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Abstract

This work is about improving the performance of the K-SVD, which was
proposed by Aharon et al. (2006). The K-SVD is considered to be a state-of-
the-art algorithm. In this work, we propose a way to make the algorithm better.
Specifically, making it faster without compromising the quality of the images We
achieved this by replacing the stage where the best rank-1 approximation using
singular value decomposition (SVD) is updated in the algorithm with an l1-norm
principal component analysis (l1-norm PCA).
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1 Background and Motivation

This work attempts to improve upon the novel K-SVD algorithm by reducing the computation time.
The K-SVD algorithm is in two parts: the sparse coding part and the updating of the dictionary. We
delved into exploiting both parts of the K-SVD algorithm with the aim of making it efficient.

2 Methods

2.1 Introduction

The work will be based on using the l1. We will first look at sparse solution and why the l1 norm
is preferred. Thereafter, we briefly recap on dictionary learning, but we will not dwell so much on
the sparse coding theory because nothing really changed. Futhermore, we will explore K-Means al-
gorithm and the generalization of it to become the K-SVD. Conclusively, we will build our intuition
of our proposed method by replacing the SVD step in the Dictionary method with the l1-PCA.

2.2 Sparsity and the l1 norm.

The l1 norm is widely used in linear algebra for sparsity in general. It is used widely in sparse
optimization procedures in statistics, inverse problems, and signal processing. Given the problem

y = Ax (1)

where we know y and A assuming the system is underdetermined, then we have infinite x’s that
satisfy the problem. If we consider that x ∈ R2. The l2 norm, ‖x‖2 =

√
x2
1 + x2

2, thus the solution
to the problem is any point that lies on the line shown on Figure 1a. The minimum 2-norm solution
is the point the circle meets the line. Every other point will intersect a larger radius and thus have a
greater 2-norm. However in our application the minimum 2-norm is not preferred, rather we want
the x that is the sparsest possible and still satisfies the problem. This is generally achieved using
the l0 norm as can be seen in Figure 1b. The l0 promotes sparsity, however this norm is not really
a norm because it fails the scaling condition for a norm. To find the l0 norm solution of a convex
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optimization problem is an NP hard problem. Instead we use the l1 norm. It is a norm and also tends
to give a sparse solution as can be seen in Figure 1c. This generalizes even in higher dimensions.
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Figure 1: L2 regularization, L0 regularization, and L1 regularization

2.3 Dictionary Learning

Dictionary learning also referred to as Sparse Dictionary Learning or Sparse Coding. The aim of
Dictionary Learning is to build a sparse representation of an input data, where the data is represented
by a linear combination of elements, these elements are called atoms. A collection of atoms are
dictionary.

Brief of Dictionary learning:

• InputData Y = [y1, y2, . . . , yK ] ∈ Yi ∈ Rm

• Learn a Dictionary D ∈ Rm×n : [d1, d2, . . . , dn]

• Learn a Representation X = [x1, x2, . . . , xK ], x ∈ Rn

• Minimize the Reconstrution Error min
xisparse

‖DX − Y ‖2F

2.4 Sparse Representation of Signal

Let y ∈ Rn be a signal observed, D ∈ Rn×K be a dictionary and x ∈ RK be the representation
coefficient.
In ideal situation we should have:

y = DX

However, if we have D = [d1, d2, . . . , dK ] such that each dk ∈ Rn, are the basis vectors then we
can write y as:

y =

K∑
k=1

xkdk

where the vector x is assumed to be sparse.
The goal is to solve:

min
X,D

‖xi‖0 subject to DX = Y

where Y = [y1, . . . , yN ] is a collection of N observations, and X = [x1, . . . , xN ] is a collection
of N representation coefficient vectors. The main issue here is that the problem is not convex. In
reality there is always noise and so we have Y ≈ DX.

2.5 K-SVD

We have the K-Means as:

min
D,X

‖Y −DX‖2F subject to ∀i, ‖xi‖ = 1. (2)
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When we relax the constraint by allowing ‖xi‖ = T we get,

min
D,X

‖Y −DX‖2F subject to ∀i, ‖xi‖ = T. (3)

Now if we fix D, then solve for X in (3) We note that:

‖Y −DX‖2F =

N∑
i=1

‖yi −Dxi‖22.

