
Optimal Flow Matching:
Learning Straight Trajectories in Just One Step

Nikita Kornilov
Skolkovo Institute of Science and Technology

R.Center for AI, Innopolis University
Moscow Institute of Physics and Technology

kornilov.nm@phystech.edu

Petr Mokrov
Skolkovo Institute of Science and Technology

petr.mokrov@skoltech.ru

Alexander Gasnikov
Innopolis University

Moscow Institute of Physics and Technology
Steklov Mathematical Institute of RAS∗

gasnikov@yandex.ru

Alexander Korotin
Skolkovo Institute of Science and Technology

Artificial Intelligence Research Institute
a.korotin@skoltech.ru

Abstract

Over the several recent years, there has been a boom in development of Flow
Matching (FM) methods for generative modeling. One intriguing property pursued
by the community is the ability to learn flows with straight trajectories which
realize the Optimal Transport (OT) displacements. Straightness is crucial for the
fast integration (inference) of the learned flow’s paths. Unfortunately, most existing
flow straightening methods are based on non-trivial iterative FM procedures which
accumulate the error during training or exploit heuristics based on minibatch OT. To
address these issues, we develop and theoretically justify the novel Optimal Flow
Matching (OFM) approach which allows recovering the straight OT displacement
for the quadratic transport in just one FM step. The main idea of our approach is the
employment of vector field for FM which are parameterized by convex functions.
The code of our OFM implementation and the conducted experiments is available
at https://github.com/Jhomanik/Optimal-Flow-Matching.

1 Introduction
Recent success in generative modeling [41, 17, 9] is mostly driven by Flow Matching (FM) [38]
models. These models move a known distribution to a target one via ordinary differential equations
(ODE) describing the mass movement. However, such processes usually have curved trajectories,
resulting in time-consuming ODE integration for sampling. To overcome this issue, researches
developed several improvements of the FM [39, 40, 48], which aim to recover more straight paths.

Rectified Flow (RF) method [39, 40] iteratively solves FM and gradually rectifies trajectories.
Unfortunately, in each FM iteration, it accumulates the error, see [40, §2.2] and [39, §6]. This
may spoil the performance of the method. The other popular branch of approaches to straighten
trajectories is based on the connection between straight paths and Optimal Transport (OT) [60]. The
main goal of OT is to find the way to move one probability distribution to another with the minimal
effort. Such OT maps are usually described by ODEs with straight trajectories. In OT Conditional
Flow Matching (OT-CFM) [48, 55], the authors propose to apply FM on top of OT solution between
batches from considered distributions. Unfortunately, such a heuristic does not guarantee straight
paths because of minibatch OT biases, see, e.g., [55, Figure 1, right] for the practical illustration.

∗Russian Academy of Sciences

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Jhomanik/Optimal-Flow-Matching

Contributions. In this paper, we fix the above-mentioned problems of the straightening meth-
ods. We propose a novel Optimal Flow Matching (OFM) approach (§3) that after a single FM
iteration obtains straight trajectories which can be simulated without ODE solving. It recovers
OT flow for the quadratic transport cost function, i.e., it solves the Benamou–Brenier problem
(Figure 1). We demonstrate the potential of OFM in the series of experiments and benchmarks (§4).

Optimal Flow Matching
(just one step, ours)

Figure 1: Our Optimal Flow
Matching (OFM). For any ini-
tial transport plan π between
p0 and p1, OFM obtains ex-
actly straight trajectories (in
just a single FM loss min-
imization) which carry out
the OT displacement for the
quadratic cost function.

The main idea of our OFM is to consider during FM only specific
vector fields which yield straight paths by design. These vector
fields are the gradients of convex functions, which in practice are
parametrized by Input Convex Neural Networks [3]. In OFM, one
can optionally use minibatch OT or any other transport plan as the
input, and this is completely theoretically justified.

2 Background and Related Works
In this section, we provide all necessary backgrounds for the theory.
First, we recall static (§2.1) and dynamic (§2.2) formulations of
Optimal Transport and solvers (§2.3) for them. Then, we recall Flow
Matching (§2.4.1) and flow straightening approaches: OT-CFM
(§2.4.2) and Rectified Flow (§2.4.3).

Notations. For vectors x, y ∈ RD, we denote the inner product
by ⟨x, y⟩ and the corresponding ℓ2 norm by ∥x∥ :=

√
⟨x, x⟩. We

use P2,ac(RD) to refer to the set of absolute continuous probability
distributions with the finite second moment. For vector x ∈ RD and
distribution p ∈ P2,ac(RD), notation x ∼ p means that x is sampled
from p. For the push-forward operator, we use symbol #.

2.1 Static Optimal Transport
Monge’s and Kantorovich’s formulations. Consider two distributions p0, p1 ∈ P2,ac(RD) and a
cost function c : RD × RD → R. Monge’s Optimal Transport formulation is given by

inf
T#p0=p1

∫
RD

c(x0, T (x0))p0(x0)dx0, (1)

where the infimum is taken over measurable functions T : RD → RD which satisfy the mass-
preserving constraint T#p0 = p1. Such functions are called transport maps. If there exists a
transport map T ∗ that achieves the infimum, then it is called the optimal transport map.

Since the optimal transport map T ∗ in Monge’s formulation may not exist, there is Kantorovich’s
relaxation for problem (1) which addresses this issue. Consider the set of transport plans Π(p0, p1),
i.e., the set of joint distributions on RD × RD which marginals are equal to p0 and p1, respectively.
Kantorovich’s Optimal Transport formulation is

inf
π∈Π(p0,p1)

∫
RD×RD

c(x0, x1)π(x0, x1)dx0dx1. (2)

With mild assumptions on p0, p1, the infimum is always achieved (possibly not uniquely). An optimal
plan π∗ ∈ Π(p0, p1) is called an optimal transport plan. If optimal π∗ has the form [id, T ∗]#p0, then
T ∗ is the solution of Monge’s formulation (1).

Quadratic cost function. In our paper, we mostly consider the quadratic cost function c(x0, x1) =
∥x0−x1∥2

2 . In this case, infimums in both Monge’s and Kantorovich’s OT are always uniquely attained
[60, Brenier’s Theorem 2.12]. They are related by π∗ = [id, T ∗]#p0. Moreover, the optimal values
of (1) and (2) are equal to each other. The square root of the optimal value is called the Wasserstein-2
distance W2(p0, p1) between distributions p0 and p1, i.e.,

W2
2(p0, p1) := min

π∈Π(p0,p1)

∫
RD×RD

∥x1 − x0∥2

2
π(x0, x1)dx0dx1

= min
T#p0=p1

∫
RD

∥x0 − T (x0)∥2

2
p0(x0)dx0. (3)

2

Dual formulation. For the quadratic cost, problem (3) has the equivalent dual form [60]:

W2
2(p0, p1) = CONST(p0, p1)− min

convex Ψ

[∫
RD

Ψ(x0)p0(x0)dx0 +

∫
RD

Ψ(x1)p1(x1)dx1

]
︸ ︷︷ ︸

=:LOT (Ψ)

, (4)

where the minimum is taken over convex functions Ψ(x) : RD → R. Here Ψ(x1) :=
supx0∈RD [⟨x0, x1⟩ −Ψ(x0)] is the convex (Fenchel) conjugate function of Ψ. It is also convex.

The term CONST(p0, p1) does not depend on Ψ. Therefore, the minimization (3) over transport plans
π is equivalent to the minimization of LOT (Ψ) from (4) over convex functions Ψ. Moreover, the
optimal transport map T ∗ can be expressed via an optimal Ψ∗ (the Brenier potential [60]), namely,

T ∗ = ∇Ψ∗. (5)

2.2 Dynamic Optimal Transport
In [5], the authors show that the calculation of Optimal Transport map in (3) for the quadratic cost
can be equivalently reformulated in a dynamic form. This form operates with a vector fields defining
time-dependent mass transport instead of just static transport maps.

Preliminaries. We consider the fixed time interval [0, 1]. Let u(t, ·) ≡ ut(·) : [0, 1] × RD → RD

be a vector field and {{zt}t∈[0,1]} be the set of random trajectories such that for each trajectory
{zt}t∈[0,1] the starting point z0 is sampled from p0 and zt satisfies the differential equation:

dzt = ut(zt)dt, z0 ∼ p0. (6)

In other words, the trajectory {zt}t∈[0,1] is defined by its initial point z0 ∼ p0 and goes along the
speed vector ut(zt). Under mild assumptions on u, for each initial z0, the trajectory is unique.

Let ϕu(t, ·) ≡ ϕu
t (·) : [0, 1]× RD → RD denote the flow map, i.e., it is the function that maps the

initial z0 to its position at moment of time t according to the ODE (6), i.e.,

dϕu
t (z0) = ut(ϕ

u
t (z0)), ϕu

0 (z0) = z0. (7)

If initial points z0 of trajectories are distributed according to p0, then (6) defines a distribution pt of
zt at time t, which can be expressed via with the push-forward operator, i.e., put := ϕu

t #p0.

Benamou–Brenier problem. Dynamic OT is the following minimization problem:

W2
2(p0, p1) = inf

u

∫ 1

0

∫
RD

∥ut(xt)∥22
2

ϕu
t #p0(xt)︸ ︷︷ ︸
:=pu

t (xt)

dxtdt, (8)

s.t. ϕu
1#p0 = p1.

