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Abstract
Large Vision-Language Models (LVLMs) have001
demonstrated remarkable capabilities across a002
range of multimodal tasks. However, their in-003
ference efficiency is constrained by the large004
number of visual tokens processed during de-005
coding. To address this challenge, we propose006
Per-Layer Per-Head Vision Token Pruning007
(PLPHP), a two-level fine-grained pruning008
method including Layer-Level Retention Rate009
Allocation and Head-Level Vision Token Prun-010
ing. Motivated by the Vision Token Re-attention011
phenomenon across decoder layers, we dynam-012
ically adjust token retention rates layer by layer.013
Layers that exhibit stronger attention to visual014
information preserve more vision tokens, while015
layers with lower vision attention are aggres-016
sively pruned. Furthermore, PLPHP applies017
pruning at the attention head level, enabling dif-018
ferent heads within the same layer to indepen-019
dently retain critical context. Experiments on020
multiple benchmarks demonstrate that PLPHP021
delivers an 18% faster decoding speed and re-022
duces the Key-Value Cache (KV Cache) size023
by over 50%, all at the cost of 0.46% aver-024
age performance drop, while also achieving025
notable performance improvements in multi-026
image tasks. These results highlight the ef-027
fectiveness of fine-grained token pruning and028
contribute to advancing the efficiency and scal-029
ability of LVLMs.030

1 Introduction031

Recent advancements in Large Vision-Language032

Models (LVLMs) have established them as a promi-033

nent research focus in multimodal learning. Nu-034

merous open-source implementations have demon-035

strated remarkable capabilities across various tasks,036

including multimodal understanding and reason-037

ing.038

Nevertheless, LVLMs face computational ineffi-039

ciency challenges, mainly due to converting visual040

inputs into lengthy vision token sequences, rang-041

ing from thousands to tens of thousands. Previous042

(a) LLaVA-OneVision (b) Qwen2-VL

(c) IDEFICS2 (d) Mantis

Figure 1: The phenomenon of Vision Token Re-
attention in different LVLMs. Various LVLMs demon-
strate the phenomenon of refocusing on images within
deep decoder layers. In these layers, the attention scores
corresponding to vision tokens increase, as indicated by
the red boxes highlighted in the figure.

studies (Chen et al., 2024b; Lin et al., 2024b) find 043

that LVLMs exhibit lower attentions to vision to- 044

kens in deeper layers compared to shallower layers, 045

thus a certain amount of vision tokens are pruned 046

at specific shallow layers, and the same tokens are 047

pruned in all subsequent layers. However, such 048

coarse-grained pruning strategies often lead to a 049

significant performance decline in complex tasks 050

that require comprehensive visual information, in- 051

cluding open-ended VQA and image captioning. 052

To address this challenge, in this work, we pro- 053

pose Per-Layer Per-Head Vision Token Pruning 054

(PLPHP), a plug-and-play adaptive fine-grained 055

vision token pruning method that includes two lev- 056

els: 1) Layer-Level Retention Rate Allocation 057

and 2) Head-Level Vision Token Pruning, signif- 058

icantly reducing the performance loss associated 059
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with pruning.060
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(b) Qwen2-VL

Figure 2: The proportion of attention scores received
by different parts of the same image varies across
different decoder layers. Each polyline in the figure
represents the proportion of attention scores for the cor-
responding group of tokens across different decoder
layers.

The first level of our proposed method stems061

from our analysis of the attention to visual infor-062

mation in the deeper layers of LVLMs. As shown063

in Figure 1, we observe the phenomenon of Vision064

Token Re-attention across LVLMs with different ar-065

chitectures where attention scores of vision tokens066

are initially high and decrease in intermediate lay-067

ers, but rise again in certain deeper layers. This in-068

dicates that LVLMs do not always disregard vision069

tokens in deep layers, thus we need to dynamically070

adjust the pruning rate to accommodate the unique071

attention patterns of different decoder layers.072

(a) Head 2 (b) Head 9 (c) Head 12

Figure 3: Visualization of attention maps in various
attention heads. Different heads within the same de-
coder layer exhibit different attention patterns.

