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Abstract

Transformer-based models, even though achiev-001
ing super-human performance on several down-002
stream tasks, are often regarded as a black003
box and used as a whole. It is still unclear004
what mechanisms they have learned, especially005
their core module: multi-head attention. In-006
spired by functional specialization in the hu-007
man brain, which helps to efficiently handle008
multiple tasks, this work attempts to figure out009
whether the multi-head attention module will010
evolve similar function separation under multi-011
tasking training. If it is, can this mechanism012
further improve the model performance? To013
investigate these questions, we introduce an014
interpreting method to quantify the degree of015
functional specialization in multi-head atten-016
tion. We further propose a simple multi-task017
training method to increase functional special-018
ization and mitigate negative information trans-019
fer in multi-task learning. Experimental results020
on seven pre-trained transformer models have021
demonstrated that multi-head attention does022
evolve functional specialization phenomenon023
after multi-task training which is affected by024
the similarity of tasks. Moreover, the multi-task025
training strategy based on functional special-026
ization boosts performance in both multi-task027
learning and transfer learning without adding028
any parameters.029

1 Introduction030

Transformer, based on the multi-head attention031

module, has been the dominant model for down-032

stream applications due to its impressive results033

(Devlin et al., 2019; Brown et al., 2020; Dosovit-034

skiy et al., 2021). However, it is still being utilized035

as a whole black-box model, and little is known036

about the functions of each sub-module on the final037

prediction. Simultaneously, although controversy038

still exists, there is overwhelming evidence that039

supports the idea of functional specialization in040

the human brain (Finger, 2001; Kanwisher, 2010).041

Such a functional specialization mechanism makes042

it easier for the human brain to handle multiple 043

tasks and solve new problems. It can reuse exist- 044

ing resources and at the same time evolve specific 045

regions to avoid the huge cost of redesigning. 046

Considering the benefits of functional specializa- 047

tion to human learning ability, it is interesting to 048

explore whether a transformer model, especially its 049

central module multi-head attention, would evolve 050

a similar mechanism under multi-task training. If 051

so, which factors will impact the degree of func- 052

tional specialization in the multi-head attention 053

module? And how to exploit this phenomenon to 054

improve the generalization ability of Transformer- 055

based models? 056

To investigate these questions, we first propose 057

a method, called Important Attention-head Pruning 058

(IAP), to quantify the degree of functional special- 059

ization in the multi-head attention of Transformer- 060

based models. IAP first calculates the importance 061

scores of each attention head on different tasks, 062

then prunes the top important heads for each task 063

to determine their impact on task performance. We 064

apply our method to five different tasks with seven 065

pre-trained transformers. Results show that the 066

multi-head attention module has evolved distinct 067

functional specialization phenomena across differ- 068

ent sizes of BERT and pre-training methods. Fur- 069

ther quantitative analysis indicates that there is a 070

negative correlation between task similarity and the 071

functional specialization phenomenon. 072

Moreover, we propose a multi-task learning 073

method, namely Important Attention-head Training 074

(IAT), to promote the segregation of functions in 075

the multi-head attention module by training only 076

the most important part of attention heads for each 077

task. Experimental results on the GLUE dataset 078

have demonstrated that our method alleviates the 079

negative transfer among tasks and improves the 080

performance of Transformer-based models on both 081

multi-task learning and transfer learning without 082

additional parameters. 083
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To summarize, our main contributions are084

