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Abstract

We present Neural Bayesian Filtering (NBF), an algorithm for maintaining pos-1

teriors, called beliefs, over hidden states in partially observable systems. NBF is2

trained to find a good latent representation of the beliefs induced by a task. It maps3

beliefs to fixed-length embedding vectors, which can condition generative models4

for sampling. During filtering, particle-style updates compute posteriors in this5

embedding space using incoming observations and environment dynamics. NBF6

combines the computational efficiency of classical filters with the expressiveness7

of deep generative models—tracking rapidly shifting, multimodal beliefs while8

mitigating the risk of particle impoverishment. We validate NBF in state estimation9

tasks in partially observable variants of Gridworld and the card game Goofspiel.10

1 Introduction11

Belief state modeling, or computing a posterior distribution over hidden states in partially observable12

systems, has numerous applications in sequential estimation and decision-making problems, including13

tracking autonomous robots and learning to play card games [Haug, 2012; Sokota et al., 2022; Barfoot,14

2024]. As an example, consider the problem of tracking an autonomous robot with an unknown15

starting position in a d× d grid (Figure 1). Suppose the agent’s policy is known and an observer sees16

that the agent moved a step without colliding into a wall. This information indicates how the observer17

should update their beliefs about the agent’s position. Tracking these belief states can be challenging18

when they are either continuous or too large to enumerate [Solinas et al., 2023]—even when the19

agent’s policy is known and the dynamics of the environment are easy to simulate accurately.20

A common approach frames belief state modeling as a Bayesian filtering problem in which a posterior21

is maintained and updated with each new observation. Classical Bayesian filters, such as the Kalman22

Filter [Kalman, 1960] and its nonlinear variants (e.g., Extended and Unscented Kalman Filters23

[Sorenson, 1985; Julier and Uhlmann, 2004]), assume that the underlying distributions are unimodal24

and approximately Gaussian. While computationally efficient, this limits their applicability in settings25

that do not satisfy these assumptions. Particle filters alternatively approximate arbitrary target26

distributions through sets of weighted particles. However, in high-dimensional state spaces, they27

can require maintaining exponentially large sets of particles or risking particle impoverishment—a28

phenomenon where the set contains very few particles with significant weight [Doucet et al., 2009].29

Advances in generative modeling have provided new methods for filtering in problems with complex,30

multimodal belief states. However, they approximate the full system dynamics (including agent31

policies) and update an internal representation of the belief state with each observation. Addressing32

this limitation is crucial for applications where the policy or environment is known but changes,33

which happens naturally in some learning algorithms [Moravčík et al., 2017; Schmid et al., 2023].34

In this paper, we propose Neural Bayesian Filtering (NBF), which models complex, multimodal35

belief states and updates posteriors efficiently for input policies and environments. Central to our36

approach is the idea that belief states in a given task form a parameterized set. Much like how mean37
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and variance parameterize the family of Gaussians, a learned embedding vector specifies a particular38

belief state instance. This embedding can be computed exclusively using samples from the target39

belief state—making it specific to a given policy, environment, and observation sequence. Given40

a new observation, NBF updates the embedding to approximate the new posterior by generating,41

simulating, and then re-embedding particles. Effectively combining particle filtering and deep42

generative modeling, the algorithm maintains expressive approximations of complex, multimodal43

belief states. We validate NBF empirically in variants of Gridworld and the card game Goofspiel.44

1.1 Main Contributions45

Belief State Embeddings We propose learning an embedding network that compresses sample sets46

from belief states into a set-invariant vector. Conditioning a generative model on this vector allows47

for efficient sampling and density estimation on a family of complex posterior distributions.48

A Flexible Parametric Framework For Filtering We introduce Neural Bayesian Filtering (NBF),49

a novel parametric filtering framework in the embedding space that combines classical filtering with50

deep generative modeling. The resulting framework can approximate multimodal, non-Gaussian, and51

discrete state distributions without prohibitively large particle sets or fixed parametric assumptions.52

2 Background53

Belief state modeling has been studied in numerous contexts, including Hidden Markov Models54

(HMMs) [Rabiner, 1989], Partially Observable Markov Decision Processes (POMDPs) [Kaelbling et55

al., 1998], and Factored Observation Stochastic Games (FOSGs) [Kovařík et al., 2022], and is critical56

to many decision-time search algorithms. Sokota et al. [2022] provide a unified notation for belief57

state modeling. This work extends their formulation to sets of environments and explicitly models58

non-stationarity in the environment and control variables. These non-stationarities arise naturally59

when the agent learns or the environment changes (e.g. different obstacles in the grid in Figure 1).60

2.1 Notation61

Let x ∈ X be a Markov state and π ∈ Π be an external control variable (such as a policy in a62

POMDP or a joint policy in an FOSG). Let T : X × Π → ∆X be the transition function that63

determines the underlying dynamics of the process. Emission function H : X ×X → ∆Y outputs a64

probability distribution over the the observations (emissions) y ∈ Y upon transition from x to x′. An65

environment G def
= (X,Y, T,H, p0) contains state and observation spaces, a transition function, an66

observation function, and an initial state distribution p0. In this paper, we extend this formulation to67

include a set of state spaces X , transition functions T , and observation spaces Y to model the scenario68

where an environment instance is known (to the agent or an external observer) but non-stationary.69

G def
= {(X,Y, T,H, p0) : X ∈ X , Y ∈ Y, T ∈ T , H ∈ H, p0 ∈ ∆X} is the set of environments.70

(a) 8x8 grid with initial
beliefs.

(b) Beliefs after moving
right.

(c) After more steps.

