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ABSTRACT

Recently, diffusion models have demonstrated a remarkable ability to solve inverse
problems in an unsupervised manner. Existing methods mainly focus on modify-
ing the posterior sampling process while neglecting the potential of the forward
process. In this work, we propose Shortcut Sampling for Diffusion (SSD), a novel
pipeline for solving inverse problems. Instead of initiating from random noise,
the key concept of SSD is to find the "Embryo", a transitional state that bridges
the measurement image y and the restored image x. By utilizing the "shortcut"
path of "input-Embryo-output", SSD can achieve precise restoration with reduced
steps. To obtain the Embryo in the forward process, we propose Distortion Adap-
tive Inversion (DA Inversion). Moreover, we apply back projection as additional
consistency constraints during the generation process. Experimentally, we demon-
strate the effectiveness of SSD on several representative IR tasks. Compared to
state-of-the-art zero-shot methods, our method achieves competitive results with
only 30 NFEs. Moreover, SSD with 100 NFEs can outperform state-of-the-art
zero-shot methods in certain tasks.

1 INTRODUCTION

Inverse problem is a classic problem in the field of machine learning. Given a low-quality (LQ) input
measurement image y and a forward degradation operator H , inverse problems aim to restore the
original high-quality (HQ) image x from y = Hx + n. Many image restoration tasks, including
super-resolution (Haris et al., 2018; Wang et al., 2018), colorization (Larsson et al., 2016), inpainting
(Yeh et al., 2017), deblurring (Guo et al., 2019; Zhang et al., 2018a) and denoising (Wang et al.,
2022), can be considered as applications of solving inverse problems. In general, the restored image
should exhibit two critical attributes: Realism and Faithfulness. The former indicates that the restored
image should be of high-quality and photo-realistic, while the latter denotes that the restored image
should be consistent with the input image in the degenerate subspace.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021c) have
demonstrated phenomenal performance in generation tasks (Rombach et al., 2022; Dhariwal &
Nichol, 2021; Xiao et al., 2022). Due to their powerful capability in modeling complex distributions,
recent methods (Kawar et al., 2021; 2022; Chung et al., 2022a; 2023; Wang et al., 2023; Lugmayr
et al., 2022; Song et al., 2021b) have sought to utilize pre-trained diffusion models for solving inverse
problems in an unsupervised manner. These methods leverage the generative priors of pre-trained
models to enhance realism, and enforce additional consistency constraints to ensure faithfulness.

Despite the successful application of existing methods in solving various inverse problems, their
relatively slow sampling speed is a major drawback. Diffusion models have predefined a forward
process and a generation process. Existing methods primarily concentrate on the posterior sampling
p(x|z, y) during the generation process while largely ignoring the potential sampling p(z|y) during
the forward process. Instead, these methods typically sample z directly from the Gaussian prior p(z).
However, since the initial state of pure noise ranges far away from the target HQ images, previous
methods have to travel through a long journey of sampling, typically requiring at least 100-250 neural
function evaluations (NFEs), to generate the overall layout, structure, appearance and detailed texture
of the restored image, and finally achieve a satisfactory result.

In this work, we propose Shortcut Sampling for Diffusion (SSD), a novel pipeline for solving
inverse problems in a zero-shot manner. The primary concept behind SSD is to find an appropriate

1



Under review as a conference paper at ICLR 2024

(b) DDIM Inversion

Realistic

F
a
it

h
fu

l

Generation Process

(a) Generation

Realistic

F
a
it

h
fu

l

(c) Previous IR Method (d) SSD(ours)

Realistic

F
a
it

h
fu

l

Inversion Process Embryo

Realistic

F
a
it

h
fu

l

Figure 1: Visual schematic of different framework. (a) Generation starts from random noise
and generates realistic but unfaithful results; (b) DDIM Inversion employs a deterministic inversion
process and generation process, achieving faithful but unrealistic reconstruction. (c) Previous IR
methods generate realistic and faithful results through "Noise - Target", which take unnecessary
steps to generate the layout and structure; (d) SSD(ours) adopts a shortcut-sampling path of "Input-
Embryo-Target", which generates realistic and faithful results with fewer steps.

transitional state, termed the "Embryo", that bridges the gap between the input image y and the target
restored image x. By employing a shortcut path of "Input - Embryo - Target" instead of previous
"Noise-Target", SSD enables precise and fast restoration. For convenience, we use the symbol E to
refer to "the Embryo".

For the inversion process(Input image - Embryo), we found that simply adding random noise damages
information from the input image and causes realistic yet unfaithful results. While a deterministic
process such as DDIM Inversion(Song et al., 2021a), tends to generate unrealistic outcomes as
illustrated in Fig. 1 (b). To address this dilemma, we introduce Distortion Adaptive Inversion (DA
Inversion). By adding a controllable random disturbance at each inversion step, DA Inversion is
capable of obtaining E that adheres to the predetermined noise distribution while preserving the
majority of the input image.

For the generation process(Embryo - Target), we utilize the diffusion priors to generate additional
details and texture, and introduce back projection technique(Tirer & Giryes, 2018; Wang et al., 2023)
as additional consistency constraints. More specifically, we add a projection step after each denoising
step to project the rough restored image onto the degenerate subspace, and obtain a revised version
of the restored image which is consistent with the input image in the degenerate subspace. We
further propose SSD+ to extend the applicability to scenarios with unknown noise and more intricate
degradation conditions.

To verify the effectiveness of SSD, we conduct experiments on various inverse problems, including
super-resolution, colorization, inpainting and deblurring on CelebA (Karras et al., 2017) and ImageNet
(Deng et al., 2009). Experiments demonstrate that SSD achieves competitive results when compared
to state-of-the-art zero-shot methods (with 100 NFEs), despite utilizing only 30 NFEs. Moreover, we
find that SSD with 100 NFEs can surpass state-of-the-art methods in certain IR tasks.