twofold:085

• We propose an interpretation method called086

IAP and find that the functional specialization087

phenomenon has evolved in multi-head atten-088

tion after multi-task learning. Furthermore,089

empirical quantitative experiments show that090

such a phenomenon is influenced by the sim-091

ilarity between tasks: the more similar tasks092

are, the weaker the functional specialization093

phenomenon is.094

• We propose an exploiting method called IAT095

to promote the degree of functional special-096

ization. Experiments on multi-task learning097

and transfer learning validate that IAT is able098

to improve both the performance and general-099

ization ability of multi-task learning models100

without adding any parameters.101

2 Related Work102

2.1 Interpreting Neural Networks103

Interpreting attention module Analogous to vi-104

sual attention, the distribution of attention weight105

over input is often used to interpret the final deci-106

sion of attention-based model (Clark et al., 2019;107

Vig and Belinkov, 2019). Therefore, a lot of work108

has been done to study the interpretability of atten-109

tion distribution (Jain and Wallace, 2019; Serrano110

and Smith, 2019; Jacovi and Goldberg, 2020) or111

design better explanation methods (Brunner et al.,112

2020; Kobayashi et al., 2020; Bai et al., 2021; Liu113

et al., 2022).114

Our work can be classified into another line of115

study: investigating the individual attention head in116

the multi-head attention module. Voita et al. (2019)117

argued that there are redundant heads in Trans-118

former by pruning less important heads and analyz-119

ing the resulting performance, which is confirmed120

by Michel et al. (2019). Jo and Myaeng (2020)121

analyzed the linguistic properties of the sentence122

representations from attention heads by ten linguis-123

tic probing tasks. Hao et al. (2021) only retained124

the important heads in BERT and constructed an125

attribution tree to interpret the information interac-126

tions inside Transformer.127

Through pruning attention heads, we study the128

role they play in different tasks, rather than show129

redundancy in the multi-head attention module130

(Michel et al., 2019).131

Interpretation inspired by neuroscience With 132

more understanding of the functional specialization 133

of the human brain, researchers attempt to interpret 134

deep learning models with brain activities in spe- 135

cialized regions (Wehbe et al., 2014; Toneva and 136

Wehbe, 2019; Zhuang et al., 2021; Bakhtiari et al., 137

2021). For example, Toneva and Wehbe (2019) 138

studied the representations of NLP models across 139

different layers by aligning with two groups of 140

brain areas among the language network. 141

Unlike the existing works, we investigate 142

whether the brain-like functional specialization phe- 143

nomenon occurs in NLP models, and how to exploit 144

this phenomenon to improve models. 145

2.2 Mitigating Negative Information Transfer 146

in Multi-task Learning 147

By joint learning multiple tasks, the performance 148

of a model on the target task can be boosted with 149

regularization or sharing parameters among tasks 150

(Collobert et al., 2011; Ruder, 2017; Liu et al., 151

2019a). However, multi-task learning models in 152

NLP often suffer from negative information trans- 153

fer and are inferior to the single task learning ones 154

(Martínez Alonso and Plank, 2017; Bingel and Sø- 155

gaard, 2017). 156

Our method aims to subdivide task-important 157

modules in parameters shared to mitigate negative 158

transfer among tasks, which is different from pre- 159

vious sampling or additional task-specific adapter 160

methods (Wu et al., 2020; Pilault et al., 2021). We 161

only need to preserve mask variables for each at- 162

tention head rather than all parameters during train- 163

ing (Sun et al., 2020; Lin et al., 2021; Xie et al., 164

2021; Liang et al., 2021), which significantly re- 165

duce memory costs. 166

3 Background 167

3.1 Multi-Head Attention Module 168

Transformer (Vaswani et al., 2017) extended single 169

head attention function to Multi-Head Attention 170

(MHA) module, which aims at capturing informa- 171

tion from different representation subspaces in par- 172

allel. Given input X ∈ Rn×d, this module linearly 173

transforms it into nh subspaces and then applies 174

attention separately: 175

Ah(X) = Attention(XWQ
h , XWK

h , XWV
h )

with Attention(Q,K, V ) = softmax(
QKT

√
dk

)V
(1) 176

where Q,K ∈ Rn×dk and V ∈ Rn×dv . The out- 177

puts of all heads are concatenated and linearly trans- 178
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Figure 1: Illustration of how to quantify and improve the degree of functional specialization in multi-head attention
for Transformer-based models. Only attention heads, which are our research target, are depicted in the model for
simplicity. (I). Multi-task learning using Transformer-based models. (II). Quantify the functional specialization phe-
nomenon by determining and pruning the important heads for each task. (III). Improve the functional specialization
phenomenon by only fine-tuning the important heads for each task in the last part of multi-task learning process.

formed into the output space of this module:179

MHA(X) = [A1(X); ...;Anh(X)]WO (2)180

3.2 Head Importance Score181

Michel et al. (2019) proposed an effective method182

to prune attention heads and evaluate the impor-183

tance of attention heads for a task. In order to prune184

the attention head h, they incorporated a mask vari-185

able ξh ∈ [0, 1] into the attention function:186

Ãh(X) = ξh ·Ah(X) (3)187

and set it to a zero value. When ξh equals 1, Equa-188

tion (3) is the same with the vanilla attention (Eq.189

(1)). The head importance score I
(i)
h of task Ti is190

approximated by the expected sensitivity of loss191

function to the mask variable ξh:192

I
(i)
h = E(x,y)∼D(i)

∣∣∣∣∂L(i)(x, y)

∂ξh

∣∣∣∣ (4)193

where D(i) is the data distribution of task Ti and194

L(i)(x, y) is the loss of task Ti on sample (x, y).195

Different from Michel et al. (2019) which prune196

the least important attention heads to prove the re-197

dundancy of attention heads, this paper focuses198

on exploring the functional specialization phe-199

nomenon after training, thus we prune the most200

important heads for each task.201

4 Method202

Figure 1 illustrates the general procedure of our203

methods. Firstly, Transformer-based models are204

utilized for multi-task learning and may arise segre-205

gation of functions in the multi-head attention mod-206

ule. Subsequently, the important attention heads207

are determined and pruned to quantify the func- 208

tional specialization in multi-head attention (Sec- 209

tion 4.1). Lastly, the roles of important heads in 210

each task are enhanced to promote the degree of 211

functional specialization by important attention- 212

head training (Section 4.2). 213

4.1 Interpreting: Important Attention-head 214

Pruning 215

We introduce a two-step method, namely Impor- 216

tant Attention-head Pruning (IAP), to quantify the 217

degree of functional specialization in multi-head 218

attention. First, the top α ∈ [0, 1] percentage im- 219

portant heads Hα
i for task Ti, e.g., the ones circled 220

by dashed lines in Figure 1(II), are found after dual- 221

task or multi-task training by their head importance 222

scores. Specifically, we calculate the head impor- 223

tance score I
(i)
h , defined by Eq. (4), on training 224

samples to approximate the contribution of head h 225

to task Ti. 226

Second, dissociation experiments are conducted 227

to determine the degree of functional specialization 228

in multi-head attention. Given a model fθ after 229

dual-task training on tasks TA and TB , for example, 230

the relative performance on TA after pruning the 231

top α important attention heads for TB , denoted by 232

Hα
B , is calculated as follows: 233

RPA(H
α
B) =

P
(
fθ\Hα

B
(XA),YA

)
P(fθ(XA),YA)

(5) 234

where P(·) is the performance metric used, e.g., 235

Accuracy, and (XA, YA) is the test samples of Task 236

TA. Then, we estimate the degree of functional 237

specialization by the relative performance differ- 238

ence after top α important heads for each task are 239
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pruned, called dissociation score:240

DA(α) = RPA(H
α
B)−RPA(H

α
A),

DB(α) = RPB(H
α
A)−RPB(H

α
B),

D(α) = DA(α)+DB(α)
2

(6)241

where DA(α) denotes the dissociation score of task242

TA, and D(α) is the average dissociation score of243

this dual-task learning. Given an appropriate α, a244

larger dissociation score implies a higher degree of245

functional specialization.246

Similarly, the dissociation score of task Ti under247

multi-task learning is measured via:248

Di(α) =
∑n

j=1,j ̸=i RPi(H
α
j )

