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ABSTRACT1

While large language models (LLMs) have made huge strides2

in text and vision, their ability to reason about sound re-3

mains limited. Most recent approaches rely on dense au-4

dio embeddings that are hard to interpret and often fail on5

tasks requiring fine-grained or structured understanding.6

This project introduces SAR-LM, a symbolic audio rea-7

soning pipeline that extracts structured, text-based features8

from audio across three aspects: speech, general sound,9

and music. For speech, we use Whisper-large and Wav2Vec2-10

based emotion recognition. For sound events, we rely on11

PANNs. For music, we combine low-level transcription12

from MT3, mid-level chord progressions from Chordino,13

and high-level tags from MusicNN. These symbolic fea-14

tures are used in two ways: either directly as flat prompts,15

or summarized into natural-language captions using Gem-16

ini 2.5 Pro. To evaluate performance, we compare both ap-17

proaches against captions generated end-to-end from raw18

audio, and a mixed version using both symbolic and audio19

inputs.20

We test all methods on the MMAU benchmark, which21

pairs audio clips with multiple-choice questions for audio22

understanding and reasoning across speech, music, and en-23

vironmental sounds. We find that symbolic prompts can24

match or outperform dense baselines in several reasoning25

tasks. These findings suggest that symbolic audio inputs,26

combined with structured prompting, offer a promising path27

toward more accurate and explainable audio question an-28

swering with LLMs.29

1. INTRODUCTION30

Sound plays an important role in how people understand31

the world. We do not just hear sounds, we make sense of32

them. For example, we can guess who is speaking, how33

they feel, or what caused a noise in the background. This34

kind of reasoning comes naturally to humans, but it’s still35

very difficult for AI systems.36

Large language models (LLMs) have made major progress37

in understanding text, images, and code. But when it comes38

to audio, they still struggle. Most existing methods rely39
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on dense audio embeddings, which are hard to interpret40

