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ABSTRACT

Reinforcement learning encounters challenges in various environments related to
robustness and explainability. Traditional Q-learning algorithms cannot effec-
tively make decisions and utilize the historical learning experience. To over-
come these limitations, we propose Cognitive Belief-Driven Q-Learning (CBDQ),
which integrates subjective belief modeling into the Q-learning framework, en-
hancing decision-making accuracy by endowing agents with human-like learn-
ing and reasoning capabilities. Drawing inspiration from cognitive science, our
method maintains a subjective belief distribution over the expectation of actions,
leveraging a cluster-based subjective belief model that enables agents to reason
about the potential probability associated with each decision. CBDQ effectively
mitigates overestimated phenomena and optimizes decision-making policies by
integrating historical experiences with current contextual information, mimicking
the dynamics of human decision-making. We evaluate the proposed method on
discrete control benchmark tasks in various complicate environments. The results
demonstrate that CBDQ exhibits stronger adaptability, robustness, and human-like
characteristics in handling these environments, outperforming other baselines. We
hope this work will give researchers a fresh perspective on understanding and ex-
plaining Q-learning.

1 INTRODUCTION

Figure 1: Cognitive Belief-Driven Q-Learning
Framework: includes subjective belief compo-
nents, human cognitive clusters, and BPDF. We
provide a vivid example showing how pets make
action decisions (e.g., walking, standing, jump-
ing) in response to different environmental states
(such as forest paths, oceans, and brooks).

Reinforcement learning (RL) algorithms aim to
learn optimally rewarding behaviors by mod-
eling how an agent acquires optimal strategies
through a trial-and-error process within an en-
vironment (Sutton & Barto, 2018; Sutton et al.,
1999). Although reinforcement learning has
achieved significant success in areas like gam-
ing, autonomous driving, and robotics, current
algorithms continue to encounter challenges
in addressing decision-making issues within
complex, dynamic, and uncertain environments
(Wu et al., 2024; McAleer et al., 2024; Xu et al.,
2020; Watkins & Dayan, 1992; Silver et al.,
2016; Mnih et al., 2015).

Q-learning, a cornerstone of model-free rein-
forcement learning (Watkins & Dayan, 1992;
Watkins, 1989; Barto et al., 1989), along
with its variants like Double Q Learning, has
sought to improve learning by minimizing the
mean squared Bellman error (MSBE). How-
ever, these methods often encounter challenges
such as pessimistic value estimates and theoret-
ical limitations (Ren et al., 2021; Hasselt, 2010;
Hui et al., 2024), and they frequently fail to ad-
dress the fundamental reliance on maximal value estimates (Fujimoto et al., 2018).
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To overcome these limits, we attempt to solve the problem using a novel approach: Cognitive Sci-
ence, often seen as a manifestation of human intuition. In this domain, humans typically con-
struct and adjust mental models’ subjective beliefs when confronted with uncertainty to predict
future events and make corresponding decisions (Peterson & Beach, 1967; Hastie & Dawes, 2009;
Gigerenzer et al., 1991). These mental models, grounded in the cognition and experience of the
world, empower humans to assess the potential consequences of various actions and make effective
choices in complex settings. Notably, effectively managing uncertainty during decision-making is
essential, as it directly influences both the efficiency of learning and the robustness of decisions
(Kochenderfer, 2015). By leveraging this mechanism, we apply similar mental model theories to
RL to improve the performance and adaptability of algorithms in various environments.

We present a novel direction for enhancing uncertainty optimization in deep Q-learning by inte-
grating cognitive science’s mental model with expected utility theory (Mongin, 1998). We propose
Cognitive Belief-Driven Q-Learning (CBDQ), seen in Figure 1, an off-policy Deep Q-Learning al-
gorithm applicable to both discrete and continuous states. Specifically, CBDQ incorporates:

(1) Subjective Belief Component (Soltani & Izquierdo, 2019) addresses the overestimation problem
in Q-learning. It is grounded in Subjective Expected Utility Theory (Mongin, 1998), a fundamental
component of decision theory that evaluates decision options by multiplying the utilities of actions
by their associated probabilities. By modeling subjective beliefs, agents simulate how individuals
adjust expectations, enhancing learning through probabilistic reasoning.