The second level of our method is motivated by073

an in-depth investigation on the variations in vision074

token attention across different decoder layers. As075

shown in Figure 2, we divide the vision tokens into076

five groups based on their spatial relationships and077

plot the proportions of attention scores for each078

group across different layers. We observe that dif-079

ferent parts of the same input image receive varying080

proportions of attention across different decoder081

layers, suggesting that each decoder layer special-082

izes in processing distinct contexts. Furthermore,083

we conduct a more granular analysis at the level of084

attention heads. As illustrated in Figure 3, differ-085

ent attention heads within the same decoder layer 086

exhibit distinct patterns of attention, demonstrat- 087

ing that the focus on different contexts occurs at 088

the attention head level. This observation suggests 089

that the unique contextual information processed 090

by each attention head should be independently 091

preserved during the pruning process to maintain 092

model performance. 093

Built on these motivations, by dynamically ad- 094

justing retention rates according to layer-specific 095

attention patterns layer by layer, PLPHP retains 096

more vision tokens in layers where image attention 097

scores are high, while aggressively pruning layers 098

with low attention scores. Additionally, through 099

head-level independent context pruning, PLPHP 100

preserves the most critical contextual information 101

for each attention head, leading to performance 102

improvements. Comprehensive evaluations across 103

multiple model architectures and various bench- 104

marks demonstrate the effectiveness of PLPHP. Our 105

method achieves over 50% compression of the KV 106

cache, over 18% decoding acceleration, and only a 107

0.46% average performance degradation with no- 108

table improvements on multi-image tasks. 109

The contributions of our work can be summa- 110

rized into the following three points: 111

• We uncover the widespread phenomenon of Vi- 112

sion Token Re-attention through investigations 113

on various LVLMs, which could be a significant 114

factor leading to the performance degradation of 115

existing pruning methods. 116

• We propose PLPHP, a plug-and-play adaptive 117

fine-grained vision token pruning method that 118

improves the performance of pruned models sig- 119

nificantly while maintaining high computational 120

efficiency. 121

• We conduct extensive experiments across multi- 122

ple benchmarks and model architectures, validat- 123

ing the superiority of our proposed method. 124

2 Related Work 125

2.1 Large Vision-Language Models 126

Recent advancements in LVLMs significantly en- 127

hanced multimodal content understanding. Liu 128

et al. (2023) developed LLaVA, an early general- 129

purpose multimodal model integrating CLIP (Rad- 130

ford et al., 2021) with language models. Subse- 131

quent innovations include Qwen-VL (Bai et al., 132

2023; Wang et al., 2024b), which enhanced vi- 133

sual processing with a specialized visual recep- 134

2



tor and multilingual corpus, and Mantis by Jiang135

et al. (2024), which improved multi-image reason-136

ing through academic-level instruction tuning. Lau-137

rençon et al. (2024) introduced IDEFICS, trained138

on the OBELICS dataset of interleaved image-text139

documents. Unified approaches by Li et al. (2024b)140

and Li et al. (2024a) achieved state-of-the-art per-141

formance in single-image, multi-image, and video142

tasks. However, LVLMs still face computational143

challenges due to the high number of visual tokens144

during inference, underscoring the need for more145

efficient inference.146

2.2 Efficient Multimodal Large Language147

Models148

To optimize the computational efficiency of149

LVLMs during inference, works such as Mo-150

bileVLM (Chu et al., 2023), Tinygpt-V (Yuan et al.,151

2023), MoE LLaVA (Lin et al., 2024a), and LLaVA-152

Phi (Zhu et al., 2024) proposed more efficient153

model architectures. Meanwhile, Li et al. (2023)154

introduced a model-distillation approach that trans-155

fers knowledge from large vision-language models156

(VLMs) to smaller, lighter counterparts. Q-VLM157

(Wang et al., 2024a) provided a post-training quan-158

tization framework for LVLMs by mining cross-159

layer dependencies to improve quantization effi-160

ciency. From the perspective of token pruning,161

TokenPacker (Li et al., 2024c), Dynamic-LLaVA162

(Huang et al., 2024b), and AVG-LLaVA (Lan et al.,163

2024) investigated training LVLMs with fewer vi-164

sion tokens to boost computational efficiency. How-165

ever, these methods typically require additional166

model training, which imposes further computa-167

tional overhead.168

Training-free token pruning has also been widely169

employed in prior research to alleviate token re-170

dundancy in vision transformers (ViTs) and large171

language models (LLMs). For example, PruMerge172

(Shang et al., 2024) and VisionZip (Yang et al.,173

2024) suggested strategies to reduce vision tokens174

generated by vision encoders, thereby lowering vi-175

sion token volume. FastV (Chen et al., 2024b) and176

SparseVLM (Zhang et al., 2024b) observed that177

visual tokens become less significant in deeper lay-178

ers, thus proposing to eliminate redundant vision179

tokens during inference. VTW (Lin et al., 2024b)180

introduced a strategy to remove all vision tokens181

at a specific layer based on KL Divergence. Al-182

though these methods have demonstrated effective-183

ness, they overlook the distinctions among different184

layers and attention heads within LVLMs, leading185

to a significant performance decline on complex 186

tasks. Our research addresses this gap by propos- 187

ing a fine-grained pruning method including both 188

Layer-Level Retention Rate Allocation and Head- 189

Level Vision Token Pruning. 190

3 Method 191

Our method is a plug-and-play module during the 192

inference process of LVLMs. Therefore, we first 193

outline the inference process of LVLMs as pre- 194

liminary, followed by the design of our proposed 195

PLPHP. 196

3.1 Preliminary 197

LVLMs typically employ an autoregressive genera- 198

tion paradigm during inference, which comprises 199

two stages: the Prefilling Stage and the Decoding 200

Stage. 201

Prefilling Stage. In the Prefilling Stage, different 202

modalities are mapped into a sequence of embed- 203

ding vectors (tokens), which serves as the input to 204

the LLM backbone. We denote the interleaved mul- 205

timodal input token sequence of m text segments 206

and n images X1 ∈ RS×D as: 207

X1 =


X

(T )
1

X
(I)
1
...,

X
(T )
m

X
(I)
n

 , (1) 208

where X
(T )
i ∈ RS

(T )
i ×D represents the token se- 209

quence of the i-th text segment, and X
(I)
j ∈ 210

RS
(I)
j ×D represents the token sequence of the j- 211

th image. S(T )
i and S

(I)
j represent the number of 212

tokens for the i-th text segments and the j-th image, 213

respectively, while S =
∑m

i=1 S
(T )
i +

∑n
j=1 S

(I)
j 214

represents the total length of the input token se- 215

quence. I(T )
i ∈ NS

(T )
i

0 and I(I)j ∈ N
S
(I)
j

0 denote the 216

corresponding token index sets of X(T )
i and X

(I)
j 217

within X1. 218

X1 is then fed into an LLM composed of N 219

decoder layers. Since the output and input shapes 220

of each decoder layer are the same, we can denote 221

the input of the l-th decoder layer as Xl ∈ RS×D. 222

For the h-th attention head in the l-th layer: 223

Ql,h = XlWl,h
Q , (2) 224

225
Kl,h = XlWl,h

K , (3) 226
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Figure 4: Overview of PLPHP. PLPHP has a two-level design including Layer-Level Retention Rate Allocation
(as indicated by the red dashed boxes) and Head-Level Vision Token Pruning (as indicated by the blue dashed
boxes). Upon the completion of prefilling a certain decoder layer, PLPHP categorizes the layer as vision indifferent,
balanced or attentive, and assigns a vision token retention rate to the layer based on its average attention scores to
the vision tokens. Subsequently, according to the allocated retention rate, PLPHP performs fine-grained pruning for
each head within the layer. It removes the visual tokens with lower attention scores from the KV cache of each
attention head, ensuring that the remaining proportion of vision tokens does not exceed the pre-assigned retention
rate.