n−1 −RPi(H
α
i ),

D(α) =
∑n

i=1 Di(α)
n

(7)249

To clearly illustrate the functional specialization250

phenomenon, we summarize two representative251

cases under dual-task learning:252

• Double dissociation when DA(α) > 0 and253

DB(α) > 0. This is a significant indicator of254

functional specialization. That is, each task255

requires a unique group of heads, which can256

be selectively masked. To eliminate the acci-257

dental functional specialization phenomenon,258

we argue that a distinct one occurs if the aver-259

age dissociation score is higher than or equal260

to 10%, i.e., D(α) ≥ 10%, in which 10% is261

chosen according to the definition of double262

dissociation in neuroscience (Shallice, 1988).263

• Single dissociation when DA(α) > 10% and264

DB(α) < 0, or DA(α) < 0 and DB(α) >265

10%. One significant positive dissociation266

score suggests functional specialization may267

only arise in this task.268

The dissociation scores may be both negatives,269

which arise from the wrong evaluation of the impor-270

tant heads for each task. It can be summarized into271

the double dissociation case under the correct eval-272

uation and pruning. In the other cases, e.g, the dis-273

sociation scores of both tasks are relatively small,274

we argue that there is no functional specialization275

in the multi-head attention module. Specifically,276

the influence on all tasks will be almost identical277

when pruning different groups of heads.278

4.2 Exploiting: Important Attention-head279

Training280

Motivated by the high degree of functional special-281

ization in human brain, it is interesting to inves-282

tigate whether a higher degree of functional spe- 283

cialization could improve the performance of the 284

model on multi-task learning or transfer learning. 285

To promote the degree of functional specializa- 286

tion in multi-head attention, we design a multi-task 287

training method, named Important Attention-head 288

Traning (IAT). Specifically, only the top α ∈ [0, 1] 289

important attention heads for task Ti are tuned at 290

the last δ ∈ [0, 1] multi-task training process, and 291

the parameters other than the multi-head attention 292

module are trained as before. To achieve this, we 293

introduce a mask variable Mi ∈ {0, 1}nh for task 294

Ti, where 1 indicates to fine-tune this attention 295

head for Ti. For example in Figure 1(III), only the 296

mask variables of heads circled by the solid blue 297

line are set to 1 for Tn. When α = 1 or δ = 0, 298

our method is the same as the normal multi-task 299

learning method. 300

We expect to consolidate the roles of important 301

heads for each task and facilitate the functional 302

separation of multi-head attention in this way. 303

5 Experimental Setup 304

5.1 Datasets 305

We select a topic classification datasets (Zhang 306

et al., 2015), eight natural language understanding 307

datasets of GLUE (Williams et al., 2018; Rajpurkar 308

et al., 2016; Wang et al., 2019), and two datasets 309

(Maas et al., 2011; Khot et al., 2018) for transfer 310

learning in this study. To avoid an extreme ratio 311

of training samples between tasks, only five large 312

datasets in different tasks, which contain more than 313

10k training samples, are preserved in dual-task 314

and multi-task learning interpretation experiments. 315

Like Karimi Mahabadi et al. (2021), SciTail and 316

IMDB are used only in transfer learning. Statistics 317

of all datasets used are shown in Table 1.

Task Dataset #Class #Train

Topic Classification AG’s News⋆ 4 120,000
Acceptability CoLA 2 8,551

Natural Language Inference MNLI⋆ 3 392,702
Paraphrase QQP⋆ 2 363,846
Paraphrase MRPC 2 3,668

Question Answering QNLI⋆ 2 104,743
Sentiment Analysis SST-2⋆ 2 67,349

Entailment RTE 2 2,490
Textual Similarity STS-B - 5,749

Natural Language Inference SciTail 2 23,596
Sentiment Analysis IMDB 2 25,000

Table 1: Statistic of datasets used. ⋆ denotes dataset used
in dual-task and multi-task interpretation experiments.

318
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Figure 2: Average dissociation scores of different Transformer-based models (y-axis) after ten dual-task learning
tasks (x-axis) with α = 30%. The larger dissociation score implies a higher degree of functional specialization in
multi-head attention (Section 4.1). All dissociation scores are reported in Table 8. ∗ indicates that the parameters of
BERTBASE encoder are frozen, i.e., the output layers are fine-tuned only.

5.2 Models319

As shown in Table 2, seven Pre-trained Transformer320

Models (PTMs), including GPT family models,321

different sizes of BERT and different pre-training322

methods (Radford et al., 2018, 2019; Devlin et al.,323

2019; Liu et al., 2019b; Jiao et al., 2020; He et al.,324

2021), are investigated in this paper. These mod-325

els are all initialized from the transformer library326

of HuggingFace (Wolf et al., 2019). Hyperparam-327

eters are reported in Appendix A. Codes will be328

published to facilitate future work after acceptance.329

Model #L #A #L × #A Parameters

GPT 12 12 144 110M
GPT-2 24 16 384 355M

TinyBERT 6 12 72 67M
BERTBASE 12 12 144 110M

RoBERTaBASE 12 12 144 125M
DeBERTaV3BASE 12 12 144 184M

BERTLARGE 24 16 384 340M

Table 2: Statistic of models used. #L=the number of
layers, #A=the number of attention heads per layer.

6 Experiments and Results330

6.1 Functional Specialization Does Evolve in331

Multi-head Attention332

Dual-task Learning Based on the pairwise com-333

bination of five datasets, there are ten groups of334

dual-task learning tasks. We observe that the disso-335

ciation scores of models without frozen in dual-task336

learning are all positive, i.e., double dissociation337

phenomenon appears in all task-pairs (details are338

shown in Appendix B). As illustrated in Figure339

Prune Task MNLI QQP QNLI AG SST-2

MNLI† 58.23 71.52 61.39 91.99 85.32
QQP† 62.54 69.43 60.80 91.54 85.13
QNLI† 59.29 70.96 57.50 91.88 86.35
AG† 65.88 76.28 69.35 80.01 85.09

SST-2† 69.50 77.40 73.96 86.51 82.45

Random† 80.68 85.42 85.05 93.65 91.23

Base 83.91 87.64 90.26 94.50 92.05

Di(α) 7.28 5.26 11.07 9.84 3.28

Table 3: Performance(%) of the pruned and base model
on each task using BERTBASE with α = 30%. T † de-
notes top α important heads for this task are pruned.
The lowest value is underlined.