(2) Human Cognitive Clusters, implemented using the K-means algorithm (Ikotun et al., 2022),
emulate how humans categorize information by grouping similar states within the environment’s
state space. This method mirrors human cognition, where stimuli or situations are naturally classified
into distinct categories, and serves as an efficient tool for state representation extraction. The model
compresses high-dimensional data by clustering the state space into meaningful, low-dimensional
representations, capturing essential environmental features and reducing learning complexity.

(3) Belief-Preference Decision Framework (BPDF) integrates subjective beliefs and cognitive clus-
ters into a unified decision-making process. BPDF adapts to various state spaces, allowing agents
to base decisions on expected outcomes, past experiences (via Human Cognitive Clusters), and cur-
rent beliefs. This enables context-sensitive decision-making, closely mirroring human cognition in
complex, uncertain environments.

Empirical evaluations show that CBDQ consistently achieves higher feasible rewards in different
environments, outperforming other advanced Q-learning baselines. This work moves us closer to
human-like agents, offering innovative thinking for complex decision-making systems.

2 RELATED WORKS

The development of RL can be broadly categorized into two main directions, mathematical opti-
mization and learning process simulation both stemming from the concept of learning from delayed
rewards proposed by (Watkins, 1989).

2.1 ADVANCEMENTS MATHEMATICAL OPTIMIZATION IN Q-LEARNING

Despite efforts to address overestimation bias, Double Q-Learning (Hasselt, 2010) only partially
reduces maximization bias and may still cause underestimation in noisy environments, potentially
leading to convergence to near-optimal rather than optimal solutions (Weng et al., 2020; Ren et al.,
2021). (Wang et al., 2021) proposed ensemble Q-learning as an alternative, using multiple Q-
function approximators and conservatively selecting the minimum value. However, this strategy also
risks underestimation and performance variability due to approximation errors and the limitations of
a fixed ensemble size. In recent years, researchers have developed innovative Q-learning algorithms.
For example, (Bas-Serrano et al., 2021) introduced Logistic Q-Learning, using a homoscedastic lo-
gistic noise model to reframe value learning via linear programming. (Garg et al., 2023) proposed
Extreme Q-Learning (XQL), which utilizes a Gumbel noise source along with the LINEX loss func-
tion to more effectively capture the asymmetry in Q-value distributions. (Hui et al., 2023) developed
Double Gumbel Q-Learning (DoubleGum), incorporating two heteroscedastic Gumbel noise sources
and an adjustable pessimism factor to mitigate estimation bias. These approaches offer crucial theo-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

retical and practical advancements for resolving Q-learning biases. While these optimization-based
methods have partially addressed estimation bias, they remain incremental improvements within the
Q-learning framework. Logistic Q-Learning has limited use in complex environments, XQL strug-
gles with diverse uncertainties, and though DoubleGum offers a broader theoretical framework, it
still faces key challenges, notably the lack of proven convergence. One might question: Is there a
unique way of thinking that can improve algorithms like Q-learning?

2.2 LEARNING PROCESS INSIGHT ALGORITHMS IN REINFORCEMENT LEARNING

Ongoing development in human-like science and RL have increasingly focused on integrating
human-like reasoning and beliefs, key components of learning process-oriented algorithms. These
models aim to emulate human decision-making by adapting beliefs and strategies based on experi-
ence. Complementing these efforts, (Barber, 2012) discusses Bayesian reasoning frameworks that
incorporate prior knowledge to manage uncertainty effectively. Building on this, (Carroll et al.,
2019) explored collaboration by integrating learned human policies into Q-learning. More recently,
(Zhang et al., 2021) introduced Solipsistic Reinforcement Learning, extracting human-perspective
state representations, while (Hu et al., 2021) developed Off-Belief Learning (OBL), allowing agents
to reason about others’ actions with dynamic beliefs. Additionally, (O’Donoghue, 2021) proposed
Variational Bayesian Reinforcement Learning, which offers a novel approach to balancing explo-
ration and exploitation using a risk-seeking utility function. This method introduces a new Bellman
operator with associated fixed points, termed ’knowledge values,’ which compress both expected
future rewards and epistemic uncertainty into a single value. These approaches enhance AI adapt-
ability and align reinforcement learning with human cognition.