227
Vl,h = XlWl,h

V , (4)228

where Wl,h
Q ∈ RD×Dk , Wl,h

K ∈ RD×Dk , and229

Wl,h
V ∈ RD×Dk are referred to as the query projec-230

tor, key projector, and value projector, respectively.231

Dk is called the head dimension. Kl,h and Vl,h232

are then stored as the KV cache for the current233

attention head.234

The attention weights Al,h ∈ RS×S are given235

by:236

Al,h = Softmax

(
Ql,h

(
Kl,h

)⊤
+Λ

√
Dk

)
, (5)237

where Λ ∈ RS×S is an upper triangular matrix238

whose non-zero values are set to− inf and diagonal239

elements are set to 0.240

Decoding Stage. During the Decoding Stage, the241

model sequentially generates tokens and updates242

the KV cache of each attention head. At each243

timestep t, the input to the l-th decoder layer is244

a single token xl
t ∈ R1×D. For the h-th attention245

head of the l-th layer, the KV cache is updated by:246

Kl,h ←
(

Kl,h

xl
tW

l,h
K

)
, (6)247

248

Vl,h ←
(

Vl,h

xl
tW

l,h
V

)
. (7)249

3.2 PLPHP 250

3.2.1 Overview 251

PLPHP is a two-level adaptive fine-grained pruning 252

method with Layer-Level Retention Rate Alloca- 253

tion and Head-Level Vision Token Pruning. The 254

architecture is illustrated in Figure 4. 255

3.2.2 Layer-Level Retention Rate Allocation 256

To measure the extent of a decoder layer’s atten- 257

tion to visual information, thereby determining the 258

number of vision tokens to retain, we define the 259

Vision Attention Score γl of the l-th layer as: 260

γl =
∑

k∈
⋃n

j=1 I
(I)
j

1

H

H∑
h=1

Al,h
S,k, (8) 261

where H represents the number of attention heads 262

in each decoder layer. Note that the value of γl is 263

between 0 and 1. The larger the value of γl, the 264

higher the l-th layer’s attention to visual informa- 265

tion. 266

In order to properly allocate the vision token re- 267

tention rate based on the Vision Attention Score, 268

given two thresholds α and β (0 ≤ β ≤ α ≤ 269

1), the l-th decoder layer is categorized as a 270

vision-attentive layer when γl ≥ α, as a vision- 271

indifferent layer if γl < β, and as a vision- 272

balanced layer otherwise. The token retention rate 273
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rl for the l-th layer is defined as:274

