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Abstract

The content of visual and audio scenes is multi-faceted such that a video stream can
be paired with various audio streams and vice-versa. Thereby, in video-to-audio
generation task, it is imperative to introduce steering approaches for controlling the
generated audio. While Video-to-Audio generation is a well-established generative
task, existing methods lack such controllability. In this work, we propose VATT, a
multi-modal generative framework that takes a video and an optional text prompt
as input, and generates audio and optional textual description (caption) of the
audio. Such a framework has two unique advantages: i) Video-to-Audio generation
process can be refined and controlled via text which complements the context
of the visual information, and ii) The model can suggest what audio to generate
for the video by generating audio captions. VATT consists of two key modules:
VATT Converter, which is an LLM that has been fine-tuned for instructions and
includes a projection layer that maps video features to the LLM vector space, and
VATT Audio, a bi-directional transformer that generates audio tokens from visual
frames and from optional text prompt using iterative parallel decoding. The audio
tokens and the text prompt are used by a pretrained neural codec to convert them
into a waveform. Our experiments show that when VATT is compared to existing
video-to-audio generation methods in objective metrics, such as VGGSound audio-
visual dataset, it achieves competitive performance when the audio caption is
not provided. When the audio caption is provided as a prompt, VATT achieves
even more refined performance (with lowest KLD score of 1.41). Furthermore,
subjective studies asking participants to choose the most compatible generated
audio for a given silent video, show that VATT Audio has been chosen on average
as a preferred generated audio than the audio generated by existing methods. VATT
enables controllable video-to-audio generation through text as well as suggesting
text prompts for videos through audio captions, unlocking novel applications such
as text-guided video-to-audio generation and video-to-audio captioning.

1 Introduction

The combination of human perception and cognition represents a “multi-modal” way of processing
and interpreting scenes. For example, when we are presented with a silent video of a fountain show
attended by a crowd of people gathered around the spectacle our interpretation might translate the
visual scene into an auditory experience, where the visuals are semantically processed and transformed
into a corresponding sound narrative in our mind. Thus, we may associate audio that mixes sounds
of splashing water accompanied by people talking and laughing with possibly background music in
sync with the fountain.

∗Department of Electrical & Computer Engineering, University of Washington, Seattle, USA.
†Department of Applied Mathematics, University of Washington, Seattle, USA
‡Corresponding author: shlizee@uw.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: VATT is a flexible audio generative model capable of generating audio in two modes: i)
When a silent video is the sole input, the model generates the audio along with a caption describing
the possible audio that could match the video. ii) When in addition to the video, a text prompt is
provided, the model generates audio aligned with both the video and the given text prompt.

As generative AI continues to progress, the incorporation of the aforementioned aspects into generative
platforms presents itself as the future desirable capability. In particular, the goal of an ideal video-to-
audio generative model would be to generate sounds that seamlessly match the video temporally and
fully capture the semantics. Moreover, it is desirable to control such a generation process towards the
themes and sounds that match user preference. Recent state-of-the-art approaches have adopted two
types of generative modeling techniques: auto-regressive token-based modeling and diffusion-based
modeling. These methods enable end-to-end video-to-audio generation and are applicable across a
wide variety of video and audio categories. However, while these methods are capable of capturing
the general semantics of sound sources in videos, they often overlook the subtleties of the context.
For example, in a video depicting two cats in a territorial dispute, the model might produce a calm,
amiable meowing sound, which contradicts the contentious nature of the scene. This discrepancy
mainly stems from the limitations of the vision encoder, which struggles to distinguish between
varying sound properties emitted by identical sound sources across different contexts, due to an
incomplete understanding of the entire scene. Second, these methods lack controllability since
the generation is conditioned only on visual frames, without taking into account the context and
interpretation of the sounds. While text-to-audio models could explicitly control the context of the
sounds, such models are based on text only without incorporating the rich and dynamic context of
visuals, which could significantly inform video and audio alignment. Indeed, text only generative
outcomes often result in unmatched audio with the visual (e.g., temporal misalignment or semantic
loss).

To solve the above challenges, we propose a novel framework, Video-to-Audio Through Text (VATT),
that is able to generate audio from both video frames and an optional text prompt describing the
expected sounds. VATT consists of two modeling stages: i) Video-to-Caption stage, which converts
video features into an audio caption through a pretrained large language model (LLM) with a learnable
projection layer. Through this cross-modal conversion, visual features that are relevant to audio
concepts are extracted. These features are closely connected to audio-related tasks such as audio
captioning and audio generation. ii) Video + Text to Audio stage, that generates audio conditioned
on the hidden states extracted from the LLM in the prior modeling stage. At its core, the proposed
model in this stage is a bi-directional transformer decoder that generates audio using a token-based
representation similar to [1, 2]. To obtain the conditioning on the hidden states of the preceding
component, the projected video features along with the optional text prompts are concatenated
together and fed into the LLM in stage i), with the hidden states from the last layer extracted and
attached to the audio tokens for the decoder. The decoder is trained using masked token modeling,
where the objective is to predict masked audio tokens from unmasked ones at varying masking ratios.
During inference, starting from all tokens being masked, an efficient parallel decoding algorithm is
implemented which gradually unmasks multiple tokens in parallel based on video and text inputs until
a stop condition is met. Finally, the generated tokens are converted into audio waveforms through a
neural audio codec decoder.
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We perform experiments with the proposed framework on existing large-scale audio-visual datasets
such as VGGSound [3] and Audioset-2M [4]. To facilitate training and evaluation with text, we created
“V2A Instruction”, a large-scale synthetic audio captions corpus, by prompting LTU-13B, an existing
Audio LLM [5], to generate audio descriptions for both datasets. Our experiments demonstrate
that the proposed model and its training method achieve competitive performance in comparison to
previous video-to-audio methods on both objective and subjective metrics. Furthermore, it is designed
to enable a controllable generation that adheres to both the video inputs and the text prompts. Indeed
when a text prompt is provided, our experiments show significant improvement in audio metrics that
measure the match of the generated sounds to the video. In addition, when the text prompt is not
provided, our method can generate reasonable audio captions, which can be utilized for a potential
description of the video or classification of sounds for a given video. These capabilities hence make
VATT a multifaceted single model able to perform both text-guided video-to-audio generation and
video-to-audio captioning. To summarize our contributions:

• To our best knowledge, we propose a first-of-its-kind framework that enables both text-guided
video-to-audio generation and video-to-audio captioning through the integration of LLM.

• We create a large-scale synthetic audio captions dataset that facilitates text-conditional training and
generation.

• Our method achieves state-of-the-art video-to-audio generation performance when compared with
existing methods and enables text-controllable generation. In particular, our text-guided model
surpasses existing SOTA in terms of KLD score (with lowest KLD score of 1.41) by a significant
margin.

• VATT generates audio in an efficient way - an order of magnitude faster than existing methods.