Hence all we need to solve:

min
xi

‖yi −Dxi‖22 subject to ∀i, ‖xi‖0 ≤ T. (4)

This can be achieved by using any of greedy algorithms such as Matching Pursuit (MP), Orthogo-
nal Matching Pursuits (OMP), Basis Pursuit (BP), and Focal Underdetermined System Solver (FO-
CUSS) Rubinstein et al. (2008). These techniques can be greedy, convex or non-convex relaxations,
etc. We fix X , then update for D so we have the problem:

min
D

‖DX − Y ‖2F (5)

We can use Method of Optimal Direction (MOD) by:

D = Y X⊤(XX⊤)−1

The MOD algorithm is efficient for low-Dimensional input data. However computing the pseudoin-
verse has high complexity and most often difficult to compute. There is also no way of preserving
sparsity inherent from X .

2.6 The Fast K-SVD Algorithm

The K-SVD algorithm relies on SVD at the dictionary updating stage. Our proposal is to replace
this step with l1-PCA that was developed by Markopoulos et al. (2014). The normal PCA which is
based on the l2 norm does not do any good. We find the principal component for each of the atom.
The algorithm is presented by Kwak (2008) and generalized one can be found in Markopoulos et al.
(2014) of updated version in 2018.

2.7 The l2− PCA Algorithm

1. Initialize: Pick any w(0) and set w(0) 7→ w(0)

‖w(0)‖2
and t = 0.

2. For all i ∈ {1, 2, · · · , n} if w⊤(t)xi < 0, pi(t) = −1, otherwise pi(t) = 1.

3. Flipping and maximization:

We let t 7→ t+ 1 and w(t)
∑n

i=1 pi(t− 1)xi. Set w(t) 7→ w(t)

‖w(t)‖ 2

.

4. Check for convergence:

(a) If w(t) = w(t− 1) go to step 2.
(b) Else if there exists i so that w⊤(t)xi = 0, let w(t) be nonzero small vector.

Set w(t) 7→ (w(t) + ∆w)

‖w(t) + ∆w‖2
, go to step 2.

(c) Else, set w⋆ = w(t).
(d) Stop if tolerance is met.

This work because in the algorithm, the projection vector w converges to w⋆, which is a
local maximum point of

n∑
i=1

|w⊤xi|.

The proof was taken from Kwak (2008).
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3 Results

In this section we present the results conducted in Python 3.10.7 with the scikit-learn 1.0.2 library
on MacBook Pro 2021, Apple M1 Max Chip with memory 32GB.
In the experiment we generated different datasets randomly and using the same parameters each
time we simulated results. We can see from the Table 1 below that the times for Faster K-SVD was
much smaller than that of the original K-SVD.

Table 1: Computation times for original k-svd and faster k-svd

n K-SVD Fast K-SVD

2 7.48712e-02 1.29747391e-05
4 1.82725e-02 1.69372559e-05

16 5.61304e-03 1.13081932e-05
32 4.71804e-03 1.20639801e-05
64 5.65225e-03 1.84845924e-05

128 4.91546e-03 1.39594078e-05
256 5.20929e-03 2.35462189e-05
512 5.47821e-03 1.84965134e-05

1024 5.83408e-03 4.05979156e-05

The results in Table 1 was plotted and be seen in the plot in Figure 2a. The Faster K-SVD variations
could not be seen clearly so we took the log of y-axis to ascertain the difference and we can see this
from Figure 2b.
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Figure 2: Plot of size against time for k-svd and fast k-svd

4 Discussion

We found that exploiting the updating of the dictionary portion had an effect on the time of the al-
gorithm runs. The proposed method Faster K-SVD is faster than that of the original K-SVD. Even
when we vary the data and add more noise it still beats the K-SVD. In application to signals and im-
ages, the Peak Signal-To-Noise Ratio (PSNR) was better from our preliminary studies Ravishankar
(2022). This exploitation seems to have a huge potential, due to time constraints we could apply it
to diverse problems.
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