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Abstract

We present Neural Bayesian Filtering (NBF), an algorithm for maintaining pos-
teriors, called beliefs, over hidden states in partially observable systems. NBF is
trained to find a good latent representation of the beliefs induced by a task. It maps
beliefs to fixed-length embedding vectors, which can condition generative models
for sampling. During filtering, particle-style updates compute posteriors in this
embedding space using incoming observations and environment dynamics. NBF
combines the computational efficiency of classical filters with the expressiveness
of deep generative models—tracking rapidly shifting, multimodal beliefs while
mitigating the risk of particle impoverishment. We validate NBF in state estimation
tasks in partially observable variants of Gridworld and the card game Goofspiel.

1 Introduction

Belief state modeling, or computing a posterior distribution over hidden states in partially observable
systems, has numerous applications in sequential estimation and decision-making problems, including
tracking autonomous robots and learning to play card games [Haug, 2012; Sokota et al., {2022} Barfoot|
2024]. As an example, consider the problem of tracking an autonomous robot with an unknown
starting position in a d x d grid (Figure[I). Suppose the agent’s policy is known and an observer sees
that the agent moved a step without colliding into a wall. This information indicates how the observer
should update their beliefs about the agent’s position. Tracking these belief states can be challenging
when they are either continuous or too large to enumerate [Solinas ef al.| [2023]]—even when the
agent’s policy is known and the dynamics of the environment are easy to simulate accurately.

A common approach frames belief state modeling as a Bayesian filtering problem in which a posterior
is maintained and updated with each new observation. Classical Bayesian filters, such as the Kalman
Filter [[Kalman, [1960] and its nonlinear variants (e.g., Extended and Unscented Kalman Filters
[Sorenson, |1985; Julier and Uhlmann), [2004]]), assume that the underlying distributions are unimodal
and approximately Gaussian. While computationally efficient, this limits their applicability in settings
that do not satisfy these assumptions. Particle filters alternatively approximate arbitrary target
distributions through sets of weighted particles. However, in high-dimensional state spaces, they
can require maintaining exponentially large sets of particles or risking particle impoverishment—a
phenomenon where the set contains very few particles with significant weight [Doucet ef al.,2009].

Advances in generative modeling have provided new methods for filtering in problems with complex,
multimodal belief states. However, they approximate the full system dynamics (including agent
policies) and update an internal representation of the belief state with each observation. Addressing
this limitation is crucial for applications where the policy or environment is known but changes,
which happens naturally in some learning algorithms [Moravcik er al.l 2017 |Schmid et al., 2023].

In this paper, we propose Neural Bayesian Filtering (NBF), which models complex, multimodal
belief states and updates posteriors efficiently for input policies and environments. Central to our
approach is the idea that belief states in a given task form a parameterized set. Much like how mean
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and variance parameterize the family of Gaussians, a learned embedding vector specifies a particular
belief state instance. This embedding can be computed exclusively using samples from the target
belief state—making it specific to a given policy, environment, and observation sequence. Given
a new observation, NBF updates the embedding to approximate the new posterior by generating,
simulating, and then re-embedding particles. Effectively combining particle filtering and deep
generative modeling, the algorithm maintains expressive approximations of complex, multimodal
belief states. We validate NBF empirically in variants of Gridworld and the card game Goofspiel.

1.1 Main Contributions

Belief State Embeddings We propose learning an embedding network that compresses sample sets
from belief states into a set-invariant vector. Conditioning a generative model on this vector allows
for efficient sampling and density estimation on a family of complex posterior distributions.

A Flexible Parametric Framework For Filtering We introduce Neural Bayesian Filtering (NBF),
a novel parametric filtering framework in the embedding space that combines classical filtering with
deep generative modeling. The resulting framework can approximate multimodal, non-Gaussian, and
discrete state distributions without prohibitively large particle sets or fixed parametric assumptions.

2 Background

Belief state modeling has been studied in numerous contexts, including Hidden Markov Models

(HMMs) [Rabiner, [1989], Partially Observable Markov Decision Processes (POMDPs) [Kaelbling e
[1998]}, and Factored Observation Stochastic Games (FOSGs) [Kovarik ef al} [2022]], and is critical
to many decision-time search algorithms. |Sokota et al.|[2022]] provide a unified notation for belief

state modeling. This work extends their formulation to sets of environments and explicitly models
non-stationarity in the environment and control variables. These non-stationarities arise naturally
when the agent learns or the environment changes (e.g. different obstacles in the grid in Figure|[T).