2 Related Works

2.1 Visual-to-Audio Generation

Visual-to-Audio Generation task has drawn significant attention since generative frameworks such
as diffusion and transformer-based architectures have been developed. Existing Visual-to-Audio
generation approaches can be divided into two branches of studies based on audio categories: visual-
to-music generation and visual-to-natural sound generation. In visual-to-music generation domain,
earlier studies explored Midi or spectrogram generation from human body movements by studying
the temporal and semantics alignment [6, 7, 8, 9, 10]. More recently, diffusion-based methods
have been proposed to generate music waveforms directly from videos [11]. In visual-to-natural
sound generation, earlier efforts pioneered the generation of sounds linked to various objects and
materials [12]. Later works proposed an audio generation approach based on SampleRNN [13, 14]
that could generate several types of natural sounds from in-the-wild videos. While these approaches
showcase promising results, they are often limited to specific audio categories. Neural codec [15,
16, 17, 18] and autoregressive transformer architectures [19, 20] addressed these limitations and as
they have evolved, generative models now effectively generalize across a broader range of sounds
or music, leveraging compressed latent spaces [21, 22, 23, 24]. Similar advances have been shown
with diffusion techniques such as [25, 26]. However, these methods often lack detailed sound control
and their inference time turns out to be consuming. Our work aims to address these limitations
by introducing a text-guided framework to improve controllability and efficiency in video-to-audio
generation. While there are several concurrent works that aim to achieve partially similar goals to our
proposed method [27, 28, 29], our work is different since it is designed to achieve these capabilities
within a single unified framework.

2.2 Text-to-Audio Generation

As an alternative to the generation of audio from video, text can be used as an input to guide audio
generation. When text is the input, audio generation becomes more controllable semantically. Existing
approaches such as Make-An-Audio [30], AudioLDM [31], AudioLDM-2 [32] and others [33, 34, 34,
35] enable general text-to-audio (or music) generation by adapting latent diffusion techniques, first
developed in [36]. Concurrently, methods such as AudioGen [37], MusicGen [38], AudioLM [39],
MusicLM [40], SoundStorm [2], VampNet [41] leverage transformer-based architectures and token-
based modeling techniques to produce audio tokens, that are then decoded into waveforms using
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neural codecs like Encodec [18] and SoundStream [42]. Notably, SoundStorm and VampNet use
an efficient technique known as masked token-based modeling which speeds up generation with
parallel unmasking in the decoder. In our work, we consider a similar approach. While these models
deliver high-quality audio with strong relevance to the text, they do not necessarily align with visual
dynamics when adapted to video-to-audio generation. This is expected since such models have not
been trained to attend to visual inputs. Our work addresses this by integrating a pretrained large
language model (LLM) as a multi-modal encoder that processes both visual and textual inputs such
that the generated audio considers both visual and text information.

2.3 Multi-modal Large Language Models

Multi-modal Large Language Models (MLLMs), have been able to attain significant progress. With
the advent of open source, pretrained and instruction-tuned LLMs such as LLama [43], Alpaca [44],
Vicuna [45]. In particular, when extending these LLMs into MLLMs, a pretrained modality-specific
encoder extracts the features and then a projection layer maps these features into vectors of the same
dimension as text embeddings of the corresponding LLM. This approach led to developments in visual
LLMs [46, 47], audio LLMs [5, 48], audio-visual LLMs [49] and showed improvement in multi-modal
understanding tasks such as captioning [50] and question-answering [51, 52]. Recent efforts have
also focused on tasks such as multi-modal retrieval [53], multi-modal embodied navigation [54, 55],
leveraging LLM’s strong reasoning capabilities to interpret or improve the results. In terms of
generation, several works [56, 57] aimed at achieving any-to-any modality generation using LLMs
as a central medium. While these methods have been successful in general modality-to-modality
generation, they do not achieve particular end-to-end video-to-audio generation, with or without text
guidance, which is the unique direction our work focuses on.

3 Methods

VATT is a flexible vision-to-audio generative framework that can process both visual and textual
inputs and generate both audio waveforms and captions of audio. To achieve this, VATT consists of
two modeling stages: i) Video-to-Caption : This stage utilizes a Large Language Model (LLM) with
a learnable projection layer that converts video features into embeddings compatible with the LLM.
The model receives an instruction to generate audio captions from video inputs. ii) Video + Text
to Audio: This stage incorporates an encoder-decoder architecture. The encoder uses the finetuned
LLM from Video-to-Caption stage with frozen weights. The decoder is a bi-directional transformer
trained to generate audio tokens using masked token modeling techniques in training. The training
pipeline of VATT system is shown in Figure 2. During inference, VATT generates audio tokens from
video and optional text prompts through iterative parallel decoding. These tokens are then converted
into audio waveforms using Encodec [17].

3.1 Video-to-Caption Stage

VATT Converter is designed to integrate visual and textual prompts for audio generation as well
as audio captioning. The core component, VATT Projector, is an embedding layer that maps video
features into the text embedding space of the LLM. Given visual features extracted from frame-
level vision encoders Vf = {v1, v2, ..., vT }, a Linear layer is applied to project each feature from
its original dimension dv to the LLM text embedding dimension dlm, producing a sequence of
transformed features Vlm = VfWl + bl, where Wl and bl are learnable parameters of the linear
projection.

V2A Instruction Tuning: The key functionality of VATT Converter is to extract from visual
stream semantic features relevant to audio. Drawn on the success of multi-modal LLMs, such
as visual-LLM [46] and audio-LLM [5], we employ multi-modal instruction tuning to align the
visual inputs of videos with the ground truth audio captioning of the same videos. Given a prompt
instruction, Ti = {ti1, ti2, ..., tiK}, such as “Describe the audio that the video could generate:" and
the projected visual features Vlm as inputs, we model conditional distribution of audio descriptions
Ta = {ta1, ta2, ..., taN}, as Pθ(Ta|Ti, Vlm) by fine-tuning an instruction-tuned LLM, e.g., Vicuna-
7B [45]. Unlike typical instruction-tuning that maps a signal into textual concepts within the same
modality, our method bridges the concepts from visual to audio modality, unifying the representation
for text-guided video-to-audio generation task that we describe in section 3.2. For training efficiency,
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Figure 2: Two stages of VATT system training pipeline: (1) Video-to-Caption stage that maps video
features into an audio caption through LLM. (2) Video + Text to Audio stage that learns to generate
audio tokens through masked tokens prediction conditioned on Stage (1) features.

we fine tune the LLM with VATT Projector by integrating LoRA [58] adaptors while keeping the
original LLM weights frozen. We minimize the negative log-likelihood of audio caption tokens
conditioned on visual inputs and prompt instruction

Lv2t

(
T̂a | Ti, Vlm

)
= −

N∑
l=1

log
[
Pθ

(
t̂al = tal | Ti, Vlm

)]
, (1)

where tal is the l-th text token in the ground truth audio description Ta, and θ is the set of trainable
weights including VATT Projector and LoRA adaptor. Further details of the constructions of text
prompts and synthesis of audio captions are described in Section 4 and Appendix C.

