)] = QN−i(s, aN−i), and Eai∼πi [QN−i(s, a)] = QN−i(s, aN−i), it follows
that:

Eai∼πi
[Ai(s, a)] ≤ 0 + ϵ.

Thus the final lower bound on the individual log-probability improvement becomes

∆ log πi(ai | s) ≥ η(Ai(s, a)− ϵ)− η2R2
i

8
. (25)

The coalition log-probability change is ∆ log πC(aC | s) =
∑

i∈C ∆ log πi(ai | s). Thus,

∆ log πC(aC | s) ≥ η
(∑

i∈C

Ai(s, a)− |C|ϵ
)
−
∑
i∈C

η2R2
i

8
. (26)

Applying the coalition advantage constraint
∑

i∈C Ai ≥ AC(s, aC)− ϵ gives a tighter lower bound:

∆ log πC(aC | s) ≥ η
(
AC(s, aC)− (1 + |C|)ϵ

)
−
∑
i∈C

η2R2
i

8
. (27)

Thus, we can derive Theorem 5.

If AC(s, a) ≥ AN (s, a) ≥ 0, then
∑

i∈C Ai ≥ AC(s, a)− ϵ ≥ AN (s, a)− ϵ, and∑
i/∈C

Ai(s, a) = AN (s, a)−
∑
i∈C

Ai(s, a) ≤ ϵ.

Thus a high-value coalition C receives almost all advantage AN (s, a)− ϵ.

If AC(s, a) ≥ 0 > AN (s, a), then
∑

i∈C Ai ≥ AC(s, a)− ϵ ≥ −ϵ, and∑
i/∈C

Ai(s, a) = AN (s, a)−
∑
i∈C

Ai(s, a) ≤ AN (s, a) + ϵ.

Minimizing ϵ assigns the coalition C only small cost −ϵ, while N \ C absorbs the larger cost
AN (s, a)+ϵ. Thus, even when the global action fails butAC(s, a) is valuable, the coalition’s action
probability is preserved—this mechanism is the core driving principle of CORA.

18
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Algorithm 1 Core Advantage Decomposition (CORA)
1: Initialize: Central critic network θV , θQ; actor network ϕi for each agent i
2: for each training episode e = 1, . . . , E do
3: Initialize state s0 and experience buffer
4: for each step t do
5: Sample action at

i from πi(ai|st;ϕi) for each agent
6: Execute the joint action (at

1, . . . , a
t
n)

7: Get reward rt+1 and next state st+1

8: Add data to experience buffer
9: end for

10: Collate episodes in buffer into a single batch
11: Compute the target value: yt = r(st, at) + γQ(st+1; θV )
12: for t = 1, . . . , T do
13: Sample m coalitions C = {C1, . . . , Cm} ⊆ 2N

14: for each coalition C ∈ C do
15: Estimate coalitional advantage AC(s

t, at
C) for each coalition C ∈ C.

16: where āi = argmaxai πi(ai|sti;ϕi)
17: end for
18: Estimate grand coalition N ’s advantage A(st, at) with GAE estimator
19: Solve the programming problem to obtain credit allocation Ât

i

20: end for
21: Update actor networks ϕi using PPO-clipped policy gradient:

∇ϕi log πϕi(a
t
i|sti) · clip

(
πϕi(a

t
i|sti)

πold
ϕi
(at

i|sti)
, 1− ϵ, 1 + ϵ

)
· Ât

i

22: Update critic θV using TD error:
∑

t

(
V (st; θV )− yt

)2
23: Update critic θQ using error:

∑
t

(
Q(st, at; θQ)− yt

)2
24: end for
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Figure 7: The framework of CORA in Multi-Agent Reinforcement Learning.
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A.8 ALGORITHM PSEUDOCODE AND DIAGRAM

Algorithm 1 outline the implementation of CORA within a standard actor–critic training loop. At
each update, a set of coalitions is sampled, and the corresponding coalitional advantages are es-
timated. A constrained quadratic program is then solved to assign individual credits, which are
used to guide policy updates. This procedure ensures that policy gradients reflect coalition-level
contributions, encouraging coalitional coordination.