2, BERTBASE shows a distinct functional special- 340

ization phenomenon (D(α) > 10%) in four dual- 341

task learning tasks. Moreover, distinct functional 342

specialization phenomena are also found in the 343

other two sizes of BERT and GPT models. The 344

other two base-size models, RoBERTaBASE and 345

DeBERTV3BASE, even show a higher degree of 346

functional specialization, in which average dissoci- 347

ation scores among ten dual-task learning tasks are 348

13.44% and 10.88% respectively. 349

To eliminate the accidental functional special- 350

ization phenomenon, we train another dual-task 351

model using a frozen BERTBASE encoder for com- 352

parison. As shown in the fifth row of Figure 353

2, most of the dissociation scores are relatively 354

small and only one dual-task pair, “MNLI and 355

AG”, shows a mild functional specialization phe- 356

nomenon (D(α) > 5%). The average dissocia- 357
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Performance on Task A Performance on Task B

Task A Task B Base Acc. Task A† Task B† Base Acc. Task A† Task B† DA(30%) DB(30%) D(30%)

AG QNLI 94.13 85.94 92.44 91.13 65.04 52.95 6.905 13.270 10.088
AG-Pair QNLI 94.46 56.17 64.52 90.72 64.85 53.66 8.842 12.337 10.590

AG SST-2 94.29 89.51 92.32 92.47 89.76 86.01 2.982 4.051 3.517
AG-Pair SST-2 94.68 67.65 71.80 92.66 89.33 85.78 4.387 3.837 4.112

Table 4: Comparison between different input paradigm combinations. The input of AG-Pair is a pair of sentences
from AG, and the label is whether they belong to the same topic.

tion score of these ten task pairs spontaneously358

increases by 6.32% if we fine-tune the shared en-359

coder.360

Multi-task Learning We further conduct multi-361

task learning experiments using all five tasks in362

dual-task learning. In addition to all positive disso-363

ciation scores, we find that the performance of one364

task decreases more when pruning the top 30% im-365

portant attention heads of this task compared with366

other tasks (Table 3). It shows that the functional367

specialization phenomenon has evolved after multi-368

task learning, i.e., there is a unique group of heads369

more important to one specific task. Otherwise, the370

influence on all tasks would be similar when prun-371

ing the most important attention heads for different372

tasks.373

The absolute performances on the first three374

tasks (MNLI, QQP, and QNLI) suffer a drastic drop375

after pruning only 30% attention heads. For exam-376

ple, the lowest drop is 14.41% on MNLI when the377

top 30% important heads for SST-2 are pruned,378

while the highest one is only 14.49% among the379

AG and SST-2 when pruning the same amount of380

attention heads. It indicates that tasks taking two381

sequences as input, e.g., natural language inference382

and question answering, depend on attention mech-383

anism more than one sequence input task, which is384

in line with the finding of Vashishth et al. (2019).385

See Appendix C for more details and analyses.386

6.2 Task Similarity Affects Functional387

Specialization388

After observing the functional specialization phe-389

nomenon in the multi-head module, it is interesting390

to study how this phenomenon is affected. In this391

section, we empirically explore two factors: task392

similarity and input paradigm.393

Task Similarity The task similarity metric394

Cognitive-Neural Mapping (CNM), which is found395

less sensitive to underlying models (Luo et al.,396

2022), is utilized to quantify the similarity of task-397

Figure 3: The average dissociation score and similarity
of each task-pair in multi-task learning.

pair in this section. 398

As shown in Figure 3, we observe that there is 399

a significant negative correlation between the aver- 400

age dissociation score of task-pair and the similar- 401

ity between tasks. In other words, the more similar 402

the tasks are, the lower the average dissociation 403

score is, which suggests the weaker the functional 404

head specialization phenomenon is. The other three 405

task similarity metrics used and fitting results refer 406

to Appendix D, where this negative relationship is 407

also found. 408

Input Paradigm There are two different input 409

paradigms, sentence pair (MNLI, QNLI, and QQP) 410

and single sentence (AG and SST-2), among these 411

five tasks. We notice the average dissociation score 412

of two tasks in different input paradigms is higher 413

than the same input paradigm ones in Figure 2 414

(BERTBASE: 12.654% > 3.016%). Thus, exper- 415

iments are conducted to investigate the effect of 416

input paradigm on the degree of functional spe- 417

cialization in multi-head attention. Specifically, 418

we construct a dataset named “AG-Pair” using the 419

sentences of AG dataset, which aims to identify 420

whether a pair of input sentences belong to the 421

same topic. The number of samples in AG-Pair is 422

the same as AG, which is 120k, and each sample in 423

AG occurs twice in the AG-Pair dataset. The gener- 424

ation method and statistics of AG-Pair are reported 425

in Appendix E. 426
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Model Type #Params CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg

TinyBERT‡ ST 9.0× 46.3 83.0/82.4 85.1 90.0 70.7 65.6 92.9 84.6 77.8

TinyBERT MTL 1.0× 35.2 82.6/81.9 83.4 90.5 70.2 74.0 92.5 83.5 77.1
+IAT MTL 1.0× 39.3 82.5/81.9 85.4 90.3 70.5 74.1 92.7 84.2 77.9

BERT1
BASE ST 9.0× 52.1 84.6/83.4 88.9 90.5 71.2 66.4 93.5 85.8 79.6

PALs2 MTL 1.13× 51.2 84.3/83.5 88.7 90.0 71.5 76.0 92.6 85.8 80.4
CA-MTL3

BASE MTL 1.12× 53.1 85.9/85.8 88.6 90.5 69.2 76.4 93.2 85.3 80.9

Ticket-Share‡BASE MTL 1.0× 50.3 83.7/83.0 88.0 90.5 70.5 76.6 93.7 84.8 80.1

BERTBASE MTL 1.0× 49.8 83.9/83.4 86.4 89.9 70.3 76.0 93.2 85.7 79.8
+IAT MTL 1.0× 51.6 83.9/83.1 87.6 90.6 71.2 76.8 94.1 86.2 80.6

BERT1
LARGE ST 9.0× 60.5 86.7/85.9 89.3 92.7 72.1 70.1 94.9 86.5 82.1

Adapters-2564 ST 1.3× 59.5 84.9/85.1 89.5 90.7 71.8 71.5 94.0 86.9 80.0
CA-MTL3

LARGE MTL 1.12× 59.5 85.9/85.4 89.3 92.6 71.4 79.0 94.7 87.7 82.8

Ticket-Share‡LARGE MTL 1.0× 56.2 86.0/85.6 88.7 92.7 71.4 78.8 94.5 85.6 82.2

BERTLARGE MTL 1.0× 56.8 85.6/84.9 86.6 92.4 71.3 79.0 94.3 86.2 81.9
+IAT MTL 1.0× 60.0 85.5/85.3 88.4 92.1 71.5 79.1 94.5 86.8 82.6