3.2 Video + Text to Audio Stage

Once the audio-related visual features are aligned with the text features in the LLM embedding
space, the LLM effectively encodes multi-modal information that serves as a representation for text
generation and audio generation. Indeed, in the second stage of VATT, there are two generation
modes to generate audio: i) When no conditional text prompt is provided, the video features along
with a standard template prompt (e.g., “Describe possible audio that the video could infer.”) are fed
as inputs to VATT Converter. ii) When an audio caption is provided as the text prompt, the video
features and the audio caption are fed together into VATT Converter. In such a case, the provided
audio caption helps guide the video-to-audio generation process and overrides the need for generated
audio caption.

3.2.1 Audio Token Decoder

To generate audio, we design an audio token-based decoder, VATT Audio, conditioned on the encoded
features from VATT Converter. In contrast to existing methods, which typically use auto-regressive
token modeling [37, 38, 23] or latent diffusion techniques [31, 32], we adopt a novel token-based
modeling technique based on masking tokens. The method, originally derived in image generation
tasks [1] and recently adapted to text-to-audio generation [2, 41], is capable of achieving competitive
generation quality while improving efficiency through an iterative parallel decoding algorithm during
inference.

Token-based Representation for Audio To represent audio waveforms using discrete tokens, we
adopt a pretrained audio neural codec, Encodec [17], similarly to FoleyGen [23]. Encodec is a
multi-level residual vector-quantized (RVQ) autoencoder trained with waveform reconstruction and
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Figure 3: Audio Tokens Decoder: VATT Audio is a bi-directional transformer that models the audio
tokens and the conditioning inputs (LLM hidden states) jointly. We extract the part that corresponds
to the audio features and apply L Linear layers in parallel to perform classification on masked tokens
at each codebook layer.

adversarial objectives, capable of high-fidelity reconstruction from compressed tokens. Specifically,
Encodec uses L = 4 codebooks of tokens to represent the audio. Lower-level codebooks encode
coarse semantic information, while higher-level codebooks capture fine-grained details. We adopt
an open source Encodec model pretrained using audio waveforms at Srw = 16kHz sampling
rate. The model compresses a waveform into tokens at Srt = 50Hz sampling rate, leading to
rtw = Srw

Srt
= 320 waveform samples per token. For any waveform Awav ∈ R1×Tw , we extract

corresponding audio tokens representation Atok ∈ NL×Tc (Tc =
Tw

rtw
) from Encodec encoder part.

Once the model generates Atok, the embedding vectors of L levels of tokens at each time step are
summed up before being sent to Encodec decoder to obtain the waveform. Masked Audio Token
Generative Modeling We model the distribution of audio token matrix Atok ∈ NL×Tc by developing
a token masking strategy which learns the joint distribution of the audio tokens in full parallelism.
This is different than using “delayed patterns” proposed in [38] which enables parallelism but only
on the level of codebook dimension. At each time step of Atok, embedding vectors of L tokens are
summed up to represent audio waveform at the corresponding segment. In order to perform masking
operation at any position, we introduce an additional learnable <MASK> token in each codebook. By
randomly replacing some of the tokens entries in the Atok with <MASK> at corresponding codebook
we obtain the masked audio token matrix AM

tok ∈ NL×Tc . We obtain EM
a ∈ Rdem×Tc by summation

of the embedding vectors of each token in AM
tok along the level axis.

Conditional generative modeling is implemented as follows. We extract the hidden states of the last
layer Hlm ∈ Rdlm×Tlm (before the LLM prediction head) from VATT Converter as the conditional
inputs into the audio token decoder. We use a linear layer to project Hlm to Elm ∈ Rdem×Tlm with
same feature dimension as the masked audio embeddings EM

a . A straightforward way to model the
relationship between EM

a and Elm is to use an interleaving self-attention and cross-attention block as
proposed in Vanilla Transformer architecture [59]. However, we find that such interleaved interaction
between audio and multi-modal input condition does not capture the fine-grained correspondence
between them. Therefore, we propose to use a bi-directional self-attention architecture to fuse the
features.

Specifically, we concatenate Elm with EM
a along the temporal axis to obtain the fused features

Emm = Concat(
[
Elm, EM

a

]
). The decoder consists of Lmm layers of self-attention blocks, as

shown in Fig. 3. The output hidden states in the last layer of the decoder, Hout
mm = Dec (Emm),

represent fused audio and conditions features. We only extract the part of the hidden states corre-
sponding to the audio tokens, Hout

a ∈ Rdmm×Tc , and pass it through L Linear layers in parallel to
perform classification on masked tokens at each level of the codebooks. For each masked audio token
in matrix AM

tok, we calculate the cross-entropy loss between the predicted token âtok and the ground
truth token agttok, formulated as

LV ATT = −
∑

atok∈AM
tok

I (atok = <MASK>) log
[
Pϕ(âtok = agttok|A

M
tok;Hlm))

]
, (2)

where ϕ is the set of trainable parameters in the audio token decoder, and I is the indicator function.

6



3.2.2 Masking Design and Iterative Parallel Decoding

Masking Distribution Design Inspired by [1, 2], we incorporate variable random masking. In
particular, it was shown that masking ratio plays an important role in audio token decoder to generate
meaningful signals. While in [1, 2] arc-cosine masking distributions is used by default, here we study
several masking strategies that include distributions along with different hyper-parameters to find the
strategy that reaches more optimal generation quality (see Appendix A for further details). Our study
shows that normal distribution with a mean of 0.75 and standard deviation of 0.25, truncated from
0.5 to 1.0 is such optimal strategy. The general interpretation of this strategy is that a relatively high
range masking ratio enables models to generate better initial tokens when most of the entries in the
token matrix are masked. This is essential for future decoding steps to generate meaningful tokens.

Iterative Parallel Decoding Scheduling of masking plays a key role as well. During inference, we
follow the cosine scheduling scheme proposed in [1] to gradually resolve the audio tokens. The
iterative sampling procedure starts with all <MASK> in the audio token matrix. At a step t, the model
takes the audio token matrix At−1 from the previous step along with the conditions as inputs and
samples a new audio token matrix Ât in parallel with all tokens unmasked. Based on the confidence
at each entry of Ât only tokens with top-k confidence are kept while the remaining entries are re-filled
with <MASK>, resulting in At. The cosine scheduling scheme determines the ratio of re-masked
tokens by rt = cos

(
π
2 · t

T

)
. Notably, to resolve the confidence of each entry in the matrix, we

adopt the “gumbel-top-k trick” [60] with temperature that varies, i.e., ci = log(pi)
τ + G, where

G ∼ Gumbel(0, 1) and pi denotes the output probability of the sampled token at the entry i. This is
equivalent to sampling k values from multinomial distribution from the softmax probabilities without
replacement. The temperature τ controls the degree of stochasticity. We use τ = τ0 · (1− t

T ) with
linear decay during generation, where τ0 is the initial temperature. Similarly to [1, 2], our method
achieves optimal quality and fast speed within a few decoding steps (typically 10 - 20).