2 RELATED WORKS

2.1 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021c) are a family of generative models that are used to model complex
probability distributions of high-dimensional data. Denoising Diffusion Probabilistic Models(DDPM)
(Ho et al., 2020) comprise both a forward process and a generation process. In the forward process,
an image x0 is transformed into Gaussian noise xT ∼ N (0, 1) by gradually adding random noise
over T steps. We can describe each step in the forward process as:

xt =
√
1− βtxt−1 +

√
βtϵ, ϵ ∼ N (0, 1) (1)

where xt
T
t=0 is the noisy image at time-step t, βt

T
t=0 is the predefined variance schedule. Using

reparameterization tricks (Kingma & Welling, 2013), The resulting noisy image xt can be expressed
as:

xt =
√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, 1) (2)
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where αt =
∏t

i=1(1− βi). The generation process transforms gaussian noise xT to image x0, the
transition from xt to xt−1 can be expressed as:

xt−1 =
1√

1− βt
(xt −

βt√
1− αt

ϵθ(xt, t)) +
1− αt−1

1− αt
βt (3)

and ϵθ(xt, t) is a neural network trained to predict the noise ϵ from noisy image xt at time-step t. The
noise approximation model ϵθ(xt, t) can be trained by minimize the following objective:

min
θ

Ex0∼q(x0),ϵ∼N(0,I)∥ϵ− ϵθ(xt, t)∥22 (4)

Denoising Diffusion Implicit Models Meanwhile, Song et al. (2021a) generalize DDPM via a
non-Markov diffusion process that shares the same training objective, whose generation process is
outlined as follows:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt (5)

where fθ(xt, t) is the prediction of clean image x0 at time-step t:

fθ(xt, t) =
xt −

√
1− αtϵθ(xt, t)√

αt
(6)

When σt = 0, DDIM samples images through a deterministic generation process, which allows for
high-quality sampling with fewer steps:

xt−1 =
√
αt−1fθ(xt, t) +

√
1− αt−1ϵθ(xt, t) (7)

2.2 SOLVING INVERSE PROBLEMS IN A ZERO-SHOT WAY

A general inverse problem aims to restore a high-quality image x from a known degradation operator
H and the degraded measurement y with random additional noise n:

y = Hx+ n (8)

Traditional IR methods typically train an end-to-end model to learn the posterior p(x|y) for specific
tasks. While end-to-end methods can effectively restore images with in-domain degradation, they
usually yield poor performance in the face of out-of-domain degradation. Meanwhile, some methods
investigate leveraging the generative priors of pre-trained generative models to restore degraded
images in a zero-shot way. GAN Inversion aims to find the closest latent vector in the GAN space for
an input image(Xia et al., 2022; Ulyanov et al., 2018; Pan et al., 2021; Menon et al., 2020). Using
the GAN Inversion technique, PULSE(Menon et al., 2020) iteratively optimizes the latent code of
pre-trained StyleGAN(Karras et al., 2019) until results are consistent with the input image.

Compared with GAN, diffusion models offer a forward process that enables the direct acquisition of
latent vectors within the Gaussian noise space. By performing generation processes and using consis-
tency constraints at each step, diffusion models can be applied to various IR problems. DDRM(Kawar
et al., 2022) applies SVD to decompose the degradation operators and perform diffusion in its spectral
space for various IR tasks. Repaint(Lugmayr et al., 2022) proposes to solve inpainting task by
retaining the unmasked area during the generation process. MCG(Chung et al., 2022a) applies a
projection-based measurement consistency step at each denoising step to achieve image restoration.
DPS(Chung et al., 2023) proposes an approximation of the posterior sampling to solve nonlinear
inverse problems. DDNM(Wang et al., 2023) uses range-null space decomposition to decompose the
restored image as a null-space part and a range-space part, they keep the range-space part unchanged
to force consistency, and obtain the null-space part through iterative refinement.

3 METHOD

3.1 SHORTCUT SAMPLING

As discussed above, diffusion models comprise two processes: a forward process which progressively
adds noise to the image until complete Gaussian noise, and a generation process which generates
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Figure 2: Overview of the proposed SSD. We propose a shortcut sampling pipeline, instead of
starting from random noise and spending lots of steps to generate the overall layout and structure, we
use Distortion Adaptive Inversion to obtain the Embryo, a noisy image that contains most structure
information of the input images. Then during the generation process, we iteratively perform the
denoising step and the back projection step to generate images with detailed texture while keeping
the restored images consistent with the input images.

realistic images through iteratively denoising. Previous methods mainly focus on modifying the
posterior sampling process p(x|z, y) during the generation process, while ignoring the utilization of
the forward process. Instead, these methods typically sample z directly from the Gaussian prior p(z).

In this work, we propose Shortcut Sampling for Diffusion (SSD), a novel pipeline for solving inverse
problems in a zero-shot manner. Different from previous methods that initiate from pure noise, SSD
enhances the forward process to obtain an intermediate state called the Embryo(E ), which serves as a
bridge between the measurement image y and the restored image x. Throughout the shortcut sample
path of "input-E -output", SSD can achieve efficient and satisfactory restoration results.

For convenience, we denote the transition from the measurement image y to E as the "inversion
process"; and the transition from E to the restored image x as the "generation process". Given a LQ
image y and corresponding degraded operator H , we start from H†y and apply Distortion Adaptive
Inversion (DA Inversion) to derive E in the inversion process(Sec. 3.2). Subsequently, during the
generation process, we iteratively perform the denoising step and the back projection step to generate
both faithful and realistic results(Sec. 3.3). Further, due to SSD relies on an accurate estimation
of degraded operators to exhibit high performance, we proposed an enhanced version called SSD+

that makes SSD suitable for noisy situations or inaccurate estimation of H .(Sec. 3.4). The overall
pipeline of SSD is illustrated in Fig. 2.

3.2 DISTORTION ADAPTIVE INVERSION

We expect to obtain the Embryo by enhancing the forward process. As previously discussed, the
Embryo should satisfy the following criterias:

Criteria (i): The Embryo should contain information from the input image;
Criteria (ii): The Embryo should retain the capacity for generating a high-quality image.

Why DDIM Inversion and DDPM Inversion Cannot Work Well To satisfy Criteria (i), a naive
approach is to build a deterministic mapping from the input image y to E . Given the deterministic
nature of the DDIM generation process, we can establish the DDIM Inversion process by reversing
Eq. (7) in the following manner:

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1ϵθ(xt, t) (9)

The Embryo obtained through DDIM Inversion preserves most information of the input images
since we can reconstruct it by iteratively executing Eq. (7). However, as depicted in Fig. 3 (a), the
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Figure 3: Comparison of reconstruction results between different Inversion Methods. (a)
DDIM Inversion produces faithful but unrealistic results. (b) DDPM Inversion produces realistic but
unfaithful results (c) Distortion Adaptive Inversion(ours) produces both realistic and faithful results

application of this Embryo in the generation process produces faithful but unrealistic results, thus
violating Criteria (ii).

We attribute the failure to the observation that, the obtained Embryo deviates from the predefined noise
distribution. More specifically, given a low-quality input image y, the predicted noise {ϵθ(xt, t)}
during DDIM Inversion process deviates from the standard normal distribution, resulting in the
deviation of E from the predefined noise distribution. During the generation process, the pre-
trained model receives out-of-domain input distributions, thereby generating unrealistic results. We
summarize this observation as follows, more details is available in Appendix B:
Assumption 1. Diffusion Models rely on in-domain noise distribution to generate high-quality
images. When facing low-quality input images, the distribution of predicted noise ϵθ(xt, t) during
the DDIM Inversion process exhibits a greater deviation from the standard normal distribution.