RoBERTa‡BASE ST 9.0× 60.0 87.2/86.7 90.8 93.1 72.1 71.9 95.7 88.2 82.9

RoBERTaBASE MTL 1.0× 55.3 87.2/86.7 89.6 92.3 71.4 80.0 95.1 87.1 82.7
+IAT MTL 1.0× 59.9 86.9/86.8 90.9 92.4 71.8 80.5 95.4 87.1 83.5

DeBERTaV3‡
BASE ST 9.0× 67.1 90.0/89.2 90.6 94.4 73.9 81.5 96.2 88.9 85.8

DeBERTaV3BASE MTL 1.0× 63.1 89.9/89.2 89.4 93.8 73.7 86.7 95.5 89.6 85.7
+IAT MTL 1.0× 67.2 89.7/89.2 90.9 93.8 74.0 86.9 95.8 89.7 86.4

Table 5: GLUE test set results using the GLUE evaluation server. “ST” stands for the single task fine-tuned model,
whereas “MTL” denotes the multi-task learning model. The multi-task learning models we tested are not further
fine-tuned on each task, so there is only one model for all tasks (1.0× in #Params). Results from: Devlin et al.
(2019)1, Stickland and Murray (2019)2, Pilault et al. (2021)3, Houlsby et al. (2019)4. ‡ indicates our implement
result for a fair comparison. The highest performance in the last two conditions of each model is displayed in bold.

As shown in Table 4, there is no significant dis-427

sociation score difference between “AG + QNLI”428

and “AG-Pair + QNLI” dual-task learning tasks,429

which also holds for “AG + SST-2” and “AG-Pair430

+ SST-2”. We note that the absolute performances431

on the AG-Pair dataset suffer a drastic drop after432

pruning only 30% attention heads, which is similar433

to the other tasks taking pair of sentences as input434

(Table 3).435

According to the experimental results presented436

above, we observe that task similarity plays a more437

important role than the input paradigm in the func-438

tional specialization of the multi-head attention439

module.440

6.3 Improving Multi-Task Models by Training441

Important Attention Heads442

Once the importance of attention heads for each443

task is figured out, we should be able to consol-444

idate their roles by only finetuning them. Thus,445

Important Attention-head Training (IAT) (Section446

4.2) is applied to the multi-task learning models447

on 9 GLUE datasets and compared against vanilla448

multi-task learning. We observe that the degree of449

functional specialization in the multi-head attention 450

module is improved by training the top important 451

attention heads during the last part of multi-task 452

learning (details refer to Appendix F). 453

Table 5 reports on a comparison result of single 454

task fine-tuning models, multi-task learning mod- 455

els as well as the models using adapters on GLUE 456

test set.1 GPT and GPT-2 are not incorporated 457

due to their inferior performance on GLUE. With 458

important attention-head training, the average per- 459

formances of five multi-task learning models are 460

increased by 0.76% on average over the vanilla 461

multi-task learning baseline. These transformer 462

family models for multi-task learning even surpass 463

their single task fine-tuning counterparts, which 464

consist of 9 task-specific models. 465

In most cases, multi-task learning models with 466

IAT receive a performance gain on the four small 467

datasets (CoLA, MRPC, RTE, and STS-B), among 468

which the improvement on CoLA is the most signif- 469

icant (+3.6% on average). It comes from the allevi- 470

1For a fair comparison, we treat MNLI-m and MNLI-mm
as two tasks, which is the same as Houlsby et al. (2019) and
Pilault et al. (2021).
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# Samples of SciTail # Samples of IMDB

Model 4 16 32 100 4 16 32 100

MT-DNN 71.83±6.5 81.24±3.8 82.59±2.3 85.90±2.0 77.65±4.7 80.76±3.1 82.98±0.9 83.65±0.6

Ticket-ShareBASE 73.17±6.1 82.07±4.0 83.05±2.4 86.22±1.5 78.43±4.0 81.57±1.6 83.07±0.6 83.84±0.5

BERTBASE 69.44±8.9 79.41±4.7 81.52±3.0 85.65±1.6 72.21±6.2 78.67±3.5 82.10±1.0 83.39±0.5

+IAT 75.66±4.0 82.11±3.2 83.82∗
±1.9 86.60∗

±1.3 80.50∗
±2.6 82.03∗

±1.9 83.33∗
±0.5 84.08∗

±0.3

Table 6: Few-shot transfer learning results on development sets across 30 seeds (∗ indicates statistically significant
improvements of 5% level). All models use BERTBASE as encoder and are initialized from their multi-task learning
models on GLUE.

ation of negative transfer in CoLA under multi-task471

learning. For example, compared with fine-tuning472

on CoLA (60.5%), the performance of BERTLARGE473

drops to 56.8% under multi-task learning, while it474

increases to 60.0% after using IAT. The perfor-475

mances of multi-task learning models on two large476

datasets, QQP and SST-2, are also improved by our477

method. More results, including different sampling478

methods and performances on GLUE development479

sets, are shown in Appendix F.480

Few-shot Transfer Learning Furthermore, we481

investigate whether a multi-task learning model482

with a more specialized multi-head attention mod-483

ule will be better at transfer learning. Table 6484

presents the few-shot transfer learning results us-485

ing different amounts of training samples from Sc-486

iTail (natural language inference task) and IMDB487

(sentiment analysis task). We find that the model488

initialized from a multi-task learning model using489

IAT achieves a higher accuracy on the new task,490

especially when fewer samples are provided. IAT491

degrades to the multi-task learning method pro-492

posed by Liang et al. (2021) when δ = 1, and493

often obtains a worse performance in multi-task494

learning and transfer learning (Ticket-Share in Ta-495

ble 5 and Table 6). It may come from the weak496

functional specialization phenomenon in the origi-497

nal pre-trained models (e.g., the frozen BERTBASE498

encoder in Figure 2), which makes it harder to cor-499

rectly determine the most important attention heads500

for each task at the beginning of multi-task training.501

Ablation Study To take a deep look into the502

improvements contributed by important attention-503

head training, we conduct an ablation study on504

GLUE dev set using BERTBASE (Table 7). After505

pruning the least important 30% heads, there is506

a performance gain on three tasks (MRPC, SST-507

2, and STS-B), which is in line with the previous508

finding that Transformer can be improved by prun-509

Model Avg # Tasks Improved

BERTBASE 82.64±0.09 -

w/ Prune the least important 30% heads 82.23±0.46 3
w/ Randomly train 30% heads 82.71±0.10 6
w/ Train the most important 30% heads 83.41±0.20 8