and not well suited for reasoning. These features are often41

noisy, unstructured, and hard to align with language-based42

models.43

In this project, we take a different approach. Instead44

of giving the model raw audio or dense features, we con-45

vert the audio into symbolic, time-aligned text, a format46

that is more familiar to LLMs. Our pipeline extracts struc-47

tured features from different parts of the audio, depend-48

ing on its type. For example, we use Whisper for speech49

transcripts [1], Wav2Vec2 for speech emotion [2], PANNs50

for general sound events [3], MT3 for musical notes [4],51

Chordino for chord progressions [5, 6], and MusicNN for52

music tags 1 .53

We build text-based prompts using these symbolic fea-54

tures, and optionally summarize them into natural-language55

captions using Gemini 2.5 Pro [7]. We then test how well56

an LLM (Qwen3-32B) [8] can answer multiple-choice ques-57

tions from the MMAU benchmark [9], which pairs au-58

dio clips with questions to evaluate audio understanding59

and reasoning across speech, music, and environmental60

sounds, using different types of input: raw symbolic fea-61

tures, symbolic-based captions, and end-to-end captions62

generated from audio.63

Our results show that symbolic prompts are competitive64

with end-to-end approaches, while offering much greater65

interpretability. This suggests that symbolic audio reason-66

ing is a promising direction for building more transparent67

and controllable audio-language systems.68

2. METHODOLOGY69

2.1 Pipeline Overview70

Our goal is to help large language models (LLMs) under-71

stand and reason about audio. To achieve this, we design72

a modular pipeline that converts raw audio into structured,73

interpretable prompts for a language model. The pipeline74

consists of four main stages: symbolic feature extraction,75

prompt construction, LLM-based reasoning, and answer76

prediction, as shown in Figure 1.77

Given an input audio clip x, we extract symbolic fea-78

tures using pretrained models:79

F(x) = {f1, f2, . . . , fn},

where each fi is a discrete, time-aligned feature such as80

1 https://github.com/jordipons/musicnn



a transcript, tag, or chord sequence. These features are fil-81

tered and composed into a textual prompt p = T (F(x), s),82

where s denotes the selected prompt style (e.g., flat, con-83

ditional, caption-based). The prompt is paired with a ques-84

tion q and passed to a large language model M, which85

produces a predicted answer ŷ = M(p, q).86

We support multiple prompt styles, including a sim-87

ple flat format and variants that incorporate audio captions88

generated by Gemini 2.5 Pro [7], either from the raw au-89

dio or from symbolic features. In some styles, we apply90

prompt-level restrictions (e.g., “Do not overthink”) to re-91

duce hallucinations. The predicted answer is then evalu-92

ated against the ground-truth label from the MMAU bench-93

mark.94

This pipeline is fully modular and text-based. Each95

component, feature extractor, prompt generator, or language96

model, can be modified independently without retraining97

the whole system. This makes the setup highly extensible98

for future experiments. Figure 1 illustrates the full archi-99

tecture of the SAR-LM pipeline.100

2.2 Symbolic Feature Extraction101

Rather than relying on dense audio embeddings, which102

can be difficult for language models to interpret, we con-103

vert each audio clip into a set of symbolic, time-aligned104

features that are easier to read and reason about. These105

features are extracted using a suite of pretrained models,106

each targeting a different semantic layer of the audio sig-107

nal, such as sound events, speech, emotion, or music. All108

symbolic features are represented in plain text and aligned109

to the timeline of the audio clip.110

As a first step, we run PANNs [3] to generate a multi-111

label set of audio event tags. These tags are used as a112

coarse guide to determine the content of the clip. If PANNs113

predicts the presence of speech, we extract transcriptions114

and emotion cues. If it detects music, we extract sym-115

bolic music features such as notes, chords, and stylistic116

tags. This adaptive filtering helps reduce noise and ensures117

that only relevant information is included in the prompt.118

Sound event tags. PANNs provides a list of times-119

tamped labels that describe the audio scene, including cat-120

egories like music, laughter, footsteps, and speech. These121

tags form the backbone of our filtering logic and are also122

included directly in the prompt to provide a high-level sum-123

mary of the audio.124

Speech transcription. If speech is present, we extract a125

full transcript using Whisper-large [1]. Whisper performs126

well even on multilingual or noisy clips and produces sta-127

ble outputs that support reasoning about content, speaker128

identity, or dialogue structure.129

Emotion recognition. When speech is detected, we130

extract emotional cues using the DAWN Transformer [2],131

which predicts continuous values for valence, arousal, and132

dominance (VAD). These values provide a fine-grained af-133

fective profile of the speaker but are not directly usable by134

language models. To convert them into interpretable sym-135

bolic tags, we discretize each dimension into low, mid, or136

high bins using dataset-specific thresholds derived from137

empirical value distributions.138

Music transcription. For clips containing music, we139

use MT3 [4], a multitask transformer model that outputs140

symbolic MIDI sequences, including pitch, instrument, and141

note timing information. These MIDI files are post-processed142

using pretty_midi [10] to extract a structured list of143

symbolic note events, each annotated with note name, pitch144

value, instrument type, and onset/offset times. This al-145

lows the model to reason about musical structure, such as146

which instruments are playing, when notes occur, or how147

melodies evolve over time.148

Chord progression. To capture harmonic structure, we149

use Chordino [5, 6] to identify chord sequences with their150

temporal boundaries. Chords offer a mid-level abstraction151

of the audio and support tasks involving musical progres-152

sion or genre understanding.153

Music tagging. To complement low- and mid-level mu-154

sical features, we apply Musicnn 2 to produce high-level155

tags that reflect genre and timbral qualities (e.g., classical,156

electronic, solo, bright). These tags offer semantic ground-157

ing for questions related to mood or style.158

Each audio clip is processed selectively: only features159

relevant to the content type are included.160

2.3 Prompt Construction161

Once we extract symbolic features, we convert them into162

a natural language prompt suitable for input to a language163

model. The goal is to describe the audio content in a way164

that supports downstream reasoning tasks. Since each au-165

dio clip varies in modality, we dynamically construct the166

prompt based on available features.167

We begin by analyzing each clip using PANNs to iden-168

tify its high-level content. If PANNs detects speech or169

speech-like events, we include a transcript generated by170

Whisper, as well as a predicted speech emotion label de-171

rived from valence-arousal-dominance (VAD) scores. If172

PANNs detects music, we incorporate symbolic note se-173

quences from MT3, chord progressions from Chordino,174

and music tags from musicnn. In all cases, we include175

both clipwise and timestamped sound events from PANNs176

to provide a general overview of the acoustic scene.177

All extracted features are formatted as plain text using178

a consistent, readable structure. Irrelevant features are fil-179

tered out for each clip to reduce noise and keep the prompt180

focused. An overview of the prompt construction process181

is shown in Figure 1.182

After the symbolic features, we append the question and183

multiple-choice options, followed by a fixed instruction184

block that guides the model’s decoding. These instructions185

tell the model to select one answer verbatim from the pro-186

vided options without guessing or adding extra words.187

2.4 Caption Generation188

In addition to constructing symbolic prompts, we generate189

natural language captions using Gemini 2.5 Pro 3 via the190

2 https://github.com/jordipons/musicnn
3 https://deepmind.google/technologies/gemini/