3 PROBLEM FORMULATION

Markov Decision Processes (MDP) To solve a RL problem, the agent optimizes the control policy
under an MDP M, which can be defined by a tuple (S,A, pT , r, µ0, γ, T ) where: 1) S and A denote
the space of states and actions. 2) pT (st+1|st, at) and r(st, at) define the transition probability and
reward function. 3) µ0 defines the initial state distribution. 4) γ ∈ (0, 1) is the discount factor and T
defines the planning horizon. The goal of the RL policy π(a|s) is to maximize expected discounted
rewards:

argmax
π

Eπ,pT ,µ0

[ T∑
t=0

γtr(st, at)
]

(1)

We define the action value function given a policy π:

Q(s, a) = Eπ,pT ,µ0

[ T∑
t=0

γtr(st, at) | s0 = s, a0 = a
]

(2)

and the optimal Q function is:

Q∗(st, at) = Eπ,pT ,µ0
[r(st, at) + γQ∗(st+1, a)] (3)

One of our goals is that Q is guaranteed to converge to Q∗(s, a) as t → ∞:

lim
t→∞

Q(st, at) = Q∗(st, at) (4)

Overestimation Error Letting Q(st, at;ϕi) be the action-value function of Q-learning (Watkins &
Dayan, 1992) at iteration i, we follow terminology from (Anschel et al., 2016). We denote ŷis,a is
the Q-learning target estimation, and yis,a is the true target:

ŷis,a = EB

[
r(st, at) + γmax

a
Q(st+1, a;ϕi−1)|st, at

]
, (5)

yis,a = EB

[
r(st, at) + γmax

a
(yi−1

st+1,a)|st, at
]
. (6)

3
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where B is a replay buffer. We denote Zi
st,at

the target approximation error (TAE), and Ri,err
st,at

is the
overestimation error, namely

Zi
st,at

= Q(st, at;ϕi)− ŷist,at
(7)

Ri,err
st,at

= ŷist,at
− yist,at

(8)

(Thrun & Schwartz, 2014) considered the TAE Zi
st,at

as a random variable uniformly distributed
in the interval [−ϵ, ϵ]. Due to the max operator in the target estimation ŷist,at

, the expected overes-
timation errors Ez[R

i,err
st,at

] are upper bounded by γϵk−1
k+1 . K is the number of actions. We attempt

to overcome this overestimation issue with a unique approach and enhance the capabilities of Q-
learning methods.

4 MODELLING SUBJECTIVE BELIEF DISTRIBUTION IN Q-LEARNING
FRAMEWORK

In this work, we address a fundamental question: How does integrating subjective beliefs refine
decision-making within a Q-learning framework? We propose a novel method, Cognitive Belief-
Driven Q-Learning (CBDQ) to incorporate human-like subjective belief components into RL. By
leveraging Subjective Expected Utility Theory (SEUT), we dynamically update an agent’s belief
distribution over time, reflecting evolving perceptions of rewards, actions, and states.

4.1 EXPECTED UTILITY THEORY AND Q-LEARNING: A COGNITIVE PERSPECTIVE

To closely mirror human cognitive processes, we consider integrating SEUT into RL. SEUT offers a
structured framework for decision-making under uncertainty by individual’s belief preference, pro-
moting actions that maximize the weighted sum of outcome utilities. This framework aligns seam-
lessly with MDPs, where the value function represents a specific form of expected utility derived
from discounted returns.

Proposition 4.1 Consider a decision-making scenario in a MDP, where the complete set of possible
outcomes is represented by X . Let bt(· | st+1) represent the agent’s belief distribution over possible
actions in the next state st+1, and ut(s, x) be the utility of outcome x in state s. Then the expected
utility Ut(s, x) at time t is given by:

Ut(s, x) =
∑
x∈X

bt(· | st+1) · ut(s, x) (9)

Proposition 4.1 elucidates how individuals evaluate the utility of various actions within a MDP. It
not only reflects the core tenets of SEUT but also provides a foundation for understanding learning
processes. SEUT simulates how decision-makers assess potential outcomes through a weighted sum
of utilities, which directly corresponds to the term bt(· | st+1) · ut(s, x) in our formulation. The
subjective belief component bt(· | st+1) represents an individual’s belief, providing flexibility and
robustness for modeling beliefs under uncertainty, aligning our model more closely with human cog-
nitive processes. This characteristic aligns with the closely related cognitive processes proposed by
(Tversky & Kahneman, 1992). Concurrently, research by (Hogarth & Einhorn, 1992) demonstrates
that individuals revise their beliefs based on new information and experience.