rl =


r +∆r, γl ≥ α

r −∆r, γl < β

r, otherwise

, (9)275

where 0 ≤ ∆r ≤ r ≤ 1 − ∆r. For example,276

selecting α = 0.25, β = 0.1, r = 0.4, and ∆r =277

0.3 signifies that we regard decoder layers with278

γl ≥ 0.25 as vision-attentive layers, and decoder279

layers with γl < 0.1 as vision-indifferent layers.280

For vision-attentive layers, we retain 0.4+0.3, that281

is, 70% of the vision tokens. For vision-indifferent282

layers, we retain 0.4 − 0.3, that is, only 10% of283

the visual tokens. For vision-balanced layers, we284

retain 40% of the visual tokens.285

Through this dynamic calculation of token reten-286

tion rates, we retain a larger number of vision to-287

kens for the vision-attentive layers to leverage their288

heightened focus on image information, while we289

keep fewer vision tokens for the vision-indifferent290

layers to achieve higher efficiency with the least291

sacrifice of critical visual information. As for the292

vision-balanced layers, we strike a compromise,293

seeking an equilibrium between efficiency and per-294

formance.295

3.2.3 Head-Level Vision Token Pruning296

Given the retention rate rl calculated in the first297

level, we proceed to perform fine-grained prun-298

ing. According to FastV and Zhang et al. (2025),299

LVLMs typically exhibit a global focus on images300

in the first two layers and the last layer. Therefore,301

for a model composed of N decoder layers, we302

select the third layer and the penultimate layer as303

the starting and ending layers for pruning.304

To extract the most important vision tokens to305

preserve, for the h-th (1 ≤ h ≤ H) attention head306

in the l-th layer (3 ≤ l ≤ N − 1), we calculate the307

indices of vision tokens with the highest attention308

scores within the j-th image input, accounting for309

the proportion rl:310

I(IR),h
j = argtopKj

(
Al,h

S

[
I(I)j

])
, (10)311

where Kj = rlS
(I)
j and the argtopK operation312

identifies the indices of the top K elements with313

the highest values in the given sequence.314

We then prune vision tokens by updating the key315

cache and value cache of the attention head by:316

Kl,h ← Kl,h

 m⋃
i=1

I(T )
i ∪

n⋃
j=1

I(IR),h
j

 , (11)317

Vl,h ← Vl,h

 m⋃
i=1

I(T )
i ∪

n⋃
j=1

I(IR),h
j

 , (12) 318

where [·] represents the indexing operation, which 319

retrieves elements from a sequence according to 320

the given indices. 321

To provide an intuitive explanation, for every 322

attention head of the l-th decoder layer, we retain 323

only the top rl proportion of the most attended to- 324

kens for each image, and remove the remaining 325

1− rl proportion from the context. Since the num- 326

ber of text tokens is typically negligible compared 327

to vision tokens, we retain all text tokens. 328

Our method allows different attention heads 329

within the same decoder layer to selectively drop 330

different contexts, thereby better utilizing the prop- 331

erty of multi-head attention mechanisms where dis- 332

tinct heads can focus on various parts of the con- 333

textual information. 334

4 Experiments 335

4.1 Experimental Setting 336

Benchmarks. In terms of multi-image bench- 337

marks, we select four subsets from LLaVA-NeXT- 338

Interleave-Bench (Li et al., 2024b): Spot-the-Diff 339

(SD), Image-Edit (IE), Visual-Story-Telling (VST), 340

and Multi-View (MV). We also select three single- 341

image benchmarks: Flickr30k (Plummer et al., 342

2015), COCO 2017 Caption(Lin et al., 2014), and 343

DetailCaps4870 (Dong et al., 2024). 344

Metrics. Open-ended VQA tasks are evaluated us- 345

ing the ROUGE-L (Lin, 2004) (R) metric. CIDEr 346

(Vedantam et al., 2015) (C) and METEOR (Baner- 347