2.1 Notation

Let x € X be a Markov state and 7 € II be an external control variable (such as a policy in a
POMDRP or a joint policy in an FOSG). Let T : X x II — AX be the transition function that
determines the underlying dynamics of the process. Emission function H : X x X — AY outputs a
probability distribution over the the observations (emissions) y € Y upon transition from z to z’. An

environment G (X,Y,T, H,po) contains state and observation spaces, a transition function, an
observation function, and an initial state distribution pg. In this paper, we extend this formulation to
include a set of state spaces X', transition functions 7, and observation spaces ) to model the scenario
where an environment instance is known (to the agent or an external observer) but non-stationary.

G %f {(X,Y,T,H,py): X € X, Y e YV, T € T,H € H,py € AX} is the set of environments.

(a) 8x8 grid with initial (b) Beliefs after moving (c) After more steps.
beliefs. right.

Figure 1: Tracking an agent with an unknown starting position from observations about which
direction the agent moved (with some probability of error) and whether or not it hit a wall. Colored
cells indicate probabilities of possible agent positions.
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Given an instance (G, ), belief state modeling is expressed as modeling the distribution over
the Markov states at a particular time ¢, conditional on the control and emission variables:
p(x|m, y ,y(t)). In discrete Markov systems with small state spaces, belief states can be
computed analytically using posterior updates for each observation in the sequence.

In this work, we consider the problem where both G and 7 are known by the agent or external
observer and computationally efficient to evaluate. Together, G and II parameterize a set of belief

states Po def {p(z|m,y®, ... ,y®) 7 € T,G € G,y € Y,t € N}. For brevity, we will drop the
conditional and refer to a member of this set as p(z). Unlike much of the prior work in neural belief
state modeling, our approach models this set directly by conditioning on both specific G and 7.

2.2 Classical Filtering Algorithms

Bayesian filtering [Sarkka and Svensson, [2023]] has been studied extensively as a method for belief
state modeling. Environments with linear Gaussian dynamics are the simplest case. In these settings,
Kalman filters [Kalman, |1960] provide efficient closed-form solutions for the posterior mean and
covariance. However, many real-world applications involve nonlinear, non-Gaussian processes.
Improvements such as Extended [Sorenson), [1985]], Unscented [Julier and Uhlmannl 2004]], and
Cubature [[Arasaratnam and Haykin| |2009] Kalman filters are suitable for non-linear systems but still
propagate unimodal beliefs.

Particle filters [Doucet et al.||2009] maintain a representative set of weighted samples for the belief
state. This set gets updated according to the environment dynamics upon each new observation.
Particle filters can, in principle, approximate a wide range of distributions, but they come with other
challenges. Particle impoverishment happens when many particles in the set have little or no weight
given the observation sequence and can be catastrophic because replacement particles can only be
sampled by duplicating others in the set [Sokota ef al.| [2022]]. Computational efficiency can also
become a concern in high-dimensional state spaces because accurate filtering generally requires
maintaining an exponential number of particles [Thrun} 2002].

In the next two sections, we describe NBF: a novel approach that models the set of belief states
parameterized by II and G as a latent space of belief state embeddings. These embeddings condition
a generative model for sampling and density estimation. Approximate posteriors are updated by sam-
pling particles from the embedding, simulating these particles using the input G € G and 7 € II, and
then re-computing a weighted embedding using the resulting particles. Learned neural embeddings
and fast posterior computation in the embedding space let NBF combine the computational efficiency
of parametric approaches like Kalman filters with the flexibility of particle or model-free methods.

3 Embedding Belief States

In this section, we formalize our approach to modeling complex, multimodal belief states using
learned neural embeddings. Our goal is to represent and efficiently sample from a given belief state
induced by known but potentially changing control variables and environment dynamics.

Given a known control variable # € II and environment G € G, the induced belief state after ¢
observations is the posterior distribution p(z). One challenge is efficiently modeling the set of
these posterior distributions, which may be diverse as 7 or G vary. We propose embedding these
distributions from sets of ground truth samples of example belief states. Our approach aims to
construct an embedding vector § € R™ that uniquely represents the posterior distribution defined by
y) 7, and G, and conditions a model for sampling and density estimation.