4 Experiments

Datasets: We use common benchmarks datasets VGGSound [3] and AudioSet-2M [4] for training
and evaluation. VGGSound is a large-scale audio-visual dataset sourced from YouTube, containing
192k videos from 309 audio-visual categories, with 177k / 15k train-test video splits. AudioSet-2M is
a larger audio-visual database with around 2M YouTube videos, with only 1.6M available online. In
Stage 1, we train VATT Converter with both datasets and test on VGGSound only. In Stage 2, for fair
comparison against existing video-to-audio generation methods, we train and evaluate on VGGSound
dataset only.

To train VATT with text, we synthesize a large-scale audio caption dataset, “V2A Instruction”, using
LTU [5], an existing audio LLM. We obtain audio captions by prompting the pretrained LTU-13B
model with the inputs of audio waveform along with the instruction “### Instruction: Close-ended
question: Write an audio caption describing the sound. ### Response:”. For AudioSet [4] and
VGGSound [3] we generate a single audio caption per each video for a total of 1.77M videos.

To ensure the quality of captions, we first manually verified the validity of LTU-generated captions
prior to using them as synthetic ground-truth (GT) and then performed an experiment to further
evaluate captions quality. In particular, we randomly selected 100 videos from VGGSound test set
with stratified sampling according to video categories to conduct a human study. We used 1-5 point
MOS (Mean-Opinion-Score) scale (the higher the better) to measure correctness of the captions.
We provide pairs of videos and the corresponding captions to the raters, asking “How accurately
the provided caption reflects the sound events happening in the video? 1. Inaccurate and irrelevant.
2. Relevant but inaccurate with many mistakes. 3. Partially accurate but missing details and with
mistakes. 4. Mostly accurate with some minor mistakes. 5. Accurate and complete." We used the
MTurk platform to perform the evaluation and collected a total of 300 responses. The generated
captions have a high MOS of mean 4.72 and std 0.37, providing an additional indication for the
validity of the synthetic ground truth.

Implementation Details: For visual inputs, we use eva-CLIP [61] image encoder to extract mean-
pooled visual features from video frames at 5fps rate, which result in 50× 768 visual sequence for a
10s video. To represent audio, we extract audio tokens from a pretrained Encodec-16kHz. For each
10s audio waveform, we represent it with Atok ∈ N4×500 token matrix.
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Table 1: Quantitative results against video-to-audio generation methods on VGGSound test set. ‘-T’
refers to model with text prompts.

Methods KLD ↓ FAD ↓ Align Acc ↑ Speed (s) ↓
SpecVQGAN [21] 3.78 6.63 48.79 7.2
IM2WAV [22] 2.54 6.32 74.31 289.5
Diff-Foley [25] 3.15 6.40 82.47 4.4
FoleyGen [23] 2.89 2.59 73.83 6.9
V2A-Mapper [26] 2.78 0.99 74.37 11.54
VATT-LLama (Ours) 2.39 2.38 80.32 1.1
VATT-Gemma (Ours) 2.25 2.35 82.81 0.65
VATT-LLama-T (Ours) 1.41 2.54 80.16 1.2
VATT-Gemma-T (Ours) 1.66 2.98 81.48 0.76

For LLM, we explore two open-source models, Gemma-2B [62] and LLama-2-7B [43], using
instruction-tuned checkpoints. The LLM hidden size of Gemma-2B is 2048 and 4096 for LLama-7B.
For both LLMs, we train VATT Converter using LoRA parameter-efficient fine-tuning technique
while keeping the LLM weights frozen. We use rank r = 16 and α = 32 with 0.1 dropout rate for
LoRA configuration.

VATT Audio is a bi-directional transformer with 24 layers, each with hidden size 1024 with 16
attention heads. To differentiate the conditioning inputs and audio tokens, we add two learnable
modality-specific embeddings with respect to the corresponding inputs(see further implementation
details in AppendixD).

Evaluation Metrics: To evaluate video-to-audio generation quality, we follow the method of [23],
which proposed the metrics Kullback-Leibler-Divergence (KLD) with PassT [63], Fréchet Audio
Distance (FAD) [64] and Align Accuracy (Align Acc) [25]. KLD measures how closely the generated
audio matches the GT through pairwise comparison, reflecting how well the audio captures the
concepts in the video. FAD evaluates the overall distribution, indicating the overall quality of
the audio. Align Acc assesses the relevance and temporal alignment of the audio and the video.
Additionally, we incorporate generation speed (time taken per waveform sample) to measure efficiency.
We also compute the CLAP score [65] to evaluate the adherence of generated audio to text prompts
to compare our results with text-to-audio generation. Further details of these metrics are described in
Appendix F.

For video-to-audio captioning, we use two types of metrics, natural language generation (NLG)
metrics and audio-text relevance metric. NLG metrics evaluate the generated captions with respect to
the ground truth audio captions using rule-based matching in terms of precision and recall. These
metrics include BertScore [66], BLEU-4 [67], ROUGE-L [68] and CIDEr [69]. To assess the
relevance of generated audio captions with the actual audio, we compute the CLAP-score [65] as
cosine similarity between audio and text embeddings.

Quantitative Evaluation of Audio Generation: We evaluate audio generation of VATT models
on the VGGSound test split. For each of the 15,446 video samples, we generate a 10-second audio
waveform. We compare VATT variants against existing video-to-audio generation methods as well as
text-to-audio generation methods including AudioLDM-2 [32] and AudioGen [37] using different text
prompts. The results on the metrics described above are summarized in Table 1 and Table 2. VATT
models achieve best KLD score and Align Acc against other methods while maintaining competitive
FAD (top 2). Notably, when guided by GT audio captions (VATT-LLama-T and VATT-Gemma-T;
bottom) our models generate sounds that match the GT audio more accurately, as indicated by
lowest KLD score of 1.41 and 1.66 for VATT models with two LLM backbones, surpassing both
video-to-audio and text-to-audio methods. In comparison to text-to-audio methods, VATT models
achieve competitive audio-text alignment in terms of CLAP score, demonstrating a strong capability
to follow text prompts. Implementation details of these baselines are included in Appendix E.

Quantitative Evaluation of Video-to-Audio Captioning: We evaluate video-to-audio captioning by
prompting VATT Converter to generate audio captions. We use the prompt “Describe the possible
audio for this video:” to generate captions for all VGGSound test videos. For baselines, we prompt
LLAVA-13B-v1.5 model in two zero-shot modes to generate visual and audio descriptions respectively.
Since LLAVA can take a single image as an input only, we select the middle frame of videos. We
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Table 2: Quantitative results comparing VATT with text-to-audio generation methods on VGGSound
test set. ‘-T’ refers to model with text prompts. CLAP score is calculated as the cosine similarity of
generated audio with respect to the GT audio caption.

