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Abstract

The identification and counting of small graph patterns,

called network motifs, is a fundamental primitive in the anal-

ysis of networks, with application in various domains, from

social networks to neuroscience. Several techniques have

been designed to count the occurrences of motifs in static

networks, with recent work focusing on the computational

challenges provided by large networks. Modern networked

datasets contain rich information, such as the time at which

the events modeled by the networks edges happened, which

can provide useful insights into the process modeled by the

network. The analysis of motifs in temporal networks, called

temporal motifs, is becoming an important component in

the analysis of modern networked datasets. Several meth-

ods have been recently designed to count the number of in-

stances of temporal motifs in temporal networks, which is

even more challenging than its counterpart for static net-

works. Such methods are either exact, and not applicable

to large networks, or approximate, but provide only weak

guarantees on the estimates they produce and do not scale

to very large networks. In this work we present an efficient

and scalable algorithm to obtain rigorous approximations of

the count of temporal motifs. Our algorithm is based on a

simple but effective sampling approach, which renders our

algorithm practical for very large datasets. Our extensive

experimental evaluation shows that our algorithm provides

estimates of temporal motif counts which are more accurate

than the state-of-the-art sampling algorithms, with signifi-

cantly lower running time than exact approaches, enabling

the study of temporal motifs, of size larger than the ones

considered in previous works, on billion edges networks.

1 Introduction

The identification of patterns is a ubiquitous problem
in data mining [8] and is extremely important for net-
worked data, where the identification of small, con-
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nected subgraphs, usually called network motifs [18]
or graphlets [23], have been used to study and char-
acterize networks from various domains, including biol-
ogy [16], neuroscience [3], social networks [28], and the
study of complex systems in general [17]. Network mo-
tifs have been used as building blocks for various tasks in
the analyses of networks across such domains, including
anomaly detection [25] and clustering [4].

A fundamental problem in the analysis of network
motifs is the counting problem [5, 2], which requires to
output the number of instances of the given topology
defining the motif. This challenging computational
problem has been extensively studied, with several
techniques designed to count the number of occurrences
of simple motifs, such as triangles [26, 21, 24] or sparse
motifs [7].

Most recent work has focused on providing tech-
niques for the analysis of large networks, which have
become the standard in most applications. However, in
addition to a significant increase in size, modern net-
works also feature a richer structure, in terms of the
type of information that is available for their vertices
and edges [6]. A type of information that has drawn
significant attention in recent years is provided by the
temporal dimension [11, 12]. In several applications
edges are supplemented with timestamps describing the
time at which an event, modeled by an edge, occurred:
for example, in the analysis of spreading processes in
epidemics, nodes are individuals, an edge represents a
physical interaction between two individuals, and the
timestamp represents the time at which the interaction
was recorded [22].

When studying motifs in temporal networks, one
is usually interested in occurrences of a given topol-
ogy whose edge timestamps all appear in a small time
span [11, 20]. Discarding the temporal information of
the network, i.e. ignoring the timestamps, may lead
to incorrect characterization of the system of interest,
while the analysis of temporal networks can provide in-
sights that are not revealed when the temporal informa-
tion is not accounted for [11]. For example, in a tempo-
ral network, a triangle x→ y → z → x represents some
feedback process on the information originated from x
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only if the edges occur at increasing timestamps (and
the triangle occurs in a small amount of time). This
information is revealed only by considering the times-
tamps, while by restricting to the static network (i.e.,
discarding edges timestamps) we may, often incorrectly,
conclude that initial information starting from x always
affects such sequence of events. Motifs that capture
temporal interactions, such as the ones we consider, can
provide more useful information than static motifs, as
shown in several applications, including network clas-
sification [27] and in the identification of mixing ser-
vices from bitcoin networks [30]. Furthermore, while
on static networks motifs with high counts are associ-
ated with important properties of the dataset (e.g., its
domain), the temporal information provides additional
insights on the network and the nature of frequently
appearing motifs, such as, for example, the presence of
bursty activities [32]. Unfortunately, current techniques
do not enable the analysis of large temporal networks,
preventing researchers from studying temporal motifs in
complex systems from many areas.

The problem of counting motifs in temporal net-
works is even more challenging than its counterpart for
static networks, since there are motifs for which the
problem is NP-hard for temporal networks while it is
efficiently solvable for static networks [13]. Current ap-
proaches to count motifs in temporal networks are ei-
ther exact [20, 15], and cannot be employed for very
large networks, or approximate [13, 29], but provide only
rather weak guarantees on the quality of the estimates
they return. In addition, even approximate approaches
do not scale to billion edges networks.

In this work we focus on the problem of counting
motifs in temporal networks. Our goal is to obtain
an efficiently computable approximation to the count
of motifs of any topology while providing rigorous
guarantees on the quality of the result.

Our contributions This work provides the following
contributions.