Figure 1: Tracking an agent with an unknown starting position from observations about which
direction the agent moved (with some probability of error) and whether or not it hit a wall. Colored
cells indicate probabilities of possible agent positions.
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Given an instance (G, π), belief state modeling is expressed as modeling the distribution over71

the Markov states at a particular time t, conditional on the control and emission variables:72

p(x|π, y(1), . . . , y(t)). In discrete Markov systems with small state spaces, belief states can be73

computed analytically using posterior updates for each observation in the sequence.74

In this work, we consider the problem where both G and π are known by the agent or external75

observer and computationally efficient to evaluate. Together, G and Π parameterize a set of belief76

states PΠ
G

def
= {p(x|π, y(1), . . . , y(t)) : π ∈ Π, G ∈ G, y(i) ∈ Y, t ∈ N}. For brevity, we will drop the77

conditional and refer to a member of this set as p(x). Unlike much of the prior work in neural belief78

state modeling, our approach models this set directly by conditioning on both specific G and π.79

2.2 Classical Filtering Algorithms80

Bayesian filtering [Särkkä and Svensson, 2023] has been studied extensively as a method for belief81

state modeling. Environments with linear Gaussian dynamics are the simplest case. In these settings,82

Kalman filters [Kalman, 1960] provide efficient closed-form solutions for the posterior mean and83

covariance. However, many real-world applications involve nonlinear, non-Gaussian processes.84

Improvements such as Extended [Sorenson, 1985], Unscented [Julier and Uhlmann, 2004], and85

Cubature [Arasaratnam and Haykin, 2009] Kalman filters are suitable for non-linear systems but still86

propagate unimodal beliefs.87

Particle filters [Doucet et al., 2009] maintain a representative set of weighted samples for the belief88

state. This set gets updated according to the environment dynamics upon each new observation.89

Particle filters can, in principle, approximate a wide range of distributions, but they come with other90

challenges. Particle impoverishment happens when many particles in the set have little or no weight91

given the observation sequence and can be catastrophic because replacement particles can only be92

sampled by duplicating others in the set [Sokota et al., 2022]. Computational efficiency can also93

become a concern in high-dimensional state spaces because accurate filtering generally requires94

maintaining an exponential number of particles [Thrun, 2002].95

In the next two sections, we describe NBF: a novel approach that models the set of belief states96

parameterized by Π and G as a latent space of belief state embeddings. These embeddings condition97

a generative model for sampling and density estimation. Approximate posteriors are updated by sam-98

pling particles from the embedding, simulating these particles using the input G ∈ G and π ∈ Π, and99

then re-computing a weighted embedding using the resulting particles. Learned neural embeddings100

and fast posterior computation in the embedding space let NBF combine the computational efficiency101

of parametric approaches like Kalman filters with the flexibility of particle or model-free methods.102

3 Embedding Belief States103

In this section, we formalize our approach to modeling complex, multimodal belief states using104

learned neural embeddings. Our goal is to represent and efficiently sample from a given belief state105

induced by known but potentially changing control variables and environment dynamics.106

Given a known control variable π ∈ Π and environment G ∈ G, the induced belief state after t107

observations is the posterior distribution p(x). One challenge is efficiently modeling the set of108

these posterior distributions, which may be diverse as π or G vary. We propose embedding these109

distributions from sets of ground truth samples of example belief states. Our approach aims to110

construct an embedding vector θ ∈ Rm that uniquely represents the posterior distribution defined by111

y(1:t), π, and G, and conditions a model for sampling and density estimation.112

3.1 Model Definition113

We model the target set of belief states using an embedding function and a Normalizing Flow114

[Papamakarios et al., 2021] conditioned on its output.115

Embedding function. Let x1:n
def
= (x1, x2, . . . , xn) denote i.i.d. samples from belief state p(x).116

We define a permutation and cardinality invariant function Eϕ : Xn×Rn → Rm that maps (weighted)117

samples x1:n to an m-dimensional embedding vector. A belief embedding θ def
= Eϕ(x1:n, w1:n)118
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approximates the salient features (e.g. shape, location, spread) of a target distribution p(x) as a vector119

in latent space. Together with the flow described next, it defines the distribution pθ(x).120

Permutation and cardinality invariance ensures that neither n nor sample order affects θ. In this paper,121

we take the (weighted) mean over individual sample embeddings. If ϕ is expressive enough, the122

mean-pooled embedding θ serves as a sufficient moment-based approximation of p(x), but other123

higher-order architectures such as DeepSets [Zaheer et al., 2017] may also be viable.124

Conditional Normalizing Flow. Normalizing flows are a class of generative models that transform125

a simple base distribution (e.g., Gaussian) into a complex target distribution through a series of126

invertible and differentiable mappings. They allow for exact likelihood computation via change-127

of-variables. Flows can also be constructed in continuous time by defining an ordinary differential128

equation that describes the dynamics of the transformation over time [Lipman et al., 2022].129

Given an embedding θ, we can define tractable sampling and density estimation operations on pθ(x)130

by conditioning a normalizing flow on θ. Let fψ(·; θ) : Rd → Rd be an invertible, differentiable131

transformation conditioned on θ and parameterized by ψ. Given a simple base distribution p(z) (e.g.132

standard normal), the following two-step sampling procedure:133

z ∼ p(z); x = fψ(z; θ),

gives the desired density pθ(x) (by change-of-variables) [Papamakarios et al., 2021]:134

pθ(x)
def
= p

(
f−1
ψ (x; θ)

) ∣∣∣∣∣det ∂f
−1
ψ (x; θ)