In (8), we look for the vector fields u that define the flows which start at p0 and end at p1. Among
such flows, we seek for the one which has the minimal kinetic energy over the entire time interval.

There is a connection between the static OT map T ∗ = ∇Ψ∗ and the dynamic OT solution u∗.
Namely, for every initial point z0, the vector field u∗ defines a linear trajectory {zt}t∈[0,1]:

zt = t∇Ψ∗(z0) + (1− t)z0, ∀t ∈ [0, 1]. (9)

2.3 Continuous Optimal Transport Solvers
There exist a variety of continuous OT solvers [21, 52, 54, 43, 19, 14, 59, 15, 34, 51, 40, 36, 35, 13,
18, 57, 2, 55, 23, 44, 4, 20]. For a survey of solvers designed for OT with quadratic cost, see [33]. In
this paper, we focus only on the most relevant ones, called the ICNN-based solvers [54, 33, 43, 2].
These solvers directly minimize objective LOT from (4) parametrizing a class of convex functions
with convex in input neural networks called ICNNs [3] (for more details, see “Parametrization of Ψ"
in §3.2). Solvers details may differ, but the main idea remains the same. To calculate the conjugate
function Ψ(x1) at the point x1, they solve the convex optimization problem from conjugate definition.
Envelope Theorem [1] allows obtaining closed-form formula for the gradient of the loss.

2.4 Flow Matching Framework
In this section, we recall popular approaches [40, 39, 48] to find fields u which transport a given
probability distribution p0 to a target p1 and their relation to OT.

3

2.4.1 Flow Matching (FM)
To find such a field, one samples points x0, x1 from a transport plan π ∈ Π(p0, p1), e.g., the
independent plan p0 × p1. The vector field u is encouraged to follow the direction x1 − x0 of the
linear interpolation xt = (1− t)x0 + tx1 at any moment t ∈ [0, 1], i.e., one solves:

min
u

Lπ
FM (u):=

∫ 1

0

∫

RD×RD

∥ut(xt)− (x1 − x0)∥2π(x0, x1)dx0dx1

dt, xt = (1− t)x0 + tx1.

(10)

Flow Matching

Figure 2: Flow Matching (FM)
obtains a vector field u mov-
ing p0 to p1. FM typically
operates with the independent
transport plan π = p0 × p1.

We denote the solution of (10) and the flow map (7) by uπ and ϕπ,
respectively. The concept of FM is depicted in Figure 2.

The intuition of this procedure is as follows: linear interpolation
xt = (1 − t)x0 + tx1 is an intuitive way to move p0 to p1, but it
requires knowing x1. By fitting u with the direction x1 − x0, one
yields the vector field that can construct this interpolation without
any information about x1.

The set of trajectories {{zt}t∈[0,1]} generated by uπ
t (with z0 ∼ p0)

has a useful property: the flow map ϕπ
1 transforms distribution

p0 to distribution p1 for any initial transport plan π. Moreover,
marginal distribution pt = ϕπ

t #p0 is equal to the distribution of
linear interpolation xt = (1− t)x0 + tx1 for any t and x0, x1 ∼ π.
This feature is called the marginal preserving property.

To push point x0 according to learned u, one needs to integrate
ODE (6) via numerical solvers. The vector fields with straight (or
nearly straight) paths incur much smaller time-discretization error
and increase effectiveness of computations, which is in high demand
for applications.

Researchers noticed that some initial plans π can result in more straight paths after FM rather than
the standard independent plan p0 × p1. The two most popular approaches to choose better plans are
Optimal Transport Conditional Flow Matching [48, 55] and Rectified Flow [40].

2.4.2 Optimal Transport Conditional Flow Matching (OT-CFM)

Flow Matching

Figure 3: OT-CFM uses mini-
batch OT plan to obtain more
straight trajectories.

If one uses the OT plan π∗ as the initial plan for FM, then it returns
the Brenier’s vector field u∗, which generates exactly straight trajec-
tories (9). However, typically, the true OT plan π∗ is not available.
In such a case, in order to achieve some level of straightness in the
learned trajectories, a natural idea is to take the initial plan π to be
close to the optimal π∗. Inspired by this, the authors of OT-CFM
[48, 55] take the advantage of minibatch OT plan approximation.
Firstly, they independently sample batches of points from p0 and p1.
Secondly, they join the batches together according to the discrete
OT plan between them. The resulting joined batch is then used in
FM. The concept of OT-CFM is depicted in Figure 3.

The main drawback of OT-CFM is that it recovers only biased dy-
namic OT solution. In order to converge to the true transport plan
the batch size should be large [6], while with a growth of batch
size computational time increases drastically [56]. In practice, batch
sizes that ensure approximation good enough for applications are
nearly infeasible to work with.

2.4.3 Rectified Flow (RF)
In [40], the authors propose an iterative approach to refine the plan π, straightening the trajectories
more and more with each iteration. Formally, Flow Matching procedure denoted by FM takes the
transport plan π as input and returns an optimal flow map via solving (10):

ϕπ := FM(π). (11)

4

Flow Matching
(step 1)

Flow Matching
(step 2)

...
Flow Matching
(step K)

Figure 4: Rectified Flow iteratively applies FM to straighten the trajectories after each step.

One can iteratively apply FM to the initial transport plan (e.g., the independent plan), gradually
rectifying it. Namely, Rectified Flow Algorithm on K-th iteration has the following update rule

ϕK+1 = FM(πK), πK+1 = [id, ϕK+1]#p0, (12)

where ϕK , πK denote flow map and transport plan on K-th iteration, respectively.

With each new FM iteration, the generated trajectories {{zt}t∈[0,1]}K provably become more and
more straight, i.e., error in approximation zKt ≈ (1− t)zK0 + tzK1 ,∀t ∈ [0, 1] decreases as the number
of iterations K grows. The concept of RF is depicted on Figure 4.

The authors also notice that for any convex cost function c the flow map ϕπ
1 from Flow Matching

yields lower or equal transport cost than initial transport plan π:∫
RD

c(x0, ϕ
π
1 (x0))p0(x0)dx0 ≤

∫
RD×RD

c(x0, x1)π(x0, x1)dx0dx1. (13)

Intuitively, the transport costs are guaranteed to decrease because the trajectories of FM as solutions
of well-defined ODE do not intersect each other, even if the initial lines connecting x0 and x1 can.
With each iteration of RF (12), transport costs for all convex cost functions do not increase, but, for a
given cost function, convergence to its own OT plan is not guaranteed. In [39], the authors address
this issue and, for any particular convex cost function c, modify Rectified Flow to converge to OT map
for c. In this modification, called c-Rectified Flow (c-RF), the authors slightly change the FM training
objective and restrict the optimization domain only to potential vector fields ut(·) = ∇c(∇ft(·)),
where ft(·) : RD → R is an arbitrary time-dependent scalar valued function and c is the convex
conjugate of the cost function c. In case of the quadratic cost function, the training objective remains
the same, and the vector field ut is set as the simple gradient ∇ft(·) of the scalar valued function ft.

Unfortunately, in practice, with each iteration (c-)RF accumulates error caused by inexactness from
previous iterations, the issue mentioned in [39, §6, point 3]. Due to neural approximations, we can
not get exact solution of FM (e.g., ϕK

1 #p0 ̸= p1), and this inexactness only grows with iterations. In
addition, training of (c-)RF becomes non-simulation free after the first iteration, since to calculate the
plan πK+1 = [id, ϕK+1]#p0 it has to integrate ODE.

3 Optimal Flow Matching (OFM)
In this section, we provide the design of our novel Optimal Flow Matching algorithm (1) that fixes
main problems of Rectified Flow and OT-CFM approaches described above. In theory, it obtains
exactly straight trajectories and recovers the unbiased optimal transport map for the quadratic cost
just in one FM iteration with any initial transport plan. Moreover, during inference, our OFM does
not require solving ODE to transport points.

We discuss the theory behind our approach (§3.1), its practical implementation aspects (§3.2) and the
relation to prior works (§3.3). All our proofs are located in Appendix A.

3.1 Theory: Deriving the Optimization Loss
We want to design a method of moving distribution p0 to p1 via exactly straight trajectories. Namely,
we aim to obtain straight paths from the solution of the dynamic OT (8). Moreover, we want to limit
ourselves to just one minimization iteration. Hence, we propose our novel Optimal Flow Matching
(OFM) procedure satisfying the above-mentioned conditions. The main idea of our OFM is to

5

minimize the Flow Matching loss (10) not over all possible vector fields u, but only over specific
optimal ones, which yield straight paths by construction and include the desired dynamic OT field u∗.

Optimal vector fields. We say that a vector field uΨ is optimal if it generates linear trajectories
{{zt}t∈[0,1]} such that there exist a convex function Ψ : RD → R, which for any path {zt}t∈[0,1]

pushes the initial point z0 to the final one as z1 = ∇Ψ(z0), i.e.,
zt = (1− t)z0 + t∇Ψ(z0), t ∈ [0, 1].