• We present PRESTO, an algorithm to approximate
the count of motifs in temporal networks, which
provides rigorous (probabilistic) guarantees on the
quality of the output. We present two variants
of PRESTO, both based on a common approach
that counts motifs within randomly sampled tem-
poral windows. Both variants allow to analyze
billion edges datasets providing sharp estimates.
PRESTO features several useful properties, includ-
ing: i) it has only one easy to interpret parameter,
c, defining the length of the temporal windows for
the samples; ii) it can approximate the count of
any motif topology; iii) it is easily parallelizable,

with an almost linear speed-up with the available
processors.

• We provide tight and efficiently computable bounds
to the number of samples required by our algo-
rithms to achieve (multiplicative) approximation
error ≤ ε with probability ≥ 1− η, for given ε > 0
and η ∈ (0, 1). Our bounds are obtained through
the application of advanced concentration results
(i.e., Bennett’s inequality) for the sum of indepen-
dent random variables.

• We perform an extensive experimental evaluation
on real datasets, including a dataset with more
than 2.3 billion edges, never examined before. The
results show that on large datasets our algorithm
PRESTO significantly improves over the state-of-
the-art sampling algorithms in terms of quality of
the estimates while requiring a small amount of
memory.

2 Preliminaries

In this section we introduce the basic definitions used
throughout this work. We start by formally defining
temporal networks.

Definition 2.1. A temporal network is a pair T =
(V,E) where, V = {v1, . . . , vn} and E = {(x, y, t) :
x, y ∈ V, x 6= y, t ∈ R+} with |V | = n and |E| = m.

Given (x, y, t) ∈ E, we say that t is the timestamp
of the edge (x, y). For simplicity in our presentation we
assume the timestamps to be unique, which is without
loss of generality since in practice our algorithms also
handle non-unique timestamps. We also assume the
edges to be sorted by increasing timestamps, that is
t1 < · · · < tm. Given an interval or window [tB , tE ] ⊆ R
we will denote |tE − tB | as its length.

We are interested in temporal motifs1, which are
small, connected subgraphs whose edge timestamps
satisfy some constraints. In particular, we consider the
following definition introduced in [20].

Definition 2.2. A k-node `-edge temporal motif M is
a pair M = (K, σ) where K = (VK, EK) is a directed and
weakly connected multigraph where VK = {v1, . . . , vk},
EK = {(x, y) : x, y ∈ VK, x 6= y} s.t. |VK| = k and
|EK| = ` and σ is an ordering of EK.

Note that a k-node `-edge temporal motif M =
(K, σ) is also identified by the sequence (x1, y1), . . . ,

1In static networks, the term graphlet [31] is sometimes used,
with motifs denoting statistically significant graphlets. We use

the term motif in accordance with previous work on temporal
networks [20, 13, 29].
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Figure 1: (1a): example of temporal network T with
n = 6 nodes and m = 13 edges. (1b): a temporal
motif, known as Bi-Fan [13]. (1c): sequences of edges
of T that map topologically on the Bi-Fan motif, i.e., in
terms of static graph isomorphism. For δ = 10 only the
green sequence is a δ-instance of the Bi-Fan, since the
timestamps respect σ and t′`−t′1 = 20−10 ≤ δ. The red
sequences are not δ-instances, since they do not respect
such constraint or do not respect the order in σ.

(x`, y`) of edges ordered according to σ. Given a k-node
`-edge temporal motif M , k and ` are determined by VK
and EK. We will therefore use the term temporal motif,
or simply motif, when k and ` are clear from context.

Given a temporal motif M , we are interested in
counting how many times it appears within a time
duration of δ, as captured by the following definition.

Definition 2.3. Given a temporal network T =
(V,E) and δ ∈ R+, a time ordered sequence S =
(x′1, y

′
1, t
′
1), . . . , (x′`, y

′
`, t
′
`) of ` unique temporal edges

from T is a δ-instance of the temporal motif M =
(x1, y1), . . . , (x`, y`) if:

1. there exists a bijection f on the vertices such that
f(x′i) = xi and f(y′i) = yi, i = 1, . . . , `; and

2. the edges of S occur within δ time, i.e., t′`− t′1 ≤ δ.

Note that in a δ-instance of the temporal motif M =
(K, σ) the edge timestamps must be sorted according to
the ordering σ. See Figure 1 for an example.

Let U(M, δ) = {u : u is a δ-instance ofM} be the set
of (all) δ-instances of the motif M in T , denoted only
with U when M and δ are clear from the context. Given
a δ-instance u ∈ U(M, δ), we denote the timestamps of
its first and last edge with tu1 and tu` , respectively. The
count of M is CM (δ) = |U(M, δ)|, denoted with CM
when δ is clear from the context. We are interested in
solving the following problem.

Motif counting problem. Given a temporal
network T , a temporal motif M = (K, σ), and δ ∈ R+,
compute the count CM (δ) of δ-instances of motif M in
the temporal network T .

Solving the motif counting problem exactly may be
infeasible for large networks, since even determining
whether a temporal network contains a simple star
motif is NP-hard [13]. State-of-the-art exact techniques
[15, 20] require exponential time and memory in the
number of edges of the temporal network, which renders
them impractical for large temporal networks. We are
therefore interested in obtaining efficiently computable
approximations of motif counts, as follows.