Methods Text Prompt KLD ↓ FAD ↓ Align Acc ↑ CLAP Score ↑
AudioGen [37] LLAVA visual caption 3.65 6.03 41.66 -
AudioGen [37] GT audio caption 2.19 3.17 48.96 0.409
AudioLDM-2 [32] LLAVA visual caption 3.54 3.62 53.49 -
AudioLDM-2 [32] GT audio caption 2.09 2.46 51.84 0.326
VATT-LLama-T (Ours) GT audio caption 1.41 2.54 80.16 0.347
VATT-Gemma-T (Ours) GT audio caption 1.66 2.98 81.48 0.310

Figure 4: Qualitative evaluation results: Pairwise Comparison of generated audio VATT v.s other
methods comparing Fidelity and Relevance aspects.

use “Provide a concise, descriptive caption for the following image.” as the visual prompt, and
“Describe the sounds that this scene could yield in a short sentence without reasoning” as the audio
prompt. We also compare against a video LLM baseline, Video-LLAMA-7B, to perform zero-shot
video-to-audio captioning. Specifically, we directly input VGGSound videos into the VL branch
of the Video-LLAMA model, and prompt it to generate audio captions using the instruction “User/
What sounds could match the video?” Since Video-LLAMA has not been pretrained on VGGSound
dataset and LTU generated captions, we implement a similar structure of Video-LLAMA and train
on our LTU-generated captioning data. We replaced the original BLIP-2 visual features used by
Video-LLAMA with our eva02-CLIP-L visual features due to the expensive pre-processing time for
all BLIP-2 features from videos in VGGSound and AudioSet. For the Video-QFormer component of
Video-LLAMA, we keep it the same as Video-LLAMA, and we name this model as VATT-Qformer -
LLama. Our evaluation is summarized in Table 3. VATT models with LLMs outperform LLAVA-
prompted and Video-LLAMA zero-shot results demonstrating a stronger capability to infer sounds
from videos semantically. In particular, when measuring audio-text relevance, our model with LLama
achieves an increase of +5.0% in accuracy when compared with LLAVA visual caption baselines.
For reference, the ground truth audio captions generated by LTU [5] have an average CLAP score of
0.379.

Table 3: Comparison of video-to-audio captions on NLG evaluation metrics and text-audio relevance
(CLAP Score).

Methods BertScore (F1) ↑ BLEU-4 ↑ ROUGE-L ↑ CIDEr ↑ CLAP Score ↑
LLAVA w/ Visual Prompt 0.855 0.089 0.137 0.026 0.213
LLAVA w/ Audio Prompt 0.870 0.123 0.155 0.095 0.182
Video-LLAMA w/ Audio Prompt 0.861 0.091 0.117 0.021 0.204
VATT Converter - Gemma (ours) 0.900 0.345 0.337 0.926 0.229
VATT-Qformer - LLama 0.907 0.419 0.375 1.264 0.245
VATT Converter - LLama (ours) 0.909 0.424 0.384 1.354 0.263

Qualitative Evaluation: In addition to quantitative evaluations, we also conduct a qualitative
(subjective) study to evaluate audio generation perceptual quality of VATT. Specifically, we randomly
select 100 videos from VGGSound test split with stratified sampling according to video categories.
For each method in the baseline, we pair the generated samples against VATT. Two aspects of the
generation are evaluated, Fidelity and Relevance. Fidelity focuses solely on audio quality, while
Relevance evaluates the semantic relevance and temporal alignment of audio to the video. For each
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Table 4: Architecture Ablation Study.
Methods KLD ↓ FAD ↓ Align Acc ↑
VATT-V 2.43 2.53 82.43
VATT-Cross-Attn 2.76 3.63 76.85
VATT-Gemma (Ours) 2.25 2.35 82.81

pair, raters are asked to rate their scoring of VATT versus a compared baseline on a Likert scale
from 1 (strongly prefer baseline) to 5 (strongly prefer VATT). We use our best VATT variant, VATT-
LLama-T (with GT text guidance), for the comparison. As shown in Table 4, VATT surpasses other
methods in Relevance. In terms of Fidelity, VATT is consistently being preferred when compared
with most baselines and slightly less preferred when compared with V2A-Mapper. The reason could
be that V2A-Mapper is directly optimized with diffusion techniques on AudioLDM, a large-scale
pretrained text-to-audio model, such models tend to perform better in fidelity aspect in comparison to
token-based models. Further details of qualitative evaluations are incorporated in Appendix G, and
qualitative samples are provided in Appendix B.

Ablation Studies: We study the effectiveness of VATT Converter by removing the LLM and directly
feed the visual features into the decoder. We denote such model as VATT-V. While VATT-V does
not handle textual inputs or generate text, it still serves as a strong variant of VATT for video-to-
audio generation. To study the contribution of audio token decoder, we replace the decoder part
of VATT with interleaving attention blocks proposed in vanilla transformer [19], and denote this
variant as VATT-Cross-Attn. As shown in Table 4 VATT-Gemma model outperforms both VATT-V
and VATT-Cross-Attn. When VATT is conditioned on visual inputs only its performance is lowest
across variants.. The VATT Converter enhances the visual features through audio-relevant text,
thereby improving the relevance and quality of the generated audio. In addition, we find that the
bi-directional transformer design in VATT Audio is critical for learning the associations between
audio and conditioning inputs to enhance audio generation performance. Additional ablation studies
can be found in Appendix A.

5 Conclusion

In this work, we propose a multi-modal generative framework that enables both text-guided video-to-
audio generation and video-to-audio captioning. Experiments show that our method can generate
high quality audio through text in both unconditional and conditional modes, as well as to generate
reasonable audio captions from videos. One area for improvement is the diversity of the text generated
by current audio LLMs. In cases where the user-provided text prompts significantly differ in style
there is a possibility for a conflict of audio quality and adherence to the instructions. Future work
could enhance the capability of the model to generalize across different text styles and to further
develop capabilities for informative iterative conversation-like video-to-audio generation.

Broader Impact

VATT could augment existing audio-video creation tools for content creators by allowing generation
of custom audio tracks for given visual content through user provided text prompts. Also, VATT has
the ability to suggest potential sounds for a given video which can inspire creators by presenting audio
options that may not have been considered otherwise. This feature can be useful for brainstorming of
content creation, where audio choices can influence the style of the final product.