∂x

∣∣∣∣∣ .
If fψ(z; θ) has a tractable inverse, then evaluating this density is also tractable. ψ and ϕ can be135

optimized jointly by maximizing the log-likelihood over all samples 1, . . . , N and distributions136

1, . . . ,K in the training set:137

L(ϕ, ψ) def
=

K∑
k=1

N∑
i=1

log p
(k)
θ (xi)

Discrete Belief States and Variational Dequantization. Normalizing flows are defined for contin-138

uous inputs, but belief states in many relevant domains are discrete. Variational Dequantization [Ho139

et al., 2019] is an approach for applying flows to discrete data. Each discrete sample is perturbed140

by learned noise, resulting in a continuous space. The noise distribution is trained jointly with the141

flow by maximizing a variational lower bound on the true discrete log-likelihood—preserving exact142

likelihood evaluation and stabilizing training for discrete belief states.143

3.2 Illustrative Example: Donuts144

Consider a toy domain, called donuts, consisting of a simple set of continuous distributions in R2.145

Donuts (Figure 2(a)) are parameterized by a mean, a radius, and a width. Setting these parameters146

specify a particular donut D, and are sufficient for closed-form sampling from D. Suppose these147

parameters are not known, and instead Eϕ receives a set of sample points x1:n
iid∼ D and outputs θ as148

a parameterization of D. θ conditions the generative model fψ(z; θ), providing an approximation of149

D and enabling i.i.d sampling from it.150

We train our model on randomly generated example donuts using n = 128 samples per donut—with151

n/2 used for generating the embedding and the rest used for minimizing the negative log-likelihood152

objective. At test time, we create embeddings using 64 samples from unseen target donuts. Figure 2(b)153

shows 3 randomly selected test donuts. Points are samples from the target distribution used to154

generate θ, while the contours are generated by evaluating the log densities of grid points according155

to f−1
ψ (x; θ). Hyperparameters and other training details can be found in the Appendix.156

4 Filtering in the Embedding Space157

If p(x) is a posterior induced by a sequence of observations, obtaining the samples needed to compute158

θ may carry significant computational overhead. More general-purpose belief state approximation159
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(a) Sample donut distributions. Each distribution
has three parameters: mean, radius, and width.
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(b) Learned densities after conditioning the model
on 128 samples from the target distribution.

Figure 2: Embedding the set of donut distributions in R2

using our model requires tracking the belief state over the observation sequence. In this section, we160

describe an algorithm that tracks belief states in the embedding space.161

Upon receiving an observation, classical parametric methods, such as variants of Kalman filters, com-162

pute the posterior in closed form. If θ represents the parameters for a given belief state, such methods163

define an update function g : Rm × Y → Rm such that θ′ = g(θ, y). The modeling assumptions that164

enable closed-form updates are often violated, which motivates approximate methods. Approximating165

g for a fixed G and π is a viable choice, but often lacks efficient methods for parameterizing g with166

G and π in settings where they are variable inputs.167

Particle filters are non-parametric: they represent arbitrary target distributions as sets of weighted168

sampled points called particles. Posterior updates to these empirical distributions are performed169

by simulating transitions using G and π for each particle and updating weights according to the170

induced transition probabilities. Below we provide a typical posterior update for a particle filter given171

observation y, π ∈ Π, and G ∈ G:172

For each particle xi and particle weight wi, i ∈ 1, . . . , n:173

1. Simulate transition x′i ∼ TG(xi, π)174

2. Update weight w′
i ← wi · TG(xi, π)[x′i] ·HG(xi, x

′
i)[y]175

New weights are typically used to resample particles by duplicating particles which are more likely176

to match the updated observation sequence and discarding others. Impoverishment occurs when all177

particle weights become small and new particles cannot be resampled from outside x1:n.178

Neural Bayesian Filtering approximates belief states by performing a similar update in the embedding179

space of a pre-trained belief embedding model. It incorporates π ∈ Π and G ∈ G into the posterior180

update like a particle filter, but avoids impoverishment by resampling from the model at every step.181

Given an embedding, NBF generates particles according to pθ(x), simulates them forward while182

computing their weights exactly like a particle filter, and then computes a new weighted embedding183

from the result. Figure 3 shows an overview of NBF’s posterior update. Full details, including184

pseudocode, are shown in the Appendix.185

4.1 Convergence of NBF with a Perfect Model186

NBF is consistent and converges at the standard Monte-Carlo rate for finite X and Y under the187

following assumptions: (i) the embedding model is expressive enough to represent every belief state188

exactly, and (ii) there exists some global ϵ ∈ (0, 1] such that given an observation y, the probability189

transitioning from any state x to one of its successors x′ and observing y is at least ϵ. We call (ii)190

ϵ-global observation positivity of (G, π).191

Theorem 4.1 (NBF Consistency). Assume ϵ-global observation positivity of (G, π) and a finite X192

and Y . For any finite horizon tmax, belief state pt(x), t ≤ tmax, and any bounded function φ : X → R,193
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Belief Embedding θ

Normalizing Flow 
fψ

Embedding Network  
ℰϕ

wi ∝ Pr(y |xi, x′￼i, G, π)

t + 1

t

Figure 3: Neural Bayesian Filtering generates particles from a belief embedding, simulates them
according to the environment dynamics, and re-embeds them with a likelihood weight proportional to
the probability of the input observation y.

let194

µ̂
(n)
t (φ) =

∑n
i=1 wiφ(xi)∑n

i=1 wi

be the estimate of Ept [φ] computed by NBF with a perfect embedding model and n particles. Then,195

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]|

a.s.−→ 0

as n→∞.196

Theorem 4.1 states that for any bounded function f on the state space and belief state p(x), NBF’s197

estimate of Ep[φ] almost surely converges to the true value as its number of particles approaches∞.198