Motif approximation problem. Given a tempo-
ral network T , a temporal motif M = (K, σ), δ ∈ R+,
ε ∈ R+

0 , η ∈ (0, 1) compute C ′M such that P(|C ′M −
CM (δ)| ≥ εCM (δ)) ≤ η, i.e., C ′M is a relative ε-
approximation to CM (δ) with probability at least 1−η.

We call an algorithm that provides such guarantees
an (ε, η)-approximation algorithm.

2.1 Related Work Various definitions of temporal
networks and motifs have been proposed in the litera-
ture; we refer the interested reader to [10, 12, 14]. Here
we focus on those works that adopted the same defini-
tions used in this work.

The definition of temporal motif we adopt was
first proposed by Paranjape et al. [20], which provided
efficient exact algorithms to solve the motif counting
problem for specific motifs. Such algorithms are efficient
only for specific motif topologies and do not scale to
very large datasets. An algorithm for the counting
problem on general motifs has been introduced by
Mackey et al. [15]. Their algorithm is the first exact
technique allowing the user to enumerate all δ-instances
u ∈ U without any constraint on the motif’s topology.
The major back-draw of such algorithm is that it
may be impractical even for moderately-sized networks,
due to its exponential time complexity and memory
requirements.

Liu et al. [13] proposed the first sampling algorithm
for the temporal motif counting problem. The main
strategy of [13] is to partition the time interval contain-
ing all the edges of the network into non overlapping
and contiguous windows of length cδ (i.e., a grid-like
partition), for some c > 1. The partition is then ran-
domly shifted (i.e., the starting point of the first win-
dow may not coincide with the smallest timestamp of
the network). The edges in each partition constitute the
candidate samples to be analyzed using an exact algo-
rithm. An importance sampling scheme is used to sam-
ple (approximately) r windows among the candidates,
with a window being selected with probability propor-
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tional to the fraction of edges it contains. The esti-
mate for each sampled window is obtained by weighting
each δ-instance in the window, and the estimates are
averaged across windows. This procedure is repeated
b times to reduce the variance of the estimate. While
interesting, this partition-based approach prevents such
algorithm to provide (ε, η)-guarantees (see Sec. 3.1).

Recently Wang et al. [29] proposed an (ε, η)-
approximation algorithm for the motif counting prob-
lem. Their approach selects each edge in T with a
user-provided probability p. Then for each selected edge
e = (x, y, t), the algorithm collects the edges with times-
tamps in the edge-centered window [t−δ, t+δ], of length
2δ, computes on these edges all the δ-instances u ∈ U
containing e, weights the instances, and combines the
weights to obtain the final estimate. From the theo-
retical point of view, the main drawback of this ap-
proach is that in order to achieve the desired guaran-
tees one has to set p ≥ 1/(1 + ηε2), resulting in high
values of p (i.e., almost all edges are selected) for rea-
sonable values of η and ε (e.g., p > 0.97 for η = 0.1
and ε = 0.5). In addition, such approach is impracti-
cal on very large datasets, mainly due its huge memory
requirements, and does not provide accurate estimates
(see Sec. 4).

3 PRESTO: Approximating Temporal Motif
Counts with Uniform Sampling

We now describe and analyze our algorithm PRESTO

(apPRoximating tEmporal motifS counTs with
unifOrm sampling) for the motif counting problem. We
start by describing, in Sec. 3.1, the common strategy
underlying our algorithms. We then briefly highlight
the differences between PRESTO and the existing sam-
pling algorithms for the counting problem. In Sec. 3.2
and Sec. 3.3 we present and analyze two variants of the
common strategy introduced in Sec. 3.1. We conclude
with the analysis of PRESTO’s complexity in Sec. 3.4.

3.1 PRESTO: General Approach The general strat-
egy of PRESTO is presented in Algorithm 1. Given a net-
work T , PRESTO collects s samples, where each sample
is obtained by gathering all edges e ∈ E with times-
tamp in a small random window [tr, tr + cδ] of length
cδ, using SampleWindowStart(E) (Lines 2-5) to select
tr (i.e., the starting time point of the window) through
a uniform random sampling approach. For each sam-
ple, an exact algorithm is then used to extract all the
δ-instances of motif M in such sample (Line 6). The
weight of each δ-instance extracted is computed with
the call ComputeWeight(u) (Line 8), and the sum of all
such weights constitutes the estimate provided by the
sample (Line 9). The weights account for the proba-

Algorithm 1: PRESTO

Input: Temporal Network T = (V,E), Motif
M , Motif Duration δ > 0, s > 0, c > 1

Output: Estimate C ′M of CM
1 for i← 1 to s do
2 tr ← SampleWindowStart(E);
3 Ei ← {(x, y, t) ∈ E : (t ≥ tr)∧(t ≤ tr+cδ)};
4 Vi ← {x : ((x, y, t) ∈ Ei) ∨ ((y, x, t) ∈ Ei)};
5 Ti ← (Vi, Ei); Xi ← 0;
6 Si ← {u : u is δ-instance of M in Ti};
7 foreach u ∈ Si do
8 w(u)← ComputeWeight(u);
9 Xi ← Xi + w(u);

10 C ′M ← 1
s

∑s
i=1Xi;

11 return C ′M ;

bility of sampling the δ-instances in the sample, mak-
ing the final estimate unbiased. The final estimate pro-
duced in output is the average of the samples’ estimates
(Lines 10-11). Note that the for cycle of Line 1 is triv-
ially parallelizable. The two variants of PRESTO we will
present differ in the way i) SampleWindowStart(E) and
ii) ComputeWeight(u) are defined.