Further extensions of this work could involve conversational video-to-audio generation such that the
audio content is iteratively being refined. By integrating a conversational interface, the users can
engage in a dialogue with the system, making requests and receiving responses. This approach goes
beyond static text inputs, offering a more accessible toolset that does nto require significant audio
editing expertise. Moreover, the conversational system can seek clarifications or propose alternatives,
functioning like an assistant to avoid misunderstandings and enhance audio quality. More broadly,
the generative approach proposed here has the potential to adapt to other generative areas not limited
to audio, video, but also potentially impact fields such as biochemistry, physics where a generative
approach is utilized, e.g., generative modeling of high-energy particle events [70].
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While VATT presents a potential for content creation, the ability to generate realistic audio from
visual inputs could lead to misuse, such as creating deceptive content or deepfake audio and ethical
concerns must be addressed before utilization. Furthermore, similarly to audio generation, text
generation capability could result in misuse such as offensive language or privacy violations. To
mitigate these risks, in further development or potential code release we will establish clear ethical
guidelines, evaluate for biases, and implement safeguards to ensure responsible use and fair outputs.
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Appendix

In this Appendix, we provide:

• Additional Ablation Studies and Comparisons, see Appendix A.

• Qualitative Examples and Analysis, see Appendix B.

• Details and Examples of our synthetic “V2A Instruction” Dataset, see Appendix C.

• Additional Implementation Details of VATT, see Appendix D.

• Additional Implementation Details of baselines, see Appendix E.

• Details of Evaluation Metrics, see Appendix F

• Human Evaluation Details, see Appendix G

A Additional Ablation Studies and Comparisons

Masking Ratio Distribution Ablation: Designing an appropriate varying masking ratio distribution
for training is essential to achieve high audio quality and relevance. We study several commonly
used masking ratio distributions, including Uniform distribution, Gaussian distribution and arc cosine
distribution. For Gaussian distribution, we experiment with distributions with 4 different mean values,
0.55, 0.75, 0.95, and moving mean following a sine schedule with respect to the training epoch
(similar to curriculum learning), in the range of [0.25, 0.95]. The standard deviation is kept fixed at
0.25. We use VATT Gemma-2B model for the masking ratio ablation study. As shown in Table 5,
the model performs better when the distribution has a higher mean in masking ratio, especially arc
cosine distribution and Gaussian mean with 0.75. This is due to the fact that the initial steps during
the sampling stage are important for future decoding steps. The initial steps correspond to high
masking ratio cases. For later steps, new tokens are unmasked conditioned on more clues such that
the masking ratio decreases and the generation becomes less challenging, thus making the learning at
lower masking ratio easier during training.

Self-prompting Ablation: When additional text prompts are provided as inputs, we could use
the audio captions generated by the VATT Converter as the text prompt to generate the audio. In
this self-prompting mode, the generated audio could be interpreted by the same model in terms of
the caption. As shown in Table 6, when our model is fed with corresponding generated captions,
the model performs slightly worse than the model without prompt input, showing the space for
improvement in the quality of generated captions. Also, generation of audio with the captions from
VATT-Converter-LLama outperforms captions from VATT-Converter-Gemma, in particular evident
from the FAD and KLD scores. As the caption quality improves, the text-conditioned video-to-audio
generation performance also improves. The GT audio captions generated by LTU obtains the highest
CLAP score (measured with respect to the GT audio in original video) of 0.379, reflecting the best
caption quality. Feeding such GT captions as input to the model also leads to the best audio generation
results.

Comparison with Text-to-Audio generation methods on AudioCaps: We use VGGSound as our
main dataset and benchmark to evaluate since it is a large-scale audio-visual dataset with around
200K videos across many categories, and also the quality of audio-visual alignment is high. To further
show the generalization capability of VATT, we experiment with AudioCaps dataset. Due to limited
video samples in AudioCaps, we finetuned our VGGSound pretrained VATT model on AudioCaps
dataset in two settings, with and without text prompts. To keep the comparison fair, we use the GT
audio captions from AudioCaps as the text prompts. We use VATT-LLama and VATT-LLama-T to
compare against AudioGen and AudioLDM-2. As shown in Table 7, VATT-LLama-T performs on a
similar level to AudioGen in terms of FAD and KLD score, while falling behind AudioLDM-2. It
is noteworthy that the audio decoder of both AudioGen and AudioLDM-2 are pretrained on much
larger data scale (7000 hrs and 30000 hrs audio respectively) than ours (700 hrs audio). Despite this,
VATT still performs reasonably well on this dataset.
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Figure 5: Qualitative samples that showcase text controllability: For same video inputs, VATT is able
to generate different sounds that align with the additional text prompts, showcasing its capability of
performing controllable generation.

B Qualitative Examples and Analysis

Controllable audio generation through text prompt: A unique advantage of our model lies in its
capability to control the generated details of audio through text prompts. We show a few samples
where different text prompts are applied to the same video to generate different variations of sounds.
As shown in Figure 5, our model is able to generate reasonable sounds that are distinct in their
semantic meaning but fit both the context of the video and are aligned with the text description. The
text prompts shown are all human-written prompts rather than synthetic ones.

VATT without prompt v.s VATT with ground truth audio captions: We also compare generation
using our model with GT audio captions as prompt versus generation without prompt to understand
why the KLD score with prompt outperforms the generation without prompt by a large margin. Upon
inspection of generated samples, as shown in Figure 6, we find that GT audio captions could steer
the model generation towards the GT audio in the test set. For example, the first video shows a man
performing with a rope, so the rope tapping sounds (when hitting the ground) should be heard in the
video. However, it occurs that the model without prompt fails to capture this important detail, but
instead generates noises from the surrounding crowd. Similar cases apply to the other two examples
shown in the figure. KLD measures the pairwise difference between generated sounds and GT sounds
in the feature space. Therefore, a low score means that the model closely matches the semantic
meaning of the GT audio in the original video, which indicates that the model is able to follow the
text prompt instruction to generate the desired audio.

Video-to-Audio Captioning: In addition to controllable video-to-audio generation through text,
VATT is also able to generate audio captions from videos, providing textual suggestions interpreting
what sounds could a given video make. As shown in Figure 7, VATT could produce reasonable audio
captions for videos across a variety of audio-visual categories, showcasing the capability of VATT
Converter in capturing the audio relevant features from the video.
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Table 5: Ablation on Masking Ratio Distribution.

Methods KLD ↓ FAD ↓ Align Acc ↑
Uniform 2.52 2.75 80.37
Arc cosine 2.34 2.26 82.88
Gaussian w./ mean 0.55 2.31 2.34 82.27
Gaussian w./ mean 0.75 2.25 2.36 82.81
Gaussian w./ mean 0.95 2.24 2.49 81.80
Gaussian w./ moving mean 2.42 2.32 81.81

Table 6: Ablation on self-prompting text-guided generation.