3.1 Model Definition

We model the target set of belief states using an embedding function and a Normalizing Flow
[Papamakarios et al.,[2021] conditioned on its output.

Embedding function. Let ., def (z1,x9,...,%,) denote i.i.d. samples from belief state p(z).
We define a permutation and cardinality invariant function £ : X™ x R™ — R™ that maps (weighted)

samples x7., to an m-dimensional embedding vector. A belief embedding 6 def Ep(X1im, W1n)
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approximates the salient features (e.g. shape, location, spread) of a target distribution p(x) as a vector
in latent space. Together with the flow described next, it defines the distribution pg(x).

Permutation and cardinality invariance ensures that neither n nor sample order affects 6. In this paper,
we take the (weighted) mean over individual sample embeddings. If ¢ is expressive enough, the
mean-pooled embedding 6 serves as a sufficient moment-based approximation of p(z), but other
higher-order architectures such as DeepSets [Zaheer ef al.,|2017] may also be viable.

Conditional Normalizing Flow. Normalizing flows are a class of generative models that transform
a simple base distribution (e.g., Gaussian) into a complex target distribution through a series of
invertible and differentiable mappings. They allow for exact likelihood computation via change-
of-variables. Flows can also be constructed in continuous time by defining an ordinary differential
equation that describes the dynamics of the transformation over time [Lipman ef al.,2022].

Given an embedding 6, we can define tractable sampling and density estimation operations on pg(x)
by conditioning a normalizing flow on 6. Let fy(-;60) : R? — R? be an invertible, differentiable
transformation conditioned on 6§ and parameterized by . Given a simple base distribution p(z) (e.g.
standard normal), the following two-step sampling procedure:

2~ p(2); x = fyp(z:0),
gives the desired density py(x) (by change-of-variables) [Papamakarios et al.,[2021]:

of; (a;6)

det
¢ ox

po(e) < p (1 (@:6))

If fy(z;0) has a tractable inverse, then evaluating this density is also tractable. 1 and ¢ can be
optimized jointly by maximizing the log-likelihood over all samples 1,..., N and distributions

1,..., K in the training set:
K N
f
)= 30D gy (@)
k=11i=1

Discrete Belief States and Variational Dequantization. Normalizing flows are defined for contin-
uous inputs, but belief states in many relevant domains are discrete. Variational Dequantization [Ho
et al.||2019] is an approach for applying flows to discrete data. Each discrete sample is perturbed
by learned noise, resulting in a continuous space. The noise distribution is trained jointly with the
flow by maximizing a variational lower bound on the true discrete log-likelihood—preserving exact
likelihood evaluation and stabilizing training for discrete belief states.

3.2 Illustrative Example: Donuts

Consider a toy domain, called donuts, consisting of a simple set of continuous distributions in R?.
Donuts (Figure [2(a))) are parameterized by a mean, a radius, and a width. Setting these parameters
specify a particular donut D, and are sufficient for closed-form sampling from D. Suppose these

. . . iid

parameters are not known, and instead & receives a set of sample points 1., ~ D and outputs 6 as
a parameterization of D. ¢ conditions the generative model f(z;6), providing an approximation of
D and enabling i.i.d sampling from it.

We train our model on randomly generated example donuts using n = 128 samples per donut—with
n/2 used for generating the embedding and the rest used for minimizing the negative log-likelihood
objective. At test time, we create embeddings using 64 samples from unseen target donuts. Figure[2(b)
shows 3 randomly selected test donuts. Points are samples from the target distribution used to
generate 6, while the contours are generated by evaluating the log densities of grid points according
to fJ !(; 0). Hyperparameters and other training details can be found in the Appendix.

4 Filtering in the Embedding Space

If p(z) is a posterior induced by a sequence of observations, obtaining the samples needed to compute
# may carry significant computational overhead. More general-purpose belief state approximation
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(a) Sample donut distributions. Each distribution (b) Learned densities after conditioning the model
has three parameters: mean, radius, and width. on 128 samples from the target distribution.

Figure 2: Embedding the set of donut distributions in R?

using our model requires tracking the belief state over the observation sequence. In this section, we
describe an algorithm that tracks belief states in the embedding space.