The following Corollary states its convergence rate under the same conditions.199

Corollary 4.2 (NBF Convergence Rate). Under the same conditions as Theorem 4.1, as n→∞,200

sup
0≤t≤tmax

|µ̂(n)
t (φ)− Ept [φ]| = Op(n

−1/2)

Further details, including proofs, are included in the Appendix.201

5 Experiments202

We validated Neural Bayesian Filtering in partially observable variants of Gridworld and the card203

game Goofspiel. Belief states in both domains are discrete, so we used variational dequantization for204

the belief model described in Section 3. More details, including source code and hyperparameter205

settings, for all experiments are available in the supplementary material.206

We compared four filtering algorithms:207

• Approx Beliefs: The embedding model described in Section 3 with access to p(x) to208

generate samples for an embedding size of 32. Each training instance consists of 64 samples209

from some p(x) ∈ PΠ
G . Model hyperparameters were not tuned extensively.210

• PF (n): A Sequential Importance Resampling Particle Filter with n weighted particles211

representing the belief state. An effective sample size less than n/2 triggers a systematic212

resample [Doucet et al., 2009] of the particles.213

• NBF (n): A Neural Bayesian Filter with the same belief embedding model as “Approx214

Beliefs” and n particles for posterior computation.215

• Recurrent: A two-layer LSTM trained to predict p(x) ∈ PΠ
G from its observation trajectory.216

Performance was measured in terms of Jensen-Shannon (JS) divergence between the model’s predicted217

belief state and the ground-truth posterior, with lower values indicating better performance.218
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Approx Beliefs Recurrent PF (32) PF (64) PF (128) NBF (16) NBF (32)
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Figure 4: Jensen-Shannon divergence on fixed grids and policies (left to right: 5-2D, 8-2D, 5-3D,
8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500 episodes.
Shaded areas indicate ± 1 standard error on the average model performance.

5.1 Partially-Observable Gridworld219

We conducted experiments on a partially observable variant of Gridworld with grids of size 5 and 8,220

and dimensionality 2 and 3. Each grid contains a fixed number of square (or cube) obstacles, and221

every agent step results in an observation indicating whether the agent hit a wall. In each episode,222

the observer has access to the agent’s policy and a simulator for the grid. Policies are generated by223

biasing the agent’s movement toward a randomly selected goal—softmax temperature controls policy224

entropy to create noise in the agent’s path.225

For each dimensionality and size, we evaluated performance in two conditions: a fixed grid and226

policy and a randomized grid and policy, yielding eight total experimental configurations (5-2D-fixed,227

5-2D-random, 8-2D-fixed, 8-2D-random, 5-3D-fixed, 5-3D-random, 8-3D-fixed, 8-3D-random). In228

each configuration, the number and size of obstacles are constant, but their location is either fixed229

or randomized. Each experiment was repeated for 500 episodes to compute a model’s average JS230

divergence at a given step, and model training was repeated for 100 random seeds. Shaded areas in231

the figures represent one standard error of a model’s performance at each step.232

Fixed Grids and Policies. Figure 4 summarizes results for fixed grids and policies. The belief233

model computes its embedding using samples from the target distribution, so it provides an expected234

performance ceiling for NBF. This shows that the embedding is expressive enough to model the set235

of belief distributions in this partially observable fixed grid. The recurrent approach is capable of236

modeling posterior updates on a fixed grid, and further tuning could potentially allow it to perform237

better than the belief model in the fixed setting. NBF maintains a low JS divergence, comparable to238

the belief model over many steps, while using a relatively low number of particles. This suggests239

that NBF’s update is effective for approximating the posterior computation in the embedding space.240

Even with orders of magnitude more particles than NBF, the PFs struggle to achieve comparable241

performance and demonstrate scalability issues with grid size and dimensionality.242

Randomized Grids and Policies. Performance in randomized grids and policies is summarized243

in Figure 5. Belief embeddings effectively model this much larger set of belief distributions (given244

that the policy and obstacle placement are now randomized and changing at every episode). With no245

ability to incorporate policy and grid information into the model, the performance of the Recurrent246

filter degrades significantly compared to the fixed grid setting. This highlights its limited adaptability247

to novel or changing environments, regardless of its capacity to express complex belief states in fixed248

settings. Particle-based methods are more robust to dynamic grids and policies, with NBF performing249

the best overall despite using relatively few particles. NBF’s performance gain over particle filtering250

likely arises because the belief-embedding model captures relevant information about PΠ
G .251

5.2 Partially-Observable Goofspiel252

Our second set of experiments uses a modified version of the card game Goofspiel [Lanctot et al.,253

2013] with k ∈ {4, 5, 6, 7} cards. In the standard k-card version, both players and the prize deck start254

with the same set of cards, labeled 0 through k − 1. A round starts when a prize card is revealed,255

indicating the value of winning the round. Players act by simultaneously bidding a card and then256

observe only the outcome of who played the highest card (win, draw, or loss). In our variant, the card257

symmetry is broken: each player and the prize deck receives a random subset of size k − 1, while258
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Figure 5: Jensen-Shannon divergence on randomized grids and policies (left to right: 5-2D, 8-2D,
5-3D, 8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500 episodes.
Shaded areas indicates ± 1 standard error on the average model performance.
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Figure 6: Jensen-Shannon divergence on partially-observable Goofspiel with four, five, six, and seven
cards. Training is repeated for 5 random seeds, with each model evaluated over 500 episodes for 10
random seeds. Shaded areas indicate ± 1 standard error on the average model performance.