4.2 EVOLVING BELIEFS IN Q-LEARNING

As outlined in proposition 4.1, the expected utility Ut(s, a) in a MDP is computed from transition
probabilities, rewards, etc. The CBDQ algorithm extends this by replacing the maximum Q-value
update with a belief-weighted average of Q-values. We confirm that our Q function can converge to
the Q∗.

Theorem 4.1 Given a finite MDP, the Cognitive Belief-Driven Q-Learning (CBDQ) algorithm, as
given by the update rule:

Qt+1(st, at) = Qt(st, at) + αt(st, at)

[
r(st, at) + γ

∑
a

bt(a | st+1)Qt(st+1, a)−Qt(st, at)

]
(10)
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converges with probability 1 to the optimal Q-function, as long as:∑
t

αt(st, at) = ∞,
∑
t

α2
t (st, at) < ∞ for all (st, at) ∈ S ×A. (11)

To establish Theorem 4.1, we need an auxiliary result from stochastic approximation. You can check
the convergence proof section in Appendix D.

It is important to note that while our method bears formal similarities to Expected SARSA, the in-
troduced belief distribution bt(a | st+1) fundamentally differs from the agent’s actual action policy.
bt(a | st+1) represents the agent’s subjective estimation of future states and rewards, influencing Q-
value updates without directly determining action selection. The exploration policy (e.g., ϵ-greedy)
is responsible for action selection, ensuring comprehensive exploration of all state-action pairs. For
algorithm convergence, bt(a | st+1) must converge over time to selecting the action with the maxi-
mum Q-value, while the exploration policy maintains randomness to ensure non-zero probability of
visiting all states. A parametric form for bt(a | st+1) can be updated based on state transitions and
rewards, similar to the probability smoothed Q-learning approach. (See Appendix A for more on the
differences between Expected SARSA and CBDQ.)

Now we will demonstrate how CBDQ addresses the overestimation issue and introduce a lemma to
assist us in solving this problem.

Lemma 4.1 Consider a MDP with state st+1 and actions a, along with Q-value estimates
Q̃t(st+1, a), where Q̃t(st+1, a) is assumed to be unbiased for each a. Let bt(a | st+1) denote
the probability of selecting action a in state st+1. By Jensen’s inequality, for any convex function f
and random variable X , E[f(X)] ≥ f(E[X]). Applying this to our setting yields:

∑
a

bt(a | st+1)Q̃t(st+1, a) ≤ max
a

Q̃t(st+1, a) (12)

Lemma 4.1 establishes the theoretical basis for using subjective belief probability distributions in
Q-value updates. By incorporating a belief distribution, the target value

∑
a bt(a | st+1)Qt(st+1, a)

acts as a ”downward estimate” of the maximum Q-value, reducing overestimation and improving
the stability and reliability of Q-value updates.

(a) Convergence of Belief Q-Learning vs Standard
and Double Q-Learning

(b) Maximization Bias in Q-learning: Action Selec-
tion from Suboptimal States

Figure 2: Two key aspects of maximization bias in Q-learning and its variants. (a) compares the con-
vergence of |Q̃−Q∗| across belief Q-learning, standard Q-learning, and Double Q-learning. Belief
Q-learning significantly reduces overestimation of Q-values while converging faster than Double
Q-learning. (b) shows the fraction of times the suboptimal ”Left” action is chosen from state A,
demonstrating the effect of maximization bias in standard Q-learning.

We conducted experiments based on Example 6.7 in (Sutton & Barto, 2018)’s research (MBP) to
verify the effectiveness of dynamically updating the subjective belief model. Four smoothing strate-
gies, each employing a different fixed subjective belief probability model (Softmax, Clipped Max,

5
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Clipped Softmax, and Bayesian Inference), detail in Appendix C are compared with Q-learning and
Double Q-learning to demonstrate the universality and accuracy of the dynamic updating mechanism
for managing uncertainty.

Figure 2 highlights differences in convergence speed and estimation bias across algorithms, with Be-
lief Q-learning using Bayesian inference showing superior stability and convergence to the optimal
value, underscoring the importance of dynamic belief updating and prior knowledge in decision-
making (Barber, 2012).

Our studies suggest that relying solely on Q-values for probability models lacks robustness in diverse
environments. Even Bayesian inference, while incorporating prior knowledge, is constrained by
fixed distribution models. In contrast, human decision-making dynamically adjusts subjective belief
probabilities based on accumulated experience, enabling better adaptation to complex and changing
environments.