Another extreme scenario is the random forward process, which can be regarded as a special inversion
technique termed DDPM Inversion. In DDPM Inversion, the predicted noise is replaced with
randomly sampled noise from Gaussian distribution. We can define it in a similar form of DDIM
Inversion in Eq. 9:

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1 − βt+1ϵθ(xt, t) +

√
βt+1z, z ∼ N (0, 1) (10)

As shown in Fig. 3(b), DDPM Inversion converts the input image y into pure noise, thereby violating
Criterion (i) and producing results that are realistic yet lack faithfulness.

Distortion Adaptive Inversion Since a deterministic inversion process like DDIM Inversion pro-
duces unrealistic results, while a stochastic inversion process like DDPM Inversion yields unfaithful
results. To resolve this dilemma, we propose a novel inversion approach called Distortion Adaptive
Inversion(DA Inversion). The definition of DA Inversion is stated as follows:
Definition 1. We define the iterative process of Distortion Adaptive Inversion as:

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1 − ηβt+1ϵθ(xt, t) +

√
ηβt+1z (11)

where η control the proportion of random disturbances and 0 < η < 1.

For ease of exposition, the predicted noise in DA Inversion at each time-step can be rephrased as:

ϵDA =
1√

1− αt+1
(
√
1− αt+1 − ηβt+1ϵθ(xt, t) +

√
ηβt+1z), z ∼ N (µ, σ) (12)

By adding controllable random perturbations in each inverse step, DA Inversion has the capability
to generate high-quality images while preserving the essential information including layout and
structure, which is shown in Fig. 3 (c).

For Criterion (i), since the random perturbation only replaces a portion of the predicted noise, the
Embryo obtained through DA Inversion actually preserves a substantial amount of information from
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the input image. For Criterion (ii), we have verified that incorporating random disturbances can
bring the predicted noise closer to N (0, 1). Proofs are available in Appendix A
Proposition 1. Assuming ϵθ(xt, t) ∼ N (µ, σ2), We have:

ϵDA ∼ N (

√
1− αt+1 − ηβt+1√

1− αt+1
µ, 1 +

1− αt+1 − ηβt+1

1− αt+1
(σ2 − 1)) (13)

thus:
∥µϵDA

∥ < ∥µ∥
∥σ2

ϵDA
− 1∥ < ∥σ2 − 1∥

(14)

which indicates that after adding random disturbance, ϵDA becomes closer to N (0, 1).

In practice, rather than performing the inversion process until the last time-step T , we find that we
can achieve acceleration by performing until time-step t0 < T , which is inspired by (Meng et al.,
2021; Kim et al., 2022; Chung et al., 2022b).

3.3 BACK PROJECTION

Although E obtained from DA Inversion carries information about the input image, and the generation
process started from which can produce images with high quality, the result may not entirely align
with the input LQ image in the degenerate subspace. To address this problem, we introduce the back
projection technique as consistency constraints during the generation process.

Back projection was originally introduced by Tirer & Giryes (2018) to solve inverse problems.
Previous works(Kawar et al., 2022; Wang et al., 2023) have also utilized back projection in pretrained
diffusion models as additional consistency constraints. For details, given a measurement image y
and corresponding degraded operator H , we can project the roughly restored image x onto the affine
subspace {HRn = y} by the following operation to force consistency:

x′ = (I −H†H)x+H†y (15)

The refined restored image x′ consists of two parts: the former part, denoted as (I − H†H)x,
represents the residual between x and the image obtained after projection-in and projection-back,
which can be interpreted as the enhancement details of x. The latter part, denoted as H†y, can be
regarded as the preservation of input image y. Following the back-projection step, we have:

Hx′ ≡ H[(I −H†H)x+H†y] ≡ y (16)

which indicates that x′ entirely aligns with the input measurement image y in the degenerate subspace.

Inspired by prior research, we incorporate back projection to enhance consistency. At each time-
step, we initiate the process by performing a denoising step to obtain the predicted x0 in Eq. 6.
Subsequently, we process with a back projection step to refine the results of x0 and derive xt−1

through Eq. 5. The complete transformations from xt to xt−1 can be expressed as follows:

x0|t =
xt −

√
1− αtϵθ(xt, t)√

αt

x̂0|t =(I −H†H)x0|t +H†y

xt−1 =
√
αt−1x̂0|t +

√
1− αt−1 − σ2

t ϵθ(xt, t) + σtϵt

(17)

3.4 EXPAND SSD TO NOISY IR TASKS

Although SSD is effective in addressing various noiseless inverse problems, it tends to exhibit poor
performance when faced with noisy tasks. This limitation can be primarily attributed to the utilization
of back projection. The success of back projection hinges on a precise estimation of the degraded
operator H . When applied to blind image restoration or noisy IR tasks, back-projection tends to
result in disappointing restorations because of the inability to satisfy Eq. 16.

To solve this problem, we proposed SSD+, an enhanced version that makes SSD suitable for noisy
situations or inaccurate estimation of H . Earlier studies(Meng et al., 2021; Hertz et al., 2022;
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CelebA SR × 4 SR × 8 Colorization Deblur (gauss) NFEs↓
Method PSNR↑ / FID↓ / LPIPS↓ PSNR↑ / FID↓ / LPIPS↓ FID↓ / LPIPS↓ PSNR↑ / FID↓ / LPIPS↓

H†y 28.02 / 128.22 / 0.301 24.77 / 153.86 / 0.460 43.99 / 0.197 19.96 / 116.28 / 0.564 0

DDRM-100 28.84 / 40.52 / 0.214 26.47 / 45.22 / 0.273 25.88 / 0.156 36.17 / 15.32 / 0.119 100

DPS 24.71 / 34.69 / 0.304 22.38 / 41.01 / 0.348 N/A 24.89 / 32.64 / 0.288 250

DDNM-100 28.85 / 35.13 / 0.206 26.53 / 44.22 / 0.272 23.65 / 0.138 38.70 / 4.48 / 0.062 100

SSD-100 (ours) 28.84 / 32.41 / 0.202 26.44 / 42.42 / 0.267 23.62 / 0.138 38.62 / 4.36 / 0.060 100

DDRM-30 28.62 / 46.72 / 0.221 26.28 / 49.32 / 0.281 27.69 / 0.214 36.05 / 15.71 / 0.122 30

DDNM-30 28.76 / 41.36 / 0.213 26.41 / 48.25 / 0.277 25.25 / 0.184 37.40 / 6.65 / 0.084 30

SSD-30 (ours) 28.71 / 36.77 / 0.208 26.32 / 44.97 / 0.271 24.11 / 0.159 38.34 / 4.98 / 0.065 30

.