all other rules remain unchanged. Small k means exact posterior computation is tractable, enabling259

efficient training and evaluation of our models and baselines.260

During training, samples are obtained by following policies of both players to a randomly selected261

depth and sampling opponent action histories from the true posterior given the generated observations.262

The policies are sampled randomly from a pool generated by independent self-play using PPO263

[Schulman et al., 2017]. These policies were randomly split into a training and test set used only264

for evaluation. We trained each model on five different random seeds and each filter’s reported265

performance is averaged over 10 different runs, each consisting of 500 episodes.266

k-card Goofspiel performance is summarized in Figure 6. Modeling late-game belief states in267

Goofspiel seems more challenging than in Gridworld. We see this in the growing error of the “Approx268

Beliefs” filter as the size of the game increases. It is possible that this is due to strong constraints on269

legal states (e.g. hand sizes when t cards have been played). Unsurprisingly, significant inaccuracies270

in the embedding model appear to have negative downstream effects on NBF’s performance. We271

observe this in the larger variants, where the gap between “Approx Beliefs” and NBF steadily272

increases. On the other hand, in all four sizes, the particle filter’s performance improves at later273

timesteps as belief state entropy drops. Despite these difficulties, NBF still outperforms the particle274

filters with an order of magnitude fewer particles (64 vs. 512) in all four sizes.275

6 Discussion276

Our empirical evaluation demonstrates that NBF remains robust in environments where belief277

states are small enough to be computed analytically. This is key to evaluating our approach, since278

metrics like JS divergence require knowledge of the target distribution, but does not demonstrate279

the scalability of our method compared to the baselines. For deep recurrent approaches to modeling280

g(θ, y), scalability and model expressiveness are insignificant when they cannot incorporate critical281

environment information (G, π). Constraining the particle budget to grow sub-linearly with |X|282

immediately exposes the scaling pathology of classical particle filters, even in our smallest testbeds.283

NBF achieves good performance with orders-of-magnitude fewer particles, whereas PFs remain284

inaccurate despite far larger particle sets. In such cases, the additional cost of embedding and285

generating a much smaller set of particles with our model is insignificant compared to particle286
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simulation costs. Confirming this in larger domains for downstream tasks such as learning and287

sequential decision-making is a promising avenue for future work.288

In light of our promising results, NBF has limitations related to its belief embedding model and289

particle-based updates. For instance, experiments on Goofspiel highlighted the importance of an290

accurate belief embedding model. In some cases, filtering performance could be highly dependent on291

choosing appropriate task-specific architectures and training methods.292

Training data for the domains tested in this work is both easy to generate and reflective of the set of293

belief states encountered during filtering. Learning an embedding model from the data encountered294

while filtering would make NBF applicable to settings where representative training data is difficult or295

impossible to obtain before filtering. That said, many state-of-the-art online search algorithms [Silver296

et al., 2017; Moravčík et al., 2017; Schrittwieser et al., 2020; Schmid et al., 2023] require significant297

computation for offline training but keep online search at decision-time less computationally intensive.298

These settings suit NBF perfectly and match the experiments conducted in this paper. While NBF’s299

posterior updates reduce the chance of particle impoverishment, they do not eliminate it, especially300

under extreme conditions where impoverishment can occur in a single step. Such updates can also301

potentially incur computational overhead during inference compared to pure model-based approaches302

or the analytical updates of some classical filtering methods. In this sense, NBF trades inference speed303

for increased representational capacity and adaptability to environmental and control dynamics.304

6.1 Related Work305

There is a notable connection between variational hidden states in deep recurrent models and belief306

state modeling [Chung et al., 2015]. Recurrent neural filtering algorithms [Krishnan et al., 2015; Karl307

et al., 2016; Lim et al., 2020; Revach et al., 2022] can incorporate external observations and learn the308

overall transition dynamics defined with a fixed π and G. However, this implies that, regardless of309

their expressivity, these models are fixed at test time and cannot easily be adapted to new transition310

dynamics.311

Alternative methods [Fickinger et al., 2021; Sokota et al., 2022] fine-tune a large pre-trained deep312

generative model via gradient updates at decision time to adapt to changes in the environment313

dynamics. The model is initially trained on a large sample set aggregated from many belief states314

and then refined to fit a test-time belief state. Like NBF, such methods can resample from the full315

support of the distribution, which mitigates impoverishment risks. However, this comes at a cost as316

fine-tuning may require many costly gradient updates for each target belief state. This makes it less317

suitable as a component of fast online search algorithms.318

Belief state modeling has often been implicitly studied in downstream tasks such as search and319

learning in partially observable environments. The aforementioned fine-tuning approaches [Fickinger320

et al., 2021; Sokota et al., 2022] have been applied to search and learning in Hanabi. POMCP [Silver321

and Veness, 2010] performs Monte Carlo Tree Search from particle-based approximations of belief322

states. Neural Filtering and Belief Embedding can potentially act as a drop-in replacement for particle323

filtering and offer richer belief state approximations for search. Likewise, Šustr et al. [2021] uses324

particle-based approximations of value functions for depth-limited search. Approximating value325

functions in the embedding space is also a promising avenue for future work.326

7 Conclusion327

We introduced Neural Bayesian Filtering, a method for modeling belief states in partially observable328

Markov systems. It models the set of distributions induced by a Markov system as a latent space and329

performs particle-based posterior updates in this latent space upon new observations. Its underlying330

models for embedding beliefs are trained strictly from sample sets of example belief states, and331

its posterior update directly integrates non-stationary dynamics and control variables. We show332

empirically in two partially observable domains that it retains the robustness of traditional particle333

filtering while approximating rich, multimodal belief states with far fewer particles. Neural Bayesian334