Table 7: Ablation study of different multi-task methods
on GLUE dev set with δ = 10%.

ing some redundant attention heads (Michel et al., 510

2019). 511

It is interesting to find that multi-task models can 512

benefit from randomly training 30% attention heads 513

for each task, which may arise from the mitigation 514

of gradient interference by subdividing the parame- 515

ters shared. Compared with randomly training 30% 516

attention heads, training the most important part 517

of attention heads can further improve the average 518

performance and benefit more tasks. 519

7 Conclusions and Future Work 520

In this paper, we conduct extensive dissociation ex- 521

periments and observe that the brain-like functional 522

specialization phenomenon does evolve in multi- 523

head attention after dual-task or multi-task learn- 524

ing. Furthermore, experimental results show that 525

the performance and generalization ability of multi- 526

task models can both be improved by the multi-task 527

training method based on functional specialization. 528

This work, inspired by neuroscience findings, stud- 529

ies the interpretation and improvement of neural 530

networks, which we hope will promote more efforts 531

on interdisciplinary work combining neuroscience 532

and artificial intelligence. 533

In the future, we plan to investigate more neu- 534

ral network modules that may arise the functional 535

specialization phenomenon under multi-task learn- 536

ing. Another direction is to design better meth- 537

ods exploiting this phenomenon to further improve 538

multi-task learning models. 539
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Limitations540

Firstly, we conduct extensive experiments on multi-541

ple natural language understanding tasks only, and542

multi-modal tasks could be investigated further.543

In addition, only one approach is utilized to esti-544

mate the importance of each attention head, and the545

most important attention heads are pruned at once.546

Because of this choice, our results can be seen as a547

lower bound on the estimation of functional special-548

ization in multi-head attention. We acknowledge549

that there might be methods to show higher dissoci-550

ation scores, such as adopting other attention head551

importance estimation methods (Hao et al., 2021;552

Li et al., 2021) or iterative pruning.553

We note that the four similarity metrics used in554

this study are model-dependent, and recognize that555

results might be different for other Transformer-556

based models.557

Lastly, there are two hyper-parameters intro-558

duced in our multi-task training method, which559

may need extra tuning when adapted to other multi-560

task learning settings.561
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A Hyperparameters921

A.1 Dual-task and Multi-task Learning922

To fine-tune the pre-trained models on dual-task923

or multi-task learning, we use Adam optimizer924

(Kingma and Ba, 2015), in which β1 = 0.9 and925

β2 = 0.999, and a learning rate of 2e-5. We also926

use a linear warm-up schedule and set the warm-up927

proportion to 0.1. The number of epochs is em-928

pirically set to 5 for a fair comparison. The only929

exception is the distillation of TinyBERT, which930

contains intermediate layer distillation and pre- 931

diction layer distillation. Under the supervision 932

of a fine-tuned BERTBASE, these distillation meth- 933

ods are performed for 2 and 3 epochs without aug- 934

mented data, respectively. Unless otherwise speci- 935

fied, the proportional sampling method is utilized 936

in multi-task learning. 937

Similar to the difference in area between cortical 938

regions, the best α for each task may be different 939

in dissociation experiments. We acknowledge that 940

higher dissociation scores can be obtained by fine- 941

tuning α in each dual-task learning task. For a 942

fair comparison, α is empirically set to 30% in 943

all dissociation experiments to show the extent of 944

functional specialization in the multi-head attention 945

module. All experiments are repeated under three 946

random seeds and average results are reported. 947

A.2 Transfer Learning 948

Since only a small part of training samples are used 949

in transfer learning experiments, we increase the 950

number of training epochs to 20, and conduct a 951

paired bootstrap statistical test under 30 random 952

seeds (Dror et al., 2018). 953

B Dual-task Learning Experiments 954

In this section, we present the results of all multi- 955

head attention based models investigated in dual- 956

task learning tasks. 957

As reported in Table 8, the dissociation scores 958

of Transformer-based models in dual-task learning 959

are all positive when fine-tuning the pre-trained 960

encoder, i.e., double dissociation phenomenon ap- 961

pears in all task-pairs. It further demonstrates that 962

the functional specialization phenomenon does ap- 963

pear in the multi-head attention module after train- 964

ing on these dual-task learning tasks. 965

C Multi-task Learning Experiments on 966

BERTBASE 967

We report more results of multi-task learning ex- 968

periments conducted in Section 6.2. The pair-wise 969

dissociation scores are reported in Table 9. 970

Distribution of Heads Pruned To gain more in- 971

sights about the functional specialization in multi- 972

task learning, we statistic the distribution of heads 973

pruned for each task across layers in multi-task 974

learning (Figure 4). The average number of atten- 975

tion heads pruned shows a trend of increasing first 976

and then decreasing, which changes at the 4th layer. 977
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MNLIA QQPA QNLIA AGA

QQPB QNLIB AGB SST-2B QNLIB AGB SST-2B AGB SST-2B SST-2B

Model DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB DA DB

GPT 0.28 3.76 2.10 1.36 16.75 10.47 16.49 1.13 1.36 0.80 18.19 3.60 25.19 1.08 28.74 3.51 31.34 0.75 2.51 4.08

GPT-2 4.76 3.26 3.09 0.71 15.44 3.29 17.69 5.79 12.64 0.66 19.24 2.39 50.19 4.18 18.62 4.69 16.49 6.81 3.60 6.61

TinyBERT 2.04 20.10 3.82 1.19 35.66 5.36 31.85 4.71 14.42 0.63 8.70 6.54 24.39 2.35 14.87 6.28 35.59 1.63 1.08 1.59