Methods Text Prompt KLD ↓ FAD ↓ Align Acc ↑
VATT-LLama ✗ 2.39 2.38 80.32
VATT-Gemma ✗ 2.25 2.35 82.81
VATT-LLama-T VATT-Converter-LLama 2.38 2.58 80.41
VATT-LLama-T VATT-Converter Gemma 2.57 2.67 79.20
VATT-Gemma-T VATT-Converter-Gemma 2.40 3.67 80.07
VATT-Gemma-T VATT-Converter-LLama 2.26 3.20 80.42
VATT-LLama-T GT audio caption 1.41 2.54 80.16
VATT-Gemma-T GT audio caption 1.66 2.98 81.48

Table 7: Quantitative results against text-to-audio generation methods on AudioCaps test set.
Methods KLD ↓ FAD ↓ Align Acc ↑ CLAP Score ↑
AudioGen 2.09 3.13 58.26 0.447
AudioLDM-2 1.64 1.86 60.32 0.432
VATT-LLama 2.53 3.42 75.76 -
VATT-LLama-T 2.07 3.25 74.89 0.376

Figure 6: Steering generation towards ground truth audio: For same video inputs, we compare our
generation results without text prompt v.s feeding ground truth audio caption as additional prompt.
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Figure 7: Video-to-Audio Captioning samples by VATT.

C Details and Examples of V2A Instruction Dataset

We describe the synthesis procedure of our V2A Instruction dataset. To obtain audio captions for
training and evaluating VATT, we use existing an existing audio large language model, LTU [5],
which is pretrained on a large-scale audio understanding OpenAQA dataset, including audio from
VGGSound and AudioSet-2M. LTU demonstrates strong capability in audio captioning in a zero-shot
prompting manner, accurately reflecting what happens in the audio.

Specifically, we adopt the prompt “Close-ended question: Write an audio caption describing the
sound.” used during LTU training for audio captioning task, and feed 10-second audio from VG-
GSound and AudioSet dataset as inputs into LTU-13B model (max length 108 version). In figure 8,
we show 15 examples of synthesized captions from videos in VGGSound along with the correspond-
ing video IDs and start-to-end time. The generated captions are clear natural language and faithfully
describe the audio content in details, serving as a reliable dataset for training and evaluation.

D Additional Implementation Details of VATT

Data Preprocessing: For visual inputs, we extract video frames at 5fps rate, resulting in 50 frames for
each 10s video. For audio, we extract tokens from audio waveform using pretrained Encodec-16kHz,
resulting in a 4×500 token matrix for each 10s audio. To extract visual features, we resize each video
frame to 336× 336 and normalize, and feed into the eva-CLIP-L [61] image encoder. By extracting
the mean-pooled vector from the hidden states, we represent each video frame with a 768-dim
vector. For textual inputs, we use template text prompts as input to instruct video-to-audio captioning,
including 10 human-written prompts. For training the VATT Audio, two cases are considered. In
unconditional generation case where no additional audio caption is provided, the video along with
the one of the template text prompts (shown in Table 8) are fed as inputs to the model. In conditional
generation case where the ground truth audio caption is provided, the caption replaces the template
prompt as the textual input to the model. For both cases, the textual inputs are formatted using “alpaca
short” instruction style, “### Instruction: instruction ### Response:".
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Figure 8: Examples of V2A Instruction Dataset.

No. Text Prompt Template
1 Imagine possible sounds for this video.
2 Describe possible sounds that could match the video.
3 What audio could be inferred from this video?
4 What sounds could match the video?
5 Infer the sounds that match the video.
6 What audio could best match this video?
7 What sound events could the video yield?
8 Caption possible sound events that describe the video.
9 What sound events make sense to this video?

10 Imagine audio events that match this video.

Table 8: Text prompt templates used in video-to-audio captioning and unconditional video-to-audio
generation.

Training: For VATT Converter, we perform V2A Instruction-Tuning with our 1.77M audio captions
from VGGSound and Audioset altogether. To project visual features to LLM embedding dimensions,
we first apply adaptive pooling along the temporal axis, reducing the temporal dimension from 50 to
10 to conserve GPU memory. Then a linear layer is applied on each time step of the visual features to
project 768-dim to the LLM dimension (4096 for LLama and 2048 for Gemma-2B). The training
process involves two sub-stages. In the first stage, we turn off the LoRA setting and tune the VATT
Projector layer only. After 2 epochs, we start the second stage training by tuning both projection
weights and LoRA parameters for another 4 epochs. We use AdamW optimizer with a base learning
rate of 1e-4, and limit the maximum length of the audio captions to be 108. For both LLama-7B and
Gemma-2B, we initialize our model with instruction fine-tuned checkpoints available on huggingface.

For VATT Audio, we explore various masking ratio distribution and end up using a truncated Gaussian
distribution with a mean of 0.75 and standard deviation of 0.25, truncated between 0.5 and 1.0. To
enable classifier-free guidance during sampling, we randomly replace the conditioning features with
vectors of all zeros with 10% rate. The training also takes two sub-stages: i) We first train the model
in unconditional generation mode without ground truth audio caption text prompts as inputs until
convergence, and then ii) train the model conditioned on GT audio captions as textual inputs (limiting
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maximum text length to 64). Additionally, we apply two types of data augmentations during the
unconditional training phase to facilitate the temporal alignment between audio and video: i) temporal
mixup following [25] with a probability of 0.5, ii) temporal rolling on the video features together
with audio tokens by same amount of time. We train our model with a base learning rate of 2e-4 with
a warmup step of 40k and linear decay schedule with 600k steps. The number of trainable parameters
for VATT Audio is 415M. We use a batch size of 48 for Gemma model and 36 for LLama model.

All our training procedure are conducted on a single A100 80GB GPU, VATT Converter training
takes 16 hours and VATT Audio takes 3 days in total.

Inference: For Video-to-Audio Captioning, we adopt the generation configuration with temperature
of 0.1, top_p of 0.95, top_k of 500 and repetition penalty of 1.1 for both LLMs. We use one of
the templates “Describe possible sounds that could match the video.” to prompt LLMs to generate
captions.

For audio generation, we adopt the iterative parallel decoding strategy with total decoding steps of
16, softmax sampling temperate 1.0 with top_k being 256. For masking sampling with Gumbel top-k
strategy, we use initial temperature of 27.5 with linear decay each iteration, where the re-masking ratio
follows the cosine schedule, same as [2, 1]. Following [23], we also use classifier-free guidance [71]
during sampling, and we find a cfg_scale of 5.0 works best for our model.

E Implementation Details of video-to-audio generation baselines

SpecVQGAN [21]: We follow the open source SpecVQGAN’s codebase instructions to extract
visual frame-level RGB features at 21.5fps rate using ResNet-50 checkpoints for all VGGSound
test videos. Following the evaluation script setup for VGGSound, we generate a 10-second audio
waveform per each video in the test set.

IM2WAV [22]: Following the open source codebase of IM2WAV, we extract CLIP visual features
from videos at 30fps rate for VGGSound test videos. IM2WAV was originally trained to generate
4-second audio. In order to adapt it to generate a 10-second audio, we infer the model with 3 forward
passes to obtain three 4-second audio segments without overlap, and concatenate them together and
then trim to a 10-second audio.