jee and Lavie, 2005) (M) are employed to assess 348

image captioning tasks. Overall Score is used to 349

evaluate the performance on Multi-View bench- 350

mark. Regarding efficiency analysis, we utilize 351

Vision Token Retention Rate (RR), KV Cache Size 352

(KV), and Decoding Latency as our metrics for 353

evaluation. 354

Baselines. We choose FastV and VTW as our 355

baselines. FastV discards image tokens with low 356

attention scores in the shallow layers, while VTW 357

retains all image tokens in the shallow layers and 358

discards them in the deeper layers. 359

Implementation Details. We implement PLPHP 360

and all baselines on an NVIDIA A100 (80GB) 361

GPU. All methods are evaluated using LMMs-Eval 362

(Li* et al., 2024; Zhang et al., 2024a). More discus- 363

sions regarding our benchmark selection, baseline 364
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Table 1: Comparison of different methods on Multi-Image and Single-Image benchmarks. (·) signifies the
values by which the performance exceeds that of the uncompressed model after applying the corresponding method.

Multi-Image Single-Image

Spot-the-Diff Image-Edit Visual-Story-Telling Multi-View Flickr30k COCO 2017 DetailCaps4870

Methods ROUGE-L ↑ ROUGE-L ↑ ROUGE-L ↑ Overall Score ↑ CIDEr ↑ CIDEr ↑ CIDEr ↑

LLaVA-OneVision-7B

Full Tokens 39.16 22.15 31.74 57.29 79.39 137.97 11.24

FastV (K = 3, R = 0.5) 37.41 21.16 24.78 43.22 77.38 125.01 9.59
FastV (K = 2, R = 0.5) 36.19 20.77 23.99 43.04 75.37 120.8 9.31

VTW (K = 20) 30.13 19.59 29.17 52.68 39.28 76.23 7.03
VTW (K = 14) 30.47 16.17 25.35 41.47 16.80 41.43 3.03

PLPHP (r = 0.5) 39.72 (+0.56) 22.10 31.88 (+0.14) 57.46 (+0.17) 78.93 137.90 10.43
PLPHP (r = 0.4) 39.81(+0.65) 22.06 31.82 (+0.08) 57.41 (+0.12) 78.55 137.64 9.89

LLaVA-OneVision-0.5B

Full Tokens 36.37 17.12 29.76 54.01 75.39 129.87 10.45

FastV (K = 3, R = 0.5) 23.06 12.87 24.97 39.03 64.22 97.74 8.25
FastV (K = 2, R = 0.5) 21.81 11.18 24.51 34.15 61.97 98.73 7.91

VTW (K = 17) 24.43 16.91 26.96 41.16 12.79 14.54 2.38
VTW (K = 12) 24.74 16.51 24.35 46.60 7.35 9.80 1.25

PLPHP (r = 0.5) 36.35 16.81 29.88 (+0.12) 54.01 72.34 126.72 9.31
PLPHP (r = 0.4) 36.19 16.82 30.03 (+0.27) 53.91 71.04 123.75 8.35
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Figure 5: Visualization of vision token retention rates and performance across seven different benchmarks. A
point on each polyline represents a certain hyperparameter setting. We record the vision token retention rate and
performance of the method under the corresponding setting. For VTW, we evaluated cases with K = 10, 14 and
20. For FastV, we assessed the cases of (K,R) = (2, 0.75), (3, 0.5) and (3, 0.25). As for PLPHP, we examined the
situations where (r,∆r) = (0.3, 0.3), (0.4, 0.3) and (0.5, 0.3).

configuration, and implementation details can be365

found in Appendix A.1.366

Unless otherwise specified, the experimental re-367

sults we report are based on LLaVA-OneVision-7B,368

and the default hyperparameter setting of PLPHP369

is (r,∆r, α, β) = (0.4, 0.3, 0.25, 0.1). The bolded370

text in the tables indicates the best performance un-371

der the corresponding metric, while the underlined 372

text denotes the second best. 373

4.2 Main Results 374

We first conduct experiments with our method 375

based on LLaVA-OneVision across different bench- 376

marks. The main results are shown in Table 1. 377
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Figure 6: Ablation studies on r and ∆r. Each polyline in the figure corresponds to a specific value of r, with
different points on a single line representing various values of ∆r and their corresponding performance metrics.