ImageNet SR × 4 SR × 8 Colorization Deblur (gauss) NFEs↓
Method PSNR↑ / FID↓ / LPIPS↓ PSNR↑ / FID↓ / LPIPS↓ FID↓ / LPIPS↓ PSNR↑ / FID↓ / LPIPS↓

H†y 26.26 / 106.01 / 0.322 22.86 / 124.89 / 0.4690 27.40 / 0.231 19.33 / 102.33 / 0.553 0

DDRM-100 27.40 / 43.27 / 0.260 23.74 / 83.08 / 0.420 36.44 / 0.224 36.48 / 11.81 / 0.121 100

DPS 20.34 / 72.33 / 0.485 18.38 / 76.89 / 0.538 N/A 24.89 / 32.64 / 0.288 250

DDNM-100 27.44 / 39.42 / 0.251 23.80 / 80.09 / 0.412 36.46 / 0.219 40.48 / 3.33 / 0.041 100

SSD-100 (ours) 27.45 / 37.69 / 0.248 23.76 / 82.11 / 0.409 35.40 / 0.215 40.32 / 3.07 / 0.039 100

DDRM-30 27.17 / 46.14 / 0.269 23.50 / 84.53 / 0.426 36.48 / 0.237 35.90 / 13.35 / 0.130 30

DDNM-30 27.22 / 40.12 / 0.256 23.53 / 74.60 / 0.414 36.46 / 0.229 37.67 / 6.91 / 0.081 30

SSD-100 (ours) 27.13 / 38.24 / 0.251 23.44 / 76.35 / 0.411 36.22 / 0.223 39.23 / 4.64 / 0.053 30

.

Table 1: Quantitative evaluation on the CelebA(top) and ImageNet(bottom) datasets for various
typical IR tasks. Red indicates the best performance.

Tumanyan et al., 2023) have indicated that diffusion models typically generate the overall layout and
color in the early stage, generate the structure and appearance in the middle stage, and generate the
texture details in the final stage. We notice that SSD employs shortcut sampling to skip the early
stage and ensure the preservation of the overall layout. However, during the middle final stage, the
utilization of back projection with an inaccurate H has the potential to deteriorate the fine-textured
details, leading to suboptimal outcomes. In SSD+, rather than performing back projection throughout
the generation process, we restrict its use to the middle stage, where it still plays a crucial role
in maintaining structure consistency. During the final stage of generation, we rely exclusively on
diffusion priors to ensure texture details without compromising the integrity of the original structure.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Pretrained Models and Datasets To evaluate the performance of SSD, we conduct experiments
on two datasets with different distribution characters: CelebA 256×256 (Karras et al., 2017) for face
images and ImageNet 256×256 (Deng et al., 2009) for natural images, both containing 1k validation
images independent of the training dataset. For CelebA 256×256, we use the denoising network
VP-SDE(Song et al., 2021c; Meng et al., 2021), which is pre-trained by Meng et al. (2021)1. For
ImageNet 256×256, we use the denoising network guided-diffusion (Dhariwal & Nichol, 2021),
which is pre-trained by Dhariwal & Nichol (2021)2.

Degradation Operators We conduct experiments on several typical IR tasks, including Super-
Resolution(× 4, × 8), Colorization, Inpainting and Deblurring. Details of degradation operators can
be found in Appendix E.1

Evaluation We use PSNR, FID(Heusel et al., 2017), and LPIPS(Zhang et al., 2018b) as the
main metrics to quantitatively evaluate the performance of image restoration. Especially due to

1Pre-trained Model files can be downloaded here provided by SDEdit
2Pre-trained Model files can be downloaded here provided by guided-diffusion
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Figure 4: Qualitative results of different zero-shot IR methods on CelebA and Imagenet Dataset.

Measurement DDRM-100 DDNM Ours

Figure 5: Colorization results of different
zero-shot IR methods on ImageNet Dataset

Figure 6: Comparison of the performance of
various methods affected by NFEs with SR ×
4 task on CelebA dataset

the inability of PSNR to capture colorization performance, we use FID and LPIPS for colorization.
Additionally, we use Neural Function Evaluations(NFEs) as the metrics of sampling speed, which
is a commonly employed benchmark in diffusion model-based methods. Since SSD introduces an
additional inversion process, the NFEs of SSD are calculated by summing the steps involved in both
the inversion process and the generation process.
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Comparison Methods We compare the restoration performance of the proposed method with
recent State-Of-The-Art zero-shot image restoration methods using pre-trained diffusion models:
DDRM(Kawar et al., 2022), DPS(Chung et al., 2023) and DDNM(Wang et al., 2023). For a fair
comparison, all methods above use the same pre-trained denoising networks and degradation operator.

4.2 NOISELESS IMAGE RESTORATION RESULTS

We compare SSD (with 30 and 100 steps) with previous methods mentioned in Sec 4.1. The quanti-
tative evaluation results shown in Table 1 illustrate that the proposed method achieves competitive
results compared to state-of-the-art methods. When setting NFE to 30, SSD-30 outperforms other
methods known for fast sampling like DDRM-30 and achieves better perception-oriented metris (i.e.,
FID, LPIPS) than SOTA methods (DDNM with 100 NFEs). When setting NFE to 100, SSD-100
achieves SOTA performance in many IR tasks, including SR ×4 and colorization. As shown in Fig.
4, 5, SSD generates high-quality restoration results in all tested datasets and tasks.

We further explore the performance of various methods in terms of FID with respect to the change in
NFEs, which is shown in Fig. 6. We conduct experiments with SR ×4 task on the CelebA dataset.
Results show that SSD outperforms all the other methods in both high NFEs.

4.3 NOISY IMAGE RESTORATION RESULTS

To illustrate the robustness of SSD+ in the face of noisy situations and complex degradation, we
evaluate SSD and SSD+ on diverse inverse problems with gaussian noise and JPEG compression(Shin
& Song, 2017). For gaussian noise, we add gaussian noise z ∼ N (0, σ2) to the degraded image
y, where σ represents the intensity of noise and is randomly distributed in [0.0, 0.2]. For JPEG
compression, we perform JPEG compression(Wang et al., 2021) with a quality factor of 60 after the
degraded operator H is applied. The quantitative result is shown in Tab. 2. Qualitative results are
available in Fig. 7
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SR ×8 + Gaussian Noise Colorization + Gaussian Noise Colorization + JPEG CompressionSR ×8 + JPEG Compression

Figure 7: Qualitative results on CelebA of solving inverse problems with additional Gaussian noise
and JEPG compression.