#gemini-25



Figure 1. Overview of the SAR-LM pipeline. Given an input audio clip, PANNs is first used to predict sound event tags,
which serve as a reference to determine the presence of speech, music, or general environmental sounds. Based on this,
relevant symbolic features are extracted using specialized models: Whisper-large and Wav2Vec2.0 for speech transcription
and emotion, MT3 for low-level musical notes, Chordino for chord progression, and Musicnn for high-level music tags.
The full set of symbolic features is then used to construct three types of prompts: (1) a flat symbolic prompt containing
all time-aligned features, (2) a structured caption generated from symbolic features using Gemini2.5-pro, and (3) an end-
to-end caption directly generated from raw audio. All prompts are paired with an MMAU question and passed to Qwen3
(32B), which produces an answer. Predictions are compared to ground-truth answers to evaluate performance. The pipeline
is fully modular, enabling flexible substitution of feature extractors, prompt styles, and reasoning models.

Google GenerativeAI API. These captions serve two pur-191

poses: (1) they provide a more human-readable represen-192

tation of the audio scene, and (2) they allow us to compare193

different levels of abstraction for prompting. We generate194

three types of captions in total: symbolic, end-to-end, and195

mixed.196

Symbolic caption. To generate symbolic captions, we197

first build a structured text prompt from the extracted sym-198

bolic features, reformatting them into readable bullet points199

and time-aligned descriptions. Each prompt includes de-200

tected sound events (PANNs), musical content (MT3, Mu-201

sicNN, Chordino), and speech-related information (Whis-202

per transcript, segments, emotion), depending on what is203

present in the clip. All prompts use the same fixed in-204

struction. This prompt is passed to Gemini 2.5 Pro via the205

Google GenerativeAI API. The model returns a paragraph-206

style caption summarizing the audio scene, which is stored207

for downstream reasoning.208

End-to-end caption. To establish a baseline, we gen-209

erate captions directly from raw audio using the same in-210

struction. Instead of symbolic input, we provide the wave-211

form as audio bytes. This allows us to evaluate the impact212

of symbolic conditioning on content quality and hallucina-213

tion reduction.214

Mixed caption. To explore whether combining raw215

audio with symbolic features leads to richer descriptions,216

we generate mixed captions by providing both as input to217

Gemini 2.5 Pro. Each prompt includes the audio clip along218

with the structured symbolic text used in the symbolic cap-219

tion setting.220

We use the same fixed instruction and zero-shot setup221

as before. The model processes both modalities simultane-222

ously and returns a fluent paragraph.223

2.5 Reasoning with Language Models224

We evaluate symbolic reasoning by testing how well Qwen3-225

32B 4 , an open-source LLM, answers audio-based multiple-226

choice questions using non-audio inputs. We run the model227

locally using HuggingFace Transformers with determinis-228

tic decoding.229

We test three input types:230

1. Flat symbolic features: Raw features serialized into231

plain English (e.g., Whisper, PANNs, MT3, Chordino,232

MusicNN)233

2. Symbolic captions: Natural captions generated by234

Gemini 2.5 Pro using symbolic inputs235

3. End-to-end captions: Captions generated directly236

from raw audio237

4 https://huggingface.co/Qwen/Qwen3-32B



Each input is wrapped in a structured prompt with the238

corresponding question and answer choices from the MMAU239

benchmark. To address cases where Qwen3 overthinks240

simple questions and produces long internal reasoning (some-241

times exceeding the token limit), we include explicit in-242

structions discouraging overthinking and enforcing strict243

output formatting. This approach ensures stable decoding244

and prevents truncation.245

3. EXPERIMENTS AND RESULTS246

3.1 Setup247

Our initial setup used Qwen3-32B with prompt restrictions248

to reduce overthinking. While this approach worked in249

most cases, we still observed occasional hallucinations and250

unnecessarily long reasoning chains, which sometimes re-251

duced accuracy. To address these limitations, we tested the252

updated Qwen3-30B-A3B-Instruct-2507 [8], which avoids253

overthinking, follows instructions more reliably, and deliv-254

ers faster inference. This model became the focus of our255

final analysis, and all subsequent statistical tests are per-256

formed on its results.257

We evaluate all predictions using the MMAU bench-258