Diff-Foley [25]: Diff-Foley uses their pretrained CAVP audio-visual model to extract features at 4fps
rate. Following their open source codebase, we extract visual features for test videos in VGGSound,
and apply their best generation configuration with double guidance scale CFG scale ω = 4.5, CG
scale γ = 50, to generate three non-overlapping 4-second audio segments in the same way as
IM2WAV.

FoleyGen [23]: The authors do not open source their implementation. We strictly follow the setup in
the paper and uses the open source version of Encodec-16kHz to replicate their model. For visual
features, we follow their implementation to extract the CLIP features at 1fps rate. FoleyGen is a
24-layers transformer architecture with hidden size of 1024 and 16 heads. Using their best visual
attention configuration “All-frame” attention along with random visual condition dropout with a
probability of 0.1, we train FoleyGen with specified hyperparameter settings as described in the paper.
In the inference stage, we apply classifier-free guidance scale of 3.0 as well as top-k 256 sampling
configuration in the paper to generate 10-second video per test video in VGGSound. Upon evaluation,
we find that there is a noticeable gap between our implementation results (KLD: 2.89, FAD: 2.59)
and reported results in paper (KLD: 2.35, FAD: 1.65). To study where the gap comes from, we use
our extracted Encodec tokens to reconstruct the audio waveform in VGGSound test set, and measure
the FAD score of reconstructed audio waveform with respect to the ground truth audio. We find that
the open source Encodec-16kHz on huggingface could only achieve a FAD score of 1.86, which still
falls behind their reported result of 1.65, indicating that the released Encodec model is a sub-optimal
version.

V2A-Mapper [26]: V2A-Mapper is not yet open sourced, but the authors publish their generated
audio for 15,446 video samples in VGGSound test set. We therefore download their samples and
conduct both objective and subjective experiments based on them.
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F Details of Evaluation Metrics

KLD score: To compute the KL-Divergence between generated samples and ground truth audio, we
adopt the pretrained PaSST [63], an audio transformer classifier, on AudioSet-2M dataset to extract
the classification output probabilities. KLD is evaluate in a pairwise manner and we use the mean
value over all 15,446 samples as our KLD score.

FAD score: Fréchet Audio Distance [64] (FAD) evaluates the difference between the distributions of
generated samples and ground truth samples. Specifically, we adopt the pretrained VGG-ish network
on AudioSet-2M dataset to extract the features of generated audio and ground truth audio. Using
the multivariate gaussian assumption on extracted features, we compute the mean and covariance of
the generation sample set and ground truth audio set, and then apply the Fréchet distance formula
to obtain the FAD score. Specifically, to ensure the correctness of computation, we use the original
implementation of Google Research’s tensorflow version to perform evaluation.

Align Acc: To evaluate temporal alignment and relevance of audio to video, we also incorporate
Align Acc metric proposed by [25]. Specifically, Align Acc is computed using a CAVP (contrastive
audio-visual pretraining) model by taking video frames along with the audio mel-spectrogram as
inputs. The model outputs an accuracy score representing the alignment between audio and video.
Following their configuration, we use visual frames at 4 fps rate as visual inputs (40 frames for
10-second video), and convert the 16kHz audio waveform into mel-spectrogram with FFT Num 1024,
mel basis Num 128 and hop size 250, resulting a 640× 128 mel-spectrogram for 10-second audio
waveform.

Infer Time: We benchmark the generation speed on a single A6000 GPU, and measure the average
sampling time (in second) for a single 10-second sample. For all baselines and our method, we use a
batch size of 1 to run the test over 15,446 test videos on VGGSound. For V2A-Mapper, since we are
unable to obtain their source code for testing, we instead report the AudioLDM-L inference speed
on a single sample as an approximation of infer Time of V2A-Mapper since the method is a close
adaption of AudioLDM.

CLAP score For comparing adherence of generated audio to the text prompt, we use CLAP model to
extract the audio and text embeddings, and then measure the cosine similarity between the generated
audio embedding and text prompt embedding. For evaluating the video-to-audio captioning, we again
apply CLAP to compute the cosine similarity between the generated audio captions and the ground
truth audio for the video.

G Human Subjective Studies Details

For human evaluations results on audio generation shown in Table 4, we used the Amazon Mechanical
Turk platform to create a survey and crowdsource responses. We evaluated 100 video samples
randomly selected from VGGSound test set. We used stratified sampling such that each video comes
from different audio-visual categories.

To ensure the quality of the survey, we applied constraints on accepted human raters for our survey.
In particular, we selected raters that who have historical approval rate of greater than 95% as well
as possess language proficiency in English. Responses that take less than 20 seconds or longer than
10 minutes are excluded from the answers. In addition, no samples could be evaluated twice by the
same worker to avoid potential bias.

We set up two types of surveys: audio quality survey and audio-video relevance survey. In audio
quality survey, we ask the raters to focus only on the audio quality aspect by providing the question
“In Which video the overall audio quality is better?”. In audio-video relevance survey, a question of
“Which video whose audio is more relevant to and temporally aligned with the video.” is asked. In
both surveys, we ask the rater to choose their preference at a Likert scale from 1 (strong preference of
baseline method) to 5 (strong preference of our method), 5 levels in total.

For each video, we request 5 responses from 5 distinct raters. To comply with the NeurIPS code of
conduct and rules of the platform, we pay at a rate of 0.05 USD per each response, satisfying the
lowest wage requirement in any region of the world. Upon running the evaluations on all 10 specific
surveys (5 methods and each with two evaluation types), we are able to collect 500 valid responses for
each pairwise comparison, from 23 distinct raters on average with 21.7± 5.6 ratings per participant.
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Figure 9: Details of pairwise comparison results between VATT and baseline video-to-audio methods.

We show the details of comparison results between our method and baseline methods as bar charts in
Figure 9.

23



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the contributions and the experiment results match these
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention the limitations and the room for improvements in the Conclusion
section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [No]

Justification: Our paper is mainly application and experiment-driven.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include sufficient details of implementations of our models, baseline
models, and also evaluation metrics along with human evaluation surveys.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and synthetic data that we generated for training models can be obtained
for limited use upon request from the corresponding author. We also aim to release the code
and synthetic data that we generated for training models as public repository on the Github
upon obtaining involved approvals.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all details of training, inference, dataset and evaluation metrics
necessary to achieve the results we claim in the experiments.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our models are evaluated on large-scale test set and the variations should be
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the details of computing devices, memory and time of execution
used to conduct training and evaluation of our method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and carefully followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix ??.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We discuss the need for safeguards regarding the negative impact associated
with multi-modal generative modeling and propose precautions and guidelines to prevent
misuse. These details are included as part of the Broader Impact section in Appendix ??.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all open-source works that we use including the data, models and
codes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We incorporated a section in supplementary text describing our synthetic data
and placed samples. We aim to release the synthetic data that we generated for training upon
obtaining involved approvals.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We included detailed description of human study instructions, and and the
setup of the of the study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We submitted IRB approval request to our institution for review and it was
approved.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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