BERTBASE 2.78 2.60 2.34 2.63 11.36 16.26 13.81 0.21 1.92 4.82 28.97 10.39 11.34 3.18 13.27 6.91 32.87 3.28 2.98 4.05

BERT∗
BASE −0.96 0.35 −0.13 1.21 5.59 4.53 3.27 1.20 0.01 0.15 0.82 3.94 −1.07 6.95 6.74 0.90 7.68 2.14 2.48 3.90

BERTLARGE 2.43 0.83 5.69 3.55 17.31 6.16 19.83 9.81 0.02 5.90 22.40 2.88 21.20 6.52 17.90 9.56 20.44 8.73 7.72 7.23

RoBERTaBASE 8.56 10.86 1.31 4.32 17.43 38.23 5.48 8.40 2.43 0.54 23.27 22.73 22.19 5.59 15.96 47.73 16.09 5.01 6.62 6.16

DeBERTaV3BASE 6.21 4.64 14.21 0.02 24.11 8.47 27.03 2.65 9.50 0.02 11.65 9.50 20.51 13.33 3.42 16.92 20.36 2.33 4.97 17.78

Table 8: Results in dual-task learning experiments under α = 30%. ∗ indicates that the parameters of BERTBASE
encoder are frozen

.

Task MNLIA QQPA QNLIA AGA SST-2A

MNLIB - 2.385 4.321 12.671 3.115
QQPB 5.161 - 3.657 12.198 2.907
QNLIB 1.275 1.746 - 12.555 4.236
AGB 9.169 7.819 13.135 - 2.865

SST-2B 13.496 9.091 18.246 6.874 -

Table 9: DA(α) between task-pairs, which is calculated
on the pruning results of multi-task learning with α =
30%. The highest dissociation score in each task A is
displayed in bold, and the lowest one is underlined.

The two layers with the greatest difference among978

tasks are the first layer (σ = 2.39) and the sixth979

layer (σ = 2.08) of BERTBASE after fine-tuning 5980

epochs on these five tasks.981

Figure 4: The number of important heads pruned among
the layers of BERTBASE after multi-task learning. The
average number of heads pruned in one layer is 3.6
(α = 30%).

Overlapping of Heads Pruned Table 10 reports982

the overlapping of attention heads pruned between983

tasks. It seems that the proportion of overlapping984

heads pruned does not completely correspond to985

Task MNLIA QQPA QNLIA AGA SST-2A

MNLIB - 81.40 83.70 58.14 68.99
QQPB 81.40 - 78.29 63.57 62.79
QNLIB 83.70 78.29 - 62.02 62.02
AGB 58.14 63.57 62.02 - 64.34

SST-2B 68.99 62.79 62.02 64.34 -

Table 10: The overlapping percentage of important
heads pruned in multi-task learning under α = 30%.
The highest overlapping in each task A is displayed in
bold, and the lowest one is underlined.

the dissociation score of each task (Table 9). For 986

example, as for the MNLI and AG tasks, the task 987

with the highest overlapping of heads pruned is the 988

same as the one with the lowest dissociation score. 989

However, the highest overlapping of heads pruned 990

for SST-2 comes to the second-highest dissociation 991

score when combined with MNLI. 992

D Task Similarity Metrics and Fitting 993

Results 994

To verify the robustness of our finding in Section 995

6.2, the following four metrics are adopted to de- 996

termine the similarity of each task pair: 997

Direct Similarity Estimation (DSE) This 998

method approximates the similarity of task pairs by 999

the average similarity of sentence representations 1000

from models fine-tuning on the corresponding task. 1001

Therefore, we randomly select 1000 sentences 1002

from the Wikipedia corpus and adopt cosine 1003

similarity to quantify the similarity of sentence 1004

representations. Results with DSE metric are 1005

shown in Figure 5. 1006
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Figure 5: The average dissociation score and DSE simi-
larity of each task pair in multi-task learning.

Analytic Hierarchy Process (AHP) On the1007

other hand, the similarity of task pairs can be ap-1008

proximated from the pair-wise transfer learning1009

results (Zamir et al., 2018). Given a target task,1010

models transferred from different source tasks are1011

compared on a hold-out dataset to determine the1012

transferability of the target task, which is further1013

used to approximate the similarity between tasks.1014

Results using AHP are illustrated in Figure 6.1015

Figure 6: The average dissociation score and AHP simi-
larity of each task pair in multi-task learning.

Cognitive Representation Analytics (CRA) In-1016

spired by Representational Similarity Analysis1017

(RSA) in cognitive neuroscience (Kriegeskorte1018

et al., 2008), CRA first calculates the Representa-1019

tion Dissimilarity Matrix (RDM) by the dissimilar-1020

ity of sentence representations, then approximates1021

the similarity between tasks by the similarity be-1022

tween the corresponding RDMs (Luo et al., 2022).1023

Figure 7 presents the results with CRA.1024

Cognitive-Neural Mapping (CNM) CNM cal-1025

culates the task similarity by mapping sentence1026

representations of fine-tuned models to fMRI data1027

(Luo et al., 2022), which is recorded when 5 partici-1028

pants were intently reading presented 384 passages1029

(Pereira et al., 2018). Different from randomly se-1030

Figure 7: The average dissociation score and CRA simi-
larity of each task pair in multi-task learning.

lecting 25k fMRI voxels, the most informative 5k 1031

fMRI voxels for each participant are used to pre- 1032

dict the similarity among tasks. Results with CNM 1033

have been shown in Figure 3. 1034

To sum up, we observe that there is a negative 1035

correlation between the average dissociation score 1036

and the task similarity, no matter which task simi- 1037

larity metric is adopted. 1038

E AG-Pair dataset 1039

The AG-Pair dataset is built from the original 1040

dataset AG’s News that contains 120k training sam- 1041

ples from four topics. Given a pair of news as input, 1042

the model has to predict whether they are belonging 1043

to the same topic (Same) or not (Different). 1044

To generate this dataset, samples in AG are it- 1045

erated in random order and have an equal chance 1046

to combine a sample in the same topic or the other 1047

three topics. Thus the numbers of training samples 1048

in two classes are both 60k. Moreover, each news 1049

in AG’s News occurs exactly twice in the AG-Pair 1050

dataset to keep the same word frequency. 1051
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F Other Experimental Results on GLUE1052

In this section, we report more results and analyses1053

of multi-task learning models on GLUE. Figure 81054

illustrates that the average dissociation scores of1055

five Transformer-based models are all improved by1056

IAT as we expected.