The function Ψ defines the ODE
dzt = (∇Ψ(z0)− z0)dt, zt|t=0 = z0. (14)

Equation (14) does not provide a closed formula for uΨ as it depends on z0. The explicit formula is
constructed as follows: for a time t ∈ [0, 1] and point xt, we can find a trajectory {zt}t∈[0,1] s.t.

xt = zt = (1− t)z0 + t∇Ψ(z0) (15)

Figure 5: An Optimal Vector Field: a vector
field uΨ with straight paths is parametrized by a

gradient of a convex function Ψ.

and recover the initial point z0. We postpone the so-
lution of this problem to §3.2. For now, we define
the inverse of flow map (7) as (ϕΨ

t)
−1(xt) := z0

and the vector field uΨ
t (xt) := ∇Ψ(z0) − z0 =

∇Ψ((ϕΨ
t)

−1(xt)) − (ϕΨ
t)

−1(xt), which generates
ODE (14), i.e., dzt = uΨ

t (zt)dt. The concept of op-
timal vector fields is depicted on Figure 5.

We highlight that the solution of dynamic OT lies in the
class of optimal vector fields, since it generates linear
trajectories (9) with the Brenier potential Ψ∗ (5).

Training objective. Our Optimal Flow Matching (OFM) approach is as follows: we restrict the
optimization domain of FM (10) with fixed plan π only to the optimal vector fields. We put the
formula for the vector field uΨ into FM loss from (10) and define our Optimal Flow Matching loss:

Lπ
OFM (Ψ) := Lπ

FM (uΨ)=

1∫
0

∫

RD×RD

∥uΨ
t (xt)− (x1 − x0)∥2π(x0, x1)dx0dx1

dt, (16)

xt = (1− t)x0 + tx1.

Our Theorem 1 states that OFM solves the dynamic OT via single FM minimization for any initial π.
Theorem 1 (OFM and OT connection). Consider two distributions p0, p1 ∈ Pac,2(RD) and any
transport plan π ∈ Π(p0, p1) between them. Then, the dual Optimal Transport loss LOT (4) and
Optimal Flow Matching loss Lπ

OFM (16) have the same minimizers, i.e.,
argmin
convex Ψ

Lπ
OFM (Ψ) = argmin

convex Ψ
LOT (Ψ).

3.2 Practical implementation aspects
In this subsection, we explain the details of optimization of our Optimal Flow Matching loss (16).

Parametrization of Ψ. In practice, we parametrize the class of convex functions with Input Convex
Neural Networks (ICNNs) [3] Ψθ and parameters θ. These are scalar-valued neural networks built in
such a way that the network is convex in its input. They consist of fully-connected or convolution
blocks, some weights of which are set to be non-negative in order to keep the convexity. In addition,
activation functions are considered to be only non-decreasing and convex in each input coordinate.
These networks are able to support most of the popular training techniques (e.g., gradient descent
optimization, dropout, skip connection, etc.). In Appendix B, we discuss the used architectures.

OFM loss calculation. We provide an explicit formula for gradient of OFM loss (16).
Proposition 1 (Explicit Loss Gradient Formula). The gradient of Lπ

OFM can be calculated as

z0 = NO-GRAD
{
(ϕΨθ

t)−1(xt)
}
,

dLπ
OFM

dθ
:=

d

dθ
Et;x0,x1∼π

〈
NO-GRAD

{
2
(
t∇2Ψθ(z0) + (1− t)I

)−1 (x0 − z0)

t

}
,∇Ψθ(z0)

〉
,

where variables under NO-GRAD remain constants during differentiation.

6

Flow map inversion. In order to find the initial point z0 = (ϕΨ
t)

−1(xt), we note that (15)

xt = (1− t)z0 + t∇Ψ(z0)

is equivalent to

∇
(
(1− t)

2
∥ · ∥2 + tΨ(·)− ⟨xt, ·⟩

)
(z0) = 0.

The function under gradient operator ∇ has minimum at the required point z0, since at z0 the gradient
of it equals 0. If t < 1 the function is at least (1− t)-strongly convex, and the minimum is unique.
The case t = 1 is negligible in practice, since it has zero probability to appear during training.

We can reduce the problem of inversion to the following minimization subproblem

(ϕΨ
t)

−1(xt) = arg min
z0∈RD

[
(1− t)

2
∥z0∥2 + tΨ(z0)− ⟨xt, z0⟩

]
. (17)

Optimization subproblem (17) is at least (1− t)-strongly convex and can be effectively solved for
any given point xt (in comparison with typical non-convex optimization tasks).

Algorithm. The Optimal Flow Matching pseudocode is presented in listing 1. We estimate math
expectation over plan π and time t with uniform distribution on [0, 1] via unbiased Monte Carlo.

Algorithm 1 Optimal Flow Matching

Input: Initial transport plan π ∈ Π(p0, p1), number of iterations K, batch size B, optimizer Opt,
sub-problem optimizer SubOpt, ICNN Ψθ

1: for k = 0, . . . ,K − 1 do
2: Sample batch {(xi

0, x
i
1)}Bi=1 of size B from plan π;

3: Sample times batch {ti}Bi=1 of size B from U [0, 1];
4: Calculate linear interpolation xi

ti = (1− ti)xi
0 + tixi

1 for all i ∈ 1, B;
5: Find the initial points zi0 via solving the convex problem with SubOpt:

zi0 = NO-GRAD
{
argmin

zi
0

[
(1− ti)

2
∥zi0∥2 + tiΨθ(z

i
0)− ⟨xi

ti , z
i
0⟩
]}

;

6: Calculate loss L̂OFM

L̂OFM =
1

B

B∑
i=1

〈
NO-GRAD

{
2
(
ti∇2Ψθ(z

i
0) + (1− ti)I

)−1 (xi
0 − zi0)

ti

}
,∇Ψθ(z

i
0)

〉
;

7: Update parameters θ via optimizer Opt step with dL̂OFM

dθ ;
8: end for

3.3 Relation to Prior Works
In this subsection, we compare our Optimal Flow Matching and previous straightening approaches.
One unique feature of OFM is that it works only with flows which have straight paths by design and
does not require ODE integration to transport points. Other methods may result in non-straight paths
during training, and they still have to solve ODE even with near-straight paths.

OT Solvers [54, 43, 2]. According to Theorem 1, our OFM and dual OT solvers basically minimize
the same OT loss (4). However, our OFM actively utilizes the temporal component of the dynamic
process. It allows us to pave a novel theoretical bridge between OT and FM. Such a direct connection
can lead to the adoption of the strengths of both methods and a deeper understanding of them.

OT-CFM [48, 55]. Unlike our OFM approach, OT-CFM method retrieves biased OT solution, and
the recovery of straight paths is not guaranteed. In OT-CFM, minibatch OT plan appears as a heuristic
that helps to get better trajectories in practice. In contrast, usage of any initial transport plan π in our
OFM is completely justified in Theorem 1.

Rectified Flow [40, 39]. In Rectified Flows [40], the authors iteratively apply Flow Matching to
refine the obtained trajectories. However, in each iteration, RF accumulates error since one may not

7

learn the exact flow due to neural approximations. In addition, RF does not guarantee convergence to
the OT plan for the quadratic cost. The c-Rectified Flow [39] modification can converge to the OT
plan for any cost function c, but still remains iterative. In addition, RF and c-RF both requires ODE
simulation after the first iteration to continue training. In OFM, we work only with the quadratic cost
function, but retrieve its OT solution in just one FM iteration without simulation of the trajectories.

Light and Optimal Schrödinger Bridge. In [22], the authors observe the relation between Entropic
Optimal Transport (EOT) [42, 12] and Bridge Matching (BM) [53] problems. These are stochastic
analogs of OT and FM, respectively. In EOT and BM, instead of deterministic ODE and flows,
one considers stochastic processes with non-zero stochasticity. The authors prove that, during BM,
one can restrict considered processes only to the specific ones and retrieve the solution of EOT.
Hypothetically, our OT/FM case is a limit of their EOT/BM case when the stochasticity tends to
zero. Proofs in [22] for EOT are based on sophisticated KL divergence properties. We do not know
whether our results for OFM can be derived by taking the limit of their stochastic case. To derive the
properties of our OFM, we use completely different proof techniques based on computing integrals
over curves rather than KL-based techniques. Besides, in practice, the authors of [22] mostly focus
on Gaussian mixture parametrization while our method allows using neural networks (ICNNs).

3.4 Theory: properties of OFM

In this subsection, we provide the OFM’s theoretical properties, which give an intuition for under-
standing of its main working principles and behavior.
Proposition 2 (Simplified OFM Loss). We can simplify (16) to a more suitable form:

Lπ
OFM (Ψ)=

1∫
0

∫

RD×RD

∣∣∣∣∣∣∣∣ (ϕΨ
t)

−1(xt)− x0

t

∣∣∣∣∣∣∣∣2 π(x0, x1)dx0dx1

 dt, xt = (1−t)x0+tx1. (18)

The simplified form (18) shows that OFM loss actually measures how well Ψ restores initial points
x0 of linear interpolations depending on future point xt and time t.

Generative properties of OFM. In this paragraph, we provide another view on our OFM approach.
In our OFM, we aim to construct a vector field u which is as close to the dynamic OT field u∗ as
possible. We can use the least square regression to measure the distance between them:

DIST(u, u∗) :=

∫ 1

0

∫
RD

∥ut(xt)− u∗
t (xt)∥2ϕ∗

t#p0(xt)︸ ︷︷ ︸
:=p∗

t (xt)

dxtdt. (19)

Proposition 3 (Intractable Distance). The distance DIST(u, u∗) between an arbitrary vector field u
and OT field u∗ equals to the FM loss from (10) with the optimal plan π∗, i.e.,

DIST(u, u∗) = Lπ∗

FM (u)− Lπ∗

FM (u∗)︸ ︷︷ ︸
=0

.