Table 2: Ablation studies on α and β.
Spot-the-Diff Image-Edit Visual-Story-Telling DetailCaps

Methods ROUGE-L ↑ ROUGE-L ↑ ROUGE-L ↑ CIDEr ↑ Avg. Retention Rate (%) ↓ Avg. KV Cache Size (%) ↓

α = 0.25, β = 0.05 39.74 22.10 31.82 10.66 50.6% 53.2%
α = 0.2, β = 0.1 39.15 22.10 31.87 10.16 44.0% 50.4%
α = 0.25, β = 0.1 39.81 22.06 31.82 9.89 41.6% 47.7%
α = 0.3, β = 0.1 39.35 22.02 31.81 9.63 39.6% 45.1%
α = 0.25, β = 0.15 39.51 22.07 31.80 9.55 35.8% 42.6%

From the table, we can observe that:378

• PLPHP significantly outperforms both base-379

lines across different benchmarks. For the380

LLaVA-OneVision-7B model, the average perfor-381

mance of PLPHP under default hyperparameter382

settings surpasses FastV by 11.4% and VTW by383

48.4%. Compared to the uncompressed model,384

the average performance degradation brought by385

PLPHP is merely 0.46%. We attribute this perfor-386

mance enhancement to the granularity and adapt-387

ability of PLPHP. In contrast to FastV and VTW,388

which discard a fixed set of vision tokens from389

all pruned attention heads, the dynamic nature of390

PLPHP offers a distinct performance advantage.391

• Model with PLPHP outperforms uncom-392

pressed model on various multi-image tasks.393

Notably, the average performance of PLPHP sur-394

passes that of the uncompressed model by 0.51%395

across multiple multi-image task benchmarks on396

LLaVA-OneVision-7B through appropriate prun-397

ing. The improvement on multi-image bench-398

marks could be attributed to the increased redun-399

dancy in visual information inherent in multi-400

image tasks, which could potentially be detri-401

mental to model inference. This redundancy is402

effectively eliminated by PLPHP, thereby enhanc-403

ing both the efficiency and performance.404

• The performance of PLPHP remains relatively405

stable under different retention rates. The406

carefully designed pruning dynamics in PLPHP407

allow it to prioritize the removal of the most408

redundant tokens, thereby ensuring that perfor-409

mance is less affected by the pruning rate. On410

the other hand, VTW is highly sensitive to the 411

selection of K. It discards all vision tokens at a 412

specific layer, thus once the model exhibits sig- 413

nificant Vision Token Re-attention after this layer, 414

it is likely to severely impact the performance, 415

which could be the cause of its high sensitivity to 416

the hyperparameter and substantial performance 417

decline in image captioning tasks. 418

To provide a more intuitive analysis of how each 419

method performs under varying pruning rates, we 420

evaluated their performance across different vision 421

token retention rates and visualized the results in 422

Figure 5. It can be observed that PLPHP consis- 423

tently outperforms the baseline at the same pruning 424

rate and maintains nearly no performance degrada- 425

tion within a certain pruning rate range, indicating 426

that we can achieve better performance while dis- 427

carding more vision tokens, which directly leads to 428

a higher computational efficiency. 429

These performance boosts highlight the superi- 430

ority of our method, which dynamically adjusts 431

the pruning rate based on the attention allocated to 432

image tokens in different layers and independently 433

preserve different contextual information for differ- 434

ent attention heads. 435

Table 3: Performance of PLPHP on various models.
Bolded text indicates that PLPHP surpasses the uncom-
pressed model.

SD IE VST MV Flickr30k COCO

Methods R ↑ R ↑ R ↑ R ↑ C ↑ C ↑ RR (%) ↓ KV (%) ↓

Qwen2-VL 27.56 21.21 24.92 12.78 77.24 96.18 100% 100%
w/ PLPHP 27.78 21.40 25.02 12.96 78.02 98.67 35.8% 41.9%

IDEFICS2 18.98 14.90 23.91 13.84 51.73 72.12 100% 100%
w/ PLPHP 18.55 14.89 23.93 13.96 51.68 72.60 36.1% 51.3%

Mantis 16.30 9.56 13.27 11.02 70.41 91.41 100% 100%
w/ PLPHP 16.41 9.81 13.41 11.14 69.90 90.61 29.1% 33.7%
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4.3 Generality of PLPHP on Various LVLMs436