4.3 BELIEF INTERACTION AND UPDATE

Because of the limitations of fixed belief frameworks, we explore the application of dynamic beliefs
from the perspective of learning processes. Figure 1 illustrates animals’ subjective belief-based
decision-making process in various contexts. This process reflects how agents simplify decision-
making through state-space clustering, utilizing a strategy that groups states based on shared features
(Liu et al., 2024).

Figure 3: Cognitive Cluster Visualization for Lu-
narLander. We utilized the t-SNE algorithm to
map the high-dimensional state features into 3 di-
mensions. The orange points represent newly re-
ceived states. If the closest cluster to them is Clus-
ter 2, they will be automatically classified into
Cluster 2.

To model belief interaction and update, we
introduce Belief-Preference Decision Frame-
work (BPDF), which offers a structured ap-
proach to decision-making by integrating hu-
man prior knowledge with immediate belief up-
dates. This framework enhances the efficiency
and interpretability of decisions in complex en-
vironments. The model utilizes human expert
knowledge to identify and select informative
state features for representation learning. Ad-
ditionally, clustering algorithms are applied to
partition the state space S into N semantically
meaningful and internally consistent clusters
{Cn}Nn=1, Figure 3 presents an example within
the Box2D environment, adhering to the fol-
lowing formal criteria:

S =

N⋃
n=1

Cn, Ci ∩ Cj = ∅,∀i ̸= j (13)

Human cognition and belief formation are grad-
ual processes, where early decisions rely on im-
mediate rewards. Cognitive science research
suggests that in uncertain environments, hu-
mans initially depend on short-term feedback,
progressively incorporating long-term prefer-
ences as experience accumulates (Doya, 2007;
Gershman et al., 2015). This shift from reward-
driven choices to informed decisions underpins
the dynamic belief framework we propose. The clusters in our model balance real-time beliefs
with prior preferences, mirroring human cognition. This process ensures that, as the agent refines
its beliefs, action selection converges to the optimal one, guaranteeing maximum utility. To bal-
ance immediate beliefs and prior preferences, the BPDF model updates subjective belief distribution
bt(a | st+1):

bt(a | st+1) = (1− βt) · b̂t(a|st+1) + βt · pk(a|st+1) (14)
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where βt ∈ [0, 1] is a time-varying weight parameter that balances the influence between b̂t(a |
st+1), representing the smoothed immediate reward strategy, and pk(a | st+1), which reflects the
subjective belief distribution for action selection in state st+1. After executing each action at, the
BPDF model records the state-action pair in the corresponding cluster Ck and updates pk(a|st+1)
accordingly. This iterative process allows the model to continuously refine its decision-making
strategy by integrating newly acquired knowledge while leveraging prior beliefs. The BPDF records
action choices within each state cluster Ck, computing the action selection probability distribution
pk(a|st+1):

pk(a|st+1) =
f(a | s ∈ Ck)∑

ã∈A f(ã | s ∈ Ck)
(15)

The clustering approach in our model, inspired by natural categorization mechanisms observed in
human and animal cognition, plays a crucial role in extracting meaningful representations from com-
plex state spaces (Botvinick et al., 2020; Rudin, 2019). This process, known as conceptualization
or categorization in cognitive science, enables efficient deciding intricate environments by classi-
fying similar states based on experience (Rosch & Mervis, 1975; Markman & Ross, 2003). Unlike
models with fixed probability spaces, the dynamic belief updating mechanism optimizes decision-
making by continuously adapting to changes, effectively compressing high-dimensional state spaces
into manageable representations.

Algorithm 1 Cognitive Belief-Driven Q-Learning Algorithm

Input: Q function Q(s, a;ϕ), target Q functionQ(s, a;ϕ−), learning rate α, discount factor γ, run-
ning steps T , episodes E, replay buffer B and exploration probability ϵ

Output: QCBDQ(s, a;ϕT )
1: Initialize Q(s, a;ϕ) with random weights ϕ0;
2: Initialize replay buffer B with a fixed length;
3: Initialize Belief-Preference Decision Framework (BPDF) {Cn}Nn=1;
4: Initialize a ϵ-greedy exploration procedure: Explore(·)
5: for i = 0 ; i < E ; i++ do
6: Get initial state s0 from the environment
7: for t = 0 ; t < T ; t++ do
8: Choose action at using ϵ-greedy: at ∼ U(0, 1)
9: Execute at to get reward r(st, at), next state st+1