Filtering has potential applicability well beyond the tasks demonstrated in this paper, extending335

naturally to various domains involving sequential decision-making, planning, and estimation under336

uncertainty.337
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Martin Schmid, Matej Moravčík, Neil Burch, Rudolf Kadlec, Josh Davidson, Kevin Waugh, Nolan389

Bard, Finbarr Timbers, Marc Lanctot, G Zacharias Holland, et al. Student of games: A uni-390

fied learning algorithm for both perfect and imperfect information games. Science Advances,391

9(46):eadg3256, 2023.392

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon393

Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,394

go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.395

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy396

optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.397

David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. Advances in neural398

information processing systems, 23, 2010.399

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,400

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without401

human knowledge. nature, 550(7676):354–359, 2017.402

Samuel Sokota, Hengyuan Hu, David J Wu, J Zico Kolter, Jakob Nicolaus Foerster, and Noam403

Brown. A fine-tuning approach to belief state modeling. In International Conference on Learning404

Representations, 2022.405

Christopher Solinas, Doug Rebstock, Nathan Sturtevant, and Michael Buro. History filtering in406

imperfect information games: algorithms and complexity. Advances in Neural Information407

Processing Systems, 36:43634–43645, 2023.408

Harold Wayne Sorenson. Kalman filtering: theory and application. (No Title), 1985.409

Michal Šustr, Vojtech Kovarík, and Viliam Lisy. Particle value functions in imperfect information410

games. In AAMAS Adaptive and Learning Agents Workshop, volume 133, page 138, 2021.411

Sebastian Thrun. Particle filters in robotics. In UAI, volume 2, pages 511–518. Citeseer, 2002.412

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and413

Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.414

11



NeurIPS Paper Checklist415

1. Claims416

Question: Do the main claims made in the abstract and introduction accurately reflect the417

paper’s contributions and scope?418

Answer: [Yes]419

Justification: We claim that we can approximately represent belief distributions as vectors in420

a latent space and filter in the latent space. We demonstrate this empirically in two domains.421

Guidelines:422

• The answer NA means that the abstract and introduction do not include the claims423

made in the paper.424

• The abstract and/or introduction should clearly state the claims made, including the425

contributions made in the paper and important assumptions and limitations. A No or426

NA answer to this question will not be perceived well by the reviewers.427

• The claims made should match theoretical and experimental results, and reflect how428

much the results can be expected to generalize to other settings.429

• It is fine to include aspirational goals as motivation as long as it is clear that these goals430

are not attained by the paper.431

2. Limitations432

Question: Does the paper discuss the limitations of the work performed by the authors?433

Answer: [Yes]434

Justification: We discuss potential limitations of Neural Bayesian Filtering in Section 6.435

Guidelines:436

• The answer NA means that the paper has no limitation while the answer No means that437

the paper has limitations, but those are not discussed in the paper.438

• The authors are encouraged to create a separate "Limitations" section in their paper.439

• The paper should point out any strong assumptions and how robust the results are to440

violations of these assumptions (e.g., independence assumptions, noiseless settings,441

model well-specification, asymptotic approximations only holding locally). The authors442

should reflect on how these assumptions might be violated in practice and what the443

implications would be.444

• The authors should reflect on the scope of the claims made, e.g., if the approach was445

only tested on a few datasets or with a few runs. In general, empirical results often446

depend on implicit assumptions, which should be articulated.447

• The authors should reflect on the factors that influence the performance of the approach.448

For example, a facial recognition algorithm may perform poorly when image resolution449

is low or images are taken in low lighting. Or a speech-to-text system might not be450

used reliably to provide closed captions for online lectures because it fails to handle451

technical jargon.452

• The authors should discuss the computational efficiency of the proposed algorithms453

and how they scale with dataset size.454

• If applicable, the authors should discuss possible limitations of their approach to455

address problems of privacy and fairness.456

• While the authors might fear that complete honesty about limitations might be used by457

reviewers as grounds for rejection, a worse outcome might be that reviewers discover458

limitations that aren’t acknowledged in the paper. The authors should use their best459

judgment and recognize that individual actions in favor of transparency play an impor-460

tant role in developing norms that preserve the integrity of the community. Reviewers461

will be specifically instructed to not penalize honesty concerning limitations.462

3. Theory assumptions and proofs463

Question: For each theoretical result, does the paper provide the full set of assumptions and464

a complete (and correct) proof?465

Answer: [Yes]466
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Justification: The main body of the paper states assumptions in plain language, but the467

supplementary material contains formal assumptions and full proofs for the theoretical468

results presented.469

Guidelines:470

• The answer NA means that the paper does not include theoretical results.471

• All the theorems, formulas, and proofs in the paper should be numbered and cross-472

referenced.473

• All assumptions should be clearly stated or referenced in the statement of any theorems.474

• The proofs can either appear in the main paper or the supplemental material, but if475

they appear in the supplemental material, the authors are encouraged to provide a short476

proof sketch to provide intuition.477

• Inversely, any informal proof provided in the core of the paper should be complemented478

by formal proofs provided in appendix or supplemental material.479

• Theorems and Lemmas that the proof relies upon should be properly referenced.480

4. Experimental result reproducibility481

Question: Does the paper fully disclose all the information needed to reproduce the main ex-482

perimental results of the paper to the extent that it affects the main claims and/or conclusions483

of the paper (regardless of whether the code and data are provided or not)?484

Answer: [Yes] .485

Justification: The main paper summarizes empirical results and provides crucial details486

about our experimental process, while the supplementary material contains further details487

and includes all experiment source code.488

Guidelines:489

• The answer NA means that the paper does not include experiments.490

• If the paper includes experiments, a No answer to this question will not be perceived491

well by the reviewers: Making the paper reproducible is important, regardless of492

whether the code and data are provided or not.493

• If the contribution is a dataset and/or model, the authors should describe the steps taken494

to make their results reproducible or verifiable.495

• Depending on the contribution, reproducibility can be accomplished in various ways.496