To further demonstrate the generality of PLPHP on437

various model architectures, we implement PLPHP438

on common LVLMs with different LLM back-439

bones, and directly compared them with uncom-440

pressed models to highlight our effectiveness, with441

results shown in Table 3. Since IDEFICS2 and442

Mantis are unable to follow instructions in Detail-443

Caps4870, we evaluate PLPHP on the other six444

benchmarks. Remarkably, Qwen2-VL equipped445

with PLPHP surpasses the uncompressed model446

across all benchmarks, achieving an average im-447

provement rate of 1.5%, while saving an average448

of 58.1% KV Cache storage space. For the other449

two models, our method also achieves an average450

of 57% KV Cache compression while surpassing451

the original models across multiple benchmarks.452
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Figure 7: The decoding latency and KV Cache size
results. Both baselines maintain constant KV Cache
sizes due to unchanging pruning rates, while PLPHP
adaptively assigns retention rates, producing a fluctuat-
ing curve with a smaller mean.

Table 4: Performance and efficiency comparison
among different methods.

DetailCaps4870

Methods C ↑ M ↑ R ↑ Time (h) ↓ RR (%) ↓

Full Tokens 11.24 20.13 30.01 5.63 100%

FastV (K = 3, R = 0.5) 9.59 18.55 28.72 5.23 55.4%
VTW (K = 14) 3.03 15.05 24.38 5.22 50.0%
PLPHP 9.89 19.33 29.19 5.23 47.5%

4.4 Efficiency Analysis453

To analyze the efficiency of PLPHP, we conduct454

experiments on DetailCaps4870 since it includes455

long generation contents. We can observe from456

Figure 7a that PLPHP achieves a comparable total457

decoding latency to both baselines. The latency458

introduced by the unpruned Prefilling Stage is min-459

imal (less than 0.5 tokens of delay). Figure 7b460

shows that PLPHP maintains a lower KV cache size461

during the evaluation process compared to all base-462

lines, leading to a shorter decoding latency. Table463

4 shows that PLPHP attains performance closest464

to the uncompressed model. The nearly consistent465

evaluation time also indicates that the additional466

computation during the Prefilling Stage gradually 467

becomes negligible as generation progresses. 468

Table 5: Decoding Latency and KV Cache Size of
PLPHP under different retention rates.

Methods Decoding Latency (ms/token) ↓ KV Cache Size (%) ↓

Full Tokens 49.10 100%

PLPHP (r = 0.5) 41.26 54.9%
PLPHP (r = 0.4) 40.20 46.2%
PLPHP (r = 0.3) 39.19 37.6%

4.5 Ablation Study 469

To explore the impact of r and ∆r, we conduct 470

ablation experiments on four benchmarks, with the 471

results illustrated in Figure 6. It can be observed 472

that setting ∆r > 0 consistently outperforms the 473

cases where ∆r = 0, indicating that adaptive prun- 474

ing rates are superior to a fixed pruning rate. This 475

finding demonstrates that our proposed layer-level 476

pruning rate allocation has a positive impact on 477

model performance. 478

Since r is the most direct parameter reflecting 479

the average pruning rate, we test the impact of r 480

on efficiency, with the results presented in Table 481

5. PLPHP achieves an 18.1% decoding speedup 482

and a 53.8% KV Cache compression under the 483

default settings where r = 0.4, and further reaches 484

a 20.2% acceleration and a 62.4% compression at a 485

lower retention rate, enhancing the computational 486

efficiency of LVLM decoding remarkably. 487

α and β also indirectly influence pruning rates, 488

thus we also conduct ablation studies with the re- 489

sults shown in Table 2. Intuitively, increasing α 490

and β elevates the criteria for vision-attentive layers 491

and vision-balanced layers more stringent, leading 492

to higher pruning rates at the cost of performance 493

loss. Conversely, decreasing them relaxes the crite- 494

ria, enhancing the performance but at greater com- 495

putational expense. 496

5 Conclusion 497

In this work, we introduce PLPHP, a two-level prun- 498

ing method designed to improve the efficiency of 499

LVLMs with Layer-Level Retention Rate Alloca- 500

tion and Head-Level Vision Token Pruning. Com- 501

prehensive experiments demonstrate that PLPHP 502

outperforms existing pruning methods, achieving a 503

18% decoding acceleration, over 50% KV Cache 504

compression and only 0.46% performance degrada- 505

tion, with improvements on multi-image tasks. We 506

believe our work contributes to efficient LVLMs, 507

further promotes their applications, and improves 508

the user experience. 509
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6 Limitations510