Upon receiving an observation, classical parametric methods, such as variants of Kalman filters, com-
pute the posterior in closed form. If € represents the parameters for a given belief state, such methods
define an update function g : R™ x Y — R™ such that ' = g(6, y). The modeling assumptions that
enable closed-form updates are often violated, which motivates approximate methods. Approximating
g for a fixed G and 7 is a viable choice, but often lacks efficient methods for parameterizing g with
G and 7 in settings where they are variable inputs.

Particle filters are non-parametric: they represent arbitrary target distributions as sets of weighted
sampled points called particles. Posterior updates to these empirical distributions are performed
by simulating transitions using GG and 7 for each particle and updating weights according to the
induced transition probabilities. Below we provide a typical posterior update for a particle filter given
observation y, w € II, and G € G:

For each particle z; and particle weight w;, ¢ € 1,...,n:

1. Simulate transition x} ~ T (z;, )
2. Update weight w} < w; - T (2, 7)[2}] - Ha(xs, ) [y]

New weights are typically used to resample particles by duplicating particles which are more likely
to match the updated observation sequence and discarding others. Impoverishment occurs when all
particle weights become small and new particles cannot be resampled from outside x1.,,.

Neural Bayesian Filtering approximates belief states by performing a similar update in the embedding
space of a pre-trained belief embedding model. It incorporates m € Il and G € G into the posterior
update like a particle filter, but avoids impoverishment by resampling from the model at every step.
Given an embedding, NBF generates particles according to py(z), simulates them forward while
computing their weights exactly like a particle filter, and then computes a new weighted embedding
from the result. Figure [3]shows an overview of NBF’s posterior update. Full details, including
pseudocode, are shown in the Appendix.

4.1 Convergence of NBF with a Perfect Model

NBF is consistent and converges at the standard Monte-Carlo rate for finite X and Y under the
following assumptions: (i) the embedding model is expressive enough to represent every belief state
exactly, and (ii) there exists some global e € (0, 1] such that given an observation y, the probability
transitioning from any state x to one of its successors x’ and observing y is at least . We call (ii)
e-global observation positivity of (G, ).

Theorem 4.1 (NBF Consistency). Assume e-global observation positivity of (G, ) and a finite X
and Y. For any finite horizon t,,,,, belief state p;(x),t < tya, and any bounded function p : X — R,
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Figure 3: Neural Bayesian Filtering generates particles from a belief embedding, simulates them
according to the environment dynamics, and re-embeds them with a likelihood weight proportional to
the probability of the input observation y.

let "
40 () = 2miz Wiel@)
! Dt Wi
be the estimate of E,, [p] computed by NBF with a perfect embedding model and n particles. Then,
sup | (¢2) — By, ] % 0
0<t<tmax
asn — oo.

Theorem states that for any bounded function f on the state space and belief state p(x), NBF’s
estimate of I, [] almost surely converges to the true value as its number of particles approaches co.
The following Corollary states its convergence rate under the same conditions.

Corollary 4.2 (NBF Convergence Rate). Under the same conditions as Theorem asn — oo,
sup | () — By, ]| = Op(n™"/?)

0<t<tma

Further details, including proofs, are included in the Appendix.

S Experiments

We validated Neural Bayesian Filtering in partially observable variants of Gridworld and the card
game Goofspiel. Belief states in both domains are discrete, so we used variational dequantization for
the belief model described in Section 3] More details, including source code and hyperparameter
settings, for all experiments are available in the supplementary material.

We compared four filtering algorithms:

» Approx Beliefs: The embedding model described in Section [3| with access to p(z) to
generate samples for an embedding size of 32. Each training instance consists of 64 samples
from some p(z) € PZ. Model hyperparameters were not tuned extensively.

* PF (n): A Sequential Importance Resampling Particle Filter with n weighted particles
representing the belief state. An effective sample size less than n/2 triggers a systematic

resample [Doucet et al.,[2009]] of the particles.

* NBF (n): A Neural Bayesian Filter with the same belief embedding model as “Approx
Beliefs” and n particles for posterior computation.

* Recurrent: A two-layer LSTM trained to predict p(x) € P from its observation trajectory.