For example, if the contribution is a novel architecture, describing the architecture fully497

might suffice, or if the contribution is a specific model and empirical evaluation, it may498

be necessary to either make it possible for others to replicate the model with the same499

dataset, or provide access to the model. In general. releasing code and data is often500

one good way to accomplish this, but reproducibility can also be provided via detailed501

instructions for how to replicate the results, access to a hosted model (e.g., in the case502

of a large language model), releasing of a model checkpoint, or other means that are503

appropriate to the research performed.504

• While NeurIPS does not require releasing code, the conference does require all submis-505

sions to provide some reasonable avenue for reproducibility, which may depend on the506

nature of the contribution. For example507

(a) If the contribution is primarily a new algorithm, the paper should make it clear how508

to reproduce that algorithm.509

(b) If the contribution is primarily a new model architecture, the paper should describe510

the architecture clearly and fully.511

(c) If the contribution is a new model (e.g., a large language model), then there should512

either be a way to access this model for reproducing the results or a way to reproduce513

the model (e.g., with an open-source dataset or instructions for how to construct514

the dataset).515

(d) We recognize that reproducibility may be tricky in some cases, in which case516

authors are welcome to describe the particular way they provide for reproducibility.517

In the case of closed-source models, it may be that access to the model is limited in518

some way (e.g., to registered users), but it should be possible for other researchers519

to have some path to reproducing or verifying the results.520
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5. Open access to data and code521

Question: Does the paper provide open access to the data and code, with sufficient instruc-522

tions to faithfully reproduce the main experimental results, as described in supplemental523

material?524

Answer: [Yes]525

Justification:526

Guidelines:527

• The answer NA means that paper does not include experiments requiring code.528

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/529

public/guides/CodeSubmissionPolicy) for more details.530

• While we encourage the release of code and data, we understand that this might not be531

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not532

including code, unless this is central to the contribution (e.g., for a new open-source533

benchmark).534

• The instructions should contain the exact command and environment needed to run to535

reproduce the results. See the NeurIPS code and data submission guidelines (https:536

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.537

• The authors should provide instructions on data access and preparation, including how538

to access the raw data, preprocessed data, intermediate data, and generated data, etc.539

• The authors should provide scripts to reproduce all experimental results for the new540

proposed method and baselines. If only a subset of experiments are reproducible, they541

should state which ones are omitted from the script and why.542

• At submission time, to preserve anonymity, the authors should release anonymized543

versions (if applicable).544

• Providing as much information as possible in supplemental material (appended to the545

paper) is recommended, but including URLs to data and code is permitted.546

6. Experimental setting/details547

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-548

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the549

results?550

Answer: [Yes] .551

Justification: Training details, hyperparameters, etc. are found in the supplementary material.552

Guidelines:553

• The answer NA means that the paper does not include experiments.554

• The experimental setting should be presented in the core of the paper to a level of detail555

that is necessary to appreciate the results and make sense of them.556

• The full details can be provided either with the code, in appendix, or as supplemental557

material.558

7. Experiment statistical significance559

Question: Does the paper report error bars suitably and correctly defined or other appropriate560

information about the statistical significance of the experiments?561

Answer: [Yes]562

Justification:563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• The authors should answer "Yes" if the results are accompanied by error bars, confi-566

dence intervals, or statistical significance tests, at least for the experiments that support567

the main claims of the paper.568

• The factors of variability that the error bars are capturing should be clearly stated (for569

example, train/test split, initialization, random drawing of some parameter, or overall570

run with given experimental conditions).571
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• The method for calculating the error bars should be explained (closed form formula,572

call to a library function, bootstrap, etc.)573

• The assumptions made should be given (e.g., Normally distributed errors).574

• It should be clear whether the error bar is the standard deviation or the standard error575

of the mean.576

• It is OK to report 1-sigma error bars, but one should state it. The authors should577

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis578

of Normality of errors is not verified.579

• For asymmetric distributions, the authors should be careful not to show in tables or580

figures symmetric error bars that would yield results that are out of range (e.g. negative581

error rates).582

• If error bars are reported in tables or plots, The authors should explain in the text how583

they were calculated and reference the corresponding figures or tables in the text.584

8. Experiments compute resources585

Question: For each experiment, does the paper provide sufficient information on the com-586

puter resources (type of compute workers, memory, time of execution) needed to reproduce587

the experiments?588

Answer: [Yes]589

Justification: The compute resources used are described in the supplementary material.590

Guidelines:591

• The answer NA means that the paper does not include experiments.592

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,593

or cloud provider, including relevant memory and storage.594

• The paper should provide the amount of compute required for each of the individual595

experimental runs as well as estimate the total compute.596

• The paper should disclose whether the full research project required more compute597

than the experiments reported in the paper (e.g., preliminary or failed experiments that598

didn’t make it into the paper).599

9. Code of ethics600

Question: Does the research conducted in the paper conform, in every respect, with the601

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?602

Answer: [Yes]603

Justification:604

Guidelines:605

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.606

• If the authors answer No, they should explain the special circumstances that require a607

deviation from the Code of Ethics.608

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-609

eration due to laws or regulations in their jurisdiction).610

10. Broader impacts611

Question: Does the paper discuss both potential positive societal impacts and negative612

societal impacts of the work performed?613

Answer: [No]614

Justification: As this work falls under the category of foundational research, we feel both615

the potential direct positive and negative societal impacts of this are limited.616