The limitations of our work include: 1) We have511

only evaluated our method on image-text datasets512

and have not conducted further testing on other513

modalities. 2) Despite demonstrating superior per-514

formance, our proposed method involves 4 hyper-515

parameters, requiring parameter selection. 3) The516

efficiency advantage of PLPHP is primarily evi-517

dent in scenarios where the model generates longer518

content. It does not show an efficiency advantage519

for short generations such as multiple-choice ques-520

tions. In future research, we plan to: 1) Extend our521

method to visual modalities such as video (Chen522

et al., 2024a; Jin et al., 2024; Weng et al., 2024)523

and 3D (Hong et al., 2023; Huang et al., 2024a;524

Chen et al., 2024c), aiming to develop a unified525

pruning strategy across multiple visual modalities.526

2) Test and enhance the performance of our method527

in real-world scenarios with limited computational528

resources, such as edge computing and embodied529

intelligence. 3) Explore the comparison and inte-530

gration of our method with other advanced model531

lightweighting techniques, such as model distilla-532

tion, quantization, and advanced KV Cache op-533

timization mechanisms including GQA (Ainslie534

et al., 2023) and MLA (Liu et al., 2024).535
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A Appendix753

A.1 Details of Evaluation Settings754

A.1.1 Benchmarks755

Since PLPHP maintains the computational integrity756

of the LVLMs’ Prefilling Stage, its efficiency ad-757

vantage is primarily reflected in the low decod-758

ing latency during the subsequent Decoding Stage.759

Therefore, we mainly choose benchmarks com-760

posed of open-ended VQA and image captioning761

tasks. The benchmarks we select encompasses both762

multi-image task benchmarks and single-image763

task benchmarks.764

• Multi-Image benchmarks: The LLaVA-765

Interleave Bench is a comprehensive benchmark766

dataset designed to evaluate the performance of767

LVLMs in multi-image scenarios. It consists of 13768

challenging tasks with a total of 17,000 instances.769

We curated four subsets consisting of open-ended770

VQA tasks from LLaVA-NeXT-Interleave-Bench:771

Spot-the-Diff, Image-Edit, Visual-Story-Telling,772

and Multi-View.773

• Single-Image benchmarks: The Flickr30k774

dataset is a widely used benchmark in the field of775

image captioning and visual understanding. It con-776

sists of 31,783 images collected from the Flickr777

platform, each paired with five human-annotated778

captions. The COCO2017 Caption subset contains779

more than 45,000 images, each annotated with five780

captions written by human annotators, describing781

the visual content of the images in detail, includ-782

ing objects, their attributes, and the relationships783

between them. DetailCaps4870 provides more fine-784

grained and specific image content descriptions785

than standard captioning datasets, which is more786

useful for efficiency analysis.787

A.1.2 Baselines788

We select FastV and VTW as our baselines in our789

experiments. Notably, FastV offers two versions790

of implementation: one that supports KV cache791

and one that does not. Since the non-KV-cache im-792

plementation introduces substantial computational793

overhead, we use the version that supports KV794

cache to ensure a fair comparison. For both of795

the baselines, we refer to the official open source796

code 1 2 and implement them on the models we797

evaluate.798

1https://github.com/pkunlp-icler/FastV
2https://github.com/lzhxmu/VTW

A.1.3 Models 799

For Qwen2-VL, we set max_pixels to 1280×28× 800

28 and min_pixels to 256 × 28 × 28 according 801

to the official recommendation. The Mantis model 802

that we choose is Mantis-8B-SigLIP-LLaMA3. For 803

LLaVA-OneVision and Mantis, we use the official 804

original versions 3 4, while using the versions pro- 805

vided by the transformers library (Wolf et al., 2020) 806

for all other models. 807

A.2 Case Study 808

To showcase the effectiveness of our proposed 809

method, we present a series of case studies in the 810

form of multimodal chatbots, as shown in Figure 8. 811

3https://huggingface.co/lmms-lab/
llava-onevision-qwen2-7b-ov

4https://huggingface.co/TIGER-Lab/
Mantis-8B-siglip-llama3
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(a) (b)

(c) (d)

Figure 8: Multimodal Chatbots with different pruning methods.

13


	Introduction
	Related Work
	Large Vision-Language Models
	Efficient Multimodal Large Language Models

	Method
	Preliminary
	PLPHP
	Overview
	Layer-Level Retention Rate Allocation
	Head-Level Vision Token Pruning


	Experiments
	Experimental Setting
	Main Results
	Generality of PLPHP on Various LVLMs
	Efficiency Analysis
	Ablation Study

	Conclusion
	Limitations
	Appendix
	Details of Evaluation Settings
	Benchmarks
	Baselines
	Models

	Case Study