We can not minimize intractable DIST(u, u∗) since the optimal plan π∗ is unknown. In OT-CFM [55],
authors heuristically approximate π∗ in Lπ∗

FM (u), but obtain biased solution. Surprisingly, for the
optimal vector fields, the distance can be calculated explicitly via any known plan π.
Proposition 4 (Tractable Distance For OFM). The distance DIST(uΨ, uΨ∗

) between an optimal
vector field uΨ generated by a convex function Ψ and the vector field uΨ∗

with the Brenier potential
Ψ∗ can be evaluated directly via OFM loss (16) and any plan π:

DIST(uΨ, uΨ∗
) = Lπ

FM (uΨ)− Lπ
FM (uΨ∗

) = Lπ
OFM (Ψ)− Lπ

OFM (Ψ∗). (20)

In (20), the first term is our tractable OFM loss, and the second term does not depend on Ψ. Hence,
during the whole minimization process in our OFM, we gradually lower the distance (19) between
the current vector field and the dynamic OT field up to the complete match.

4 Experimental Illustrations
In this section, we showcase the performance of our Optimal Flow Matching method on illustrative
2D scenario (§4.1) and Wasserstein-2 benchmark [33] (§4.2). Finally, we apply our approach for
solving high-dimensional unpaired image-to-image translation in the latent space of pretrained ALAE
autoencoder (§4.3). The PyTorch implementation of our method is publicly available at

8

https://github.com/Jhomanik/Optimal-Flow-Matching

The technical details of our experiments (architectures, hyperparameters) are in the Appendix B.

4.1 Illustrative 2D Example
In this subsection, we illustrate the proof-of-concept of our OFM on 2D setup and demonstrate that
OFM’s solutions do not depend on the initial transport plan π. We run our Algorithm 1 between
a standard Gaussian p0 = N (0, I) and a Mixture of eight Gaussians p1 depicted in the Figure
6a. We consider different stochastic plans π: independent plan p0 × p1 (Figure 6b), minibatch
and antiminibatch (Figures 6c, 6d) discrete OT (quadratic cost) with batch size Bmb = 64. In the
antiminibatch case, we compose the pairs of source and target points by solving discrete OT with
minus quadratic cost −∥x− y∥22. The fitted OFM maps and trajectories are presented in Figure 6.
We empirically see that our OFM finds the same solution for all initial plans π.

For completeness, in Appendix B.2, we apply these plans to the original FM (10), and show that, in
comparison with our OFM, the resulting paths obtained by FM considerably depend on the plan.

(a) Input and target
distributions p0 and p1.

(b) Our fitted OFM;
independent π=p0×p1.

(c) Our fitted OFM;
minibatch π.

(d) Our fitted OFM;
antiminibatch π.

Figure 6: Performance of our Optimal Flow Matching on Gaussian→Eight Gaussians 2D setup.

4.2 High-dimensional OT Benchmarks
In this subsection, we quantitatively compare our OFM and other methods testing their ability to
solve OT. We run our OFM, FM based methods and OT solvers on OT Benchmark [33]. The authors
provide high-dimensional continuous distributions p0, p1 for which the ground truth OT map T ∗ for
the quadratic cost is known by the construction. To assess the quality of retrieved transport maps,
we use standard unexplained variance percentage L2-UVP(T) := 100 · ∥T − T ∗∥2L2(p0)

/Var(p1)%
[33]. It directly computes the normalized squared error between OT map T ∗ and learned map T .

Competitors. We evaluate Conditional Flow Matching (OT-CFM), Rectified Flow (RF), c-Rectified
Flow (c-RF), the most relevant OT solver MMv-1 [54] and its amortized version from [2]. In [54]
and [2], the authors directly minimize the dual formulation loss LOT (4) by parametrizing Ψ with
ICNNs and calculating Ψ(x1) via solving a convex optimization subproblem. The latter is similar
to our inversion (17). Additionally, in [2], the authors use MLPs to parametrize Ψ, and we include
these results as well. Following [33], we also provide results for a linear OT map (baseline) which
translates means and variances of distributions to each other. For our OFM, we consider two initial
plans: independent plan (Ind) and minibatch OT (MB), the batch size for the latter is Bmb = 64.

The overall results are presented in Table 1. More details are given in Appendix B.3.

Solver Solver type D=2 D=4 D=8 D=16 D=32 D=64 D=128 D=256

MMv1∗[54] 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
Amortization, ICNN∗∗ [2] Dual OT solver 0.26 0.78 1.6 1.1 1.9 4.2 1.6 2.0
Amortization, MLP∗∗ [2] 0.03 0.22 0.6 0.8 2.0 2.1 0.67 0.59

Linear∗ [33] Baseline 14.1 14.9 27.3 41.6 55.3 63.9 63.6 67.4
OT-CFM [55]

Flow Matching

0.16 0.73 2.27 4.33 7.9 11.4 12.1 27.5
RF [40] 8.58 49.46 51.25 63.33 63.52 85.13 84.49 83.13

c-RF [39] 1.56 13.11 17.87 35.39 48.46 66.52 68.08 76.48
OFM Ind (Ours) 0.19 0.61 1.4 1.1 1.47 8.35 1.96 3.96
OFM MB (Ours) 0.15 0.52 1.2 1.0 1.2 7.2 1.5 2.9

Table 1: L2−UVP values of solvers fitted on high-dimensional benchmarks in dimensions D = 2, 4, 8, 16, 32, 64, 128, 256.
The best metric over Flow Matching based methods is bolded. * Metrics are taken from [33]. ** Metrics are taken from [2].

9

https://github.com/Jhomanik/Optimal-Flow-Matching

Figure 7: Unpaired I2I Adult→Child by FM solvers,
ALAE 1024×1024 FFHQ latent space.

Results. Among FM-based methods, our OFM
with any plan demonstrates the best results. For
all plans, OFM convergences to close final so-
lutions and metrics. Minibatch plan provides
a little bit better results, especially in high di-
mensions. In theory, the OFM results for any
plan π must be similar. However, in stochas-
tic optimization, plans with large variance yield
convergence to slightly worse solutions.

MLP-based OT solver usually beats our OFM,
since MLPs do not have ICNNs’ limitations in
practice. However, usage of MLP is an empir-
ical trick and is not completely justified. We
also run OFM with MLP instead ICNN, and,
unfortunately, the method fails to converge.

RF demonstrates worse performance than even
linear baseline, but it is ok since it is not de-
signed to solve W2 OT. In turn, c-RF works
better, but rapidly deteriorates with increasing
dimensions. OT-CFM demonstrates the best results among baseline FM-based methods, but still
underperforms compared to our OFM solver in high dimensions.

4.3 Unpaired Image-to-image Transfer
Another task that involves learning a translation between two distributions is unpaired image-to-image
translation [63]. We follow the setup of [32] where translation is computed in the 512 dimensional
latent space of the pre-trained ALAE autoencoder [46] on 1024 × 1024 FFHQ dataset [29]. In
particular, we split the train FFHQ sample (60K faces) into children and adults subsets and consider
the corresponding ALAE latent codes as the source and target distributions p0 and p1. At the inference
stage, we take a new (unseen) adult face from a test FFHQ sample, extract its latent code, process
with our learned model and then decode back to the image space. The qualitative translation results
and FID metric [25] are presented in Figure 7 and Table 2, respectively.

Method OFM, Ind
(Ours)

OFM, MB
(Ours) RF c−RF OT-CFM

FID 11.8 11.0 21.0 13.5 12.9

Table 2: FID metric on Adult→Child translation task for the Flow Matching based methods.

The batch size for minibatch OT methods (⌊OFM, MB⌉, ⌊OT-CFM⌉) is Bmb = 128. Our OFM con-
verges to nearly the same solution for both independent and MB plans, and demonstrates qualitatively
plausible translations. The most similar results to our method are demonstrated by ⌊c-RF⌉. Similar to
OFM, this method (in the limit of RF steps) also recovers the quadratic OT mapping.

5 Discussion
Potential impact. We believe that our novel theoretical results have a huge potential for improving
modern flow matching-based methods and inspiring the community for further studies. We think
this is of high importance especially taking into account that modern generative models start to
extensively use flow matching methods [61, 41, 17].

Limitations and broader impact are discussed in Appendix C.

6 Acknowledgement

The work of N. Kornilov has been financially supported by The Analytical Center for the
Government of the Russian Federation (Agreement No. 70-2021-00143 01.11.2021, IGK
000000D730324P540002).

10

References
[1] SN Afriat. Theory of maxima and the method of lagrange. SIAM Journal on Applied Mathe-

matics, 20(3):343–357, 1971.

[2] Brandon Amos. On amortizing convex conjugates for optimal transport. In The Eleventh
International Conference on Learning Representations, 2023.

[3] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International
Conference on Machine Learning, pages 146–155. PMLR, 2017.

[4] Arip Asadulaev, Alexander Korotin, Vage Egiazarian, Petr Mokrov, and Evgeny Burnaev. Neural
optimal transport with general cost functionals. In The Twelfth International Conference on
Learning Representations, 2024.

[5] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the
monge-kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, 2000.

[6] Espen Bernton, Pierre E Jacob, Mathieu Gerber, and Christian P Robert. On parameter
estimation with the wasserstein distance. Information and Inference: A Journal of the IMA,
8(4):657–676, 2019.

[7] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[8] Charlotte Bunne, Andreas Krause, and Marco Cuturi. Supervised training of conditional monge
maps. Advances in Neural Information Processing Systems, 35:6859–6872, 2022.