Differently from [13], our algorithm PRESTO does not
partition the edges of T in non overlapping windows,
and relies instead on uniform sampling. We recall (see
Sec. 2.1) that in [13], after computing all the non over-
lapping intervals defining the candidate samples, there
may be several δ-instances u ∈ U that cannot be sam-
pled (i.e., all δ-instances having tu1 in window j and tu`
in window j+1). This significantly differs from PRESTO,
which instead samples at each iteration a small random
window from [t1, tm] without restricting the candidate
windows, allowing to sample any δ-instance u ∈ U(M, δ)
at each iteration. This enables us to provide stronger
guarantees on the quality of the output, since each δ-
instance has a non-zero probability of being sampled at
each step, leading to (ε, η)-approximation guarantees.

Differently from the work of Wang et al. [29] PRESTO
samples temporal windows of length cδ and does not fol-
low the edge-centric approach (i.e., sampling temporal
edges with a user-provided probability p) of [29]. In ad-
dition, the approach of [29] collects edges in temporal-
windows of length 2δ (see Sec. 2.1), while in PRESTO the
window size is controlled by the parameter c, which,
when fixed to be < 2, leads to much more scalability
than [29] while requiring less memory (see Sec. 4).

3.2 PRESTO-A: Sampling among All Windows
In this section we present and analyze PRESTO-A, our
first (ε, η)-approximation algorithm obtained by spec-
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ifying i) how the starting point tr of the tempo-
ral window defining a sample Ti is chosen (function
SampleWindowStart(E) in Line 2) and ii) how the
weight w(u) of a δ-instance u in a sample is computed
(ComputeWeight(u), Line 8).

The starting point tr of sample Ti is sampled
uniformly at random in the interval [t` − cδ, tm−`] ⊆ R,
where we recall ` = |EK| and m = |E|. Regarding the
choice of the weight w(u) for each instances u ∈ Si,
PRESTO-A considers w(u) = 1/pu, with pu being the
probability of u to be in Si, that is pu = ru/∆T,1, where
∆T,1 = tm−` − t` + cδ is the total length of the interval
from which tr is sampled (recall that we choose tr from
[t` − cδ, tm−`]), and ru = cδ − (tu` − tu1 ) is the length of
the interval in which tr must be chosen for u to be in
Si, i = 1, . . . , s.

We now present the theoretical guarantees of
PRESTO-A and give efficiently computable bounds for
the sample size s needed for the (ε, η)-approximation
to hold. (All the missing proofs are in the extended
version [34]). Recall the definition of U(M, δ), which is
the set of δ-instances of M in T . Let u be an arbitrary
δ-instance of motif M , and let Ti be an arbitrary sample
obtained by PRESTO-A at its i-th iteration. We define
the following set of indicator random variables, for u ∈
U and for i = 1, . . . , s: Xi

u = 1 if u ∈ Si, 0 otherwise.
Each variable Xi

u, i = 1, . . . , s , u ∈ U is a Bernoulli ran-
dom variable with P(Xi

u = 1) = P(u ∈ Si) = ru
∆T,1

= pu.

Therefore, for each variable Xi
u, it holds E[Xi

u] = pu.
Thus, for each i = 1, . . . , s, iteration i provides an es-
timate Xi of CM , which is the random variable: Xi =∑
u∈U

1
pu
Xi
u. We therefore have the following result.

Lemma 3.1. For each i = 1, . . . , s, Xi and C ′M =
1
s

∑s
i=1Xi are unbiased estimators for CM , that is

E[Xi] = E[C ′M ] = CM .

The following result provides a bound on the variance
of the estimate of CM provided by C ′M .

Lemma 3.2. For PRESTO-A it holds

Var (C ′M ) = Var

(
1

s

s∑
i=1

Xi

)
≤ C2

M

s

(
∆T,1

(c− 1)δ
− 1

)
.

We now present a first efficiently computable bound on
the number of samples s required to have that C ′M is a
relative ε-approximation of CM with probability ≥ 1−η.
Such bound is based on the application of Hoeffding’s
inequality (see [19]) an advanced but commonly used
technique in the analysis of probabilistic algorithms.

Theorem 3.1. Given ε ∈ R+, η ∈ (0, 1) let X1, . . . , Xs

be the random variables associated with the counts com-
puted at iterations 1, . . . , s, respectively, of PRESTO-A. If

s ≥ ∆2
T,1

2(c−1)2δ2ε2 ln
(

2
η

)
, then it holds

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)
≤ η

that is, PRESTO-A is an (ε, η)-approximation algorithm.