CelebA 8× SR + Noise Colorization + Noise 8× SR + JPEG Colorization + JPEG

Method PSNR↑ / LPIPS↓ / FID↓ LPIPS↓ / FID↓ PSNR↑ / LPIPS↓ / FID↓ LPIPS↓ / FID↓

SSD 22.51 / 0.528 / 85.92 0.533 / 68.24 23.23 / 0.414 / 80.74 0.301 / 48.54

SSD+ 24.60 / 0.299 / 43.84 0.373/ 45.02 24.23 / 0.301 / 46.32 0.372 / 45.02

Table 2: Quantitative evaluation on CelebA of solving inverse problems with additional Gaussian
noise(left) and JEPG compression(right). Red indicates the best performance.

5 CONCLUSION

In this paper, we propose SSD, a novel framework for solving inverse problems in a zero-shot manner.
We have departed from the conventional "Noise-Target" paradigm and instead proposed a shortcut
sampling pathway of "Input-Embryo-Target". This novel approach enables us to achieve satisfactory
results with reduced steps. We further propose SSD+, an enhanced version of SSD tailored to excel
in scenarios where degradation estimation is less accurate or in the presence of noise. We hope the
proposed pipeline may inspire future work on inverse problems to solve them in a more efficient
manner.
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A PROOFS

Definition 1. We define the iterative process of Distortion Adaptive Inversion as:

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1 − ηβt+1ϵθ(xt, t) +

√
ηβt+1z (11)

where η control the proportion of random disturbances and 0 < η < 1.

For ease of exposition, the predicted noise in DA Inversion at each time-step can be rephrased as:

ϵDA =
1√

1− αt+1
(
√
1− αt+1 − ηβt+1ϵθ(xt, t) +

√
ηβt+1z), z ∼ N (µ, σ) (12)

Proposition 1. Assuming ϵθ(xt, t) ∼ N (µ, σ2), We have:

ϵDA ∼ N (

√
1− αt+1 − ηβt+1√

1− αt+1
µ, 1 +

1− αt+1 − ηβt+1

1− αt+1
(σ2 − 1)) (13)

thus:
∥µϵDA

∥ < ∥µ∥
∥σ2

ϵDA
− 1∥ < ∥σ2 − 1∥

(14)

which indicates that after adding random disturbance, ϵDA becomes closer to N (0, 1).

Proof. According to Eq. 12, we can rewrite it based on reparameterization techniques:

z1 =

√
1− αt+1 − ηβt+1√

1− αt+1
ϵθ(xt, t) (18)

z2 =

√
ηβt+1√

1− αt+1
z (19)

ϵDA = z1 + z2 (20)

further:

z1 ∼ N (

√
1− αt+1 − ηβt+1√

1− αt+1
µ,

1− αt+1 − ηβt+1

1− αt+1
σ2) (21)

z2 ∼ N (0,
ηβt+1

1− αt+1
) (22)

Since z is sampled randomly and independently from the standard normal distribution, it is mutually
independent of ϵθ(xt, t). Additionally, z1 and z2 are also mutually independent. Therefore we have:

µϵDA
= µz1 + µz2 (23)

=

√
1− αt+1 − ηβt+1√

1− αt+1
µ (24)

σ2
ϵDA

= σ2
z1 + σ2

z2 (25)

=
1− αt+1 − ηβt+1

1− αt+1
σ2 +

ηβt+1

1− αt+1
(26)

= 1 +
1− αt+1 − ηβt+1

1− αt+1
(σ2 − 1) (27)

thus we have:
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0 < ∥µϵDA
∥ < ∥µ∥ (28)

{
1 < σ2

ϵDA
< σ2, σ2 > 1

σ2 < σ2
ϵDA

< 1, σ2 < 1
(29)

which indicates that by introducing random disturbance, the mean of ϵDA tends to approach 0 in
comparison to the original noise mean µ, while the variance of ϵDA tends to approach 1 in comparison
to the original noise variance σ2. As a result, ϵDA exhibits a closer resemblance to the standard
normal distribution z ∼ N (0, 1).

B THE DEVIATION FROM STANDARD NORMAL DISTRIBUTION DURING THE
INVERSION PROCESS

We observe that the predicted noise ϵθ(xt, t) during DDIM Inversion process deviates from the
standard normal distribution. As the diffusion models are pretrained to generate high-quality images
from the standard normal distribution, employing out-of-domain input distributions may undermine
the generation performance, leading to unrealistic results. We further define this as the following
assumption:

Assumption 1. Diffusion Models rely on in-domain noise distribution to generate high-quality
images. When facing low-quality input images, the distribution of predicted noise ϵθ(xt, t) during
the DDIM Inversion process exhibits a greater deviation from the standard normal distribution.

To provide further illustration, we preformed validation experiments on ImageNet dataset. We
randomly select 100 images from ImageNet validation dataset and apply DDIM Inversion on input
images with varying degrees of degradation, including original high-quality images, as well as images
downscaled by factors of 2, 4 and 8 using bicubic interpolation. We utlize the Kullback-Leibler (KL)
divergence as a metric to quantify the deviation from the standard normal distribution, given by:

DKL(P∥Q) =

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (30)

As depicted in Fig. 8, it can be observed that as the downsampling scale increases, the noise in the
DDIM inversion process deviates further from the standard normal distribution. In contrast, during
the proposed DA Inversion process, the predicted noise approaches the standard normal distribution
z ∼ N (0, 1). This outcome validates our previous hypothesis stated in Prop. 1.

(a) HQ Image (b) 2× downsampling (c) 4× downsampling (d) 8× downsampling

Figure 8: Deviation of noise during the inversion process of differently degraded images. We observe
that with the increase in the degree of image degradation, the deviation between the predicted noise
and the standard normal distribution also increases. In contrast, the proposed DA Inversion does not
exhibit such deviation.
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C CONNECTIONS BETWEEN DDIM INVERSION, DDPM INVERSION, AND
DISTORTION ADAPTIVE INVERSION

In the main text, we attribute the failure of DDIM Inversion to the deviation from the standard
normal distributions. In this section, we further explore the reasons behind the out-of-domain results
produced by DDIM Inversion after multiple iterations in the inversion process.

Let’s first review the forward process in diffusion models, which can be expressed as follows(Ho
et al., 2020):

xt+1 =
√
αt+1x0 +

√
1− αt+1ϵt+1, ϵt+1 ∼ N (0, 1) (1)

xt+1 =
√

1− βt+1xt +
√
βt+1ϵ, ϵ ∼ N (0, 1) (2)

And DDIM Inversion process is defined as:

xt+1 =
√
αt+1fθ(xt, t) +

√
1− αt+1ϵθ(xt, t) (9)

Notice that the forward process in Eq. 1 and the DDIM Inversion process in Eq. 9 share a similar
form, wherein fθ(xt, t) substitutes x0 and ϵθ(xt, t) replaces the noise ϵt+1. It is important to note
that ϵθ(xt, t) is the approximation of the noise added until time-step t, and ϵt+1 represents the noise
added until time-step t+ 1. To account for this misalignment, we rewrite Eq. 1 as follows:

xt+1 =
√
1− βt+1xt +

√
βt+1ϵt+1

=
√
(1− βt+1)(1− βt)xt−1 +

√
(1− βt+1)βtϵt +

√
βt+1ϵt+1

= . . .