[9] Hanqun Cao, Cheng Tan, Zhangyang Gao, Yilun Xu, Guangyong Chen, Pheng-Ann Heng, and
Stan Z Li. A survey on generative diffusion models. IEEE Transactions on Knowledge and
Data Engineering, 2024.

[10] Shreyas Chaudhari, Srinivasa Pranav, and José MF Moura. Gradient networks. arXiv preprint
arXiv:2404.07361, 2024.

[11] Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A convex
approach. arXiv preprint arXiv:1805.11835, 2018.

[12] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon. On the relation between optimal
transport and schrödinger bridges: A stochastic control viewpoint. Journal of Optimization
Theory and Applications, 169:671–691, 2016.

[13] Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Generative modeling through the semi-
dual formulation of unbalanced optimal transport. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[14] Max Daniels, Tyler Maunu, and Paul Hand. Score-based generative neural networks for large-
scale optimal transport. Advances in neural information processing systems, 34:12955–12965,
2021.

[15] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

[16] John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26, 1980.

[17] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion
English, and Robin Rombach. Scaling rectified flow transformers for high-resolution image
synthesis. In Forty-first International Conference on Machine Learning, 2024.

[18] Jiaojiao Fan, Shu Liu, Shaojun Ma, Hao-Min Zhou, and Yongxin Chen. Neural monge map
estimation and its applications. Transactions on Machine Learning Research, 2023. Featured
Certification.

11

[19] Jiaojiao Fan, Amirhossein Taghvaei, and Yongxin Chen. Scalable computations of wasserstein
barycenter via input convex neural networks. In Marina Meila and Tong Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 1571–1581. PMLR, 18–24 Jul 2021.

[20] Milena Gazdieva, Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Extremal
domain translation with neural optimal transport. Advances in Neural Information Processing
Systems, 36:40381–40413, 2023.

[21] Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis Bach. Stochastic optimization for
large-scale optimal transport. Advances in neural information processing systems, 29, 2016.

[22] Nikita Gushchin, Sergei Kholkin, Evgeny Burnaev, and Alexander Korotin. Light and optimal
schrödinger bridge matching. In Forty-first International Conference on Machine Learning,
2024.

[23] Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev.
Entropic neural optimal transport via diffusion processes. Advances in Neural Information
Processing Systems, 36, 2024.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[26] J Hiriart-Urruty and Yves Lucet. Parametric computation of the legendre-fenchel conjugate with
application to the computation of the moreau envelope. Journal of Convex Analysis, 14(3):657,
2007.

[27] Pieter-Jan Hoedt and Günter Klambauer. Principled weight initialisation for input-convex neural
networks. Advances in Neural Information Processing Systems, 36, 2024.

[28] Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville. Convex potential
flows: Universal probability distributions with optimal transport and convex optimization. In
International Conference on Learning Representations, 2021.

[29] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[30] Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. In International Conference on Learning Representations,
2021.

[31] Alexander Korotin, Vage Egiazarian, Lingxiao Li, and Evgeny Burnaev. Wasserstein iterative
networks for barycenter estimation. Advances in Neural Information Processing Systems,
35:15672–15686, 2022.

[32] Alexander Korotin, Nikita Gushchin, and Evgeny Burnaev. Light schrödinger bridge. In The
Twelfth International Conference on Learning Representations, 2023.

[33] Alexander Korotin, Lingxiao Li, Aude Genevay, Justin M Solomon, Alexander Filippov, and
Evgeny Burnaev. Do neural optimal transport solvers work? a continuous wasserstein-2
benchmark. Advances in neural information processing systems, 34:14593–14605, 2021.

[34] Alexander Korotin, Lingxiao Li, Justin Solomon, and Evgeny Burnaev. Continuous wasserstein-
2 barycenter estimation without minimax optimization. In International Conference on Learning
Representations, 2021.

[35] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Kernel neural optimal transport.
In The Eleventh International Conference on Learning Representations, 2023.

12

[36] Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal transport. In
The Eleventh International Conference on Learning Representations, 2023.

[37] Maciej Ławryńczuk. Input convex neural networks in nonlinear predictive control: A multi-
model approach. Neurocomputing, 513:273–293, 2022.

[38] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[39] Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

[40] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In The Eleventh International Conference on Learning
Representations, 2023.

[41] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and qiang liu. Instaflow: One step is
enough for high-quality diffusion-based text-to-image generation. In The Twelfth International
Conference on Learning Representations, 2024.

[42] Christian Léonard. A survey of the schrödinger problem and some of its connections with
optimal transport. Discrete and Continuous Dynamical Systems, 34(4):1533–1574, 2014.

[43] Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport
mapping via input convex neural networks. In International Conference on Machine Learning,
pages 6672–6681. PMLR, 2020.

[44] Petr Mokrov, Alexander Korotin, Alexander Kolesov, Nikita Gushchin, and Evgeny Burnaev.
Energy-guided entropic neural optimal transport. In The Twelfth International Conference on
Learning Representations, 2024.

[45] Daniel Morales-Brotons, Thijs Vogels, and Hadrien Hendrikx. Exponential moving average of
weights in deep learning: Dynamics and benefits. Transactions on Machine Learning Research,
2024.

[46] Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent au-
toencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14104–14113, 2020.

[47] ES Polovinkin and MV Balashov. Elements of convex and strongly convex analysis, 2007.

[48] Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron
Lipman, and Ricky TQ Chen. Multisample flow matching: Straightening flows with minibatch
couplings. In International Conference on Machine Learning, pages 28100–28127. PMLR,
2023.

[49] Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos. Input convex gradient networks.
arXiv preprint arXiv:2111.12187, 2021.

[50] Ralph Tyrell Rockafellar. Convex analysis. 2015.

[51] Litu Rout, Alexander Korotin, and Evgeny Burnaev. Generative modeling with optimal transport
maps. In International Conference on Learning Representations, 2022.

[52] Vivien Seguy, Bharath Bhushan Damodaran, Remi Flamary, Nicolas Courty, Antoine Rolet,
and Mathieu Blondel. Large scale optimal transport and mapping estimation. In International
Conference on Learning Representations, 2018.

[53] Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. Advances in Neural Information Processing Systems, 36, 2024.

[54] Amirhossein Taghvaei and Amin Jalali. 2-wasserstein approximation via restricted convex
potentials with application to improved training for gans. arXiv preprint arXiv:1902.07197,
2019.

13

[55] Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid
Rector-Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based genera-
tive models with minibatch optimal transport. Transactions on Machine Learning Research,
2024. Expert Certification.

[56] Nazarii Tupitsa, Pavel Dvurechensky, Darina Dvinskikh, and Alexander Gasnikov. Numerical
methods for large-scale optimal transport. arXiv preprint arXiv:2210.11368, 2022.

[57] Théo Uscidda and Marco Cuturi. The monge gap: A regularizer to learn all transport maps. In
International Conference on Machine Learning, pages 34709–34733. PMLR, 2023.

[58] Bryan Van Scoy, Randy A Freeman, and Kevin M Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters,
2(1):49–54, 2017.

[59] Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, and Neil Lawrence. Solving schrödinger
bridges via maximum likelihood. Entropy, 23(9):1134, 2021.

[60] Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc.,
2021.

[61] Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, and Jiashi Feng. Perflow:
Piecewise rectified flow as universal plug-and-play accelerator, 2024.

[62] Shu Yang and B Wayne Bequette. Optimization-based control using input convex neural
networks. Computers & Chemical Engineering, 144:107143, 2021.

[63] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

14

A Proofs and auxiliary statements

In this section, we place the proofs of all our results from the main manuscript and some auxiliary
results. We reorder the proofs of Prop. 1 and Prop. 2 since the former is based on the latter.

Note that in all of our theoretical derivations, if not stated explicitly, we assume the differentiability
of convex potential Ψ at given points z0, xt etc. This assumption is done for simplicity and does not
spoil our theory. The convex functions are known to be differentiable almost surely w.r.t Lebesgue
measure [50]. Therefore, since we consider absolutely continuous reference distributions p0, p1 (see
§2.1), the differentiability of Ψ at the considered points also holds almost surely.

Proof of Proposition 2 (Simplified OFM Loss)

Proof. By definition Lπ
OFM (Ψ) equals to

Lπ
OFM (Ψ):=

1∫
0

∫

RD×RD

∥uΨ
t (xt)− (x1 − x0)∥2π(x0, x1)dx0dx1

dt, xt = (1− t)x0 + tx1. (21)

For fixed points x0, x1 and time t in integrand, we find a point z0 = (ϕΨ
t)

−1(xt) such that in moment
t ∈ [0, 1] it is transported to point xt = (1− t)x0 + tx1. This point z0 satisfies equality

xt = t∇Ψ(z0) + (1− t)z0.

We define the vector field uΨ
t as

uΨ
t (xt) = ∇Ψ(z0)− z0 =

xt − z0
t

.