We now show that by using Bennett’s inequality (see
[33]), a more advanced result on the concentration of
the sum of independent random variables, we can derive
a bound that is much tighter than the above, while still
being efficiently computable. One of the difficulties in
applying such result to our scenario is that we know
only an upper bound to the variance of the random
variables Xi, i = 1, . . . , s. A discussion of why Bennett’s
inequality can be applied in such situation is in [34]. We
now state our main result.

Theorem 3.2. Given ε ∈ R+, η ∈ (0, 1) let X1, . . . , Xs

be the random variables associated with the counts com-
puted at iterations 1, . . . , s, respectively, of PRESTO-A. If

s ≥
(

∆T,1

(c−1)δ − 1
)

1
(1+ε) ln(1+ε)−ε ln

(
2
η

)
, then it holds

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)
≤ η

that is, PRESTO-A is an (ε, η)-approximation algorithm.

Note that the bound in Theo. 3.2 is significantly
better than the one in Theo. 3.1, since the former
has a quadratic dependence from ∆T,1 while the latter
enjoys a linear dependence from ∆T,1. Furthermore,
differently from the bounds in [29], our bounds depend
on characteristic quantities of the datasets (∆T,1) and
of the algorithm’s input (c, δ). Therefore we expect
our bounds to be more informative, and also possibly
tighter than the bounds of [29] (with the improvement
due, at least in part, to the use of Bennett’s inequality,
while [29] leverages on Chebyshev’s inequality, which
usually provides looser bounds [19]).

3.3 PRESTO-E: Sampling the Start from Edges In
this section we present and analyse our second (ε, η)
approximation algorithm, PRESTO-E, obtained with a
different variant of the general strategy of Algorithm 1.

PRESTO-E selects the starting point tr (Line 2 in
Alg. 1) of sample Ti only from the timestamps of edges
of T . In particular, tr is chosen uniformly at random
in {t1, . . . , tlast} ⊆ {t1, . . . , tm}, where tlast = min{t :
(x, y, t) ∈ E∧ t ≥ tm−cδ}. When the edges of T are far
from each other or have a skewed distribution in time,
or occur mostly in some well-spaced subsets {[ta, tb] ⊆
[t1, tm] : ta ≤ tb}, we expect PRESTO-E to collect
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samples with more δ-instances than PRESTO-A (which
samples tr uniformly at random almost from the entire
time interval [t1, tm] but without restricting to existing
edges). Similarly to PRESTO-A, the weight w(u) (Line
8 of Alg. 1) is computed by w(u) = 1/p̃u, where p̃u is
the probability that u ∈ U is in the set Si. Due to the
(random) choice of tr, p̃u = r̃u/∆T,2, where ∆T,2 = |{t :
(x, y, t) ∈ E ∧ t ∈ [t1, tlast]}| is the number of possible
choices for tr (if tlast = tm then ∆T,2 = m) and r̃u =
|{t : (x, y, t) ∈ E∧ t ∈ [max{t1, tu` −cδ},min{tlast, tu1}]}|
is the number of choices for tr such that u ∈ U is in
Si, i = 1, . . . , s.

Similarly to what done for PRESTO-A we prove that
PRESTO-E provides an unbiased estimate of CM , with
bounded variance (the proof is in [34]). By applying
Bennett’s inequality, we derive the following.

Theorem 3.3. Given ε ∈ R+, η ∈ (0, 1) let X1, . . . , Xs

be the random variables associated with the counts com-
puted at iterations 1, . . . , s, respectively, of PRESTO-E. If

s ≥ (∆T,2−1)
(1+ε) ln(1+ε)−ε ln

(
2
η

)
, then it holds

P

(∣∣∣∣∣1s
s∑
i=1

Xi − CM

∣∣∣∣∣ ≥ εCM
)
≤ η

that is, PRESTO-E is an (ε, η)-approximation algorithm.

As for PRESTO-A, by using Bennett’s inequality we
obtain a linear dependence between the sample size
s and ∆T,2, while commonly used techniques (e.g.,
Hoeffding’s inequality) lead to a quadratic dependence.

3.4 PRESTO: Complexity Analysis In this section
we analyse the time complexity of PRESTO’s versions
introduced in the previous sections.

Note that our algorithms employ an exact enumer-
ator as subroutine. For the sake of the analysis we
consider the complexity when the subroutine is the al-
gorithm by Mackey et al. [15], which we used in our
implementation. Let us first start with a definition,
given a temporal network T = (V,E), we denote with
dim(T ) the set {ti|(x, y, ti) ∈ E, i = 1, . . . ,m}. The al-
gorithm in [15] has a worst-case complexity O(mκ̂(`−1))
when executed on a motif with ` edges and a temporal
network with m temporal edges, where κ̂ is the maxi-
mum number of edges within a window of length δ, i.e.,
κ̂ = max{|S(t)| : S(t) = {(x, y, t̄) ∈ E : t̄ ∈ [t, t+δ]}, t ∈
dim(T )}. Note that such complexity is exponential in
the number of edges ` of the temporal motif. Obvi-
ously our algorithms benefit from any improvement to
the state-of-the-art exact algorithms.