10: Store (st, at, r(st, at), st+1) into B
11: Find the cognitive cluster Ci of st, update the count of at in Ci
12: Sample N tuples from B to update Q function:
13: yist,at

= EB [r(st, at) + γ
∑

a bt(a | st+1)Q(st+1, a;ϕ
−)|st, at]

14: The computation of bt(a | st+1) in Equation 14 dynamically integrates immediate
rewards and subjective beliefs, enabling continuous adaptation based on evolving information.

15: Loss = EB
[
(yist,at

−Q(st, at;ϕ))
2
]

16: Update ϕ−;
17: end for
18: end for

5 EXPERIMENT

Running Setting. For a comprehensive comparison, we employ Feasible Cumulative Rewards
metric, which calculates the total rewards accumulated by the agent across all environments (higher
is better). We run experiments with three different seeds (123, 321, and 666) and present the mean
± std results for each algorithm. To ensure a fair comparison, we maintain the same settings and
parameters for all baselines. Our code is implemented based on the XuanCe benchmark (Liu et al.,
2023). Appendix E.4 reports the detailed parameters.

Comparison Methods. We consider CBDQ (Algorithm 1) alongside the following baselines: (1)
DQN (Mnih et al., 2013) approximates the action-value function using a deep neural network, with

7
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Figure 4: Feasible cumulative rewards. From left to right, the environments are Cartpole, CarRacing
and LunarLander.

experience replay and target networks for stabilization. (2) DDQN improves on this by separat-
ing action selection from value estimation, reducing overestimation bias. (3) DuelDQN further
enhances learning efficiency through a dual-stream architecture that individually estimates state val-
ues and action advantages. (4) PPO uses a clipped objective function for stable policy updates,
balancing exploration and exploitation while maintaining a trust region for policy improvements.

5.1 EMPIRICAL EVALUATIONS IN PHYSICAL SIMULATION ENVIRONMENTS

The environments shown in Figure 4 and Appendix F highlight the performance of various RL algo-
rithms across three distinct Classic Control and Box2D tasks (Towers et al., 2024; Parberry, 2017).
The leftmost column displays the Cartpole environment, where agents are tasked with balancing
a pole on a moving cart. Next is the Acrobot environment, where the goal is to swing a two-link
arm to reach a specific height. The third column showcases the CarRacing task, a more complex
scenario where agents must control a car to drive smoothly along a racetrack. Finally, the rightmost
column presents the LunarLander environment, where agents must carefully land a spaceship on the
moon’s surface. Each environment progressively tests different control and decision-making skills,
from balancing and swinging dynamics to managing more complex trajectories and landings.

Figure 4 illustrates CBDQ significantly significant improvements with faster convergence by lever-
aging subjective belief modeling and cognitive clustering. It outperforms all other approaches, gen-
erating stable, high-reward trajectories that closely resemble optimal policies. In contrast, without
the BPDF, traditional Q algorithms struggle with slower convergence and lower final rewards. While
PPO shows moderate improvements, it still suffers from inefficiencies in these environments.

5.2 EMPIRICAL EVALUATIONS IN COMPLEX TRAFFIC SCENARIOS

Figure 5: Feasible cumulative rewards. From left to right, the maps are SrOYCTRyS, COrXSrT,
rXTSC, and YOrSX.

To evaluate the human-like decision-making and path-planning capabilities of our algorithm, we
employ four complex environments within MetaDrive, each designed to mimic real-world driving

8
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scenarios that require human-like adaptability (Li et al., 2022). Different letter combinations repre-
sent various types of road combinations. More detail of map design is in the Appendix.

Figure 5 and Appendix F present the obvious advantages of CBDQ, particularly in emulating human-
like learning and decision-making. Compared to other algorithms, CBDQ demonstrates faster learn-
ing, greater stability, and superior final performance. Traditional Q-learning methods like Double
DQN, Duel DQN, and DQN show significantly slower convergence and achieve lower rewards,
indicating their limitations in handling the complexity of this environment. Unlike PPO, which of-
ten converges to suboptimal solutions, CBDQ’s learning curve rises quickly and steadily improves,
reflecting its ability to adapt and optimize in complex environments, avoiding local optima. Its
strong adaptability to high-dimensional state spaces, dynamic obstacles, and varied road conditions
mirrors human decision-making under uncertainty. The superior trajectory smoothness, intersection
handling, and road structure adaptability of CBDQ underscore its progress in replicating human-like
driving behavior.