Putting uΨ
t (xt) in the integrand of (21), we obtain simplified integrand

∥x1 − x0 − uΨ
t (xt)∥2 =

∣∣∣∣∣∣∣∣x1 − x0 −
(
xt − z0

t

)∣∣∣∣∣∣∣∣2
=

1

t2
∥tx1 − tx0 − ((1− t)x0 + tx1) + z0∥2

=
1

t2
∥z0 − x0∥2 =

∣∣∣∣∣∣∣∣ (ϕΨ
t)

−1(xt)− x0

t

∣∣∣∣∣∣∣∣2 .
Proof of Proposition 1 (Explicit Loss Gradient Formula)

Proof. Point z0 = (ϕΨθ
t)−1(xt) now depends on parameters θ. We differentiate the integrand from

the simplified OFM loss (18) for fixed points x0, x1 and time t, i.e.,

d

(
1

t2
∥z0 − x0∥2

)
= 2

〈
z0 − x0

t2
,
dz0
dθ

dθ

〉
. (22)

For point z0, the equation (27) holds true:

xt = (1− t)z0 + t∇Ψθ(z0). (23)

We differentiate (23) w.r.t. θ and obtain

0 = (1− t)
dz0
dθ

+ t∇2Ψθ(z0)
dz0
dθ

+ t
∂∇Ψθ

∂θ
(z0) ⇒

dz0
dθ

= −
(
t∇2Ψθ(z0) + (1− t)I

)−1 · t∂∇Ψθ

∂θ
(z0).

Therefore, we have

(22) =

〈
2
x0 − z0

t
,
(
t∇2Ψθ(z0) + (1− t)I

)−1 ∂∇Ψθ

∂θ
(z0)dθ

〉
=

〈
2
(
t∇2Ψθ(z0) + (1− t)I

)−1 (x0 − z0)

t
,
∂∇Ψθ

∂θ
(z0)dθ

〉
. (24)

15

Now the differentiation over θ is located only in the right part of (24) in the term ∂∇Ψθ

∂θ . Hence, point
z0 and the left part of (24) can be considered as constants during differentiation. To get the gradient
of OFM loss we also need to take math expectation over plan π and time t.

The following two Lemmas are used to prove our main theoretical result, Theorem 1.
Lemma 1 (Properties of convex functions and their conjugates). Let Ψ : RD → R be a convex
function; x0, x1 ∈ RD. Let Ψ and Ψ be differentiable at x0 and x1 correspondingly. Then the
following statements are equivalent:

(i) x1 = ∇Ψ(x0);

(ii) x0 = argmax
z∈RD

{
⟨x1, z⟩ −Ψ(z)};

(iii) Fenchel-Young’s equality: Ψ(x0) + Ψ(x1) = ⟨x1, x0⟩;

(iv) x0 = ∇Ψ(x1) ;

(v) x1 = argmax
z∈RD

{
⟨z, x0⟩ −Ψ(z)} ;

Proof. The lemma is a simplified version of [47, Theorem 1.16.4]. Also, the proof can be constructed
by combining facts from [7, §3.3].

Lemma 2 (Main Integration Lemma). For any two points x0, x1 ∈ RD and a convex function Ψ, the
following equality holds true:∫ 1

0

∥uΨ
t (xt)− (x1 − x0)∥2dt = 2 · [Ψ(x0) + Ψ(x1)− ⟨x0, x1⟩], (25)

where xt = tx0 + (1− t)x1.

Proof. Following Proposition 2, we use the simplified loss form, i.e.,

∥uΨ
t (xt)− (x1 − x0)∥2 =

1

t2
∥z0 − x0∥2, (26)

where z0 = z0(t) = (ϕΨ
t)

−1(xt) satisfies the equality:

xt = t∇Ψ(z0) + (1− t)z0. (27)

Next, we substitute (26) into rhs of (25) integrate w.r.t. time t from 0 excluding to 1 excluding (This
exclusion does not change the integral):∫ 1

0

∥uΨ
t (xt)− (x1 − x0)∥2dt =

∫ 1

0

1

t2
∥z0 − x0∥2dt. (28)

To further simplify (28) we need some preliminary work. Following (27) we note:

xt = t∇Ψ(z0) + (1− t)z0 = (1− t)x0 + tx1 ⇒
t(∇Ψ(z0)− x1) = (1− t)(x0 − z0) ⇒

(∇Ψ(z0)− x1) =

(
1− t

t

)
(x0 − z0) ⇒ (29)

∥∇Ψ(z0)− x1∥2 =
(1− t)2

t2
∥z0 − x0∥2. (30)

Changing in (28) time variable t to s = t
1−t , ds = dt

(1−t)2 and substitution of (30) yield:

1∫
0

1

t2
∥z0(t)− x0∥2dt =

1∫
0

(1− t)2

t2
∥z0(t)− x0∥2

dt

(1− t)2
=

∞∫
0

∥∇Ψ(z0(s))− x1∥2ds. (31)

16

We notice that set of points z0(s(t)) = (ϕΨ
t)

−1(xt), t ∈ (0, 1) forms a curve in RD with parameter t
(or s(t)). Now we are to process formula (31) by switching from the integration w.r.t. parameter s to
the integration along this curve. To do it properly we need two things:

1. Limits of integration. The limits of integration along the curve z0(t) are:

z0(t)|t=0 = x0,

z0(t)|t=1 = (∇Ψ)−1(x1)
Lemma 1; (i), (iv)

= ∇Ψ(x1).
(32)

2. Expression under integral sign w.r.t. differential dz0. Starting with (29), we derive:

(29) ⇒ s(∇Ψ(z0)− x1) = (x0 − z0) ⇒
d[s(∇Ψ(z0)− x1)] = d[x0 − z0] ⇒

s∇2Ψ(z0)dz0 + (∇Ψ(z0)− x1)ds = −dz0 ⇒
(∇Ψ(z0)− x1)ds = −(s∇2Ψ(z0) + I)dz0. (33)

Now we proceed with (31):

(31) =

∞∫
0

⟨∇Ψ(z0)− x1,∇Ψ(z0)− x1⟩ ds

(33)
=

∫
z0

⟨x1 −∇Ψ(z0), (s∇2Ψ(z0) + I)dz0⟩

=

∫
z0

⟨x1 −∇Ψ(z0), dz0⟩+
∫
z0

⟨s(x1 −∇Ψ(z0)),∇2Ψ(z0)dz0⟩

(29)
=

∫
z0

⟨x1 −∇Ψ(z0), dz0⟩+
∫
z0

⟨z0 − x0,∇2Ψ(z0)dz0⟩. (34)

We notice that

d⟨z0,∇Ψ(z0)⟩ = ⟨z0,∇2Ψ(z0)dz0⟩+ ⟨dz0,∇Ψ(z0)⟩ ⇒
⟨z0,∇2Ψ(z0)dz0⟩ = d⟨z0,∇Ψ(z0)⟩ − ⟨∇Ψ(z0), dz0⟩.

As a consequence, we further proceed with (34):

(34) =

∫
z0

⟨x1 −∇Ψ(z0), dz0⟩+
∫
z0

⟨z0 − x0,∇2Ψ(z0)dz0⟩

=

∫
z0

⟨x1, dz0⟩ −
∫
z0

⟨∇Ψ(z0), dz0⟩

+

∫
z0

d⟨z0,∇Ψ(z0)⟩ −
∫
z0

⟨∇Ψ(z0), dz0⟩ −
∫
z0

⟨x0,∇2Ψ(z0)dz0⟩

=

∫
z0

⟨x1, dz0⟩ − 2

∫
z0

⟨∇Ψ(z0), dz0⟩+
∫
z0

d⟨z0,∇Ψ(z0)⟩ −
∫
z0

⟨x0,∇2Ψ(z0)dz0⟩. (35)

Under all integrals we have closed form differentials

⟨x1, dz0⟩ = d⟨x1, z0⟩,
⟨∇Ψ(z0), dz0⟩ = dΨ(z0),

⟨x0,∇2Ψ(z0)dz0⟩ = d⟨x0,∇Ψ(z0)⟩.

We integrate them from initial point x0 to the final ∇Ψ(x1) according to limits (32) and get

(35) =

∫
z0

d⟨x1, z0⟩ − 2

∫
z0

dΨ(z0) +

∫
z0

d⟨z0,∇Ψ(z0)⟩ −
∫
z0

d⟨x0,∇Ψ(z0)⟩

= ⟨x1,∇Ψ(x1)⟩ − ⟨x1, x0⟩+ 2(Ψ(x0)−Ψ(∇Ψ(x1))) + ⟨(∇Ψ(x1),∇Ψ(∇Ψ(x1))⟩
− ⟨x0,∇Ψ(x0)⟩+ ⟨x0,∇Ψ(x0)⟩ − ⟨x0,∇Ψ(∇Ψ(x1))⟩. (36)

17

Now we use properties of conjugate functions (Lemma (1)):

Ψ(∇Ψ(x1))
(iv) + (iii)

= ⟨∇Ψ(x1), x1⟩ −Ψ(x1),

∇Ψ(∇Ψ(x1))
(iv) + (i)
= x1.

This allows us to simplify (36):
(36) = ⟨x1,∇Ψ(x1)⟩ − ⟨x1, x0⟩+ 2(Ψ(x0) + Ψ(x1)− ⟨∇Ψ(x1), x1⟩) + ⟨(∇Ψ(x1), x1⟩

− ⟨x0,∇Ψ(x0)⟩+ ⟨x0,∇Ψ(x0)⟩ − ⟨x0, x1⟩
= 2[Ψ(x0) + Ψ(x1)− ⟨x0, x1⟩].

Integrating equality (25) over the given transport plan π and considering the formulas for the losses
(4) and (16), we derive our Theorem 1.

Proof of Theorem 1 (OFM and OT connection)

Proof. Main Integration Lemma 2 states that for any fixed points x0, x1 we have
1∫

0

∥x1 − x0 − uΨ
t (xt)∥2dt = 2[Ψ(x0) + Ψ(x1)− ⟨x0, x1⟩].