Figure 8: Average dissociation score of five multi-task
learning models on GLUE dev set with α = 30%.

1057

Figure 9 and 10 present the impact of two hy-1058

perparameters, δ and α in IAT, on the average per-1059

formance of BERTBASE. It is interesting to find1060

that with a small δ and α (e.g., δ = 10% and1061

α = 30%), BERTBASE using IAT can achieve1062

a good performance on GLUE dev set. There-1063

fore, we only consider a limited hyperparameter1064

sweep for each multi-task learning model with1065

δ ∈ {0.05, 0.1, 0.15} and α ∈ {0.1, 0.2, 0.3}.1066

Figure 9: The average performance of BERTBASE on
GLUE dev set using IAT with different δ (α = 50%).

Same as the finding in Stickland and Murray1067

(2019), the annealed sampling method is better for1068

multi-task learning of GLUE than the proportional1069

sampling method. The sampling probabilities of1070

task i in annealed sampling are changed with epoch1071

Figure 10: The average performance of BERTBASE on
GLUE dev set using IAT with different α (δ = 10%).

e, and are calculated as follows: 1072

pi ∝ Nε
i

with ε = 1− 0.8
e− 1

E − 1

(8) 1073

where Ni is the number of samples in task i, E is 1074

the total number of epochs. In contrast, the ε in 1075

proportional sampling is always equal to 1. 1076

Table 11 shows the results of five multi-task 1077

learning models using the proportional sampling 1078

method on GLUE test set. We can find that these 1079

multi-task learning models with proportional sam- 1080

pling perform better on GLUE test set after using 1081

IAT (+0.68% on average), which is in line with the 1082

findings in Section 6.3. It further demonstrates the 1083

effectiveness of our method. 1084

Additional experimental results on development 1085

sets of GLUE for all models tested in this paper are 1086

reported in Table 12. In most cases, the standard 1087

deviation of average performance on GLUE devel- 1088

opment set is less than or equal to the baseline after 1089

using IAT, which indicates the robustness of our 1090

method. 1091
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Model CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg.

TinyBERT 27.0 82.8/82.5 83.4 90.3 70.4 71.6 92.3 83.4 76.0

+IAT 33.7 82.8/82.2 85.3 90.6 70.3 71.9 92.5 84.0 77.0
BERTBASE 41.8 83.6/82.7 85.0 90.1 70.6 74.7 93.0 83.2 78.3

+IAT 45.1 84.0/83.3 85.1 89.6 70.8 76.2 92.8 83.5 78.9
BERTLARGE 53.3 85.4/84.9 85.9 92.0 71.3 78.6 94.3 84.8 81.2

+IAT 56.7 85.8/84.8 85.9 92.3 71.5 78.9 94.4 84.9 81.7

RoBERTaBASE 52.5 87.5/86.8 88.4 92.3 71.9 79.1 94.8 85.8 82.1

+IAT 56.1 87.1/86.7 88.5 92.6 72.3 79.9 95.2 85.8 82.7

DeBERTaBASE 61.9 89.9/88.9 87.6 93.7 73.8 86.0 95.8 88.4 85.1

+IAT 64.8 89.7/89.0 89.2 93.8 73.9 86.7 96.1 88.8 85.8

Table 11: GLUE test set results of five multi-task learning models using proportional sampling.

Model CoLA
Mcc

MNLI-(m/mm)
Acc

MRPC
F1

QNLI
Acc

QQP
F1

RTE
Acc

SST-2
Acc

STS-B
rs

Avg.

Proportional Sampling

TinyBERT 31.3 83.2/83.5 83.9 90.3 86.3 71.8 91.5 85.8 78.6±0.5

+IAT 37.5 83.1/83.1 85.5 90.5 86.7 72.1 91.6 86.6 79.6±0.3

BERTBASE 47.2 83.7/83.3 85.0 90.3 87.0 78.3 92.7 86.6 81.6±0.3

+IAT 52.0 83.6/83.6 86.5 90.1 87.2 79.4 91.9 87.2 82.4±0.2

BERTLARGE 54.1 85.7/85.6 86.9 91.6 88.3 82.1 93.2 87.9 83.9±0.3

+IAT 58.9 86.0/85.7 86.9 91.8 88.2 82.7 93.4 87.9 84.6±0.3

RoBERTaBASE 49.7 87.6/87.1 89.7 91.9 87.6 83.0 94.5 88.4 84.4±0.3

+IAT 54.2 87.2/87.1 89.8 92.3 87.8 84.4 94.1 88.4 85.0±0.1

DeBERTaBASE 65.5 89.8/90.0 89.1 93.8 89.3 87.0 95.1 90.0 87.7±0.2

+IAT 67.9 89.7/90.0 90.1 93.9 89.4 87.6 95.5 90.1 88.2±0.1

Annealed Sampling

TinyBERT 40.7 83.1/82.9 85.0 90.4 86.2 73.6 90.6 87.5 80.0±0.3

+IAT 45.8 82.8/83.0 85.5 90.3 86.6 74.7 91.2 87.9 80.9±0.4

BERTBASE 51.1 83.6/83.9 87.6 90.1 87.1 79.8 92.2 88.4 82.6±0.1

+IAT 53.5 83.8/84.0 89.0 90.6 87.6 80.6 93.2 88.4 83.4±0.2

BERTLARGE 58.8 85.8/85.8 87.4 91.8 87.9 82.0 92.8 88.6 84.5±0.2

+IAT 61.6 86.0/86.0 88.7 91.5 88.0 82.2 93.7 89.1 85.2±0.2

RoBERTaBASE 54.3 87.3/87.0 92.2 92.3 86.9 84.6 94.5 89.0 85.3±0.1

+IAT 59.2 87.1/86.8 92.2 92.2 87.1 84.7 94.3 89.1 85.9±0.1

DeBERTaBASE 65.7 90.0/90.1 90.7 93.9 89.0 88.0 95.2 90.3 88.1±0.2

+IAT 68.7 89.9/90.0 91.4 94.0 89.1 88.5 95.3 90.7 88.6±0.1

Table 12: GLUE development set results of five multi-task learning models.
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