Performance was measured in terms of Jensen-Shannon (JS) divergence between the model’s predicted
belief state and the ground-truth posterior, with lower values indicating better performance.
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Figure 4: Jensen-Shannon divergence on fixed grids and policies (left to right: 5-2D, 8-2D, 5-3D,
8-3D). Training is repeated for 100 random seeds, with each model evaluated over 500 episodes.
Shaded areas indicate £ 1 standard error on the average model performance.

5.1 Partially-Observable Gridworld

We conducted experiments on a partially observable variant of Gridworld with grids of size 5 and 8§,
and dimensionality 2 and 3. Each grid contains a fixed number of square (or cube) obstacles, and
every agent step results in an observation indicating whether the agent hit a wall. In each episode,
the observer has access to the agent’s policy and a simulator for the grid. Policies are generated by
biasing the agent’s movement toward a randomly selected goal—softmax temperature controls policy
entropy to create noise in the agent’s path.

For each dimensionality and size, we evaluated performance in two conditions: a fixed grid and
policy and a randomized grid and policy, yielding eight total experimental configurations (5-2D-fixed,
5-2D-random, 8-2D-fixed, 8-2D-random, 5-3D-fixed, 5-3D-random, 8-3D-fixed, 8-3D-random). In
each configuration, the number and size of obstacles are constant, but their location is either fixed
or randomized. Each experiment was repeated for 500 episodes to compute a model’s average JS
divergence at a given step, and model training was repeated for 100 random seeds. Shaded areas in
the figures represent one standard error of a model’s performance at each step.

Fixed Grids and Policies. Figure 4| summarizes results for fixed grids and policies. The belief
model computes its embedding using samples from the target distribution, so it provides an expected
performance ceiling for NBF. This shows that the embedding is expressive enough to model the set
of belief distributions in this partially observable fixed grid. The recurrent approach is capable of
modeling posterior updates on a fixed grid, and further tuning could potentially allow it to perform
better than the belief model in the fixed setting. NBF maintains a low JS divergence, comparable to
the belief model over many steps, while using a relatively low number of particles. This suggests
that NBF’s update is effective for approximating the posterior computation in the embedding space.
Even with orders of magnitude more particles than NBF, the PFs struggle to achieve comparable
performance and demonstrate scalability issues with grid size and dimensionality.

Randomized Grids and Policies. Performance in randomized grids and policies is summarized
in Figure[5] Belief embeddings effectively model this much larger set of belief distributions (given
that the policy and obstacle placement are now randomized and changing at every episode). With no
ability to incorporate policy and grid information into the model, the performance of the Recurrent
filter degrades significantly compared to the fixed grid setting. This highlights its limited adaptability
to novel or changing environments, regardless of its capacity to express complex belief states in fixed
settings. Particle-based methods are more robust to dynamic grids and policies, with NBF performing
the best overall despite using relatively few particles. NBF’s performance gain over particle filtering
likely arises because the belief-embedding model captures relevant information about PCI;I.

5.2 Partially-Observable Goofspiel

Our second set of experiments uses a modified version of the card game Goofspiel [Lanctot ef al.|
2013|] with k € {4,5,6, 7} cards. In the standard k-card version, both players and the prize deck start
with the same set of cards, labeled 0 through k£ — 1. A round starts when a prize card is revealed,
indicating the value of winning the round. Players act by simultaneously bidding a card and then
observe only the outcome of who played the highest card (win, draw, or loss). In our variant, the card
symmetry is broken: each player and the prize deck receives a random subset of size k — 1, while
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cards. Training is repeated for 5 random seeds, with each model evaluated over 500 episodes for 10
random seeds. Shaded areas indicate 4= 1 standard error on the average model performance.

all other rules remain unchanged. Small k£ means exact posterior computation is tractable, enabling
efficient training and evaluation of our models and baselines.

During training, samples are obtained by following policies of both players to a randomly selected
depth and sampling opponent action histories from the true posterior given the generated observations.
The policies are sampled randomly from a pool generated by independent self-play using PPO
[Schulman ef all [2017]]. These policies were randomly split into a training and test set used only
for evaluation. We trained each model on five different random seeds and each filter’s reported
performance is averaged over 10 different runs, each consisting of 500 episodes.

k-card Goofspiel performance is summarized in Figure [ Modeling late-game belief states in
Goofspiel seems more challenging than in Gridworld. We see this in the growing error of the “Approx
Beliefs” filter as the size of the game increases. It is possible that this is due to strong constraints on
legal states (e.g. hand sizes when ¢ cards have been played). Unsurprisingly, significant inaccuracies
in the embedding model appear to have negative downstream effects on NBF’s performance. We
observe this in the larger variants, where the gap between “Approx Beliefs” and NBF steadily
increases. On the other hand, in all four sizes, the particle filter’s performance improves at later
timesteps as belief state entropy drops. Despite these difficulties, NBF still outperforms the particle
filters with an order of magnitude fewer particles (64 vs. 512) in all four sizes.