mark [9], a large-scale testbed for audio understanding and259

reasoning. Each sample consists of an audio clip paired260

with a natural language question and four multiple-choice261

answers, requiring models to recognise acoustic events and262

integrate contextual cues to select the correct option. The263

benchmark spans 27 task types across speech, music, and264

environmental domains, covering challenges such as speaker265

identification, instrument recognition, temporal event or-266

dering, and emotion detection. While the full benchmark267

contains over 91,000 samples, we use the test-mini268

split of 1,000 samples, which is the only split with pub-269

licly available ground-truth answers.270

Following the official MMAU evaluation script 5 , we271

use a string-matching function where a prediction is con-272

sidered correct if it contains all key tokens from the ref-273

erence answer and none from the incorrect options. This274

fuzzy matching accounts for minor wording variations while275

ensuring answer precision.276

3.2 Dynamic feature selection with a GPT-style agent277

We also test a dynamic variant that lets a GPT-style agent278

(Gemini 2.5 Pro 6 ) choose which symbolic tools to use for279

each sample. We give the agent a short description of the280

available tools (Whisper, PANNs, MT3, Chordino, Mu-281

sicnn, speech emotion) and ask it to return a JSON ob-282

ject with the selected tools. We then build the prompt ac-283

cordingly and run Qwen3-30B-A3B-Instruct-2507 [8] for284

answer prediction. The evaluation setup is the same as be-285

fore.286

5 https://github.com/Sakshi113/mmau
6 https://deepmind.google/technologies/gemini/
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3.3 Comparison with Baseline Methods287

To contextualize our results, we compare our symbolic ap-288

proaches with prior benchmark methods reported in the289

MMAU paper and related work. Table 1 presents a task-290

wise breakdown of accuracy for three baselines: MMAU291

(Best), Audio-CoT, and Audio-Reasoner, alongside our main292

variants and agent-controlled versions.293

Table 1. Comparison with baseline methods (task-wise ac-
curacy)

Method Sound (%) Music (%) Speech (%)
MMAU (Best) 57.35 50.98 64.86
Audio-CoT 62.16 57.78 56.16
Audio-Reasoner 60.06 64.30 60.70
Flat Symbolic Features (ours) 69.37 56.59 73.87
Symbolic Gemini Captions (ours) 69.67 58.38 71.77
E2E Gemini Captions (ours) 68.17 62.28 69.97
Mixed Gemini Captions (ours) 71.77 61.08 72.97
Flat Symbolic (agent) 72.67 57.78 73.87
Symbolic Captions (agent) 70.57 58.08 70.27
Mixed Captions (agent) 74.77 63.17 73.87

Our symbolic methods substantially outperform exist-294

ing approaches in sound and speech reasoning tasks. Com-295

pared to Audio-Reasoner, flat symbolic features improve296

accuracy by +9.31% on sound and +13.17% on speech297

tasks. Symbolic Gemini captions also show strong speech298

performance (71.77%), and the mixed caption approach299

reaches 72.97%.300

The agent-controlled mixed variant achieves the highest301

sound accuracy (74.77%) and improves music accuracy to302

63.17%, outperforming all baselines and non-agent vari-303

ants in these categories. However, for speech tasks, the304

non-agent flat method still slightly leads.305

While Audio-Reasoner remains strong in music (64.30%)306

among the baselines, both our non-agent E2E (62.28%)307

and agent mixed (63.17%) approaches are competitive, with308

the added benefit of richer interpretability.309

We also evaluated the open-source Qwen1.5-1.8B model310

using flat symbolic prompts and observed a drop in over-311

all performance (55.8% accuracy), particularly in speech312

tasks. This confirms that model scale and alignment play a313

critical role in symbolic reasoning performance.314

Together, these comparisons highlight the strength of315

symbolic representations, especially when paired with high-316

capacity, instruction-following language models, and the317

added benefits of per-sample tool selection when symbolic318

features are combined with raw audio in a mixed-caption319

setting.320

4. CONCLUSION321

We presented SAR-LM, a symbolic audio reasoning pipeline322

that converts audio into interpretable text features for LLMs.323

Symbolic inputs perform competitively with end-to-end cap-324

tions and provide greater transparency. Mixed captions325

that combine symbolic and raw audio achieve the highest326

scores, and agent-controlled selection further improves re-327

sults. These findings show that symbolic reasoning is a328

promising path toward more accurate and explainable au-329

dio question answering.330
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