=
√
αtx0 +

√
1− αt+1ϵt+1

(31)

where:

√
1− αt+1ϵt+1 =

√
βt+1ϵt+1 +

√
(1− βt+1)βtϵt +

√
(1− βt+1)(1− βt)βt−1ϵt−1

+ · · ·+
√
(1− βt+1)(1− βt) . . . (1− β2)β1ϵ1

=
√
βt+1ϵt+1 +

√
(1− βt+1)βtϵt + (1− βt+1)(1− βt)βt−1 + . . .ϵt

=
√
βt+1ϵt+1 +

√
(1− αt+1)− βt+1ϵt

(32)

therefore we have:

xt+1 =
√
αt+1x0 +

√
(1− αt+1)− βt+1ϵt︸ ︷︷ ︸

Synthesis of the first t-term noise

+
√
βt+1ϵt+1︸ ︷︷ ︸

the t + 1 term noise

(33)

where ϵt+1 is independent of ϵt.

During the forward (inversion) process from t to t+ 1, we can interpret ϵt as the existing information
in xt, and ϵt+1 as the additional information. By setting ϵt = ϵθ(xt, t) ∼ N (0, 1) and maintain ϵt+1

stochastic (where ϵθ(xt, t) is independent of ϵt+1 ), we can build a fully stochastic process. This is
equivalent to the forward process described in Eq. 2, which is referred to as "DDPM Inversion":
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xt+1 =
√
αt+1fθ(xt, t) +

√
(1− αt+1)− βt+1ϵθ(xt, t) +

√
βt+1z

=
√
αt+1

xt −
√
1− αtϵθ(xt, t)√

αt
+
√

(1− αt+1)− βt+1ϵθ(xt, t) +
√
βt+1z

=
√
αt+1xt −

√
(1− αt)αt+1

αt
+

√
1− αt+1 − βt+1ϵθ(xt, t) +

√
βt+1z

=
√
αt+1xt −

√
αt+1

αt
− αt+1ϵθ(xt, t) +

√
1− αt+1 − βt+1ϵθ(xt, t) +

√
βt+1z

=
√
αt+1xt −

√
1− αt+1 − βt+1ϵθ(xt, t) +

√
1− αt+1 − βt+1ϵθ(xt, t) +

√
βt+1z

=
√
αt+1xt +

√
βt+1z

(34)

Similarly, we can rewrite Eq. 9 as a similar form to Eq. 33, given by:

xt+1 =
√
αt+1x0 +

√
1− αt+1 − βt+1ϵθ(xt, t)︸ ︷︷ ︸
Synthesis of the first t-term noise

+(
√
1− αt+1 −

√
1− αt+1 − βt+1)ϵθ(xt, t)︸ ︷︷ ︸

the t + 1 term noise

=
√
αt+1xt + (

√
1− αt+1 −

√
1− αt+1 − βt+1)ϵθ(xt, t)

(35)

We adjust the coefficient of the t+ 1 term noise because they do not satisfy independence. DDIM
Inversion is a deterministic process because the t+ 1 term noise inherits the information of xt.

Further, the proposed DA Inversion takes into account both the information inherited from xt and
additional randomness. The formulation is as follows.

xt+1 =
√
αt+1x0 +

√
1− αt+1 − βt+1ϵθ(xt, t)︸ ︷︷ ︸
Synthesis of the first t-term noise

+

(
√
1− αt+1 − ηβt+1 −

√
1− αt+1 − βt+1)ϵθ(xt, t) +

√
ηβt+1z︸ ︷︷ ︸

the t + 1 term noise

=
√
αt+1xt + (

√
1− αt+1 − ηβt+1 −

√
1− αt+1 − βt+1)ϵθ(xt, t) +

√
ηβt+1z

(36)

The comparison of different inversion methods, namely DDIM Inversion (Song et al., 2021a), DDPM
Inversion (Ho et al., 2020), and our proposed Distorted Adaptive Inversion, is summarized in Table 3.
We also visualize the inversion process of different methods, as shown in Fig. 9 10.

DDIM Inversion DDPM Inversion DA Inversion (ours)
Inversion
Inversion Process Equation 9 Equation 33 Equation 11
Composition of t+ 1 term noise

Coefficient of ϵθ(xt, t) c(ϵθ)

√
1− αt+1

−
√

1− αt+1 − βt+1

0

√
1− αt+1 − ηβt+1

−
√

1− αt+1 − βt+1

Coefficient of z c(z) 0
√
βt+1

√
ηβt+1

Performance
Faithfulness ✓ ✗ ✓

Realism ✗ ✓ ✓

Table 3: Comparisons on different inversion methods.

16



Under review as a conference paper at ICLR 2024

𝑥𝑡

𝑥0|𝑡

𝑥𝑡

𝑥0|𝑡

Inversion Process 𝑡: 0 → 800

Generation Process 𝑡: 800 → 0
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Figure 9: Visualization results of various inversion process on CelebA
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Figure 10: Visualization results of various inversion process on Imagenet
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D COMPARISON BETWEEN SSD AND DDNM

In this section, we provide a detailed comparison between proposed SSD and DDNM(Wang et al.,
2023). The key idea of DDNM is "null space decomposition". They decompose the restored image
as a null-space part (I −H†H)x and a range-space part +H†y. The former represents the identity
information of the input LQ image, and the latter represents the detailed information of the HQ image.
During the generation process, DDNM keeps the range-space part unchanged to force consistency
and obtain the null-space part through iterative refinement. The back projection in SSD actually
shares a similar form of the "null space decomposition" in DDNM. The main differences between
SSD and DDNM are the following aspects:

Key ideas The key idea of DDNM revovles around "null space decomposition". They rederive the
back projection through range-null space decomposition and propose manually designed degenerate
operators to solve common inverse problems. Their primary emphasis lies in substantiating the
efficacy of "null space decomposition" through both theoretical derivations and empirical experiments.

Conversely, our key idea is to find the "embryo", a transitional state that bridges the input low-quality
image and the desired high-quality results. The "Embryo" holds the potential to accelerate the whole
process. So we mainly focus on how to improve the inversion process to obtain an "Embryo" that
both satisfies faithfulness and realism. Back projection is regarded as a technique for improving
consistency in our approach.

Pipeline: DDNM considers solving the inverse problem in a generation pipeline of "noise-Target".
They start from the random noise and adopt additional consistency conditions to generate the expected
results. However, this methodology entails the inclusion of numerous superfluous steps, which are
expended in recreating the layout and structure that are inherently present in the input image.