Complexity of PRESTO-A. The worst-case com-
plexity is O(sm̂κ̂(`−1) + sC∗M ) when executed sequen-
tially, where m̂ is the maximum number of edges in a

window of length cδ, i.e., m̂ = max{|S(t)| : S(t) =
{(x, y, t̄) ∈ E : t̄ ∈ [t, t + cδ]}, t ∈ dim(T )}, and C∗M
is the maximum number of δ-instances contained in
any window of length cδ. This corresponds to the case
where PRESTO-A collects samples with many edges for
which many δ-instances occur. The complexity becomes
O( sτ m̂κ̂

(`−1) + s
τC
∗
M ) when PRESTO-A is executed in a

parallel environment with τ threads (parallelizing the
for cycle in Alg. 1).

Complexity of PRESTO-E. Using the notation de-
fined above, the worst-case complexity of a naive im-
plementation of PRESTO-E is O(sm̂κ̂(`−1) + sm̂C∗M ). As
for PRESTO-A, the first term comes from the complexity
of the exact algorithm for computing Si, i = 1, . . . , s,
whereas the second term is the worst-case complexity
of computing the weights for each sample. The addi-
tional O(m̂) complexity of the second term arises from
the computation of r̃u for each u ∈ Si, i = 1, . . . , s.
The complexity of this computation can be reduced to
O(log(m)) by applying binary search to the edges of T .
With such an approach, we obtained the final complex-
ity O(sm̂κ̂(`−1) +s log(m)C∗M ). The complexity reduces
to O( sτ m̂κ̂

(`−1)+ s
τ log(m)C∗M ) when τ threads are avail-

able for a parallel execution.

4 Experimental evaluation

In this section we present the results of our extensive
experimental evaluation on large scale datasets. To the
best of our knowledge we consider the largest dataset,
in terms of number of temporal edges, ever used for the
motif counting problem with more than 2.3 billion tem-
poral edges. After describing the experimental setup
and implementation (Sec. 4.1), we first compare the
quality of the estimated counts provided by PRESTO with
the estimates from state-of-the-art sampling algorithms
from Liu et al. [13], and Wang et al. [29] (Sec. 4.2).
Then we compare the memory requirements of the al-
gorithms (Sec. 4.3), which may be a limiting factor for
the analysis of very large datasets. Additional exper-
iments on PRESTO’s running time comparison with the
exact algorithm by Mackey et al. [15], with the current
state of-the art sampling algorithms, and on PRESTO’s
parallel implementation are in [34].

4.1 Experimental Setup and Implementation
The characteristics of the datasets we considered are
in Table 1. EquinixChicago [1] is a bipartite temporal
network that we built. A detailed description is in [34].
Descriptions of the other datasets are in [20, 9, 13].

We implemented our algorithms in C++14, using
the algorithm by Mackey et al. [15] as subroutine for
the exact solution of the counting problem on samples.
We ran all experiments on a 64-core Intel Xeon E5-
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Table 1: Datasets used in our experimental evaluation.
We report: number of nodes n; number of edges m;
precision of the timestamps; timespan of the network.

Name n m Precision Timespan

Stackoverflow (SO) 2.58M 47.9M sec 2774 (days)
Bitcoin (BI) 48.1M 113M sec 2585 (days)
Reddit (RE) 8.40M 636M sec 3687 (days)

EquinixChicago (EC) 11.16M 2.32B µ-sec 62.0 (mins)

G1-1
1 2
4 3

G1-2
1 2
4 3

G2-1

1 2

3

G2-2

1 3

2

4

G2-3

1 2

3

4

G3-1

1 2 3

G3-2

2 1 3

G5-1

2

1

3

4

G5-2

1

2

3

4

G6-1

1
2

3
4

G10-1

1

2
3 4

G9-1

1

2

3

4

Figure 2: Motifs used in the experimental evaluation.
The edge labels denote the edge order in σ according to
Definition 2.2.

2698 with 512GB of RAM machine, with Ubuntu 14.04.
The code we developed, and the dataset we build are
entirely available at https://github.com/VandinLab/
PRESTO/, links to additional resources (datasets and
other implementations) are in [34]. We tested all the
algorithms on the motifs from Figure 2, that are a
temporal version of graphlets from [23], often used in
the analysis of static networks. We considered motifs
with at most ` = 4 edges since the implementation
by Wang et al. [29] does not allow for motifs with a
higher ` in input. Since the EC dataset is a bipartite
network, it can contain all but the motifs marked with
a rectangle in Fig. 2. Therefore, for such dataset we
did not consider the motifs in the rectangles of Fig. 2.
We compared our algorithms PRESTO-A and PRESTO-E,
collectively denoted as PRESTO, with 2 baselines: the
sampling algorithm by Liu et al. [13], denoted by LS and
the sampling algorithm by Wang et al. [29], denoted by
ES.

4.2 Quality of Approximation We start by com-
paring the approximation provided by PRESTO with the
current state-of-the-art sampling algorithms. To allow
for a fair comparison, since the algorithms we consider
depend on parameters that are not directly comparable
and that influence both the algorithm’s running time
and approximation, we run all the algorithms sequen-
tially and measure the approximation they achieve by
fixing their running time (i.e., we fix the parameters to
obtain the same running time).