6 Discussion

Our empirical evaluation demonstrates that NBF remains robust in environments where belief
states are small enough to be computed analytically. This is key to evaluating our approach, since
metrics like JS divergence require knowledge of the target distribution, but does not demonstrate
the scalability of our method compared to the baselines. For deep recurrent approaches to modeling
g(0,y), scalability and model expressiveness are insignificant when they cannot incorporate critical
environment information (G, 7). Constraining the particle budget to grow sub-linearly with | X|
immediately exposes the scaling pathology of classical particle filters, even in our smallest testbeds.
NBF achieves good performance with orders-of-magnitude fewer particles, whereas PFs remain
inaccurate despite far larger particle sets. In such cases, the additional cost of embedding and
generating a much smaller set of particles with our model is insignificant compared to particle
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simulation costs. Confirming this in larger domains for downstream tasks such as learning and
sequential decision-making is a promising avenue for future work.

In light of our promising results, NBF has limitations related to its belief embedding model and
particle-based updates. For instance, experiments on Goofspiel highlighted the importance of an
accurate belief embedding model. In some cases, filtering performance could be highly dependent on
choosing appropriate task-specific architectures and training methods.

Training data for the domains tested in this work is both easy to generate and reflective of the set of
belief states encountered during filtering. Learning an embedding model from the data encountered
while filtering would make NBF applicable to settings where representative training data is difficult or
impossible to obtain before filtering. That said, many state-of-the-art online search algorithms [Silver
et al.l2017; Moravcik et al., 2017 [Schrittwieser ef al.| 20205 Schmid ef al.l 2023] require significant
computation for offline training but keep online search at decision-time less computationally intensive.
These settings suit NBF perfectly and match the experiments conducted in this paper. While NBF’s
posterior updates reduce the chance of particle impoverishment, they do not eliminate it, especially
under extreme conditions where impoverishment can occur in a single step. Such updates can also
potentially incur computational overhead during inference compared to pure model-based approaches
or the analytical updates of some classical filtering methods. In this sense, NBF trades inference speed
for increased representational capacity and adaptability to environmental and control dynamics.

6.1 Related Work

There is a notable connection between variational hidden states in deep recurrent models and belief
state modeling [Chung ef al.,[2015]]. Recurrent neural filtering algorithms [Krishnan et al.l 2015} |[Karl
et al.,[2016; [Lim et al.|[2020; Revach e al.| 2022]] can incorporate external observations and learn the
overall transition dynamics defined with a fixed 7 and G. However, this implies that, regardless of
their expressivity, these models are fixed at test time and cannot easily be adapted to new transition
dynamics.

Alternative methods [Fickinger et al.| 2021} |Sokota et al., [2022]] fine-tune a large pre-trained deep
generative model via gradient updates at decision time to adapt to changes in the environment
dynamics. The model is initially trained on a large sample set aggregated from many belief states
and then refined to fit a test-time belief state. Like NBF, such methods can resample from the full
support of the distribution, which mitigates impoverishment risks. However, this comes at a cost as
fine-tuning may require many costly gradient updates for each target belief state. This makes it less
suitable as a component of fast online search algorithms.

Belief state modeling has often been implicitly studied in downstream tasks such as search and
learning in partially observable environments. The aforementioned fine-tuning approaches [Fickinger
et al.l 20215 Sokota et al.||2022] have been applied to search and learning in Hanabi. POMCP [Silver
and Veness), 2010] performs Monte Carlo Tree Search from particle-based approximations of belief
states. Neural Filtering and Belief Embedding can potentially act as a drop-in replacement for particle
filtering and offer richer belief state approximations for search. Likewise, Sustr ez al.[[2021] uses
particle-based approximations of value functions for depth-limited search. Approximating value
functions in the embedding space is also a promising avenue for future work.