Taking math expectation over any plan π (integration w.r.t. points x0, x1 ∼ π) gives

Ex0,x1∼π

∫ 1

0

∥uΨ
t (xt)− (x1 − x0)∥2dt︸ ︷︷ ︸

=Lπ
OFM (Ψ)

= 2 · Ex0,x1∼π[Ψ(x0) + Ψ(x1)]︸ ︷︷ ︸
=LOT (Ψ)

− 2 · Ex0,x1∼π[⟨x0, x1⟩]︸ ︷︷ ︸
=:CONST′(π)

,

where CONST′(π) does not depend on Ψ. Hence, both minimums of OFM loss Lπ
OFM (Ψ) and of

OT dual form loss LOT (Ψ) are achieved at the same functions.

Proof of Proposition 3 (Intractable Distance)

Proof. We recall the definitions of DIST(u, u∗) (19) and FM loss Lπ∗

FM (u) (10):

DIST(u, u∗) =

∫ 1

0

∫
RD

∥ut(xt)− u∗
t (xt)∥2ϕ∗

t#p0(xt)︸ ︷︷ ︸
=p∗

t (xt)

dxtdt,

Lπ∗

FM (u) =

∫ 1

0

∫

RD×RD

∥ut(xt)− (x1 − x0)∥2π∗(x0, x1)dx0dx1

 , xt = (1− t)x0 + tx1.

In the optimal plan π∗, each point x0 almost surely goes to the single point ∇Ψ∗(x0). Hence, in FM
loss, we can leave only integration over initial points x0 substituting x1 = ∇Ψ∗(x0) for fixed time t:∫

RD×RD

∥ut(xt)− (x1 − x0)∥2π∗(x0, x1)dx0dx1

=

∫
RD

∥ut(xt)− (∇Ψ∗(x0)− x0)∥2p0(x0)dx0 , xt = (1− t)x0 + t∇Ψ∗(x0). (37)

We notice that dynamic OT vector field u∗ = uΨ∗
is the optimal one with potential Ψ∗. Moreover,

for any point xt = (1− t)x0 + t∇Ψ∗(x0) generated by u∗, we can calculate u∗
t (xt) = uΨ∗

t (xt) =
∇Ψ∗(x0)− x0. It is the same expression as from (37), i.e.,

(37) =

∫
RD

∥ut(xt)− (∇Ψ∗(x0)− x0)∥2p0(x0)dx0

=

∫
RD

∥ut(xt)− u∗
t (xt)∥2p0(x0)dx0 , xt = (1− t)x0 + t∇Ψ∗(x0).

18

Finally, we change the variable x0 to xt = ϕ∗
t (x0), and probability changes as p0(x0)dx0 =

ϕ∗
t#p0(xt)dxt = p∗t (xt)dxt. In new variables, we obtain the result∫

RD×RD

∥ut(xt)− (x1 − x0)∥2π∗(x0, x1)dx0dx1 =

∫
RD

∥ut(xt)− u∗
t (xt)∥2p∗t (xt)dxt.

Hence, the integration over time t gives the desired equality

DIST(u, u∗) = Lπ∗

FM (u),

and Lπ∗

FM (u∗) = DIST(u∗, u∗) = 0.

Proof of Proposition 4 (Tractable Distance For OFM)

Proof. For the vector field uΨ, we apply the formula for intractable distance from Proposition 3, i.e,

DIST(uΨ, uΨ∗
) = Lπ∗

FM (uΨ)− Lπ∗

FM (uΨ∗
)

(16)
= Lπ∗

OFM (Ψ)− Lπ∗

OFM (Ψ∗).

According to Main Integration Lemma 2, for any plan π and convex function Ψ, we have equality

Ex0,x1∼π

∫ 1

0

∥uΨ
t (xt)− (x1 − x0)∥2dt︸ ︷︷ ︸

=Lπ
OFM (Ψ)

= 2 · Ex0,x1∼π[Ψ(x0) + Ψ(x1)]︸ ︷︷ ︸
=LOT (Ψ)

− 2 · Ex0,x1∼π[⟨x0, x1⟩]︸ ︷︷ ︸
=:CONST′(π)

.

Since CONST′(π) does not depend on Ψ, we have the same constant with Ψ = Ψ∗ and can eliminate
it, i.e., {

Lπ
OFM (Ψ) = 2 · LOT (Ψ)− CONST′(π),

Lπ
OFM (Ψ∗) = 2 · LOT (Ψ

∗)− CONST′(π)

⇓
Lπ
OFM (Ψ)− Lπ

OFM (Ψ∗) = 2 · LOT (Ψ)− 2 · LOT (Ψ
∗). (38)

The right part of (38) does not depend on a plan π, thus, the left part is invariant for any plan including
optimal plan π∗, i.e.,

Lπ
OFM (Ψ)− Lπ

OFM (Ψ∗) = Lπ∗

OFM (Ψ)− Lπ∗

OFM (Ψ∗) = DIST(uΨ, uΨ∗
).

B Experiments details

B.1 OFM implementation

To implement our proposed approach in practice, we adopt fully-connected ICNN architectures
proposed in [30, Appendix B2] (W2GN_ICNN) and [28, Appendix E1] (CPF_ICNN). To ensure the
convexity, both architectures place some restrictions on the NN’s weights and utilized activation
functions, see the particular details in the corresponding papers. We take the advantage of their
official repositories:

https://github.com/iamalexkorotin/Wasserstein2Benchmark;
https://github.com/CW-Huang/CP-Flow.

We aggregate the hyper-parameters of our Algorithm 1 and utilized ICNNs for different experiments
in Table 3. In all our experiments as the SubOpt optimizer we use LBFGS (torch.optim.LBFGS)
with Ksub optimization steps and early stopping criteria based on gradient norm. To find the initial
point zi0 (Step 5 of our Algorithm 1), we initalize SubOpt with xi

ti . As the Opt optimizer we adopt
Adam with learning rate lr and other hyperparameters set to be default.

Minibatch. Similarly to OT-CFM, in some of our experiments we use non-independent initial plans π
to improve convergence. We construct π as follows: for independently sampled minibatches X0, X1

of the same size B, we build the optimal discrete map and apply it to reorder the pairs of samples.
We stress that considering minibatch OT for our method is done exclusively to speed up the training
process. Theoretically, our method is agnostic to initial plan π and is guaranteed to have an optimum
in dynamic OT solution.

19

https://github.com/iamalexkorotin/Wasserstein2Benchmark
https://github.com/CW-Huang/CP-Flow

Experiment ICNN architecture Ψθ K B lr Ksub
Illustrative 2D CPF_ICNN, R2 → R, Softplus, [1024, 1024] 30K 1024 10−2 5
W2 bench., dim. D W2GN_ICNN, RD→ R, CELU, [128, 128, 64] 30K 1024 10−3 50
ALAE W2GN_ICNN, R512→ R, CELU, [1024, 1024] 10K 128 10−3 10

Table 3: Hyper-parameters of our OFM solvers in different experiments

Figure 8: Performance of Flow Matching on Gaussian→Eight Gaussians 2D setup.

B.2 2D Example: Comparison with Flow Matching

In this subsection, we illustrate that the restriction of the optimization domain only to optimal vector
fields in FM loss is crucial for the plan independency and straightness of the obtained trajectories.

For that, we run the same setup from Section 4.1 but with vanila Flow Matching instead of OFM.
The obtained trajectories and learned distributions for different initial plans are depicted in Figure 8.

In comparison with our OFM (Figure 6), basic FM yields more curved trajectories, especially with
the misleading anti-minibatch plan. The learned distributions for all plans are similar to the target.

B.3 Benchmark details

Metrics. Following the authors of the benchmark [33], to assess the quality of retrieved transport map
T between p0 and p1, we use unexplained variance percentage (UVP): L2-UVP(T) := 100 · ∥T −
T ∗∥2L2(p0)

/Var(p1)%. For values L2−UVP(T) ≈ 0%, T approximates T ∗, while for values ≥ 100%

T is far from optimal. We also calculate the cosine similarity between ground truth directions T ∗− id
and obtained directions T − id, i.e.,

cos(T − id, T ∗ − id) =
⟨T − id, T ∗ − id⟩L2(p0)

∥T − id∥L2(p0) · ∥T ∗ − id∥L2(p0)
∈ [−1, 1].

For good approximations the cosine metric is approaching 1. We estimate L2−UVP and cos metrics
with 214 samples from p0.

In the experiments, we use the exponential moving average (EMA) [45, 24] of the trained model
weights. EMA creates a smoothed copy of the model whose weights are updated at each new training
iteration t+ 1 as θema

t+1 = αθema
t + (1− α)θt+1, where θt+1 are the newly updated original trained

weights. We calculate final metrics with α = 0.999.

Solvers’ results for cos metric are presented in Table 4.