Guidelines:617

• The answer NA means that there is no societal impact of the work performed.618

• If the authors answer NA or No, they should explain why their work has no societal619

impact or why the paper does not address societal impact.620
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• Examples of negative societal impacts include potential malicious or unintended uses621

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations622

(e.g., deployment of technologies that could make decisions that unfairly impact specific623

groups), privacy considerations, and security considerations.624

• The conference expects that many papers will be foundational research and not tied625

to particular applications, let alone deployments. However, if there is a direct path to626

any negative applications, the authors should point it out. For example, it is legitimate627

to point out that an improvement in the quality of generative models could be used to628

generate deepfakes for disinformation. On the other hand, it is not needed to point out629

that a generic algorithm for optimizing neural networks could enable people to train630

models that generate Deepfakes faster.631

• The authors should consider possible harms that could arise when the technology is632

being used as intended and functioning correctly, harms that could arise when the633

technology is being used as intended but gives incorrect results, and harms following634

from (intentional or unintentional) misuse of the technology.635

• If there are negative societal impacts, the authors could also discuss possible mitigation636

strategies (e.g., gated release of models, providing defenses in addition to attacks,637

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from638

feedback over time, improving the efficiency and accessibility of ML).639

11. Safeguards640

Question: Does the paper describe safeguards that have been put in place for responsible641

release of data or models that have a high risk for misuse (e.g., pretrained language models,642

image generators, or scraped datasets)?643

Answer: [NA]644

Justification: No data is being released, and the models used in the paper have little risk for645

misuse.646

Guidelines:647

• The answer NA means that the paper poses no such risks.648

• Released models that have a high risk for misuse or dual-use should be released with649

necessary safeguards to allow for controlled use of the model, for example by requiring650

that users adhere to usage guidelines or restrictions to access the model or implementing651

safety filters.652

• Datasets that have been scraped from the Internet could pose safety risks. The authors653

should describe how they avoided releasing unsafe images.654

• We recognize that providing effective safeguards is challenging, and many papers do655

not require this, but we encourage authors to take this into account and make a best656

faith effort.657

12. Licenses for existing assets658

Question: Are the creators or original owners of assets (e.g., code, data, models), used in659

the paper, properly credited and are the license and terms of use explicitly mentioned and660

properly respected?661

Answer: [NA]662

Justification:663

Guidelines:664

• The answer NA means that the paper does not use existing assets.665

• The authors should cite the original paper that produced the code package or dataset.666

• The authors should state which version of the asset is used and, if possible, include a667

URL.668

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.669

• For scraped data from a particular source (e.g., website), the copyright and terms of670

service of that source should be provided.671
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• If assets are released, the license, copyright information, and terms of use in the672

package should be provided. For popular datasets, paperswithcode.com/datasets673

has curated licenses for some datasets. Their licensing guide can help determine the674

license of a dataset.675

• For existing datasets that are re-packaged, both the original license and the license of676

the derived asset (if it has changed) should be provided.677

• If this information is not available online, the authors are encouraged to reach out to678

the asset’s creators.679

13. New assets680

Question: Are new assets introduced in the paper well documented and is the documentation681

provided alongside the assets?682

Answer: [Yes]683

Justification:684

Guidelines:685

• The answer NA means that the paper does not release new assets.686

• Researchers should communicate the details of the dataset/code/model as part of their687

submissions via structured templates. This includes details about training, license,688

limitations, etc.689

• The paper should discuss whether and how consent was obtained from people whose690

asset is used.691

• At submission time, remember to anonymize your assets (if applicable). You can either692

create an anonymized URL or include an anonymized zip file.693

14. Crowdsourcing and research with human subjects694

Question: For crowdsourcing experiments and research with human subjects, does the paper695

include the full text of instructions given to participants and screenshots, if applicable, as696

well as details about compensation (if any)?697

Answer: [NA]698

Justification:699

Guidelines:700

• The answer NA means that the paper does not involve crowdsourcing nor research with701

human subjects.702

• Including this information in the supplemental material is fine, but if the main contribu-703

tion of the paper involves human subjects, then as much detail as possible should be704

included in the main paper.705

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,706

or other labor should be paid at least the minimum wage in the country of the data707

collector.708

15. Institutional review board (IRB) approvals or equivalent for research with human709

subjects710

Question: Does the paper describe potential risks incurred by study participants, whether711

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)712

approvals (or an equivalent approval/review based on the requirements of your country or713

institution) were obtained?714

Answer: [NA]715

Justification:716

Guidelines:717

• The answer NA means that the paper does not involve crowdsourcing nor research with718

human subjects.719

• Depending on the country in which research is conducted, IRB approval (or equivalent)720

may be required for any human subjects research. If you obtained IRB approval, you721

should clearly state this in the paper.722
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• We recognize that the procedures for this may vary significantly between institutions723

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the724

guidelines for their institution.725

• For initial submissions, do not include any information that would break anonymity (if726

applicable), such as the institution conducting the review.727

16. Declaration of LLM usage728

Question: Does the paper describe the usage of LLMs if it is an important, original, or729

non-standard component of the core methods in this research? Note that if the LLM is used730

only for writing, editing, or formatting purposes and does not impact the core methodology,731

scientific rigorousness, or originality of the research, declaration is not required.732

Answer: [NA]733

Justification:734

Guidelines:735

• The answer NA means that the core method development in this research does not736

involve LLMs as any important, original, or non-standard components.737

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)738

for what should or should not be described.739
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