While PRESTO can be trivially modified in order to
work within a user-specified time limit, the same does
not apply to LS or ES. Thus, to fix the same running time
for all algorithms we devised the following procedure: i)
for a fixed dataset and δ, we found the parameters of
LS such its runtime is at least one order of magnitude2

smaller than the exact algorithm by Mackey et al. [15]
on motif G1-1 ii) we run LS on all the motifs on the
fixed dataset with the parameters set as from i) and
measure the time required for each motif; iii) we run ES

such that it requires the same time3 as LS; iv) we ran
PRESTO-A and PRESTO-E with c = 1.25 and a time limit
that is the minimum between the running time of LS

and the one of ES. The parameters for all algorithms
are in [34]. Further discussion on how to set c when
running PRESTO is in [34].

For each configuration, we ran each algorithm ten
times, with a limit of 400 GB of (RAM) memory. We
computed the so called Mean Average Percentage Error
(MAPE) after removing the best and worst results, to
remove potential outliers. MAPE is defined as follows:
let C ′M be the estimate of the count CM produced by
one run of an algorithm, then the relative error of such
estimate is |C ′M−CM |/CM ; the MAPE of the estimates
is the average of the relative errors in percentage.

Table 2 shows the MAPE of the sampling algo-
rithms on SO, BI, and RC datasets (due to space con-
straints we report the variances in [34]). On the SO
dataset we observe that both versions of PRESTO pro-
vide more accurate estimates over current state-of-the-
art sampling algorithms. PRESTO-A provides the best
approximation on 6 out of 12 motifs, with PRESTO-E

providing the best results in all the other cases except
for motif G2-1. Furthermore, both variants of PRESTO

improve on all motifs w.r.t. LS and on 11 out of 12 mo-
tifs w.r.t. ES, with the error from ES being more than
three times the error of PRESTO on such motifs. We
note PRESTO-A and PRESTO-E achieve similar results,
supporting the idea that similar performances are ob-
tained when the network’s timestamps are distributed
evenly, that is the case for such dataset (see [34]).

For the BI dataset the results are similar to the
ones for the SO dataset. PRESTO-A achieves the low-
est approximation error on 7 out of 12 motifs with
PRESTO-E achieving the lowest approximation error on

2We use such threshold since sampling algorithms are often
required to run within a small fraction of time w.r.t. exact

algorithms.
3ES needs to preprocess each dataset before executing the

sampling procedure. To account for this preprocessing step, we

measured the time for preprocessing as geometric average across

ten runs, and added to ES’s running time such value divided by
the number of motifs (i.e., 12).
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Table 2: Comparison of the relative approximation error. For each combination of dataset and motif we highlight
the algorithm with minimum MAPE value.

SO BI RE

Approximation Error Approximation Error Approximation Error

PRESTO PRESTO PRESTO

Motif CM A E LS ES CM A E LS ES CM A E LS ES

G10-1 7.8·108 4.1% 4.2% 4.2% 12.9% 1.2·1010 14.2% 13.1% 25.8% 16.9% 5.8·109 14.5% 9.6% 14.1% 32.8%
G1-1 2.1·106 3.3% 1.9% 7.8% 23.3% 6.8·107 7.1% 15.8% 21.2% 44.9% 1.5·108 25.3% 25.2% 30.7% 17.1%
G1-2 8.3·105 6.6% 2.9% 8.7% 62.0% 5.7·107 9.3% 15.5% 25.1% 59.7% 1.2·108 43.8% 24.6% 31.3% 65.3%
G2-1 7.7·105 4.4% 3.9% 8.6% 1.6% 2.3·106 5.0% 7.1% 21.4% 30.5% 3.3·107 7.4% 4.3% 8.4% 20.1%
G2-2 3.5·105 3.2% 4.6% 9.7% 53.4% 4.9·105 11.0% 26.8% 34.6% 3.4% 2.9·107 39.4% 46.1% 33.4% 9.8%
G2-3 7.0·105 9.3% 9.4% 10.1% 60.7% 9.9·105 7.9% 22.7% 19.6% 46.9% 9.4·107 18.4% 16.9% 16.7% 32.6%
G3-1 2.3·108 1.6% 2.7% 4.6% 9.8% 7.3·108 2.5% 2.2% 21.9% 13.7% 4.2·108 3.1% 1.8% 3.3% 10.2%
G3-2 2.3·108 2.9% 1.8% 5.3% 11.3% 5.7·108 3.6% 1.7% 21.8% 17.6% 5.3·108 2.7% 1.2% 3.1% 7.5%
G5-1 8.0·105 4.0% 4.2% 5.0% 22.3% 5.1·106 14.5% 17.6% 16.9% 32.4% 8.2·107 8.1% 7.0% 8.2% 31.9%
G5-2 5.0·105 4.2% 5.0% 5.4% 34.4% 1.3·106 23.2% 17.6% 23.3% 33.8% 1.7·107 28.1% 13.8% 25.9% 52.0%
G6-1 2.0·106 6.4% 6.1% 12.7% 47.6% 1.0·107 7.0% 16.7% 19.4% 37.3% 5.5·107 33.2% 30.7% 20.0% 50.0%
G9-1 4.1·108 4.4% 2.5% 6.0% 10.5% 5.8·108 2.3% 3.3% 26.7% 11.8% 6.0·108 3.8% 5.4% 4.5% 19.9%