7 Conclusion

We introduced Neural Bayesian Filtering, a method for modeling belief states in partially observable
Markov systems. It models the set of distributions induced by a Markov system as a latent space and
performs particle-based posterior updates in this latent space upon new observations. Its underlying
models for embedding beliefs are trained strictly from sample sets of example belief states, and
its posterior update directly integrates non-stationary dynamics and control variables. We show
empirically in two partially observable domains that it retains the robustness of traditional particle
filtering while approximating rich, multimodal belief states with far fewer particles. Neural Bayesian
Filtering has potential applicability well beyond the tasks demonstrated in this paper, extending
naturally to various domains involving sequential decision-making, planning, and estimation under
uncertainty.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that we can approximately represent belief distributions as vectors in
a latent space and filter in the latent space. We demonstrate this empirically in two domains.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss potential limitations of Neural Bayesian Filtering in Section 6}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The main body of the paper states assumptions in plain language, but the
supplementary material contains formal assumptions and full proofs for the theoretical
results presented.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The main paper summarizes empirical results and provides crucial details
about our experimental process, while the supplementary material contains further details
and includes all experiment source code.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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521 5. Open access to data and code

522 Question: Does the paper provide open access to the data and code, with sufficient instruc-
523 tions to faithfully reproduce the main experimental results, as described in supplemental
524 material?

525 Answer: [Yes]

526 Justification:

527 Guidelines:

528 » The answer NA means that paper does not include experiments requiring code.

529 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
530 public/guides/CodeSubmissionPolicy) for more details.

531 * While we encourage the release of code and data, we understand that this might not be
532 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
533 including code, unless this is central to the contribution (e.g., for a new open-source
534 benchmark).

535 * The instructions should contain the exact command and environment needed to run to
536 reproduce the results. See the NeurIPS code and data submission guidelines (https:
537 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

538 * The authors should provide instructions on data access and preparation, including how
539 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
540  The authors should provide scripts to reproduce all experimental results for the new
541 proposed method and baselines. If only a subset of experiments are reproducible, they
542 should state which ones are omitted from the script and why.

543 * At submission time, to preserve anonymity, the authors should release anonymized
544 versions (if applicable).

545 * Providing as much information as possible in supplemental material (appended to the
546 paper) is recommended, but including URLSs to data and code is permitted.

547 6. Experimental setting/details

548 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
549 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
550 results?

551 Answer: [Yes] .

552 Justification: Training details, hyperparameters, etc. are found in the supplementary material.
553 Guidelines:

554 * The answer NA means that the paper does not include experiments.

555 * The experimental setting should be presented in the core of the paper to a level of detail
556 that is necessary to appreciate the results and make sense of them.

557 * The full details can be provided either with the code, in appendix, or as supplemental
558 material.

559 7. Experiment statistical significance

560 Question: Does the paper report error bars suitably and correctly defined or other appropriate
561 information about the statistical significance of the experiments?

562 Answer: [Yes]

563 Justification:

564 Guidelines:

565 * The answer NA means that the paper does not include experiments.

566 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
567 dence intervals, or statistical significance tests, at least for the experiments that support
568 the main claims of the paper.

569 * The factors of variability that the error bars are capturing should be clearly stated (for
570 example, train/test split, initialization, random drawing of some parameter, or overall
571 run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources used are described in the supplementary material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: As this work falls under the category of foundational research, we feel both
the potential direct positive and negative societal impacts of this are limited.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data is being released, and the models used in the paper have little risk for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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723 * We recognize that the procedures for this may vary significantly between institutions

724 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
725 guidelines for their institution.

726 * For initial submissions, do not include any information that would break anonymity (if
727 applicable), such as the institution conducting the review.

728 16. Declaration of LLM usage

729 Question: Does the paper describe the usage of LLMs if it is an important, original, or
730 non-standard component of the core methods in this research? Note that if the LLM is used
731 only for writing, editing, or formatting purposes and does not impact the core methodology,
732 scientific rigorousness, or originality of the research, declaration is not required.

733 Answer: [NA]

734 Justification:

735 Guidelines:

736 * The answer NA means that the core method development in this research does not
737 involve LLMs as any important, original, or non-standard components.

738 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
739 for what should or should not be described.
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