Solver Solver type D=2 D=4 D=8 D=16 D=32 D=64 D=128 D=256

MMv1∗[54] Dual OT solver 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99
Linear∗ Baseline 0.75 0.80 0.73 0.73 0.76 0.75 0.77 0.77

OT-CFM MB [55]

Flow Matching

0.999 0.985 0.978 0.968 0.975 0.96 0.949 0.915
RF [40] 0.87 0.75 0.65 0.67 0.72 0.70 0.70 0.70

c-RF [39] 0.989 0.83 0.83 0.78 0.778 0.762 0.748 0.73
OFM Ind (Ours) 0.999 0.993 0.993 0.993 0.999 0.966 0.992 0.981
OFM MB (Ours) 0.999 0.994 0.995 0.994 0.999 0.970 0.994 0.986

Table 4: cos values of solvers fitted on high-dimensional benchmarks in dimensions D = 2, 4, 8, 16, 32, 64, 128, 256.
The best metric over Flow Matching based solvers is bolded. * Metrics for MMv1 and linear baseline are taken from [33].

20

Details of Solvers. Neural networks’ architectures of competing Flow Matching methods and their
parameters used in benchmark experiments are presented in Table 5. In this Table, “FC” stands for
“fully-connected”.

Solver Architecture Activation Hidden layers Optimizer Batch size Learning rate Iter. per round * rounds

OT CFM [55]
FC NN
RD × [0, 1] → RD ReLU [128, 128, 64] RMSprop 1024 10−3 200.000

RF [40]
FC NN
RD × [0, 1] → RD ReLU [128, 128, 64] RMSProp 1024 10−4 65.000 ∗ 3

c-RF [39]
FC NN
RD × [0, 1] → R ReLU [128, 128, 64] RMSProp 1024 10−5 100.000 ∗ 2

Table 5: Parameters of models fitted on benchmark in dimensions D = 2, 4, 8, 16, 32, 64, 128, 256.

Time variable t in (c−)RF and OT-CFM’s architectures is added as one more dimensionality in input
without special preprocessing. In RF and c-RF, ODE are solved via Explicit Runge-Kutta method
of order 5(4) [16] with absolute tolerance 10−4 − 10−6. In OFM and c-RF, gradients over input are
calculated via autograd of PyTorch.

Following the authors of RF [40], we run only 2− 3 rounds in RF. In further rounds, straightness and
metrics change insignificantly, while the error of target distribution learning still accumulates.

Our implementations of OT-CFM [55] and RF [40] are based on the official repositories:

https://github.com/atong01/conditional-flow-matching
https://github.com/gnobitab/RectifiedFlow

Implementation of c-RF follows the RF framework with the modification of optimized NN’s archi-
tecture. Instead of RD × [0, 1] → RD net, we parametrize time-dependent scalar valued model
RD × [0, 1] → R which gradients are set to be the vector field.

B.4 Unpaired Image-to-image transfer details

To conduct the experiments with high-dimensional I2I translation empowered with pretrained ALAE
autoencoder, we adopt the publicly available code:

https://github.com/SKholkin/LightSB-Matching.

Additional qualitative results for our method are provided in Figure 9.

Figure 9: Unpaired I2I Adult→Child by our OFM solver, ALAE 1024×1024 FFHQ latent space.
The samples are uncurated.

21

https://github.com/atong01/conditional-flow-matching
https://github.com/gnobitab/RectifiedFlow
https://github.com/SKholkin/LightSB-Matching

B.5 Computation time

0 2 4 6 8
time, hours

101

102

2
U

VP

RF
c-RF
OT-CFM
OFM (Ours)

Figure 10: L2−UVP metric depending on the
elapsed training time in dimension D = 32.

In what follows, we provide approximate run-
ning times for training our OFM and other
FM-based method in different experiments with
hyper-parameters provided in Table 3.

In the Illustrative 2D experiment, the training
takes ≈ 1.5 hours on a single 1080 ti GPU.
In the Wasserstein-2 benchmark, the computa-
tion time depends on the dimensionality D =
2, 4, . . . , 256. Totally, all the benchmark exper-
iments (both with Ind and MB plan π) take ≈ 3
days on three A100 GPUs. In the ALAE exper-
iment, the training stage lasts for ≈ 5 hours on
a single 1080 ti GPU.

For better understanding of methods’ behaviour
over time, we depict achieved L2−UVP metric on the benchmark (D = 32) depending on elapsed
training time in Figure 10. We note that the training iteration of OFM is computationally expensive,
but it requires less steps to achieve the best results.

B.6 Amortization technique

In order to train our OFM, we need to efficiently solve subproblem (17). As an example of more
advanced technique rather than LBFGS solver, we discuss amortization trick proposed in [2].

Namely, we find an approximate solution of (17) at point xt and time t with an extra MLP Aϕ(·, ·) :
RD × [0, 1] → RD :

Aϕ(xt, t) ≈ arg min
z0∈RD

[
(1− t)

2
∥z0∥2 + tΨ(z0)− ⟨xt, z0⟩

]
, (39)

and then run sub-problem solver (LBFGS) initialized with Aϕ(xt, t) until convergence. We modify
the training pipeline and include learning of parameters ϕ of Aϕ in Algorithm 2.

Algorithm 2 Optimal Flow Matching with Amortization

Input: Initial transport plan π ∈ Π(p0, p1), number of iterations K, batch size B, optimizer Opt,
amortization optimizer AmorOpt, sub-problem optimizer SubOpt, ICNN Ψθ, MLP Aϕ

1: for k = 0, . . . ,K − 1 do
2: Sample batch {(xi

0, x
i
1)}Bi=1 of size B from plan π;

3: Sample times batch {ti}Bi=1 of size B from U [0, 1];
4: Calculate linear interpolation xi

ti = (1− ti)xi
0 + tixi

1 for all i ∈ 1, B;
5: Compute initialization ziinit = Aϕ(x

i
ti , t

i) for all i ∈ 1, B;
6: Find detached solution zi0 of (17) via SubOpt initialized with ziinit for all i ∈ 1, B;
7: Calculate OFM loss L̂OFM

L̂OFM =
1

B

B∑
i=1

〈
NO-GRAD

{
2
(
ti∇2Ψθ(z

i
0) + (1− ti)I

)−1 (xi
0 − zi0)

ti

}
,∇Ψθ(z

i
0)

〉
;

8: Update parameters θ via optimizer Opt step with dL̂OFM

dθ ;
9: Calculate Amortization loss LAmor

LAmor =
1

B

B∑
i=1

∥ziinit − zi0∥2;

10: Update parameters ϕ via optimizer AmorOpt step with dLAmor

dϕ ;
11: end for

22

During the experiments, we did not find any improvements of the final metrics, in comparison with
the original OFM with the same hyperparameters. However, this augmentation potentially can cause
a shrinking of the overall training time. During training, Aϕ(·, ·) learns to predict more and more
accurate initial solution ziinit and, thus, reduces the required number of the expensive SubOpt steps.

C Limitations and Broader Impact

We find 3 limitations of our OFM which are to be addressed in the future research.

(a) Flow map inversion. During training, we need to compute (ϕΨθ
t)−1(·) via solving strongly

convex subproblem (17). In practice, we approach it by the standard gradient descent (with LBFGS
optimizer), but actually there exist many improved methods to solve such conjugation problems more
effectively in both the optimization [58, 26] and OT [2, 43]. This provides a dozen of opportunities
for improvement, but leave such advanced methods for future research.

(b) ICNNs. It is known that ICNNs may underperform compared to regular neural networks [33, 31].
Thus, ICNN parametrization may limit the performance of our OFM. Fortunately, deep learning
community actively study ways to improve ICNNs [10, 8, 49, 27] due to their growing popularity in
various tasks [62, 37, 11]. We believe that the really expressive ICNN architectures are yet to come.

(c) Hessian inversion. We get the gradient of our OFM loss via formula from Proposition 1. There
we have to invert the hessian ∇2Ψ(·), which is expensive. We point to addressing this limitation as a
promising avenue for future studies.

Broader impact. This paper presents work whose goal is to advance the field of Machine Learn-
ing. There are many potential societal consequences of our work, none of which we feel must be
specifically highlighted here.

23

D Check List

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Abstract and Introduction, we completely describe our contributions. For
every contribution, we provide a link to the section about it.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in Appendix C.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Proofs are provided in Appendix A.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix B. Code for the experiments is
provided in supplementary materials. All the datasets are available in public.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [YES]
Justification:Code will be made public after the paper acceptance (now we provide it in
the supplementary). Experimental details are provided in Appendix B. All the datasets are
publicly available.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are discussed in Appendix B.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Unfortunetely, running each experiment several times for statistics is too
computentionaly expensive.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

24

Justification: In Appendix B, we mention time and resources.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Research conforms with NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impact in Appendix C.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The research does not need safeguards.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite each used assets.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New code is attached in the supplementary materials. The license will be
provided after acceptance.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not engage with Crowdsourcing or Human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not engage with Crowdsourcing or Human subjects.

25

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Background and Related Works
	Static Optimal Transport
	Dynamic Optimal Transport
	Continuous Optimal Transport Solvers
	Flow Matching Framework
	Flow Matching (FM)
	 Optimal Transport Conditional Flow Matching (OT-CFM)
	Rectified Flow (RF)

	Optimal Flow Matching (OFM)
	Theory: Deriving the Optimization Loss
	Practical implementation aspects
	Relation to Prior Works
	Theory: properties of OFM

	Experimental Illustrations
	Illustrative 2D Example
	High-dimensional OT Benchmarks
	Unpaired Image-to-image Transfer

	Discussion
	Acknowledgement
	Proofs and auxiliary statements
	Experiments details
	OFM implementation
	2D Example: Comparison with Flow Matching
	Benchmark details
	Unpaired Image-to-image transfer details
	Computation time
	Amortization technique

	Limitations and Broader Impact
	Check List