all the other motifs but G2-2. PRESTO-A achieves bet-
ter estimates than LS on all motifs and on 11 out of
12 motifs w.r.t. ES, PRESTO-E behaves similarly, except
that it improves over LS on 10 out of 12 motifs. On the
RE dataset, PRESTO-E achieves the lowest approxima-
tion error on 7 out of 12 motifs and it improves over
PRESTO-A for most of the motifs. This is not surprising,
since [29] showed that RE has a more skewed edge dis-
tribution (which we also discuss in [34]), a scenario for
which we expect PRESTO-E to improve over PRESTO-A

(see Sec. 3.3). Nonetheless, PRESTO-A achieves lower
approximation error over 6 motifs when comparing to
LS and on 10 motifs w.r.t. ES, while PRESTO-E achieves
the best approximation error on most of the motifs, im-
proving over LS on 8 motifs and over ES on 10 motifs.

Finally, Table 3 shows the results on the EC dataset,
which is a 2.3 billion edges bipartite temporal network.
Note that the results for ES are missing, since ES did
not complete any run with 400GB of memory on the
motifs tested. (We discuss the high memory usage
of ES in Sec. 4.3). On such dataset both variants of
PRESTO perform better than LS on 7 out 8 motifs and
achieve the lowest approximation error on 4 out 8 motifs
each. Interestingly, the variance of PRESTO is often
similar or lower than the one of LS, which is another of
the advantages of our algorithms. We observed similar
trends, and even smaller variances for PRESTO across all
the experiments on the other datasets (see [34]).

These results, coupled with the theoretical guaran-
tees of Sec. 3, show that PRESTO outperforms the state-
of-the-art sampling algorithms LS and ES for the estima-
tion of most of the motif counts on temporal networks.
Based on the results we discussed, PRESTO-E seems also
to usually provide similar estimates to PRESTO-A, while
significantly improving over PRESTO-A when the net-
work edges are not uniformly distributed such the EC

dataset.

Table 3: Approximation error results on EC dataset.

Motif CM PRESTO-A PRESTO-E LS

G10-1 6.3·1010 2.8±2.8% 4.2±3.2% 4.7±1.9%
G1-1 1.5·1011 7.6±4.1% 5.1±3.4% 8.0±3.7%
G1-2 1.5·1011 6.5±4.1% 4.6±2.4% 7.8±3.0%
G3-1 1.6·1010 1.9±1.5% 3.5±1.8% 3.0±1.8%
G3-2 1.6·1010 2.6±1.0% 2.8±2.0% 3.7±2.2%
G5-1 3.4·1011 10.4±7.0% 8.2±4.6% 14.9±5.4%
G5-2 3.8·1010 14.2±5.4% 4.5±4.0% 9.0±5.0%
G9-1 8.7·1010 6.3±3.8% 6.8±2.2% 9.9±4.6%

Table 4: Minimum and peak memory usage in GB over
all motifs in Figure 2, “7” denotes out of memory.

Dataset PRESTO-A PRESTO-E LS ES

SO 1.5 - 1.5 1.5 - 1.5 1.5 - 1.5 9.7 - 10.5
BI 3.5 - 3.5 3.5 - 3.7 3.5 - 4.2 28.8 - 29.5
RE 19.5 - 19.8 19.5 - 19.8 19.5 - 20.8 129.9 - 141.6
EC 71.0 - 71.0 71.0 - 71.0 71.0 - 71.0 7

4.3 Memory usage In this section we discuss the
RAM usage of the various sampling algorithms. The
results are in Table 4, which shows for each algorithm
the minimum and maximum amount of (RAM) memory
used over all motifs in Figure 2 (collected on a single
run). Both PRESTO’s versions have lower memory
requirements than ES, and equal or lower memory
requirements than LS, on all datasets. ES ranges from
requiring 6.5× up to 8.5× the memory used by PRESTO,
making ES not practical for very large datasets such
as EC (where ES did not completed any of the runs
since it exceeded the 400GB of memory allowed for
its execution). While LS and PRESTO have similar
memory requirements, LS displays greater variance on
BI and RC, which may be due to the fact that choosing
windows with more edges, as done by LS, may require
more memory to run the exact algorithm as subroutine.
PRESTO is, thus, a memory efficient algorithm and
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hence a very practical tool to tackle the motif counting
problem on temporal networks with billions edges.

5 Conclusions

In this work we introduced PRESTO, a simple yet practi-
cal algorithm for the rigorous approximation of tempo-
ral motif counts. Our extensive experimental evaluation
shows that PRESTO provides more accurate results and
is much more scalable than the state-of-the-art sam-
pling approaches. There are several interesting direc-
tions for future research, including developing rigorous
techniques for mining several motifs simultaneously and
developing efficient algorithms to maintain estimates of
motif counts in adversarial streaming scenarios.
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