Instead, we propose a novel pipeline of "Input - Embryo - Target". We utilize DA Inversion to
effectively obtain a semi-manufactured restoration result named "embryo", and start the generation
process from the "embryo" instead of random noise. Through the proposed shortcut pipeline, we
enable skipping the early stage of generation and preserving the layout information of the input image
with only a minimal number of inversion steps, allowing the entire process to proceed in reduced
steps.

Solving noisy situations: DDNM supports noisy restoration by treating the noise of the degradation
process as an integral component of the forward process noise within the diffusion framework. This
approach incorporates a denoising step within the diffusion process, thereby extending its applicability
to tasks involving noisy inputs. The enhanced version, DDNM+, excels in managing highly noisy
scenarios but necessitates the incorporation of additional denoising steps ("time-travel") and carefully
selecting noise parameters for each specific case.

In our work, we find the failure of noisy situations in SSD mainly attributed to, the constraint
invalidation of back projection, when faced with inaccurate estimation of H . Given that our method
does not overly depend on back projection, we are able to handle noisy scenarios by simply omitting
the back projection during the final generation phase. With SSD+, we exhibit the capability to address
additional noise and complex degradation within a certain range, all without the need for additional
parameter adjustments.

E EXPERIMENTAL DETAILS

E.1 DEGRADATION OPERATORS

(i) For super-resolution, we use a bicubic filter to downsample the image at a given specific scale. (ii)
For colorization, we calculate the average value of the red, green and blue channels of the original
image to obtain the grayscale image. (iii) For deblurring, we select a Gaussian blur kernel with size
9 × 9 as the blur kernel, and the width is set to σ = 15.0. (iv) For inpainting(random) task, we
randomly drop the pixels in the image with a probability of 0.5; (iv) For inpainting(box) task, we
randomly mask images with a 96x96 rectangle.
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Following DDNM(Wang et al., 2023), we utilize manually designed degradation operators H and
corresponding H† in our methods. Details about operators are listed as follows:

Super Resolution For super resolution, we use the bicubic downsampling kernel as the degradation
operator H . The weight formula of bicubic interpolation is:

w(t) =


1
6

(
(t+ 2)3 − 4(t+ 1)3 + 6t3

)
, if |t| ≤ 1

− 1
6

(
t3 − 4(t− 1)3 + 6(t− 2)3

)
, if 1 < |t| ≤ 2

0, otherwise

(37)

We calculate the pseudo-inverse H† using singular value decomposition(SVD)(Kawar et al., 2022),
which can be expressed as follows:

H = UΣV T (38)
where U and V are orthogonal matrices, Σ is a diagonal matrix, and the elements on Σ are the
singular values of H. Then we can obtain the pseudo-inverse H† through:

H† = V Σ†UT (39)

Σ† is the pseudo-inverse of Σ, which can be calculated by taking the reciprocal of non-zero elements
on the diagonal of Σ, while keeping the zero elements unchanged.

Colorization For colorization, by choosing H = [1/3, 1/3, 1/3] as a pixel-wise degradation
operator, we can convert each pixel from the rgb value [r, g, b]T into the grayscale value [ r3 + g

3 + b
3 ].

And the pseudo-inverse is H† = [1, 1, 1]T , which satisfies HH† = I .

Deblurrring For deblurring, we use the gaussian blur kernel as the degradation operator. The
gaussian blur kernel can be expressed as:

w(i, j) =
1

2πσ2
e−

i2+j2

2σ2 (40)

We set the width as σ = 15.0 and the kernel size as 9× 9. Similar to super resolution, we use SVD
to obtain the pseudo-inverse H†.

E.2 REPRODUCIBILITY DETAILS

Hyperparameter Settings Here, we provide the detailed hyperparameter settings of SSD for
various inverse problems.

• SSD of 100 NFEs
– Super-Resolution, Inpainting and Deblurring:

* Inversion step: Sinv = 15;
* Generation step: Sgen = 85;
* Shortcut time-step: t0 = 550;
* Proportion of added disturbance: η = 0.4

– Colorization

* inversion step: Sinv = 15;
* generation step: Sgen = 85;
* Shortcut time-step: t0 = 750;
* Proportion of added disturbance: η = 0.8

• SSD of 30 NFEs
– Super-Resolution, Inpainting and Deblurring:

* inversion step: Sinv = 5;
* generation step: Sgen = 25;
* Shortcut time-step: t0 = 550;
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* Proportion of added disturbance: η = 0.4

– Colorization
* inversion step: Sinv = 5;
* generation step: Sgen = 25;
* Shortcut time-step: t0 = 750;
* Proportion of added disturbance: η = 0.8

Pretrained models For CelebA 256×256, we use the denoising network VP-SDE(Song et al., 2021c;
Meng et al., 2021), which is pre-trained on CelebA. Pre-trained Model files can be downloaded here
provided by SDEdit.

For ImageNet 256×256, we use the denoising network guided-diffusion (Dhariwal & Nichol, 2021),
which is pre-trained on ImageNet. Pre-trained Model files can be downloaded here provided by
guided-diffusion.

Code Availability We will open-source our code of SSD upon publication to enhance reproducibil-
ity.

E.3 ALGORITHM

Algorithm 1 Image Restoration of SSD
Input: input measurement image y, degradation operator H
Parameters: inversion step Sinv, generation step Sgen, shortcut time-step t0, proportion of added
disturbance η
Output: restored Image x

Step 1: Get the Embryo through DA Inversion
1: x0 = H†y
2: Define {τs}sinv

s=1 , s.t. τ1 = 0, τsinv
= t0

3:
4: for s = 1, . . . , Sinv − 1 do
5: ϵ← ϵθ(xτs , τs,∅);
6: x0|τs ← fθ(xτs , τs);
7: z ∼ N (0, 1)
8: xτs+1 =

√
ατs+1x0|τs +

√
1− ατs+1 − ηβτs+1ϵ+

√
ηβτs+1z ▷ DA Inversion

9: end for
10:

Step 2: Get HQ Image from the Embryo
11: Define {τs}

sgen
s=1 , s.t. τ1 = 0, τsgen = t0

12: for s = Sgen, . . . , 2 do
13: ϵ← ϵθ(xτs , τs,∅);
14: x0|τs ← fθ(xτs , τs) ▷ Denoising Step
15: x̂0|τs ← (I −H†H)x0|τs +H†y ▷ Back Projection Step
16: xτs−1 =

√
ατs−1

x0|τs +
√
1− ατs−1

− σ2ϵ+ σz
17: end for
18: return x0

F TIME CONSUMPTION

In our main paper, we use neural function evaluations(NFEs) as the metrics of sampling speed. Here
we further measure the time consumption of different methods when restoring a single image. The
results are illustrated in Tab. 4. We conduct super-resolution 4× experiments using a single Nvidia
RTX 3090 GPU.