As illustrated in Figure 7, the framework demonstrates the process of Coalitional Advantage Esti-
mation and subsequent Credit Allocation in policy gradient methods.

A.9 EXPERIMENTAL DETAILS

Table 1: Training Hyperparameters for Each Environment
Environment Actor LR Critic LR γ GAE λ Clip ϵ Parallel Envs

Matrix Games 5× 10−4 5× 10−3 0.99 0.95 0.3 4
Differential Games 5× 10−5 5× 10−4 0.99 0.95 0.2 4
Multi-Agent MuJoCo 5× 10−4 5× 10−3 0.99 0.95 0.2 4
VMAS (Navigation) 5× 10−4 5× 10−3 0.99 0.95 0.2 64
VMAS (Others) 5× 10−4 5× 10−3 0.99 0.95 0.2 16

All experiments were conducted on platforms with AMD 7970X 32-Core CPU, 128GB RAM, and
RTX 4090 GPU (24GB). Each algorithm was trained with a two-layer multilayer perceptron (MLP)
with a hidden width of 64, except for the Give-Way scenario in VMAS, which used a custom network
structure. Unless otherwise specified, each configuration was run five times with different random
seeds for both the algorithm and the environment. We used the full coalition set (2n coalitions)
for credit assignment across all tasks. For efficiency, 64 parallel environments were used in the
Navigation task of VMAS, while others used 16 or 4 as listed.

A.10 ABLATION STUDY OF COALITION SAMPLE SIZE, STD TERM

To evaluate the impact of coalition sampling size on performance, we conduct an ablation exper-
iment in a differential game environment with 5 agents. Due to the high computational cost in
large-scale multi-agent tasks, this experiment focuses on the 5D differential game setting, which
balances complexity and tractability.

Figure 8: Training performance in the 5D differential game scenario. Left: Comparison among
baseline methods. Right: Effect of coalition sampling size (sample sizes = 10, 15, 20, 25; full
coalition size is 2n − 2 = 30). All algorithms are repeated 5 times to obtain a 95% confidence
interval. Key hyperparameters: Actor learning rate 5×10−5, Critic learning rate 5×10−4, γ = 0.99,
GAE λ = 0.95, 10 epochs per update, clip ϵ = 0.2, and 4 parallel environments.

As shown in Figure 8, increasing the coalition sample size generally improves performance, partic-
ularly in the early stages of training, as highlighted in the zoomed-in window. However, even with
smaller sampling sizes (e.g., 10 or 15), the CORA algorithm still achieves competitive results. This
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indicates that CORA is robust to sample efficiency and remains effective under reduced computa-
tion, making it applicable to environments with a moderate number of agents. In addition, CORA
with variance often improves performance.

The original credit allocation formulation is a constrained quadratic program, which we relax by
linearizing the variance term, resulting in a more efficient linear programming form.

Figure 9: Error and Time Cost of Approximate Credit Assignment. Violation Ratio: proportion of
coalition rationality constraints that are violated; Objective Gap: percentage difference in optimiza-
tion objective compared to the full solution; Compute Time: average runtime across trials. (Number
of agents = 7; Advantage functions are randomly generated across 20 trials.)

Figure 9 shows that using only a small number of sampled coalitions yields an accurate and com-
putationally efficient approximation. While constraint satisfaction may degrade slightly with fewer
samples, the overall objective gap remains low, and compute time is significantly reduced. This
supports the use of approximate credit assignment methods in large-scale scenarios, where full enu-
meration of 2n coalitions is infeasible.

B LLM USAGE

We used a large language model (LLM) as an assistive tool for: (i) language editing (grammar and
clarity), (ii) consistency checks on LaTeX labels and formatting. The LLM did not generate research
ideas, proofs and experimental results. No proprietary or non-anonymized data were provided to the
LLM.
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