Figure 6: This figure compares the performance of different reinforcement learning algorithms under
varying traffic densities (0.1, 0.3, 0.5, and 0.8) in the XTOC Map.

To assess driving control and decision-making at varying levels of difficulty, we conducted exper-
iments with different traffic densities on the XTOC map. As traffic density increased, the system
faced progressively complex challenges. Each sub-graph reflects the rewards obtained by agents as
they learn to navigate through traffic at increasing levels of density.

Figure 6 and Appendix F highlight the superior performance of CBDQ across varying traffic den-
sities, excelling particularly under high-density conditions. As traffic density increases, decision
complexity grows, testing the system’s ability to manage more intricate scenarios. While low-
density traffic primarily challenges basic driving functions, high-density conditions require more
complex decision-making and adaptive path adjustments. Leveraging the BPDF framework, CBDQ
efficiently handles long-term planning, multi-lane interactions, and real-time risk management, con-
sistently achieving higher reward values. PPO and traditional Q methods, though stable at moderate
traffic densities, exhibit greater fluctuation in learning and decision-making under low- and high-
density traffic, ultimately lagging behind CBDQ in both consistency and rewards.

In this experiment, we compare the performance of various algorithms under progressively increas-
ing accident probabilities to evaluate their adaptability and decision-making capabilities in high-risk
driving scenarios on the SSSC map (See Figure 7 and Appendix F). As the probability of accidents
rises from 0.1 to 0.8, the complexity of the driving environment intensifies, requiring the algorithms
to navigate regular driving challenges while also responding swiftly to sudden and unexpected risks.
This setup tests the algorithms’ ability to manage real-time dynamic environments, focusing on their
long-term planning, risk avoidance, and decision stability under escalating uncertainty.

The experimental results indicate that CBDQ consistently outperforms other algorithms across all
accident probability levels. At low and moderate accident rates, CBDQ demonstrates robust learning
and stability, handling basic driving challenges while adapting efficiently to moderate risk scenar-
ios. However, its advantage becomes more pronounced in high-risk environments, where accident
probabilities reach 0.8. In these situations, CBDQ shows superior decision stability and maintains
higher reward values compared to algorithms like PPO and DQN, which exhibit greater volatility
and struggle to maintain performance as risks escalate. This highlights the strength of CBDQ’s

9
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Figure 7: This figure compares the performance of different reinforcement learning algorithms under
varying accident probability (0.1, 0.3, 0.5, and 0.8) in the SSSC Map.

belief-driven decision-making framework in navigating uncertainty and managing sudden hazards
in dynamic driving environments.

6 FUTURE INSIGHT

Expanding to Continuous Control Domains. Building on our success in discrete environments,
we are exploring ways to adapt our framework to continuous control scenarios. This involves in-
tegrating cognitive science principles with advanced reinforcement learning techniques, aiming for
more flexible and robust decision-making in complex, continuous action spaces.

Human-like Learning Processes in Reinforcement Learning. CBDQ provides new insights for
future reinforcement learning, particularly in emulating human learning processes. Future algo-
rithms are expected to increasingly simulate human concept formation and abstract reasoning, with
cognitive clustering evolving into autonomously formed conceptual hierarchies. Additionally, dy-
namic belief updating mechanisms point toward adaptive learning rates and exploration strategies,
where algorithms adjust based on task complexity and learning progress. CBDQ’s strengths in un-
certainty management and long-term planning suggest that human decision psychology will play a
greater role in future reinforcement learning.

7 CONCLUSION

This study introduces the Cognitive Belief-Driven Q-learning (CBDQ) algorithm, integrating cog-
nitive science principles with reinforcement learning to enhance efficiency and interpretability in
complex environments. CBDQ incorporates subjective belief probabilistic reasoning and cogni-
tive clustering for state space representation, demonstrating superior performance over traditional
Q-learning and advanced algorithms like PPO. This research has broad implications for AI, poten-
tially catalyzing interdisciplinary innovations toward more intelligent, interpretable, and adaptable
systems capable of interesting environments.
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