It is observerd that the projection-based methods, including DDRM(Kawar et al., 2022), DDNM(Wang
et al., 2023), and our SSD, exhibit comparable time consumption(0.06 s/it for celeba, 0.11 s/it for
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imagenet). The discrepancies in consumption mainly stem from variations in the implementation
details of their code. On the other hand, the gradient-based methods such as DPS(Chung et al., 2023)
require additional time and memory consumption, primarily due to the inclusion of back-propagation
operations for gradient calculations at each step.

Celeba Imagenet
Method NFEs Time(s/image) NFEs Time(s/image)

DDRM (Kawar et al., 2022) 100 5.14 100 10.34
DPS (Chung et al., 2023) 100 12.70 100 36.87

DDNM (Wang et al., 2023) 100 4.98 100 10.11
SSD(ours) 100 5.03 100 10.27

DDRM (Kawar et al., 2022) 30 1.57 30 3.02
DDNM (Wang et al., 2023) 30 1.43 30 2.87

SSD(ours) 30 1.46 30 2.93

Table 4: Comparisons on Time Consumption of different methods.

G ABLATION STUDIES

G.1 DISTORATION ADAPTIVE INVERSION

We investigate the performance of the proposed DA Inversion by exploring the effects of different
parameters. While SSD achieves competitive results under various parameters, the generation results
of DA Inversion alone exhibit a noticeable trade-off between realism and faithfulness when choosing
different values of (t0, η).

To further illustrate it, we randomly select 100 images from the Celeba-Test Dataset and apply 4×
average-pooling downsampler on them as the input LQ Images. We then perform DA inversion with
various (t0, η) values and proceed with the generation process. For faithfulness, we compute the
average L2 distance between the generation reuslts and the input LQ Images. For realism, we use FID
to quantify the distribution difference. Fig. 11 illustrates the trade-off where faithfulness decreases
and realism increases as η increases. Notably, this trade-off follows an upward convex curve in
Fig. 11c, suggesting that we can achieve a combination of faithfulness and realism by appropriately
selecting hyperparameters.

G.2 SSD

Here we extend our discussion to explore the impact of (t0, η) on the performance of SSD (DA Inver-
sion + consistency constraints). To identify the most suitable combination, we perform experiments
with different (t0, η) values for the super resolution 4× task on Celeba datasets. Results are presented
in Tab. 5.

η t0 PSNR (↑) FID (↓) LPIPS (↓)
0.1 550 27.12 39.12 0.253
0.4 550 27.13 38.24 0.252
0.7 550 27.15 38.63 0.252
1.0 550 27.15 38.80 0.252

(a) Performance with different η.

η t0 PSNR (↑) FID (↓) LPIPS (↓)
0.4 450 27.17 39.35 0.253
0.4 550 27.13 38.24 0.252
0.4 650 27.10 38.70 0.252
0.4 800 27.06 38.90 0.253

(b) Performance with different t0.

Table 5: Ablation studies on η and t0.(Applying both DA Inversion and back-projection)

Furthermore, we perform ablation studies to validate the effectiveness of the proposed modules
in SSD. As depicted in Fig. 12 and Tab. 6, applying DDIM Inversion alone leads to faithful but
unrealistic results, whereas applying DA Inversion alone produces faithful and realistic results.
Moreover, the integration of consistency constraints in SSD, including back projection and attention
injection, further improves the performance.
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(a) L2 Loss plot with η (b) FID plot with η (c) L2 Loss vs FID

𝜂: 0 → 1

t0 = 400

t0 = 600

t0 = 800

LQ Image HQ Image

More Realistic

Less Faithful

More Faithful

Less Realistic

More Faithful

Less Realistic

More Realistic

Less Faithful

(d) Visualization of generated images with various hyperparameters.

Figure 11: The Faithfulness-Realism trade-off affected by η and t0(Applying only DA Inversion).

ReferenceInput

DDIM Inversion DA Inversion SSD

Figure 12: Visual comparison for ablation study. Performing DDIM Inversion leads to faithful but
unrealistic results, while performing DA Inversion only produces faithful and realistic results. And
SSD with additional consistency constraints during the generation process generates best results
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Method PSNR (↑) SSIM (↑) FID (↓) LPIPS (↓)
DDIM Inversion alone 18.24 0.448 107.04 0.558

DA Inversion alone 23.54 0.663 41.53 0.321
SSD 28.74 0.816 32.45 0.202

Table 6: Quantitative evaluation for ablation study.

H ADDITIONAL RESULTS

We provide restoration results of SSD on SR tasks at various scales (ranging from 2× to 32×) using
an average-pooling downsampler, as depicted in Fig. 14. These results demonstrate the ability of
SSD to handle diverse degrees of degradation. We also extended inpainting task on CelebA datasets,
results can be found in Table. 7 and Fig. 13

CelebA Inpaint(Random) Inpaint(Box) NFEs↓
Method FID↓ / LPIPS↓ FID↓ / LPIPS↓

DDRM 18.09 / 0.111 9.75 / 0.071 100

DPS 30.43 / 0.259 30.08 / 0.253 100

DDNM 11.47 / 0.082 10.17 / 0.062 250

SSD 11.41 / 0.094 5.56 / 0.053 100

.

Table 7: Quantitative evaluation on the CelebA datasets for Inpaint task. Red indicates the best
performance. For inpaint(random) task, we randomly drop the pixels in the image with a probability
of 0.5. For inpaint(box) task, we randomly mask images with a 96x96 rectangle.

DDRMMeasurementReference DPS DDNM SSD(ours)

Figure 13: Inpainting results on CelebA Dataset.

Additionally, We present more qualitative results and comparisons for various IR tasks and datasets,
as illustrated in Fig. 15, 16, 16, 17, 18, 19.
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2× SR 4× SR 8× SR 32× SR16× SR

Reference

Reference

𝑨† 𝐲

SSD

𝑨† 𝐲

SSD

Figure 14: Restoration results at different average-pooling downsampling scales on Celeba Dataset
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Figure 15: Image restoration results of SSD On CelebA Dataset
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Reference Measurement DDRM-100 DPS DDNM Ours

Figure 16: Comparison of results on 4× super-resoultion task using different zero-shot IR methods
on the Imagenet dataset

Reference Measurement DDRM-100 DPS DDNM Ours

Figure 17: Comparison of results on 8× super-resoultion task using different zero-shot IR methods
on the Imagenet dataset
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Reference Measurement DDRM-100 OursDDNM

Figure 18: Comparison of results on colorization task using different zero-shot IR methods on the
Imagenet dataset

Reference Measurement DDRM-100 DPS DDNM Ours

Figure 19: Comparison of results on deblurring task using different zero-shot IR methods on the
Imagenet dataset
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